
1 

 

KDDANet-a novel computational framework for systematic 

uncovering hidden gene interactions underlying known drug-disease 

associations 

Hua Yu 1, #*, Lu Lu 2, #, Ming Chen 3, Hu Li 4, Chen Li 2,*, Jin Zhang 1, * 

1 Center for Stem Cell and Regenerative Medicine & The First Affiliated Hospital, Department of 

Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. 

Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China. 

2 Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China. 

3 College of Life Sciences, Zhejiang University, Hangzhou, China. 

4 Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental 

Therapeutics, Mayo Clinic, Rochester, MN, USA. 

# These authors contributed equally. 

*Correspondence:yuhua200886@163.com, chenli2012@zju.edu.cn and zhgene@zju.edu.cn 

 

Abstract 

Inferring novel therapeutic indications of known drugs provides an effective method 

for fast-speed and low-risk drug development and disease treatment. Various 

computational tools have been developed to accurately predict potential associations 

between drugs and diseases. Nevertheless, no method has been designed to unveil 

pharmacological (toxicological) gene interactions underlying Known Drug-Disease 

Associations (KDDAs). System-level interpretation and elucidation of molecular 

mechanism underlying KDDAs remains a main challenge. Here, for the first time, we 

presented a novel and general computational framework, called KDDANet, for 

systematic uncovering hidden gene interactions underlying KDDAs from the 

perspective of complex molecular network. KDDANet effectively implemented 

minimum cost optimization and graph clustering on a unified flow network model. 

The excellent performance and general applicability of KDDANet on uncovering 

hidden genes underlying KDDAs were globally demonstrated by enrichment analysis 

of known and novel KDDA genes against two well-curated databases across broad 

types of diseases. Case studies on several types of diseases further highlighted that the 

potential value of KDDANet on revealing hidden gene interactions underlying 
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KDDAs. Particularly, it’s worth noting that KDDANet can reveal the shared gene 

interactions underlying multiple KDDAs. For facilitating biomedical researchers to 

explore KDDA molecular mechanisms and guiding drug repurposing, we provided an 

online web server, http://47.94.193.106/kdda/index, to browse, download and analyze 

the predicted KDDA gene interactions. Our software and usage instruction were freely 

available at https://github.com/huayu1111/KDDANet/.  
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1 Introduction 

The conventional development of novel promising drugs for treating specific diseases 

is a time-consuming and efforts-costing process, including discovery of new chemical 

entities, target detection and verification, preclinical and clinical trials and so on 

(Paul, et al., 2010). Compared with traditional drug development, computational drug 

repositioning, i.e.predicting the novel indications of existing drugs, offers the 

possibility for safer and faster drug development because of several steps of 

tranditional drug development pipeline can be avoided during repurposing efforts 

(Ashburn and Thor, 2004; von Eichborn, et al., 2011).Various computational tools, 

including machine-learning and similarity-computation models, have been proposed 

to predict novel associations between drugs and diseases for facilitating drug 

repurposing (Iwata, et al., 2015; Lu and Yu, 2018). These methods can efficiently 

exploit and integrate multi-level omic data sources for discovery of novel drug 

indications and thus accelerating drug repositioning process. However, they seldomly 

analyze the molecular mechanisms underlying Known Drug-Disease Associations 

(KDDAs), which seriously hampered the development of drug repurposing and new 

therapies. 

 

Theoretically, drug repurposing has been proposed based on two molecular-level 

facts. On one hand, complex diseases often involve multiple genetic and 

environmental determinants, including multi-factor driven alterations and 

dysregulation of a series of genes (Goh, et al., 2007). The dysfunction of these genes 

will propagate and perturb certain biological processes by the interactions among 

molecules, leading to the onset of diseases. On the other hand, one drug can exert 

impacts on many targets and perturb multiple biological processes (Campillos, et al., 

2008; Yildirim, et al., 2007). As a result, the shared biological processes manifested in 

certain disease state and induced by a known drug’s treatment suggest potential drug 

repositioning. Therefore, developing the mechanism-oriented computational tools to 

unveil these shared molecular interactions is of great significance for understanding 
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disease pathogenesis and guiding drug repurposing. However, few computational 

tools have been developed to address this need from a perspective of complex 

molecular network. To our knowledge, two types of methods have been intended to 

identify drug-gene-disease co-modules. Kutalik et al. and Chen et al. developed Ping-

Pong Algorithm (PPA) and Sparse Network-regularized Partial Least Square (SNPLS) 

to identify co-modules related to specific cancer cell lines of NCI-60 and CGP 

projects, respectively (Chen and Zhang, 2016; Kutalik, et al., 2008). However, these 

two methods need to integrate gene-expression and drug-response data of cancer cell 

lines for constructing models and do not carry out prediction for other types of 

diseases. The second type of method has been designed to study drugs and disease 

with known related genes, including comCIPHER and DGPsubNet (Wang, et al., 

2014; Zhao and Li, 2012). The common shortcomings of these methods are the 

identified co-modules including multiple drugs and diseases and thus did not uncover 

molecular interactions bridging individual KDDA. Moreover, comCIPHER used only 

1442 genes to construct learning model, its performance and generalization capability 

cannot be accurately evaluated.  

 

To fully understanding the molecular mechanism of individual KDDA and the shared 

molecular processes among multiple KDDAs, it is essential to find routes to bridge 

drug and its related disease and obtain a true picture of the roadmap of disease state 

cellular responses with drug administration. To this end, we designed a novel and 

general computational framework, called KDDANet, which used known interactome 

network to identify molecular interactions underlying KDDAs, including components 

that are otherwise hidden (Fig 1). KDDANet first built a unified flow model by 

integrating drugs, genes and diseases into a heterogeneous network (Fig 1a). Then, the 

minimum cost flow optimization, a classical algorithm which has been widely used in 

previous studies (da Rocha, et al., 2016; Huang, et al., 2011; Yeger-Lotem, et al., 

2009), was designed and implemented to identify gene subnetwork bridging a given 

query drug (disease) to its related diseases (drugs) (Fig 1b-c). Finally, Markov 
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CLustering (MCL) algorithm was adopted to uncover gene interaction modules 

bridging the query drug (diseases) and each related disease (drug) (Fig 1d). 

