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Abstract 

Identifying of hidden genes mediating Known Drug-Disease Association (KDDA) is of 

great significance for understanding disease pathogenesis and guiding drug 

repurposing. Here, we present a novel computational tool, called KDDANet, for 

systematic and accurate uncovering hidden genes mediating KDDA from the 

perspective of genome-wide gene functional interaction network. By implementing 

minimum cost flow optimization, combined with depth first searching and graph 

clustering on a unified flow network model, KDDANet outperforms existing methods 

in both sensitivity and specificity of identifying genes in mediating KDDA. Case 

studies on Alzheimer’s disease (AD) and obesity uncover the mechanistic relevance 

of KDDANet predictions. Furthermore, when applied with multiple types of 

cancer-omics datasets, KDDANet not only recapitulates known genes mediating 

KDDAs related to cancer, but also uncovers novel candidates that offer new biological 

insights. Importantly, KDDANet can be used to discover the shared genes mediating 

multiple KDDAs. KDDANet can be accessed at http://www.kddanet.cn and the code 

can be freely downloaded at https://github.com/huayu1111/KDDANet/.  
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Introduction 

The conventional development of novel promising drugs for treating specific diseases 

is a time-consuming and efforts-costing process, including discovery of new chemical 

entities, target detection and verification, preclinical and clinical trials and so on (Paul, 

et al., 2010). Furthermore, the success rate for a new drug to be taken to market is 

very low, usually only 10% per year of drugs approved by FDA and thus prevent their 

use in actual therapy (Weng et al., 2013). This results in that pharmaceutical research 

faces a decreasing productivity in drug development and a sustaining gap between 

therapeutic needs and available treatments (Alaimo and Pulvirenti, 2019). Compared 

with traditional drug development, drug repositioning, i.e., finding the novel 

indications of existing drugs, offers the possibility for safer and faster drug 

development because of several steps of traditional drug development pipeline can 

be avoided during repurposing efforts (Ashburn and Thor, 2004). Many successful 

cases of repositioned drugs have been shown: from Minoxidil, designed for 

treatment of hypertension and now indicated for hair loss (Bradley, 2005), to 

Sildenafil, developed for patients with heart problems and repurposed for erectile 

dysfunction (Ghofrani et al., 2006). Yet, these examples are based on clinical 

observations of secondary effects. Thanks to the advance in next generation omics 

sequencing and qualification technologies, a large volume of biomedical datasets has 

been rapidly accumulated. Based on these datasets, various computational tools, 

including machine learning, similarity computation and network-based models, have 

been proposed to systematically predict novel drug targets and drug-disease 

associations for facilitating drug repurposing (Ashburn and Thor, 2004; Lotfi Shahreza 

et al., 2018; Lu and Yu, 2018; Moridi et al., 2019; Xuan et al.,2019; Alaimo and 

Pulvirenti, 2019). These methods can exploit and integrate multi-level omics data 

sources for discovery of novel drug indications and thus accelerating drug 

repositioning process. However, no existing method is designed for identifying the 

hidden genes mediating Known Drug-Disease Association (KDDA), which we believe 

can provide additional contributions to the development of drug repurposing and 
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new therapies. 

 

Theoretically, drug repurposing can be proposed based on two molecular aspects. I) 

On one hand, complex diseases often involve multiple genetic and environmental 

determinants, including multi-factor driven alterations and dysregulation of a series 

of genes (Goh, et al., 2007), which will propagate and perturb certain biological 

processes by the interactions among molecules, leading to the onset of diseases. II) 

On the other hand, one drug can exert impacts on many targets and perturb multiple 

biological processes (Yildirim, et al., 2007). As a result, the shared biological 

pathways manifested in certain disease state and induced by a known drug suggests 

potential drug repurposing. Therefore, developing the mechanism-oriented 

computational tools to unveil the hidden components of shared cellular pathways is 

of great significance for understanding disease pathogenesis and guiding drug 

repurposing. However, not much effort is spent to address this need from a 

perspective of genome-wide gene functional interaction network. To comprehensive 

understanding the molecular mechanism of individual KDDA and the shared 

molecular processes among multiple KDDAs, it is essential to find hidden genes, or 

intermediary genes that bridge drug and its related disease and obtain a global 

picture of disease state cellular responses with drug administration. To this end, we 

design a novel computational tool, called KDDANet, which uses known gene 

functional interaction network to identify hidden genes of cellular pathways 

mediating KDDA in a genome-wide scale. Our computational pipeline can be applied 

to two contexts: 1) uncovering hidden genes mediating the association between a 

query drug and its related disease (SDrTDi); 2) unveiling hidden genes mediating the 

association between a query disease and its related drug (SDiTDr). Fig 1 

demonstrates the computational procedure of KDDANet in SDrTDi context (see 

Method for details). KDDANet first builds a unified flow model by integrating drugs, 

genes, and diseases into a heterogeneous network (Fig 1a). Then, the minimum cost 

flow optimization is designed and implemented to identify gene subnetwork 
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mediating the association between query drug (disease) to all its related diseases 

(drugs) (Fig 1b). Finally, depth first searching, and Markov clustering algorithm are 

adopted to further uncover gene modules mediating the association between query 

drug (diseases) and each its related disease (drug) (Fig 1c-1e). To apply KDDANet in 

SDiTDr context, what the user need is just simply reconstruct the unified flow 

network model. 

 

The key novelty of the KDDANet method lies in that it uncovers the hidden genes 

mediating KDDA through effective implementing minimum cost flow optimization, 

combined with depth first searching and graph clustering on a unified flow network 

model. We demonstrate that KDDANet outperforms existing methods in both 

sensitivity and specificity of identifying known and novel genes mediating KDDA. 

Case studies on Alzheimer’s disease (AD) and obesity further show the mechanistic 

relevance of KDDAnet predictions. Validated with multiple types of cancer-omics’ 

datasets, KDDANet does not only reveal known genes mediating KDDAs associating 

drug with cancer, but also uncovers new candidates that offer novel biological 

insights. Particularly, our results demonstrate that KDDANet can reveal the shared 

genes mediating multiple KDDAs. These show that importance of incorporating 

hidden genes in drug discovery pipelines. In summary, we develop an effective and 

universal computational tool for accurate and systematic discovering hidden genes 

mediating KDDA and thus providing novel insights into mechanism basis of drug 

repurposing and disease treatments. For facilitating biomedical researchers to 

explore the molecular mechanism of KDDA and guiding drug repurposing, an online 

web server, http://www.kddanet.cn, is provided for user to access the subnetwork of 

genes mediating KDDA, and the source codes of KDDANet are freely available at 

https://github.com/huayu1111/KDDANet. 

 

Results 

Evaluation of the performance and general applicability of KDDANet method 
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When analyzing the overlap ratio between Known Drug Target Genes (KDTGs) and 

Known Disease Related Genes (KDRGs) of 53124 KDDAs obtained from Comparative 

Toxicogenomics Database (CTD) (Davis, et al., 2009), we observe that the most gene 

sets demonstrate extremely low overlap ratio, with the increasing of gene number, 

the overlap ratio is sharply decreased (Fig S1a). We then check the overlap 

percentage in different types of diseases and find the overlaps between KDTGs and 

KDRGs are small for all 19 disease types in our dataset (Fig S1b). The discrepancy 

between KDTGs and KDRGs indicates that each gene set alone provides only a limited 

and biased view of KDDA, most of the genes in the cellular pathways mediating KDDA 

are not effectively identified from the experiments. To address this, we design a 

novel computational tool, KDDANet, which effectively integrates minimum cost flow 

optimization, depth first searching and graph clustering to systematically discover the 

hidden genes of cellular pathways mediating KDDA (see Methods for details). 

