Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Cell motion as a stochastic process controlled by focal contacts dynamics

Simon Lo Vecchio, Raghavan Thiagarajan, David Caballero, Vincent Vigon, Laurent Navoret, View ORCID ProfileRaphaël Voituriez, View ORCID ProfileDaniel Riveline
doi: https://doi.org/10.1101/750331
Simon Lo Vecchio
Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, FranceCentre National de la Recherche Scientifique, UMR7104, Illkirch, FranceInstitut National de la Santé et de la Recherche Médicale, U964, Illkirch, FranceUniversité de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raghavan Thiagarajan
Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, FranceCentre National de la Recherche Scientifique, UMR7104, Illkirch, FranceInstitut National de la Santé et de la Recherche Médicale, U964, Illkirch, FranceUniversité de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Caballero
Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, FranceCentre National de la Recherche Scientifique, UMR7104, Illkirch, FranceInstitut National de la Santé et de la Recherche Médicale, U964, Illkirch, FranceUniversité de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincent Vigon
Institut de Recherche Mathematique Avancee, UMR 7501, Universite de Strasbourg et CNRS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurent Navoret
Institut de Recherche Mathematique Avancee, UMR 7501, Universite de Strasbourg et CNRS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raphaël Voituriez
Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/Sorbonne Université, 4 Place Jussieu, 75255 Cedex Paris, FranceLaboratoire Jean Perrin, UMR 8237 CNRS/Sorbonne Université, 4 Place Jussieu, 75255 Cedex Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Raphaël Voituriez
Daniel Riveline
Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, FranceCentre National de la Recherche Scientifique, UMR7104, Illkirch, FranceInstitut National de la Santé et de la Recherche Médicale, U964, Illkirch, FranceUniversité de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Riveline
  • For correspondence: riveline@unistra.fr
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

SUMMARY

Directed cell motion is essential in physiological and pathological processes such as morphogenesis, wound healing and cancer spreading. Chemotaxis has often been proposed as the driving mechanism, even though evidence of long-range gradients is often lacking in vivo. By patterning adhesive regions in space, we control cell shape and the associated potential to move along one direction in another mode of migration coined ratchetaxis. We report that focal contacts distributions collectively dictate cell directionality, and bias is non-linearly increased by gap distance between adhesive regions. Focal contact dynamics on micro-patterns allow to integrate these phenomena in a consistent model where each focal contact can be translated into a force with known amplitude and direction, leading to quantitative predictions for cell motion in every condition. Altogether, our study shows how local and minutes timescale dynamics of focal adhesions and their distribution lead to long term cellular motion with simple geometric rules.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted August 30, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Cell motion as a stochastic process controlled by focal contacts dynamics
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
Cell motion as a stochastic process controlled by focal contacts dynamics
Simon Lo Vecchio, Raghavan Thiagarajan, David Caballero, Vincent Vigon, Laurent Navoret, Raphaël Voituriez, Daniel Riveline
bioRxiv 750331; doi: https://doi.org/10.1101/750331
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Cell motion as a stochastic process controlled by focal contacts dynamics
Simon Lo Vecchio, Raghavan Thiagarajan, David Caballero, Vincent Vigon, Laurent Navoret, Raphaël Voituriez, Daniel Riveline
bioRxiv 750331; doi: https://doi.org/10.1101/750331

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (1534)
  • Biochemistry (2493)
  • Bioengineering (1747)
  • Bioinformatics (9700)
  • Biophysics (3915)
  • Cancer Biology (2980)
  • Cell Biology (4219)
  • Clinical Trials (135)
  • Developmental Biology (2641)
  • Ecology (4111)
  • Epidemiology (2033)
  • Evolutionary Biology (6912)
  • Genetics (5224)
  • Genomics (6520)
  • Immunology (2194)
  • Microbiology (6977)
  • Molecular Biology (2766)
  • Neuroscience (17354)
  • Paleontology (126)
  • Pathology (431)
  • Pharmacology and Toxicology (709)
  • Physiology (1063)
  • Plant Biology (2500)
  • Scientific Communication and Education (646)
  • Synthetic Biology (832)
  • Systems Biology (2692)
  • Zoology (434)