 

The key advantage (strength) of the KDDANet method was its ability to uncover the 

hidden gene interactions and modules underlying KDDAs through implementing 

minimum cost optimization and graph clustering on a unified flow network model. 

Validation experiments against two gold standard databases, including DisGeNet 

(http://www.disgenet.org/) (Piñero, et al., 2016), and SMPDB (http://smpdb.ca/) 

(Frolkis, et al., 2009) demonstrated that our method has the excellent performance for 

uncovering known and novel genes bridging drugs (diseases) and their related 

diseases (drugs). Case studies on several types of diseases further showed that the 

potential value of our method on revealing hidden gene interactions of drug actions 

for treating specific diseases. Particularly, our results demonstrated that KDDANet 

can reveal the shared gene interactions underlying multiple KDDAs, which provided 

more valuable guides for drug repurposing. In summary, we developed an effective 

and universal computational tool for accurate and systematic uncovering molecular 

modules underlying KDDAs and thus providing novel insights into the mechanism 

basis of drug repurposing and disease treatments. The computed KDDA subnetworks 

in this study were provided in an online web server at http://47.94.193.106/kdda/index 

and the source code of KDDANet was freely available on 

https://github.com/huayu1111/KDDANet/ for facilitating biomedical researchers to 

explore KDDA molecular mechanisms and guiding drug repurposing. 
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Fig 1. Schematic illustration of KDDANet computational framework. a) Mapping drugs and 

diseases into the weighted gene network through known drug-target associations and gene-disease 

associations. b) Constructing a unified flow network. c) Identifying the highest probability gene 

sub-network connecting query drug and candidate diseases by minimum cost flow optimization 

algorithm. d) Uncovering hidden gene interaction modules by Markov CLustering (MCL) 

algorithm. 

 

2 Materials and Methods 

2.1 Datasets 
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The weighted human gene network, HumanNet, constructed by integrating multiple 

data sources, was used in our current study (Cho, et al., 2016), in which the nodes 

were represented by gene ID and connected by bidirectional edges. Drugs and targets 

with known interactions were obtained from DrugBank database 

(http://www.drugbank.ca/) on January 22, 2017. Currently, this database contained 

9591 drug entries and 4661 non-redundant protein (i.e. drug target/enzyme/transporter 

/carrier) sequences were linked to these entries. In this study, we selected 4861 drugs 

with at least one known target which was contained in the weighted human gene 

networks for further analysis. In total, 2196 known target proteins included in the 

weighted human gene networks were connected to these drugs by 12014 interactions 

(Dataset 1). Classification of diseases and disease-related genes were extracted from 

the previous study (Goh, et al., 2007). We focused on 1441 diseases with at least one 

related gene which was included in HumanNet for our study. In total, 16712 

associations link these diseases to 1521 genes existing in HumanNet (Dataset 2). The 

known drug-disease associations were extracted from Comparative Toxicogenomics 

Database (Davis, et al., 2009) (Dataset 3). In this study, we focused only on 53124 

associations in which the drug has at least one target gene and the disease has at least 

one related gene contained in HumanNet. For simplicity and consistency, different 

types of drug, disease and gene nomenclatures were converted to DrugBank drug ID, 

OMIM disease ID and Entrez gene ID for subsequent modeling and analysis. 

 

2.2 Construction of a unified flow network model 

Our computational framework can be applied to two contexts: 1) uncovering hidden 

gene interactions bridging a query drug and its related disease (SDrTDi); 2) unveiling 

hidden gene interactions bridging a query disease and its related drug (SDiTDr). We 

described below the construction process of unified flow network in the first context. 

Overall, the unified flow network model was built by integrating the query drug and 

all its related diseases into the weighted gene network based upon known drug-target 

relations and gene-disease associations (Fig.1A). For the given query drug, we used it 
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as source node (S) and integrated it into gene network by introducing the directed 

edges from it point to its target genes. For each its related disease, we mapped the 

disease to gene network by introducing the directed edges from its related genes point 

to it. To obtain a flow network, we incorporated a sink node T and introduced a 

directed edge pointing from each disease to it. 

 

In the integrated heterogeneous network, we assigned each edge a weight value 

reflecting the probability that two nodes were associated. For the edges linking two 

genes, their weight values were directly extracted from original literature (Cho, et al., 

2016). Since there was not reliable probability knowledge available between different 

types of nodes (i.e. drug, gene and disease), the weighting scheme was simply 

designed as follow. 

I) For each edge connecting the query drug (S) and its target gene v or linking a gene 

g and each its related disease d, we given it a weight wSv = 1 or wgd = 1. 

II) For each edge linking each disease d to sink node T, we assigned it a weight wdT = 

1.  

 

We further defined for each edge in this heterogeneous network a capacity value that 

limits the flow. For each edge connecting the query drug S to its target gene v or 

linking the disease d to sink node T, we assigned it a capacity cSv or cdT that equal 

positive infinity allowing unlimited flow quantity. For other edges, we assigned them 

a capacity cij = 1. With these definitions, a unified flow network was constructed as a 

complex heterogeneous graph G = (V, E), where V was the set of vertices and E was 

the set of edges. This graph included two types of edges (bidirectional and directed) 

and three types of nodes (drugs, genes and diseases). Each edge was assigned with a 

weight and a capacity. To apply our computational framework in the second context, 

the query disease and a set of its related drugs need to be mapped into gene network 

by disease-related genes and drug’s target genes. After this, the weights and capacities 

of network edges can be set using the same method as above for constructing the 
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unified flow network model. 