 

To examine whether KDDANet can capture true genes mediating KDDA, we introduce 

two concepts: “known true KDDA genes (KTKGs)” and “novel true KDDA genes 

(NTKGs)”. For a given KDDA, “KTKGs” is defined as the shared genes between KDTGs 

and KDRGs feeded for constructing KDDANet flow network model (see Dataset for 

details). To obtain “NTKGs”, we collected a set of drug’s non-target genes (A) from 

SMPDB 2.0 database (Jewison et al., 2014) that are included in the drug’s ADME 

pathways and are responsible for mediating KDDA. Meanwhile, we collected a 

recently updated set of disease-related genes (B) from DisGeNet v6.0 database 

(Piñero et al., 2016), which are not included in KDDANet flow network model. Based 

on these, we define, for each KDDA, the “NTKGs” as the shared genes between A and 

B. Using gene set enrichment analysis, we observe that KDDANet can effectively 

capture true genes mediating KDDA (see Supplementary Text S1-S2 and Fig S1c-S1l 

for details). 

 

Based on this, we compile a standard set of positive and negative KDDA genes for 
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each KDDA to unbiasedly evaluate the capability of KDDANet method on uncovering 

the true genes mediating KDDA using Receiver operating characteristic (ROC) and 

precision recall (PR) curves (see Methods for details). We observe that the 

performance of KDDANet is obviously better than random permutation across a 

widely setting of � (Fig2a and Fig2b). We next select γ = 6 for SDrTDi and γ = 8 for 

SDiTDr for subsequent evaluation (see Supplement Text S2 for reasons). With this 

setting, we further compare KDDANet with other existing methods, including PPA 

(Kutalik, et al., 2008), SNPLS (Chen and Zhang, 2016), comCHIPER (Zhao and Li, 2012) 

and DGPsubNet (Wang, et al., 2014). Among all the methods tested, KDDANet 

obtains the highest sensitivities and the lowest false-positive rates (Fig 2c). These 

results suggest that KDDANet is a powerful tool for achieving the goal of uncovering 

true genes mediating KDDA genome wide. We next test whether KDDANet has the 

general application value across a variety of disease types and find that KDDANet can 

make effective capturing of true genes mediating KDDAs for all 19 types of diseases 

(Fig S2a-S2d). We further test KDDANet using different types of networks, including 

HINT+HI2012, iRefIndex, MultiNet and STRINGv10. We find that the performances of 

KDDANet are consistent well across all these networks (Fig 2d and Fig S2e-S2f). 

Collectively, our results fully demonstrate that KDDANet is a powerful and general 

computational tool for uncovering hidden genes mediating KDDA across broad types 

of diseases. 

 

Mechanistic relevance of KDDANet predictions 

We examine whether the enriched pathways of KDDANet resulting subnetworks have 

the mechanistic relevance with KDDA by carrying out a global enrichment of all 

predicted KDDA subnetwork genes against 53 classical KEGG pathways. The obtained 

enrichment results can be validated by existing knowledge (see Supplementary Text 

S4 and Fig S3a-S3b for details). We aim to provide two cases to intuitively describe 

the mechanistic relevance of KDDANet resulting subnetwork. DB01022 

(phylloquinone)-104300 (Alzheimer’s disease, AD) association has been reported in 
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previous study (Alisi, et al., 2019). A subnetwork including 46 genes and 44 links are 

uncovered mediating this association (Fig 3a). The AUROC and AUPRC values of 

KDDANet for this subnetwork are 0.864 and 0.795, respectively (Fig S3c). Two known 

targets of phylloquinone and 18 AD-related genes are identified in this subnetwork. 

Against with genome background, this subnetwork captures 5 NTKGs with ~108-fold 

enrichment. The top 10 enriched KEGG terms of this subnetwork, such as 

Phospholipase D signaling pathway and Neurotrophin signaling pathway (Chen et al., 

2018; Oliveira and Di Paolo, 2010), are closely related with AD (Fig 3b). Interestingly, 

for this association, two separated gene modules (M1 and M2) are detected (Fig 3a). 

The module M1 mainly functions in Insulin signaling pathway, ErbB signaling pathway, 

FoxO signaling pathway and growth hormone synthesis, secretion and action, which 

play important roles in neural system development and the onset and development 

of AD (Buonanno and Fischbach, 2001; Gomez, 2008; Pardeshi et al., 2017) (Fig S3d). 

The enriched KEGG pathways of M2 genes, including Complement and coagulation 

cascades, Glycolysis and AGE-RAGE signaling pathway in diabetic complications, are 

dysfunction in AD (Yan et al., 2009; Vlassenko and Raichle, 2015; Krance et al., 2019) 

(Fig S3d). We further analyze the published RNA-seq data to detect the expressional 

change of these two modules in normal individuals and AD patients (Scheckel et al., 

2016). We observe that the averaged expression level of M1 genes is significantly 

upregulated in AD (Fig S3e). Interestingly, a predicted novel gene, STAT3, is obviously 

activated in AD patients (Fig 3c). Two newest studies published in years 2019 and 

2020 report that STAT3 is a potential therapeutic target for cognitive impairment in 

AD (Reichenbach et al., 2019; Choi et al., 2020). Another predicted novel gene, 

GNAI1, also obviously activated in AD patients. This gene is contained in the causal 

pathways associated with an imaging endophenotype characteristic of longitudinal 

structural change in the brains of patients with AD (Silver et al., 2012). For module 

M2 genes, the obviously expressional changes between normal individuals and AD 

patients are not observed (Fig S3e). However, we find that a predicted novel KDDA 

gene, GC, is activated in AD patients (Fig 3c). This gene encodes Vitamin D Binding 
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Protein, which is recently evidenced as a potential therapeutic agent for the 

treatment of AD (Zhang et al., 2020). 

 

The association between DB01109 (heparin) and 601665 (obesity) is inferred by 

multiple genes as described in CTD database. For this association, KDDANet predicts 

a subnetwork containing 168 edges connecting 169 genes (Fig 3d). We find that two 

known drug target genes and 67 disease-related genes are captured in this 

subnetwork. Particularly, 9 genes are the NTKGs with ~56-fold enrichment. Three 

genes used to infer this KDDA, including ARK1, PARP1 and TNF, are also effectively 

captured in the resulting subnetwork. The top 10 enriched functions of this 

subnetwork are shown in Fig 3e. As expected, Insulin resistance, Type II diabetes 

mellitus, Insulin signaling pathway and Adipocytokine signaling pathway are the 

frequently reported events and molecular processes associated with obesity (Kahn 

and Flier, 2000; Taylor and Macqueen, 2010). In addition, Proteoglycans, Lipolysis and 

AMPK signaling pathway are also highly related with Insulin resistance (Langin, et al., 

2005; Olsson, et al., 2001; Viollet, et al., 2009). In consistent with this, the AUROC 

and AUPRC values of KDDANet for this subnetwork are 0.854 and 0.849, respectively 

(Fig S3e). We next delineated the subnetwork into gene modules. The enriched 

functions of top 3 gene modules are demonstrated in Fig S3f. The genes of module 

M1 mainly participate in Glycolysis and Carbon metabolism. Further analysis of 

public RNA-seq data of normal individuals and obesity patients (Väremo et al., 2017; 

Väremo et al., 2015) demonstrates the significantly repressed expression of M1 

genes in patients with obesity, such as GADPH (Fig S3g and S3h). This is consistent 

with the fact that enhancing the level of glycolysis reduce obesity (Wu et al., 2005). 