 

2.3 Minimum cost flow optimization and Markov CLustering (MCL) 

The main aim of this study was to identify hidden gene interactions relating a query 

drug (disease) and its related diseases (drugs). This first step to solve this problem 

was that finding a highest probability sub-network that can connect a query drug 

(disease) to each its related disease (drug). This requirement could be solved using 

“flow algorithm”, a type of computational approach that has been employed in our 

previous study and other labs to predict the disease-related genes and uncovering 

unknown biological pathways (Chen, et al., 2011; Dasika, et al., 2006; Huang, et al., 

2011; Yeger-Lotem, et al., 2009; Yu, et al., 2017). 

 

As mentioned in 2.2 Section, our method can be applied in two contexts by simply 

reconstructing flow network model, we described below our algorithm in the context 

of uncovering hidden gene interactions bridging a query drug and its related diseases. 

Since we want to find the topological structure of hidden gene interactions associating 

a query drug with a series of its related diseases, we required that flow pass from the 

query drug through gene network to its related diseases. We formulated our goal as a 

minimum cost flow optimization problem (Huang, et al., 2011; Yeger-Lotem, et al., 

2009) (Fig.1B). Given the unified flow network, this problem can be expressed as a 

linear programming formula that minimized the total cost of the flow network while 

diffusing the most flow from source node to sink node. Let wij, fij and cij referred to the 

weight, flow and capacity from node i to node j, respectively. The linear programming 

formula can be written as follow. 

Minimize            ∑ (− log(𝑤𝑖𝑗) ∗ 𝑓𝑖𝑗) − (𝛾 ∗ ∑ 𝑓𝑆𝑣)𝑖∈𝑉,𝑗∈𝑉               (1) 

Subject to             ∑ 𝑓𝑖𝑗 − ∑ 𝑓𝑗𝑖    ∀𝑖 ∈ 𝑉 − {𝑆, 𝑇}𝑗∈𝑉𝑗∈𝑉                 (2) 

𝑓𝑆𝑣 − ∑ 𝑓𝑖𝑇𝑖∈𝐷 =  0                        (3) 

0 ≤ 𝑓𝑖𝑗 ≤ 𝑐𝑖𝑗                          (4) 

Where V denoted a set of nodes included in the flow network; S denoted the source 
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node (the query drug) and v denoted it target gene. The parameter gamma (𝛾) controls 

the size and the quality of the optimized sub-network. The first component of this 

formula, ∑ (− log(𝑤𝑖𝑗) ∗ 𝑓𝑖𝑗)𝑖∈𝑉,𝑗∈𝑉 , ensured minimizing the network cost that given 

priority to obtain higher probability gene interactions, at the same time, the second 

component, −(𝛾 ∗ ∑ 𝑓𝑆𝑣), indicated maximizing the total flow across entire network. 

Expression (2) guaranteed the conservation of flow quantity for each node in the gene 

network. Expression (3) ensured that all flow out of the source node must arrive at the 

sink node. Expression (4) guaranteed that the flow via each edge is non-negative and 

does not exceed its capacity. This optimization problem can be efficiently solved 

using primal simplex method provided in Mixed Integer Linear Programming (MILP) 

solver (http://lpsolve.sourceforge.net/). The solution 

𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑖𝑗 > 0 ∑ (− log(𝑤𝑖𝑗) ∗ 𝑓𝑖𝑗) − (𝛾 ∗ ∑ 𝑓𝑆𝑣)𝑖∈𝑉,𝑗∈𝑉   got the highest probability 

sub-network relating the query drug with all its related diseases. For each related 

disease of query drug, we searched the all possible paths linking query drug to it and 

used genes contained in these paths to obtain subnetwork bridging query drug and this 

disease. Once the subnetwork underlying query drug and each its related disease was 

identified, Markov Clustering (MCL) algorithm (https://micans.org/mcl/) can be 

adopted to discover hidden gene interaction modules by using the flow quantities 

through edges of subnetwork as weight values. 

 

2.5 Performance evaluation 

In most of cases, the true gene interactions underlying KDDAs were poorly 

understood. Consequently, there was no perfect way to assess the prediction results. 

Here, we systematically evaluated the performance of KDDANet based on fold 

enrichment of true genes underlying KDDAs against random genome background 

(full network). The fold of enrichment was calculated by the following formula:  

𝑝

𝑞
×

𝑀

𝑁
                              (1) 

where, p was the number of true positive genes underlying a KDDA; q was the 
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number of inferred genes in the resulting subnetwork; M denoted the number of true 

positive genes in the gold standards and N represented the number of all genes in full 

network. 

 

Using this method, we conducted two main evaluation experiments: I) Uncovering 

known genes which directly linked by query drug and it related disease in the unified 

flow network model; II) Uncovering novel genes which have not directly connected 

by query drug and its related disease in the unified flow network model, but were to 

be shared between disease-related genes and drug-related genes. To achieve the 

second, we collected a comprehensive knowledgebase of recently updated known 

disease-related genes and known drug-related genes as gold standards. The known 

disease-related genes were directly downloaded from DisGeNet database, a largest 

publicly available collections of genes and variants associated to human diseases 

(Piñero, et al., 2016), which contained 130097 associations between 14345 genes and 

5391 diseases (Dataset 4). We obtained known drug-related genes by drug-pathway 

associations extracted from SMPDB, a well-established small molecule pathway 

database (Frolkis, et al., 2009; Jewison, et al., 2014). If a pathway was associated with 

a drug, we considered that all genes in this pathway were associated with this drug. 

This resulted in 15835 associations connecting 598 drugs and 810 genes (Dataset 5). 