The mainly enriched pathways of M2 genes are related to Insulin resistance, a 

frequently happened events in obesity patients. Interestingly, Cell adhesion 

molecules is a significantly enriched KEGG term of M2 genes (Fig S3f), which is 

elevated in patients with obesity (Isoppo de Souza et al., 2012). The M3 genes 

function in Complement and coagulation cascades and Platelet activation (Fig S3f). 
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As reported, these two terms are closely associated with obesity (Santilli et al., 2012; 

Zheng Li., 2017). In support with these, the expression of genes in M2 and M3 are 

activated in patients with obesity (Fig S3g and S3h). Together, these results indicate 

that KDDANet can serve as a useful tool to unveil the molecular basis of KDDA. 

 

KDDANet provides novel molecular insights on KDDAs related to cancer 

Cancer is a frequently happened complex genetic disease caused by DNA 

abnormalities (Vogelstein et al., 2013). For this reason, substantial genetic, genomic 

and pharmacogenomics efforts, including The Cancer Genome Atlas (TCGA), The 

Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer 

1000 human cancer cell lines (GSDC1000), have been undertaken to improve existing 

therapies or to guide early-phase clinical trials of compounds under development. 

With these efforts, an increasing amount of available high-throughput data sets at 

both levels of genomic data and pharmacogenomics data are produced at recent 

years. In addition, COSMIC, the world's largest and most comprehensive resource for 

exploring the impact of somatic mutations in human cancer, collects a catalogue of 

genes with mutations that are causally implicated in cancer. With these datasets, we 

observe that the genes of KDDANet resulting subnetworks mediating the 

associations between drugs and cancer are significantly enriched in COSMIC Cancer 

Gene Census, and these genes harbors more oncogenic alterations in tumor samples 

than randomly selected genes (Supplementary Text S5, Fig S4a and Fig S4b). 

Moreover, we find that oncogenic alterations of genes in KDDANet resulting 

subnetworks mediating the associations between drugs and cancer are more 

correlated with the responses of cancer cell lines under anti-cancer drug treatment 

than randomly selected genes (see Supplementary Text S5, Fig S4c-S4f). We provide 

two detailed examples to describe the potential values of KDDANet in revealing novel 

genes mediating the associations between drugs and cancer. 

 

Sotalol (DB00489) is normally used to treat life threatening ventricular arrhytmias. It 
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has been reported that sotalol is associated with decreased prostate cancer (176807) 

risk (Kaapu, et al., 2015). For sotalol-prostate cancer association, KDDANet predicts a 

subnetwork consisting of 31 genes and 28 links (Fig 4a). All three known target genes 

of sotalol are included in this subnetwork. Meanwhile, this subnetwork also captures 

12 prostate cancer-related genes. Among these genes, ADRB1, ADRB2, PRKACA and 

PRKAR1A are NTKGs with ~60-fold enrichment. The top 10 enriched KEGG terms are 

shown in Fig 4b. Among these, PI3K-Akt signaling pathway, MAPK signaling pathway 

and FoxO signaling pathway are related to cancer formation and development. The 

relationships between EGFR tyrosine kinase inhibitor resistance, Relaxin signaling 

pathway, AGE-RAGE signaling pathway and prostate cancer have been widely 

investigated and reported in the previous works (Bao, et al., 2015; Neschadim, et al., 

2015; Ozvegy-Laczka, et al., 2005). In addition, Autophagy and Focal adhesion are 

two widely observed processes in cancer (Eke and Cordes, 2015; Farrow, et al., 2014). 

By applying MCL with default parameters, this subnetwork is further decomposed 

into three gene modules, M1, M2 and M3. As expected, the enriched KEGG signaling 

pathways of M1 are closely related to tumorigenesis (Fig S4g). The expression of M1 

genes are activated in tumor samples, such as an oncogene YWHAE (Fig S4h and S4i). 

Interestingly, M1 captures that IGF1R, a gene encoding insulin-like growth factor 

receptor, harbors SNVs and CNVs in TCGA prostate cancer samples, and has been 

reported to be oncogenic genes of prostate cancer (Heidegger et al., 2014). The 

genes of M2 are not enrich to any KEGG term and but have lower expression in TCGA 

tumor samples (Fig S4h). Surprisingly, SPARC, a reported prostate cancer-related 

gene (Tai and Tang, 2008) with significantly lower expression in TCGA tumor samples 

is captured in this module (Fig S4i). Moreover, we find that both SPARC and COL1A1 

harbor SNVs and CNVs in TCGA prostate cancer samples and their expressions are 

obviously correlated to the survival of patients (Fig 4c). The M3 genes mainly 

participate in ErbB signaling pathways, a biological process involved in prostate 

cancer progression (Brizzolara et al., 2017). The expression of M3 genes are not 

obviously changed in TCGA prostate cancer samples (Fig S4h). However, we find that 
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GRB2 is over-expressed in TCGA prostate cancer samples and obviously correlated to 

the survival of patients at the later stage of disease (Fig S4i and Fig 4c).  

 

Another example is the association between nebularine (DB04440)-lung cancer 

(211980) that is inferred by ADA targeted by nebularine (Gannon et al., 2018). For 

this association, KDDANet predicts 237 genes connected by 238 links that constitutes 

a subnetwork without apparent modular structure (Fig 4d). The only known target 

gene ADA of nebularine is connected to 119 lung cancer-related genes and 117 novel 

predicted KDDA genes in this subnetwork. As expected, KEGG enrichment 

demonstrates that the genes in this subnetwork are involved in various cancers (Fig 

4e). Interestingly, we find that two highly connected novel genes BYSL and BOP1 are 

significantly over-expressed in TCGA tumor samples and their expression levels are 

obviously correlated to the survival of patients (Fig 4f). These results indicate that 

KDDANet does not only capture known genes mediating KDDAs linking drug with 

cancer, but also uncovers novel candidates that offer novel biological insights 

 

KDDANet uncovers the shared genes mediating multiple KDDAs 

Analysis on above fully demonstrates that KDDANet can uncover true genes 

mediating individual KDDA. We further ask whether KDDANet can reveal the shared 

genes mediating multiple KDDAs. We answer this from two aspects as follow: I) 

Multiple Diseases associating with One Drug (MDiODr); II) Multiple Drugs associating 

with One Disease (MDrODi). Considering the practical merits for the first one analysis, 

we require multiple diseases belongs to the same type of diseases. To evaluate the 

capability of KDDAnet for revealing the shared genes mediating multiple KDDAs, we 

produce meta-subnetworks by integrating multiple KDDANet resulting subnetworks 

for 12386 MDiODr combinations and 773 MDrODi combinations produced in SDrTDi 

context, and 12189 MDiODr combinations and 773 MDrODi combinations in SDiTDr 

context. The weight of an edge in the meta-subnetwork is defined as the number of 

KDDA resulting subnetworks containing this edge divided by the total number of 
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KDDA resulting subnetworks. The higher weight value of a link in the 

meta-subnetwork indicates more conservation and commonality. Thus, we use the 

weight value to evaluate the capacity of KDDANet in unveiling the shared gene 

interactions mediating multiple KDDAs. We carry out a permutation test by 

producing random meta-subnetworks with the same number of edges for comparing 

with random background. As shown in Fig 5a and Fig S5a-S5b, the weights of 

KDDANet meta-subnetworks are significantly higher than random meta-subnetworks 

across different types of diseases. This indicate that the genes tend to be shared in 

KDDANet meta-subnetworks than random one. We also conduct the same analysis in 

SDiTDr context and obtain the similar results (Fig 5b and Fig S5c-S5d). Collectively, 

these results indicate that KDDANet can effectively uncover the shared genes 

mediating multiple KDDAs. 

 

We present some examples for describing the capability of KDDANet in identifying 

shared genes mediating multiple KDDAs. For MDiODr, we select two cases: I) 

DB00392 (profenamine) and neurological disease associations and II) DB00370 

(mirtazapine) and cancer associations. As reported in CTD database, profenamine is 

associated with three neurological diseases, including Parkinsonian Disorders, 

Multiple Sclerosis and Alzheimer Disease. The shared meta-subnetwork contained 75 

edges linking 43 unknown genes with 3 profenamine’s target genes and 30 

neurological disease-related genes (Fig 5c). The top 10 enriched KEGG terms are 

demonstrated in Fig 5d. A majority of enriched KEGG terms, such as Cholinergic 

synapse and Glutamatergic synapses, have been reported dysfunction in neurological 

disorders and diseases (Moretto, et al., 2018; Tata, et al., 2014). Interestingly, we find 

that GNAI2 and GNA11 are two mostly shared genes linking profenamine with 

neurological diseases. These two genes are recently discoveried involving in the 

pathological pathways of neurological diseases (Zhang et al., 2017; Zhang et al., 

2018). Mirtazapine is associated with 9 cancers, including Colorectal Neoplasms, 

Breast Neoplasms, Neuroblastoma, Glioma, Urinary Bladder Neoplasms, Stomach 
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Neoplasms, Esophageal Neoplasms, Lung Neoplasms and Prostatic Neoplasms. Fig 

S5e shows the shared meta-subnetwork that includes 97 edges connecting 21 

mirtazapine’s target genes with 33 cancer-related genes and 54 unknown genes. As 

expected, KEGG enrichment demonstrates that these genes are involved in 

cancer-related signaling pathways and play important roles in various cancers (Fig 

S5f). Intriguingly, DRD4 and GRB2 are two mostly shared genes mediating the 

associations between mirtazapine and cancers (Fig S5e). These two genes are 

involved in the oncogenesis of multiple types of cancers (Ijaz et al., 2018; 

Weissenrieder et al., 2019). 

 

For MDrODi, some interesting cases are also observed. For example, GRACILE 

syndrome, a metabolic disease, is associated with 13 drugs as recorded in CTD 

database. A shared meta-subnetwork including 66 genes and 61 edges are obtained 

for this disease (Fig 5e). This meta-subnetwork contains 14 drug target genes and 13 

GRACILE syndrome-related genes. The mostly shared gene is ATP5B, and the mostly 

significant enriched KEGG term is Oxidative phosphorylation (Fig 5f). This is expected 

as GRACILE syndrome is a fatal inherited disorder caused by a mutation in an 

oxidative phosphorylation related gene, BCS1L 

(https://ghr.nlm.nih.gov/condition/gracile-syndrome). It is also not surprising that 

the neurological diseases related genes are also enriched in this meta-subnetwork as 

patients with GRACILE syndrome had severe neurological problems 

(https://www.sciencedirect.com/topics/medicine-and-dentistry/gracile-syndrome). 

Another example is the Keratoconus (148300), an ophthamological disease, which is 

associated with three drugs, including acetaminophen, valproic acid and theophylline. 

Keratoconus and these three drugs share a meta-subnetwork consisting of 54 genes 

and 51 edges (Fig S5g). This meta-subnetwork includes 7 Keratoconus-related genes, 

11 drug target genes and 36 unknown genes. It is expected that HDAC2 has high 

weights with its partner genes in this meta-subnetwork as it is involved in notch 

signaling pathway which is downregulated in keratoconus (You, et al., 2018). 
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Consistent with the associations between collagen genes and keratoconus 

(Bykhovskaya, et al., 2016), a novel collagens coding gene, COL1A1, is captured in this 

meta-subnetwork as a highly shared gene. The enriched KEGG terms of this 

meta-subnetwork include Hippo signaling pathway (Fig S5h) which has been reported 

involving in keratoconus corneas (Kabza et al., 2017). Collectively, these results 

indicate that KDDANet can discover the shared genes mediating multiple KDDAs. The 

highly shared unknown genes can served as potential candidate targets for drug 

repurposing. 

 

An online web server for KDDA decoding 

To help biomedical researchers to understand the pathogenesis of disease and 

promote drug development, we develop an online web server, 

http://www.kddanet.cn, for facilitating the researchers to explore the subnetwork of 

genes mediating KDDAs. Our website is divided into three parts: I) querying and 

browsing subnetwork of genes mediating individual KDDA (iKDDA); II) querying and 

browsing meta-subnetwork of shared genes mediating multiple KDDAs connecting 

multiple diseases to one drug (MDiODr) and III) querying and browsing 

meta-subnetwork of shared genes mediating multiple KDDAs connecting multiple 

drugs to one disease (MDrODi). For Part I, subnetworks of genes mediating 52878 

and 51745 KDDAs for SDrTDi and SDiTDr contexts are provided for querying, 

visualizing, and downloading, respectively. For Part II, 12386 and 12189 shared 

meta-subnetworks are contained in our web server for SDrTDi and SDiTDr, 

respectively. For Part III, 773 shared meta-subnetworks are contained in our web 

server for both contexts. We design a bulk download interface and tutorials for 

facilitating user to explorer KDDANet resulting subnetworks. Overall, we provide a 

simply and easy-to-use web server for user to decode the hidden genes mediating 

KDDAs and thus help researchers to understand the pathogenesis of disease, 

accelerate drug repurposing and disease treatment. In summary, we present a novel 

computational tool KDDANet and an online web source to decode molecular 
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mechanism of KDDA that has broad utility and application value in biomedical 

studies. 

 

Discussion 

To facilitate drug repurposing, various computational tools have been developed to 

uncover novel drug-disease associations (Lu and Yu, 2018). However, the molecular 

mechanism mediating KDDAs have been still not well explored. This results in that 

unveiling the hidden genes mediating KDDAs become a great challenge for guiding 

drug repurposing. In this work, we develop a novel computational tool, KDDANet, 

which integrates minimum cost network flow optimization, depth first searching and 

graph clustering algorithm to reveal hidden genes and modules mediating KDDA. 