The network visualization was carried out using Cytoscape (https://cytoscape.org/). 

KEGG pathway enrichment analysis was performed by clusterProfiler R package (Yu, 

et al., 2012). 

 

3. Results 

3.1 Excellent performance and general applicability of KDDANet computational 

framework 

We first asked whether the true genes underlying Known Drug-Disease Associations 

(KDDAs) have been found in previous biomedical researches by checking the 

discrepancy between Known Drug Target Genes (KDTGs) and Known Disease 
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Related Genes (KDRGs). To evaluate the discrepancy between KDTGs and KDRGs, 

we collected the KDTGs and KDRGs of 4861 drugs and 1441 diseases from the 

recently updated data source of DrugBank and DisGeNet database, respectively. Then, 

we analyzed the overlap ratio between KDTGs and KDRGs underlying 53124 

KDDAs obtained from Comparative Toxicogenomics Database (CTD) (Davis, et al., 

2009). We observed that the most gene sets demonstrated extremely low overlap ratio, 

with the increasing of gene number, the overlap ratio was sharply decreased (Fig 2a). 

We further checked the overlap percentage in different types of diseases and found the 

overlaps between KDTGs and KDRGs were all small for 19 disease types (Fig 2b). 

This discrepancy between KDTGs and KDRGs indicated that each gene set alone 

provides only a limited and biased view of KDDAs. Meanwhile, these outcomes also 

suggest that the current biomedical researches in drug development are not in well 

conjunction with disease pathogenesis research across broad types of diseases. To 

address this, we designed a novel computational framework, KDDANet, which 

effectively integrated network flow optimization and graph clustering analysis to 

bridge this gap (Fig.1, see Methods for details). 

 

To comprehensively evaluate the capability of KDDANet framework on uncovering 

the hidden genes underlying KDDAs, we first checked whether the KDTGs and 

KDRGs were contained in the resulting subnetworks by performing enrichment 

analysis with a range of 𝛾 settings from 4 to 12 with a step of 1 (see Methods for 

details). For comparing with background enrichment, we carried out a permutation 

test by producing random subnetworks with the same number of genes. We found 

that, in SDrTDi and SDiTDr contexts, the KDTGs and KDRGs were significantly 

enriched in the resulting subnetworks against random subnetworks (Fig S1a-d). This 

indicated that KDDANet can effectively capture the genes associated with query 

drugs (diseases) and their related diseases (drugs). To check whether the known true 

KDDA genes used to construct network flow model were captured in our prediction 

results, we then performed the enrichment analysis of shared genes between KDTGs 
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and KDRGs underlying the same KDDAs (see Methods for details). As shown in Fig 

2c and 2d, we can observe that, in SDrTDi and SDiTDr contexts, the subnetworks 

outputted by KDDANet have obviously higher enrichment of the shared genes when 

compared with random permutation subnetwork. For further demonstrating whether 

our computational framework can uncover novel true KDDA genes which were not be 

shared between KDTGs and KDRGs, we collected a set of novel shared genes 

between drug related genes and disease related genes from recently updated SMPDB 

and DisGeNet database, respectively. We performed enrichment analysis and found 

that the resulting subnetworks have still prominently higher enrichment of these novel 

shared genes than random permutation subnetwork. Get together; these results 

suggested that our model was a powerful tool for achieving the goal of systematic 

uncovering hidden genes underlying KDDAs. 

 

As the size and quality of KDDANet output subnetwork depended on a parameter 𝛾. 

Higher 𝛾 values will identify more links between the source node and the sink node 

but with lower confidence. To obtain suitable values for 𝛾, we run KDDANet with 𝛾 

values ranging between 4 and 12 with a step of 1. For each of the output subnetwork, 

we computed the percentage of input, namely KDTGs and KDRGs, that were 

incorporated into the network, as well as the percentage of low probability edges with 

weight smaller than 0.3. As shown in Fig S1e and Fig S1f, we observed that the 

percentages for KDTGs, KDRGs and low probability edges contained in resulting 

subnetworks became stable when γ = 6 and 8 for SDrTDi and SDiTDr, respectively. 

We therefore selected γ = 6 for SDrTDi and γ = 8 for SDiTDr as they were the 

minimal values with which a significant fraction of the input was incorporated while 

the percentage of low probability edges remained small in respective contexts. After 

confirming the excellent performance and obtaining the optimal γ value of KDDANet 

framework by global and systematic analysis, we further determined whether 

KDDANet has the general application value across a variety of disease types. Using 

the same enrichment analysis strategy on 19 different types of diseases, we found that 
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KDDANet can make effective capturing of true genes underlying KDDAs for all 19 

types of diseases (Fig 2g-h and Fig S1g-h, Dataset 6 and Dataset 7). Collectively, 

these results indicated that KDDANet was an excellent and general computational 

tool which can be applied to uncover hidden genes underlying KDDAs across broad 

types of diseases. 

 

Fig 2. Excellent performance and general applicability of KDDANet method. a) Scatter plot 

demonstrated the distribution of overlap ratio between KDTGs and KDRGs underlying the same 
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KDDAs; The x-axis denoted the total number of KDTGs and KDRGs underlying the same 

KDDAs. b) Colored scatter plot demonstrated the Minimum (Min), 25th Quantile (Q1), 50th 

Quantile (Q2), 75th Quantile (Q3) and Maximum (Max) of overlap ratio distribution in different 

types of diseases; The size and color of point denoted the gene number and overlap ratio, 

respectively; c) Violin plot demonstrated the enrichment of known shared genes between KDTGs 

and KDRGs underlying same KDDAs with different 𝛾 settings in SDrTDi context, using random 

permutation as control (Rd); d) Similar to c) demonstrating the enrichment of known shared genes 

in SDiTDr context; e) Similar to c), demonstrating the enrichment of novel shared genes between 

drug related genes collected from SMPDB database and disease related genes obtained from 

DisGeNet database; f) Similar to d), demonstrating novel shared genes between drug related genes 

collected from SMPDB database and disease related genes obtained from DisGeNet database; g) 

Violin plot demonstrated the enrichment of known shared genes between KDTGs and KDRGs 

underlying the same KDDAs across different types of diseases in SDrTDi context; Values in 

parentheses denoted the number of KDDAs. h) Similar to g), demonstrating the enrichment of 

known shared genes between KDTGs and KDRGs in SDiTDr context. 