KDDANet allows for a global and systematic exploration of the hidden genes 

mediating KDDA. We apply KDDANet to unravel the subnetworks of genes mediating 

53124 KDDAs. The comprehensive and system-level evaluations fully demonstrate 

the powerful prediction capability and general applicability of KDDANet. Case studies 

on both AD and obesity show that the subnetworks of genes identified by KDDANet 

are reliable and useful. Further validated by integrating analysis of genomic, 

transcriptomic, pharmacogenomic and survival data on primary tumors and cancer 

cell lines highlights that KDDANet captures novel candidates from interactome 

mediating the associations between drugs and different types of cancer. Based on 

these, we conclude that the inferred subnetworks mediating KDDA can serve as 

genome-wide molecular landscapes for guiding drug repurposing and disease 

treatment. Insights learned from our predictions will also enable to help researchers 

to design repurposing drugs to reverse disease phenotypes via targeting key genes in 

the subnetwork mediating KDDA. An important capability of KDDANet method is that 

it can reveal the shared genes mediating multiple KDDAs. This provides more 

valuable guides for drug repositioning and disease treatment since the shared genes 

mediating multiple KDDAs are closely linked to the molecular basis of drug 

repurposing. We further construct a user-friendly online web server, which allows 
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users to explore the subnetwork of genes mediating individual KDDA and the 

meta-subnetworks mediating multiple KDDAs. 

 

The hidden genes mediating KDDA predicted by KDDANet highlight the power of 

integrative approaches to illuminate underexplored molecular processes mediating 

KDDA. In the future, the application value of our KDDANet tool in drug repurposing 

can be further improved from three aspects as follow: Firstly, the gene interactome 

used in KDDANet do not contain enough interactions between genome elements. In 

further studies, we will integrate other non-coding genome elements, especially long 

non-coding RNA and microRNA for constructing a comprehensive interactome. 

Secondly, integrating the biological networks from other omics layers, such as 

epigenomics, might have also further enhance the accuracy of KDDANet in 

discovering subnetworks and key genes mediating KDDA, and help us better to 

understand KDDA at multi-omics levels. The intrinsically ability of KDDANet to 

analyze large-scale heterogeneous interactome data containing tens of thousands of 

nodes and edges make it can well be suited to analyzing the accumulating data from 

‘multi-omics’ technologies and biomedical research. Finally, KDDANet cannot carry 

out predictions for KDDA when a drug’s target genes are unknown or when a disease 

has not been related to any known gene. For this, we plan to calculate the similarity 

scores between drugs and the similarity scores between diseases, and then to 

integrate drugs without any target gene and diseases without any related gene to our 

flow network model by similarity scores. 

 

Methods 

1 Datasets 

Five different types of gene networks, including HumanNet, HINT+HI2012, iRefIndex, 

MultiNet and STRINGv10, are used in our current study (Lee et al., 2011; Leiserson et 

al., 2015), in which the nodes are represented by gene ID and connected by 

bidirectional edges (Dataset 1). Drugs and their target genes are obtained from 
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DrugBank 5.0.9 database (http://www.drugbank.ca/). In this study, we select 4861 

drugs with at least one known target that is contained in the gene networks for 

further analysis. In total, 2196 Known Drug Target Genes (KDTGs) included in the 

gene networks are connected to these drugs by 12014 interactions (Dataset 2). 

Known Disease Related Genes (KDRGs) and classification of diseases are obtained by 

manually collecting from the previous study (Goh, et al., 2007) and the related 

literature. We focus on 1441 diseases with at least one related gene which is 

included in the gene networks for our study. In total, 16712 associations link these 

diseases to 1521 genes which are exist in the gene networks (Dataset 3). The KDDAs 

are extracted from Comparative Toxicogenomics Database (Davis, et al., 2009) 

(Dataset 4). In this study, 53124 KDDAs are analyzed in which the drug has at least 

one target gene and the disease has at least one related gene contained in 

HumanNet. For simplicity and consistency, we convert different types of drugs, 

diseases, and gene nomenclatures to DrugBank drug ID, OMIM disease ID and NCBI 

Entrez gene ID for subsequent modeling and analysis. 

 

The primary RNA-seq datasets of Alzheimer’s disease (AD) patients, obesity patients 

and normal individuals are downloaded from NCBI GEO Datasets under accession 

number of GSE53697, GSE81965 and GSE63887. After the SRA files are gathered, the 

archives are extracted and saved in FASTQ format using the SRA Toolkit. RNA-seq 

reads are trimmed using Trimmomatic software with the following parameters 

“ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:36” (Version 0.36) (Bolger et al., 2014), and are further quality-filtered using 

FASTX Toolkit’s fastq_quality_trimmer command (Version 0.0.13) with the minimum 

quality score 20 and minimum percent of 80% bases that has a quality score larger 

than this cutoff value. The high-quality reads are mapped to the hg38 genome by 

HISAT2, a fast and sensitive spliced alignment program for mapping RNA-seq reads, 

with -dta paramenter (Daehwan et al., 2015). PCR duplicate reads are removed using 

Picard tools and only uniquely mapped reads are kept for further analysis. The 
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expression levels of genes are calculated by StringTie (Mihaela et al., 2015) (Version 

v1.3.4d) with -e -B -G parameters using Release 29 (GRCh38.p12) gene annotations 

downloaded from GENCODE data portal (https://www.gencodegenes.org/). To obtain 

comparable expression abundance estimation for each gene, reads mapped to hg38 

are counted as FPKM (Fragments Per Kilobase Of Exon Per Million Fragments 

Mapped) based on their genome locations. Differential expression analysis of genes 

is performed by DESeq2 using the reads count matrix produced from a python script 

“prepDE.py” provided in StringTie website (http://ccb.jhu.edu/software/stringtie/). 

 

TCGA cancer genomics datasets are directly downloaded via the UCSC Xena project 

data portal (https://xenabrowser.net/datapages/). As the DNA methylation datasets 

are quantified as beta value in the DNA probe level, we map Illumina Human 

Methylation 450 probe ID to gene name using HumanMethylation450 annotation file. 

If a gene is mapped by multiple probes, we consider the averaged signals of these 

probes as the methylation level of this gene. We use Wilcox signed rank test for 

differential analysis of gene expression and DNA methylation of KDDANet resulting 

subnetwork genes mediating the associations between drugs and cancer. For this 

analysis, we only use the tumor samples which have adjacent normal tissue samples 

as control. Genomics of Drug Sensitivity in Cancer 1000 (GSDC1000) cancer cell line 

pharmacogenomic datasets are downloaded from GDSC website 

(https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html). 

Since this website provides only the CpG island methylation data, we download the 

beta value matrix of probe-level DNA methylation from NCBI GEO Dataset under 

accession number of GSE68379 and then convert it to gene-level beta value matrix 

using the same method as TCGA DNA methylation data. Cancer Cell Line 

Encyclopedia (CCLE) pharmacogenomic datasets are directly downloaded from Board 

Institute data portal (https://portals.broadinstitute.org/ccle/data). 

 

2 The computational procedure of KDDANet in SDrTDi context 
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2.1 Construction of a unified flow network model 

For each query drug and all its related diseases, the unified flow network model in 

SDrTDi context is built by integrating the query drug and all its related diseases into 

the gene network based on known drug-target relations and gene-disease 

associations. As shown in Figure 1, for the given query drug, we use it as source node 

and integrate it into gene network by introducing the directed edges from it point to 

its target genes. For each its related disease, we map the disease to gene network by 

introducing the directed edges from its related genes point to it. We incorporate a 

sink node T and introduce a directed edge pointing from each disease to it. With 

these definitions, a unified flow network model is constructed as a complex 

heterogeneous graph G = (V, E), where V is the set of vertices and E is the set of 

edges. This graph includes two types of edges (bidirectional and directed) and three 

types of nodes (drugs, genes, and diseases). Each edge is assigned with a weight and 

a capacity. Flow goes from a source node to a sink node through the graph edges. 