 

3.2 Global functional analysis and detailed case studies highlight that the 

potential value of KDDANet for revealing hidden gene interactions underlying 

individual KDDA 

The comprehensive analysis above demonstrated that KDDANet was powerful for 

predicting the possible gene links underlying KDDAs. Here, we further evaluated the 

rationality of functions of the KDDA gene interaction subnetworks by carrying out a 

global enrichment of all predicted KDDA subnetworks against 53 classical KEGG 

pathways. We calculated Enrichment Score (ES) for each pathway in all 19 types of 

diseases (Fig S2). The obtained enrichment results can be validated by existing 

scientific knowledge. For example, we observed that p53 signaling pathway has 

relative higher ES value in cancer when comparing with other pathways for both 

SDrTDi and SDiTDr resulting modules (see Fig S2). For neurological disease, we 

found that the notch signaling pathway was significantly enriched in both SDrTDi and 
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SDiTDr resulting modules (Fig S2). This was consistent with the previous discoveries 

that demonstrated the association of notch-related pathways with neurological 

disorders and the potential of agents target notch signaling as therapeutic 

interventions for several different central nervous system disorders (Lathia, et al., 

2008). Interestingly, we found that ophthamological, immunological, endocrine, 

developmental and cardiovascular diseases have consistent less enrichment on all 53 

known KEGG pathways than other types of diseases (Fig S2). This indicated that the 

known drugs developed to cure these types of diseases cannot be well explained by 

these known pathways and the uncovered molecular interactions underlying KDDAs 

in these types of diseases is great value for further experimental studies. 

 

In addition to global function analysis KDDA genes, we performed the detailed case 

studies to further demonstrate the potential merits of KDDANet for uncovering gene 

interactions underlying individual KDDA. For simplicity, we randomly selected the 

predicted subnetworks of 4 KDDAs including DB00489 (sotalol)-176807 (prostate 

cancer) association, DB01109 (heparin)-601665 (obesity) association, DB03147 

(flavin adenine dinucleotide)-114480 (breast cancer) association and DB01022 

(phylloquinone)-104300 (Alzheimer disease) association for detailed analysis. Sotalol 

was normally used to treat life threatening ventricular arrhytmias and maintained 

normal sinus rhythm in patients with atrial fibrillation. It has been reported that sotalol 

was associated with decreased prostate cancer risk (Kaapu, et al., 2015). For sotalol-

prostate cancer association, we predicted a subnetwork consisting of 31 genes and 28 

links (Fig 3a). All three known target genes, KCNH2, ADRB1 and ADRB2, were 

included in this subnetwork. Meanwhile, this subnetwork also captured 12 disease-

related genes. Among genes included in this subnetwork, KCNH2, PRKACA and 

PRKAR1A were the novel shared genes between recently updated drug-related genes 

and disease-related genes, which were not used as KDTGs and KDRGs in our flow 

network model. The top 10 enriched KEGG terms were demonstrated in Fig 3b. As 

expected, PI3K-Akt signaling pathway, MAPK signaling pathway and FoxO signaling 
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pathway were the classic signaling pathways related to cancer formation and 

development. The associations between EGFR tyrosine kinase inhibitor resistance, 

Relaxin signaling pathway, AGE-RAGE signaling pathway and prostate cancer have 

also been widely investigated and reported in the previous works (Bao, et al., 2015; 

Neschadim, et al., 2015; Ozvegy-Laczka, et al., 2005). Moreover, autophagy and focal 

adhesion were two widely observed biological processes in cancer (Eke and Cordes, 

2015; Farrow, et al., 2014). By applying MCL with default parameters, this 

subnetwork was further decomposed into 3 gene modules, M1, M2 and M3. 

Obviously, the enriched KEGG terms of M1 and M3 were closely related to cancer 

formation and development (Fig 3c). Surprisingly, M2 was not enriched to any KEGG 

term, indicating that it might be a novel module explaining this association. DB01022 

(phylloquinone)-104300 (Alzheimer disease) association has been reported in 

previous studies (Alisi, et al., 2019). A subnetwork including 46 genes and 44 links 

were uncovered for this association (Fig 3d). All two known target genes of 

phylloquinone and 18 Alzheimer disease related genes were identified in this 

subnetwork. Interestingly, for this association, two separated gene modules were 

detected by two known targets of phylloquinone. The enriched KEGG terms of these 

two gene modules demonstrated strong closeness with Alzheimer disease (Fig 3e-f). 