The assigning scheme of weight and capacity is illustrated as follow: 

 

2.2 Weight and capacity assigning scheme for network edges 

Edges between gene nodes. Edges between gene nodes are weighted (Wij) to reflect 

the probability that two genes gi and gj are functionally linked in the biological 

processes. The weight value between gi and gj is derived from a Bayesian statistics 

approach by integrating diverse functional genomics datasets (Lee et al., 2011). 

Briefly, each experimental dataset is evaluated for its ability to reconstruct known 

cellular pathways by measuring the likelihood that pairs of genes are functionally 

linked conditioned on the experimental evidence, calculated as a log likelihood score 

LLS 

( | ) / (~ | )
ln

( ) / (~ )

P L E P L E
LLS

P L P L

⎧ ⎫= ⎨ ⎬
⎩ ⎭

                        (1) 

Where P(L|E) and P(~L|E) are the frequencies of linkages L observed in the given 
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experiment E between annotated genes operating in the same pathway and in 

different pathways, respectively, while P(L) and P(~L) represent the prior expectation 

(i.e., the total frequency of linkages between all annotated human genes operating in 

the same pathway and operating in different pathways, respectively). The weight 

value (Wij) of a given functional gene link derived from multiple experimental data 

sets is calculated as the weighted sum (WS) of individual LLS as: 

0
1

,    
N

i

i

L
WS L for all L T

D i=

= + ≥
⋅∑                         (2) 

Where L0 represents the best LLS score among all LLSs for that gene pair, D is a free 

parameter for the overall degree of independence among the experimental data sets, 

and i is the order index of the data sets after rank-ordering the N remaining LLS 

scores for the given gene pair, starting from the second highest LLS score and 

descending in magnitude. The values of two free parameters D and T are chosen by 

systematically testing values of D and T to maximize overall predictive performance 

of gene function. 

 

Edges between drug and drug’s target gene nodes: Edges between each drug and 

drug’s target gene nodes are weighted (wSi) to reflect the reliability of the interaction 

between drug and target protein based on experimental and computational evidence. 

The weighting scheme is based on the predicted score of drug and target protein 

interaction (Yu et al. 2012). The weight value (WSi) is calculated as: 

i
Si

j
j T

P
W

P
∈

=
∑

                                  (3) 

Where T denotes the set of each drug’s targets, Pi denotes the predicted score 

between drug S and target i, Pj denotes the predicted score between drug S and 

target j. 

 

Edges between disease-related gene and disease nodes. Edges between 

disease-related gene and disease nodes are weighted (wjd) to reflect the reliability of 
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the linkage between disease and gene based on experimental and computational 

evidence. The weighting scheme is based on the predicted score of gene-disease 

association derived from MAXIF algorithm (Chen et al., 2011). We calculate the 

weight value (Wjd) as follow: 

i
jd

j
j D

F
W

F
∈

=
∑

                                 (4) 

Where D denotes the set of genes linked to disease d, Fi denotes the predicted score 

between gene i and disease d, Pj denotes the predicted score between gene j and 

disease d. 

 

Edges between disease and sink nodes. For each edge linking each disease d to sink 

node T, we assign it a same weight value WdT = 1/N, where N denotes the number of 

diseases linking to sink node. 

 

We further define for each edge in this heterogeneous network a capacity value that 

limits the flow quantity. For each edge connecting the query drug S to its target gene 

i, we assigned it a capacity CSi equal to WSi. For each edge linking the disease-related 

gene j to disease d, we assign it a capacity Cjd equal to Wjd. For each edge linking the 

disease d to sink node T, we assign it a capacity CdT equal to WdT. For other edges, we 

assign them a capacity Cij = 1. 

 

2.3 Minimum cost flow optimization algorithm 

We aimed for a solution that will (I) pick the subset of the query drug’s target genes 

most likely to modulate all its related diseases by the disease-related genes without 

limiting it a priori to known mediating genes, (II) identify and rank intermediary 

genes that are likely to be part of cellular pathways connecting the query drug’s 

target genes to all its related diseases but escaped detection by experiments, (III) 

give preference to proteins that lie on highest-probability paths connecting the query 

drug to all its related diseases without imposing constraints on the network topology. 
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The rationality for proposing this idea including two aspects: I) this need less 

computational time than that finding the highest probability subnetwork connects a 

query drug to each its related diseases at a time; II) this can effective find the shared 

genes mediating multiple KDDAs. We formulate this goal as a minimum cost flow 

optimization problem (Yeger-Lotem, et al., 2009; Huang, et al., 2011; da Rocha, et al., 

2016). Cost was defined as the negative log of the probability of an edge. Hence, 

minimizing the cost gives preference to highest-probability paths. Given the unified 

flow network, this problem can be expressed as a linear programming formula that 

minimize the total cost of the flow network while diffusing the most flow from 

source node to sink node. This resembles water finding the path of least resistance 

through a complex landscape. Let Wij, Fij and Cij refer to the weight, flow and capacity 

from node i to node j, respectively. The linear programming formula can be written 

as follow. 

Minimize         ∑ �� log����� 	 
��� � �� 	 ∑ 
�����,���              (5) 

Subject to           ∑ 
�� � ∑ 
��    �� � � � ��, ��������               (6) 


�� � ∑ 
����	 �  0                         (7) 

0 � 
�� � ���                          (8) 

Where V denotes a set of nodes included in the flow network; S denotes the query 

drug and v denotes its target gene. The parameter gamma (�) controls the size and 

the quality of the optimized subnetwork. The first component of this formula, 

∑ �� log����� 	 
������,��� , ensure minimizing the network cost that given priority to 

obtain highest probability gene subnetwork, at the same time, the second 

component, ��� 	 ∑ 
��, indicates maximizing the total flow across entire network. 

This optimization problem can be efficiently solved using primal simplex method 

provided in Mixed Integer Linear Programming (MILP) solver 

(http://lpsolve.sourceforge.net/). The solution ����� ��� �  ∑ �� log�!��� 	���,���

���−�∗���  get the highest probability subnetwork mediating the associations 

between query drug and all its related diseases. 
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2.4 Depth first searching and Markov clustering (MCL) 

Once the highest probability subnetwork mediating the query drug (disease) with all 

its related diseases (drugs) is obtained, we implement depth first searching (Asano et 

al., 2014) on this subgraph to find the subnetwork made up of all paths linking the 

query drug (disease) to each it’s related disease (drug). All genes in the solution are 

ranked by the amount of flow they carry. The more flow that passes through a 

protein, the more important it is in mediating KDDA. After obtaining the subnetwork 

mediating individual KDDA, Markov clustering (MCL) (https://micans.org/mcl/) is 

employed to further discover gene modules mediating KDDA by using the flow 

quantities through edges of subnetwork as weight values. 

 

3 Application KDDANet to SDiTDr context 

To apply KDDANet in SDiTDr context, the query disease, and a set of all its related 

drugs are mapped into gene network by disease-related genes and drug target genes. 

For constructing flow network model, the weights and capacities of network edges 

can be assigned using the similar method as described in SDrTDi context by 

substituting query drug with query disease, substituting query drug related diseases 

with query disease related drugs, substituting query drug’s target genes with query 

disease related genes and substituting disease related genes with drug’s target genes. 

Implementing Minimum cost flow optimization, Depth first searching and Markov 

clustering (MCL) on the unified flow network is same as SDrTDi context. 