 

The association between DB01109 (heparin) and 601665 (obesity) was inferred by 

multiple genes as described in CTD database. For this association, KDDANet 

predicted a subnetwork containing 168 edges connecting 169 genes (Fig S3a). We 

found that all 3 known drug target genes and 67 disease-related genes were captured 

in this subnetwork. Particularly, 9 genes were the novel shared genes between recently 

updated drug-related genes and disease-related genes which were not used as KDTGs 

and KDRGs in our flow network model. Interestingly, 3 genes used to infer this 

KDDA, including ARK1, PARP1 and TNF, were also effectively captured in the 

resulting subnetwork. The top 10 enriched functions of this subnetwork were 

demonstrated in Fig S3b. As expected, Insulin resistance, Type II diabetes mellitus, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 29, 2019. ; https://doi.org/10.1101/749762doi: bioRxiv preprint 

https://doi.org/10.1101/749762
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Insulin signaling pathway and Adipocytokine signaling pathway were the frequently 

reported molecular processes associated with obesity (Kahn and Flier, 2000; Taylor 

and Macqueen, 2010). In addition, Proteoglycans, Lipolysis and AMPK signaling 

pathway were also highly correlated with Insulin resistance (Langin, et al., 2005; 

Olsson, et al., 2001; Viollet, et al., 2009). For some KEGG terms, though we did not 

observe their associations with obesity, they might be the true biological processes 

underlying this association. We delineated this subnetwork into gene modules. The 

top 3 gene modules and their enriched functions were demonstrated in Fig S3a and 

Fig S3c. The major enriched functions of these modules were related to obesity. For 

DB03147 (flavin adenine dinucleotide)-114480 (breast cancer) association, we 

obtained a subnetwork consisting of 148 genes and 137 interactions (Fig S3d). As 

expected, CAT, a gene used to infer this association, was included in this subnetwork. 

In consistent with this, among 86 targets of DB03147, 25 were contained in this 

subnetwork. Meanwhile, 44 breast cancer related genes were also captured in this 

subnetwork. Further analysis demonstrated that the mainly enriched functions of this 

subnetwork and inferred gene modules were closely related to cellular basis of breast 

cancer (Fig S3e-f). All these results above indicated that the molecular basis of 

KDDAs can be revealed by our proposed approach. 
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Fig 3. Case studies on DB00489 (Flavin adenine dinucleotide)-176807 (Prostate Cancer) 

association and DB01022 (Phylloquinone)-104300 (Alzheimer disease) association. a) 

Uncovered gene interaction subnetwork for DB00489-176807 association in SDrTDi context; b) 

Top 10 enriched KEGG terms of subnetwork genes underlying DB00489-176807 association; c) 

Representatively enriched KEGG terms of 3 identified gene modules underlying DB00489-
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176807 association; d) Uncovered gene interaction subnetwork underlying DB01022-104300 

association in SDrTDi context; e) Enriched KEGG terms of subnetwork genes underlying 

DB01022-104300 association; f) Representatively Enriched KEGG terms of two uncovered gene 

modules underlying DB01022-104300 association. 

 

3.3 KDDANet uncovers the shared gene interactions underlying multiple KDDAs 

Analysis on above fully demonstrated that KDDANet can uncover hidden gene 

interactions underlying individual KDDA. Here, we further asked whether KDDANet 

can reveal the shared gene interactions underlying multiple KDDAs. We answered 

this from two aspects: I) Multiple Diseases associating with One Drug (MDiODr); II) 

Multiple Drugs associating with One Disease (MDrODi). Considering the practical 

merits of first one analysis, we required multiple diseases belongs to same type of 

diseases. To perform these two evaluations, we produced meta-subnetworks by 

combining multiple KDDA subnetworks for 12386 MDiODr combinations and 773 

MDrODi combinations produced in SDrTDi context. The weight of an edge in the 

meta-subnetwork was defined as the number of KDDA subnetworks containing this 

edge divided by the total number of KDDA subnetworks. The higher weight value of 

a link in meta-subnetwork indicated more conservation and commonality. Thus, we 

used the weight value to evaluate the capacity of KDDANet in unveiling the shared 

gene interactions underlying multiple KDDAs. We carried out a permutation test by 

producing random meta-subnetworks with the same number of edges for comparing 

with random background. As shown in Fig 4a-d, the weights of KDDANet meta-

subnetworks were significantly higher than random meta-subnetworks across different 

types of diseases. This indicated the gene interactions tend to be shared in KDDANet 

meta-subnetworks than random background. We also conducted the same analysis in 

SDiTDr context for 12189 MDiODr combinations and 773 MDrODi combinations 

and obtained the similar results (Fig S4a-d). All these results indicated that KDDANet 

can effectively uncover the shared gene interactions underlying multiple KDDAs. 
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Next, we presented some examples for intuitively describing the capability of 

KDDANet in identifying shared gene interactions underlying multiple KDDAs. For 

MDiODr, we selected two cases: I) DB00370 (mirtazapine)-cancer associations and 

II) DB00392 (profenamine)-neurological diseases associations, for detailed 

descriptions. Considering the biomedical significance and conciseness, we selected 

the edges of meta-subnetwork with weights larger than 0.6 for presentation. As 

recorded in CTD database, mirtazapine was associated with 9 cancers, including 

Colorectal Neoplasms, Breast Neoplasms, Neuroblastoma, Glioma, Urinary Bladder 

Neoplasms, Stomach Neoplasms, Esophageal Neoplasms, Lung Neoplasms and 

Prostatic Neoplasms. Fig 4e showed the shared meta-subnetwork including 25 genes 

and 24 edges. Among these genes, HTR2C, ADRA2A, OPRK1 and HRH1 were 

mirtazapine’s target genes and TP53, BRAF, KRAS and EGFR were cancer related 

genes. A KEGG term enrichment demonstrated that these genes play roles in various 

cancers, including 4 cancers associated with mirtazapine as described on above (Fig 

4f). Consistent with this, the enriched pathways, such as Sphingolipid signaling 

pathway, were closely related to cancer formation and development (Ogretmen, 

2018). As reported in CTD database, profenamine has associations with three 

neurological diseases, including Parkinsonian Disorders, Multiple Sclerosis and 

Alzheimer Disease. The shared meta-subnetwork contained 10 edges linking 13 genes 

with 3 profenamine’s target genes, CHRM1, CHRM2 and GRIN3A (Fig 4g). The top 

10 enriched KEGG terms were demonstrated in Fig 4h. A majority of enriched KEGG 

terms, such as Cholinergic synapse and Glutamatergic synapses, have been reported 

dysfunction in neurological disorders and diseases (Moretto, et al., 2018; Tata, et al., 

2014) 

 

For MDrODi, we observed that the shared gene interactions were significant less than 

MDiODr (Fig 4a-d and Fig S4a-d). Nevertheless, we also observed some interesting 

cases. For example, GRACILE syndrome, a metabolic disease, was associated with 

13 drugs as recorded in CTD database. A shared meta-subnetwork including 9 genes 
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and 8 edges were obtained for this disease (Fig S4e). This meta-subnetwork contained 

6 genes which were known related to this disease. All 9 genes in this subnetwork were 

involved in Oxidative phosphorylation. This was expected as GRACILE syndrome 

was a fatal inherited disorder caused by a mutation in an oxidative phosphorylation 

related gene, BCS1L, necessary for providing cells with energy. Another example was 

the Keratoconus, an ophthamological disease, was associated with 3 drugs, 

acetaminophen, valproic acid and theophylline. Keratoconus and these drugs shared a 

meta-subnetwork consisting 15 genes and 11 edges (Fig S4f). This meta-subnetwork 

included 5 Keratoconus related genes, i.e., PIKFYVE, TACSTD2, TGFBI, KERA and 

COL8A2, and both valproic acid and theophylline’s target gene, HDAC2. It is also 

expected that SNW1 and HDAC2 were contained in this meta-subnetwork as they 

were involved in notch signaling pathway which is down-regulated in keratoconus 

(You, et al., 2018). Interestingly, consistent with the associations between collagen 

genes and keratoconus (Bykhovskaya, et al., 2016), a novel collagens coding gene, 

COL1A1, was captured in this meta-subnetwork. Taken together, these shared gene 

interactions provided more valuable and general guides for drug repositioning and 

disease treatment as they characterized the common molecular mechanism among 

multiple KDDAs. 
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Fig 4. KDDANet uncovered the shared gene interactions underlying multiple KDDAs. 

a) Violin plot demonstrates the distributions of weight values in KDDANet meta-subnetwork and 

random meta-subnetwork for MDiODr in SDrTDi context. b) Violin plot demonstrates the 
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distributions of weight values in KDDANet meta-subnetwork and random meta-subnetwork for 

MDrODi in SDrTDi context. c) Violin plot demonstrates the distributions of weight values in 

KDDANet meta-subnetwork and random meta-subnetwork for MDiODr in SDrTDi context across 

different types of diseases; d) Violin plot demonstrates the distributions of weight values in 

KDDANet meta-subnetwork and random meta-subnetwork for MDrODi in SDrTDi context across 

different types of diseases; e) Uncovered gene interaction subnetwork for DB00370 -cancer 

associations in SDrTDi context; f) Top 10 enriched KEGG terms of shared meta-subnetwork 

genes underlying DB00370-cancer association; g) Uncovered gene interaction subnetwork for 

DB00392-neurological diseases associations in SDrTDi context; h) Top 10 enriched KEGG terms 

of shared meta-subnetwork genes underlying DB00392-neurological diseases associations. 

 

3.4 A web server for querying and browsing gene interactions underlying 

KDDAs 

To help biomedical researchers to understand the pathogenesis of disease and promote 

drug development, we developed an online web server, 

http://47.94.193.106/kdda/subnet, for facilitating the researchers to browsing and 

analyzing hidden gene interactions underlying KDDAs. Our website was divided into 

3 parts (Fig 5a): I) querying and browsing gene interactions underlying individual 

KDDA (iKDDA); II) querying and browsing shared gene interactions underlying 

multiple KDDAs connecting multiple diseases to one drug (MDiODr) and III) 

querying and browsing shared gene interactions underlying multiple KDDAs 

connecting multiple drugs to one disease (MDrODi). For Part I, hidden gene 

interactions underlying 52878 and 51745 KDDAs for SDrTDi and SDiTDr were 

provided for visualizing and downloading, respectively (Fig 5b). Users can input a 

query DrugBank drug id or drug name and its associated OMIM disease id or disease 

name. When users selected the corresponding optimization context (SDrTDi or 

SDiTDr) and clicked the search button, the subnetwork underlying this KDDA was 

displayed on a panel. In the panel, the size of node was proportional to the node 

degree, the thickness of edge denoted the flow quantity and the known drug target 
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genes and disease related genes were filled with different colors. Users can click any 

gene node to skip the NCBI Gene website to learn about the knowledge of this gene. 

The content of subnetwork underlying this KDDA can directly be downloaded for 

performing downstream analysis, such as module identification and function analysis. 

 

For Part II, 12386 and 12189 shared meta-subnetworks were contained in our web 

server for SDrTDi and SDiTDr, respectively. When user input the query drug and 

disease type, all its associated diseases under this disease type and the shared meta-

subnetwork were instantly visualized. User can click any related disease to link to 

OMIM database for acquainting disease related knowledge. To facilitate visualizing 

and browsing, we selected edges with weight larger than 0.1 for displaying. The 

weight of interaction of meta-subnetwork was characterized by thickness of edge. 

Similar to Part I, drug target genes and disease-related genes were displayed with 

different colors. Any genes in the shared meta-subnetwork can be clicked to link to 

NCBI Gene website for obtaining related information. The shared meta-subnetwork 

can be also downloaded for user specific downstream analysis. (Fig 5d). For Part III, 

773 shared gene interaction meta-subnetworks were contained in our web server (Fig 

5c). The functions of this part were similar to Part II. Finally, we designed a bulk 

download interface for facilitating user to obtain all subnetworks mentioned above. 