 

4 Performance evaluation 

The predictive performance of KDDANet is evaluated as follow: I) Based on the 

hypothesis that the larger functional similarity between a gene and known KDDA 

genes, the higher probability this gene is positive one mediating KDDA, we compile a 

standard set of positive and negative KDDA genes for each KDDA resulting 
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subnetwork to unbiasedly evaluate the performance of KDDANet using the following 

strategy: 

I) For each gene in the KDDA resulting subnetwork, we first calculate the mean 

functional similarity scores of it with KDTGs and KDRGs by our previous published 

method using Gene Ontology (GO), KEGG pathways and InterPro annotation as 

functional terms (Yu et al., 2019). 

II) We perform a permutation test by randomly producing KDTGs and KDRGs 1000 

times to compute the empirical significance level of functional similarity. We select 

the genes having significant functional similarities with both KDTGs and KDRGs from 

KDDA resulting subnetwork as positive KDDA genes using the criterion that the 

similarity score is larger than 95th percentiles of the simulated background 

distributions. The other genes are considered as negative KDDA genes. 

Based on this gold standard, Receiver operating characteristic (ROC) and precision 

recall (PR) curves are produced and the areas of under curve of ROC and PR (AUROC 

and AUPRC) are calculated for gene list ranked by flow amount of each KDDANet 

resulting subnetwork. For comparison with PPA, SNPLS, comCHIPER and DGPsubNet, 

we use the default parameters as mentioned in their published papers. We consider 

that all genes contained in a co-module mediating KDDA of each drug and disease 

pair in the co-module. The genes are ranked by probability score mediating a KDDA. 

For PPA and SNPLS, the probability score of a gene g mediating the association 

between drug i and a type of cancer j is defined as averaged prediction score across 

all cell lines of this type of cancer (Kutalik, et al., 2008; Chen and Zhang, 2016). For 

comCHIPER, the probability score of a gene g mediating the association between 

drug i and disease j is defined as the sum of the products of posterior indicator 

probabilities across all co-modules (Zhao and Li, 2012). For DGPsubNet, we defined 

the probability score of a gene g mediating the association between drug i and 

disease j as the calculated z-score zij (Wang, et al., 2014). The areas of under curve of 

ROC and PR (AUROC and AUPR) are calculated using R package of PRROC. KDDA gene 

subnetwork visualization is carried out using Cytoscape software 
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(https://cytoscape.org/). KEGG pathway enrichment analysis is performed by 

clusterProfiler R package (Yu, et al., 2012). The visualization of all results is carried 

out in R software. 
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Figure Legends 

Fig 1. Schematic illustration of KDDANet computational pipeline in SDrTDi context. 

a) Mapping query drugs and all its related diseases into the weighted functional gene 

interaction network through known drug-target associations and gene-disease 

associations; b) Constructing a unified flow network model for each query drug and 

all its related diseases (multiple KDDAs); c) Identifying the highest probability gene 

subnetwork mediating multiple KDDAs by minimum cost flow optimization; d) 

Identifying subnetwork mediating individual KDDA by depth first searching; e) 

Identifying gene interaction modules mediating individual KDDA by Markov 

clustering (MCL). 

 

Fig 2. Performance evaluation of KDDANet method. a) The density curve of AUROC 

and AUPRC of KDDANet with different γ setting and permutation test in SDrTDi 

context; b) The density curve of AUROC and AUPRC of KDDANet with different γ 

setting and permutation test in SDiTDr context; c) Comparison of AUROC and AUPRC 

of KDDANet with PPA, SNPLS, comCHIPER and DGPsubNet; d) AUROC and AUPRC of 

KDDANet with different types of gene interaction networks. 
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Fig 3. Mechanistic relevance of KDDANet prediction results. a) KDDANet resulting 

subnetwork mediating phylloquinone (DB01022)-alzheimer’s disease (AD, 104300) 

association; b) Top 10 enriched KEGG terms of subnetwork genes mediating 

phylloquinone-AD association; c) Expression level of STAT3, GNAI1 and GC in normal 

individuals and AD patients, ** p-value < 0.01 calculated by Mann-Whitney U test; d) 

KDDANet resulting subnetwork for heparin (DB01109)-obesity (601665) association; 

e) Top 10 enriched KEGG terms of subnetwork genes mediating heparin-obesity 

association; f) ROC and PR curves of KDDANet gene subnetwork mediating 

heparin-obesity association. In the subnetwork, the size of a gene node is 

proportional to its network degree; The thickness of a network edge is proportional 

to its flow amount. Fragments Per Kilobase Of Exon Per Million Fragments Mapped, 

FPKM. 

 

Fig 4. KDDANet provides novel molecular insights on the associations between 

drugs and cancer. a) KDDANet resulting subnetwork mediating sotalol 

(DB00489)-prostate cancer (176807) association; The size of a gene node is 

proportional to its network degree; The thickness of a network edge is proportional 

to its flow amount. b) Top 10 enriched KEGG terms of subnetwork genes mediating 

sotalol-prostate cancer association. c) Gene expression-based survival analysis for 

CASP2, SPARC and GRB2 in patients with prostate cancer, obtained by GEPIA online 

analysis (http://gepia.cancer-pku.cn/about.html). d) KDDANet gene subnetwork 

mediating nebularine (DB04440)-lung cancer (211980) association; e) Top 10 

enriched KEGG terms of subnetwork genes mediating nebularine-lung cancer 

association; f) Gene expression-based survival analysis for BYSL and BOP1 in patients 

with lung cancer (obtained by GEPIA online analysis 

(http://gepia.cancer-pku.cn/about.html)) and their expression levels in lung cancer 

tumor samples and adjacent normal tissue samples, *** p-value < 0.001 calculated 

by Wilcox signed rank test. 
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Fig 5. KDDANet uncovers the shared genes mediating multiple KDDAs. a) Boxplot 

demonstrates the distributions of weight values in KDDANet meta-subnetwork and 

random meta-subnetwork for MDiODr and MDrODi in SDrTDi context. b) Boxplot 

demonstrates the distributions of weight values of KDDANet meta-subnetwork and 

random meta-subnetwork for MDiODr and MDrODi in SDiTDr context. c) Shared 

meta-subnetwork mediating DB00392(profenamine)-neurological diseases 

associations in SDrTDi context; d) Top 10 enriched KEGG terms of shared 

meta-subnetwork genes mediating DB00392-neurological diseases associations; e) 

Shared meta-subnetwork mediating the associations between GRACILE syndrome 

(603358) and 13 drugs; d) Top 10 enriched KEGG terms of shared meta-subnetwork 

genes mediating the associations between GRACILE syndrome (603358) and multiple 

drugs; In the meta-subnetwork, the triangle node denotes disease related genes; the 

diamond node denotes drug’s target genes, the size of a gene node is proportional to 

its network degree; the thickness of a network edge is proportional to its weight 

value. 