Overall, we provided a simply and easy-to-use web server for exploring the molecular 

mechanism underlying KDDAs and thus help researchers to understand the 

pathogenesis of disease, accelerate drug repurposing and disease treatment. 
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Fig 5. An online web server for visualizing gene interactions underlying KDDAs. a) Home 

page of our web server; b) Web page for visualizing hidden gene interaction subnetwork for 

iKDDA; c) Web page for visualizing the shared meta-subnetwork for MDiODr; d) Web page for 

visualizing the shared meta-subnetwork for MDrODI. 
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4. Discussion 

For drug repurposing, various computational methods have been developed to infer 

novel drug-disease associations (Iwata, et al., 2015; Lu and Yu, 2018). However, the 

molecular mechanisms underlying KDDAs have been still not well explored. This 

was confirmed by the extremely low overlap ratio between KDTGs and KDRGs. The 

discordance between KDTGs and KDRGs also suggested the existence of hidden 

gene interactions underlying KDDAs. Therefore, uncovering the hidden gene 

interactions underlying KDDAs became an important scientific problem for guide 

drug repurposing. Minimum cost network flow optimization is a classical graph 

theory algorithm, has been adopted to uncover unknown molecular processes of cell 

responses to biotic/abiotic stresses and candidate disease genes (Huang, et al., 2011; 

Yeger-Lotem, et al., 2009). It is worth mentioned that Hu Li, Ph.D., and his research 

team developed a cutting-edge method, called NetDecoder, which used minimum cost 

network flow optimization to dissect context-specific biological subnetwork (da 

Rocha, et al., 2016). This method enables researchers to uncover context-dependent 

drug targets, which has considerable application value for personalized medicine. The 

successful practices of minimum cost network flow optimization in these studies 

implicated that it is helpful in biological and medical researches. Inspired by these 

works, we integrated minimum cost network flow optimization and graph clustering 

algorithm and developed a novel computational framework, called KDDANet, to 

reveal the hidden gene interactions and modules underlying KDDAs. KDDANet 

allowed for a global and systematic exploration the molecular mechanisms underlying 

known drug-disease associations, which can effectively complement to the existing 

computational methods for novel drug-disease association prediction, for example, a 

published method in our previous study (Lu and Yu, 2018). We applied KDDANet to 

systematically unravel the hidden gene interactions underlying 53124 KDDAs. For 

SDrTDi and SDiTDr context, the enrichment results of known and novel KDDA 

genes of 52878 and 51745 KDDA subnetworks fully demonstrated the powerful 

prediction ability and general applicability of our computational framework. In order 
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to intuitively demonstrate that gene interactions identified by KDDANet were highly 

reliable and useful, we conducted global KEGG pathway enrichment analysis and 

detailed case studies to further illustrate this. An important capability of KDDANet 

method was that it can reveal the shared gene interaction underlying multiple KDDAs 

as showed in our results. This can provide more valuable guides for drug 

repositioning and disease treatment as the shared gene interactions were closely 

related to the molecular basis of drug repurposing. 

 

As described in Results section, the global gene interaction roadmaps obtained by 

KDDANet demonstrated the power of integrative approaches to illuminate 

underexplored molecular processes underlying KDDAs. However, there are some 

limitations that influence the KDDANet application in precision medicine and 

personalized care. Firstly, the gene interactome network used in our flow network 

model was static and did not capture network rewiring events under different 

circumstances. Indeed, the true biological network are highly dynamic and undergo 

continuous rewiring events (da Rocha, et al., 2016). For a KDDA in specific context, 

constructing a context-specific interactome network might be more appropriate for 

accurate uncovering hidden KDDA gene interactions. Secondly, the used gene 

interactome did not contain enough information of gene interaction. In further studies, 

we will integrate other non-coding genome elements, especially long non-coding 

RNA and microRNA for constructing a comprehensive gene interactome network in a 

context-dependent method. In addition, integrating biological networks from other 

omics layers, such as epigenetics, can further enhance the accuracy of KDDANet in 

discovering KDDA subnetworks and the associated key genes and thus help us better 

understand KDDA at multi-omics levels. Indeed, the ability of KDDANet to analyze 

large-scale heterogeneous interactome data containing tens of thousands of nodes and 

edges make it can well be suited to analyzing the accumulating data from ‘multi-

omics’ technologies and biomedical research. Thirdly, KDDANet cannot carry out 

prediction for drug-disease associations when a drug’s target genes were unknown or 
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when a disease has not been related to a set of genes. For this, we plan to calculate the 

similarity scores between drugs and the similarity scores between diseases, and then 

integrate drugs without any target genes and diseases without any related genes to our 

flow network model by similarity scores. Finally, due to the limitations of current 

experimental conditions, we were not able to do wet experiments to verify the 

predictions. Once the experimental conditions allowed, we will focus on some 

specific diseases and conducted molecular experiments, such as pooled CRISPR 

screen combined with single cell transcriptome sequencing, to systematically verify 

the predicted KDDA gene interactions. 

 

In summary, we presented a novel network-based computational framework that has 

broad utility and application value in biomedical studies. Our method allowed the 

researchers to explore hidden gene interactions underlying KDDAs. Although some 

challenges are still existing for enhancing the prediction accuracy of our method, the 

inferred KDDA subnetworks and related genes discovered can serve as roadmaps for 

guiding drug repurposing and disease treatment. Insights learned from our predicted 

subnetworks will enable to help researchers to design novel drugs to reverse disease 

phenotypes via targeting hub genes in the KDDA subnetwork. For helping drug 

repurposing in wet lab, we provided an online web server to facilitate researchers to 

browse and analyze the predicted KDDA gene interaction subnetworks. Our online 

web server was flexible allowing researchers to query and visualize the predicted 

subnetwork for KDDAs consist of several thousands of drugs and several hundreds of 

diseases extracted from CTD database. As the huge amount of biological data was 

becoming available in the biomedical study, we believed that the predictions of 

KDDANet could be more reliable and useful. 
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