 

Supplementary Figure Legends 

Fig S1. Performance evaluation of KDDANet method. a) Scatter plot demonstrates 

the distribution of overlap ratio between KDTGs and KDRGs; The x-axis denotes the 

total number of KDTGs and KDRGs mediating a KDDA. b) Colored scatter plot 

demonstrates the Minimum (Min), 25th Quantile (Q1), 50th Quantile (Q2), 75th 

Quantile (Q3) and Maximum (Max) of overlap ratio distribution in different types of 

diseases; The size and color of point denotes gene number and overlap ratio, 

respectively; c) Boxplot demonstrates the enrichments of KDTGs in KDDANet 

resulting subnetwork with different " settings in SDrTDi context, using random 

permutation as control (Rd); d) Similar to as c), demonstrating the enrichments of 

KDRGs; e) Similar to c), demonstrating the enrichments of KDTGs in SDiTDr context; f) 

Similar to d), demonstrating the enrichments of KDRGs in SDiTDr context. g) Boxplot 

demonstrates the enrichment of KTKGs in SDrTDi context, using random permutation 
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as control (Rd); h) Similar to g), demonstrating the enrichment of KTKGs in SDiTDr 

context; i) Similar to g), demonstrating the enrichment of NTKGs; j) Similar to h), 

demonstrating the enrichment of NTKGs; k) The KDDANet recovery ratio of KDTGs, 

KDRG and KTKGs with different γ setting in SDrTDi context; l) The KDDANet recovery 

ratio of KDTGs, KDRGs and KTKGs with different γ setting in SDrTDi context; m) Line 

chart demonstrates the percentage of KDTGs and KDRGs that are incorporated into 

the KDDANet resulting subnetwork, as well as the percentage of low probability 

edges with weight smaller than 0.3 in SDrTDi context (HCI, high confidence 

interaction; LCI, low confidence interaction); n) Similar to m), demonstrating the 

percentages in SDiTDr context. 

 

Fig S2. Robustness and general applicability of KDDANet method. a) and b) AUROC 

and AUPRC of KDDANet across different types of diseases in SDrTDi context; c and d) 

Similar to a) and b) in SDiTDr context; Values in parentheses denotes the number of 

KDDAs; e) The KDDANet recovery ratio of KDTGs, KDRGs and KTKGs using different 

types of networks in SDiTDr context. f) Similar to e) in SDrTDi context. 

 

Fig S3. Mechanistic relevance of KDDANet prediction results. a) Enrichment Score 

(ES) heatmap of 53 KEGG pathways on 19 different types of diseases in SDrTDi 

context; b) Similar to a), in SDiTDr context. A two-step procedure is used to calculate 

ES. First, for each disease type, we calculate the frequency of KDDA resulting 

subnetworks enriched on 53 KEGG pathways and obtain a frequency matrix. Then, 

for each pathway, we normalize the frequency matrix to a z-score matrix. The value 

in z-score matrix is defined as ES; c) ROC and PR curves of KDDANet resulting 

subnetwork mediating phylloquinone-alzheimer disease (AD) association; d) 

Pathway-gene relationship network demonstrating the enriched KEGG terms and 

their related genes for module M1 and M2 mediating phylloquinone-AD association; 

e) Averaged expression level of module M1 and M2 genes in normal individuals and 

AD patients, * p-value < 0.05 calculated by Mann-Whitney U test; f) Similar to d) 
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pathway-gene relationship network demonstrating the enriched KEGG terms and 

their related genes for module M1, M2 and M3 mediating heparin-obesity 

association; g) Averaged expression level of module M1, M2 and M3 genes in normal 

individuals and obesity patients, ** p-value < 0.01, * p-value < 0.05 calculated by 

Mann-Whitney U test; h) Expression level of GADPH, COL1A2, FN1, SPARC, POMC 

and CTSD in normal individuals and obesity patients; *** p-value < 0.001, ** p-value 

< 0.01 calculated by Mann-Whitney U test. Fragments Per Kilobase Of Exon Per 

Million Fragments Mapped, FPKM. In the pathway-gene relationship network, the 

size of a KEGG term node is proportional to its p-value in enrichment analysis; The 

color of a gene node denotes its fold change of expression level between normal 

individuals and patients. 

 

Fig S4. KDDANet provides novel molecular insights on KDDAs linking drug with 

cancer. a) The ratio of TCGA tumor samples harboring SNVs or CNVs of KDDANet 

resulting subnetwork genes mediating the associations between drugs and cancer 

and randomly selected genes, and the overall statistic difference of mRNA expression 

and DNA methylation of KDDANet resulting subnetwork genes mediating the 

associations between drugs and cancer (randomly selected genes) between tumor 

samples and normal samples, respectively; * p-value < 0.05 calculated by 

Mann-Whitney U test. b) The ratio of cancer cell lines harboring SNVs or CNVs of 

KDDANet resulting subnetwork genes mediating the associations between drugs and 

cancer and randomly selected genes, * p-value < 0.05 calculated by Mann-Whitney U 

test; c) Boxplots demonstrate the overall statistic difference between IC50 values of 

anti-cancer drugs on cell lines harboring SNVs or CNVs of KDDANet resulting 

subnetwork genes mediating the associations between drugs and cancer and cell line 

without SNVs and CNVs of these genes (random selected genes), *** p-value < 0.001, 

** p-value < 0.01 calculated by Mann-Whitney U test; d) Representative examples 

demonstrate the difference between IC50 values of anti-cancer drugs on cell lines 

harboring SNVs or CNVs of KDDANet resulting subnetwork genes mediating the 
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associations between drugs and cancer and cell line without SNVs and CNVs of these 

genes, ** p-value < 0.01, * p-value < 0.05 calculated by Mann-Whitney U test; e) 

Scatter plot demonstrates the correlation between expression abundances / 

methylation levels of KDDANet resulting subnetwork genes mediating the 

associations between drugs and cancer (randomly selected genes) with half maximal 

inhibitory concentration (IC50) values of anti-cancer drugs in both GSDC1000 and 

CCLE cancer cell lines, respectively; PPC, Pearson Correlation Coefficients; p-value is 

calculated by cor.test function in R software. f) Representative examples demonstrate 

the correlation between the expression abundances / methylation levels of KDDANet 

resulting subnetwork genes mediating the associations between drugs and cancer 

and IC50 values of anti-cancer drugs in both GSDC1000 and CCLE cancer cell lines, 

respectively. g) Pathway-gene relationship network demonstrating the enriched 

KEGG terms and their related genes for for M1 and M3 mediating sotalol 

(DB00489)-prostate cancer (176807) association. h) Averaged expression level of 

module M1, M2 and M3 genes in prostate cancer tumor samples and adjacent 

normal tissue samples, * p-value < 0.05 calculated by Wilcox signed rank test; i) 

Expression level of YWHAE, SPARC and GRB2 in prostate cancer tumor samples and 

adjacent normal tissue samples, ** p-value < 0.01 calculated by Wilcox signed rank 

test. 

 

Fig S5. KDDANet uncovers the shared genes mediating multiple KDDAs. a) Boxplot 

demonstrates the distributions of weight values in KDDANet meta-subnetwork and 

random meta-subnetwork for MDiODr in different types of diseases in SDrTDi 

context; b) Boxplot demonstrates the distributions of weight values in KDDANet 

meta-subnetwork and random meta-subnetwork for MDrODi in different types of 

diseases in SDrTDi context; c) Similar to a) in SDiTDr context; d) Similar to b) in SDiTDr 

context; e) Shared meta-subnetwork mediating DB00370-cancer associations; f) Top 

10 enriched KEGG terms of shared genes of meta-subnetwork mediating 

DB00370-cancer association; g) Shared meta-subnetwork mediating the associations 
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between Keratoconus (148300) and multiple drugs; h) Top 10 enriched KEGG terms 

of shared genes of meta-subnetwork mediating the associations between 

Keratoconus (148300) and multiple drugs. 
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