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Abstract 
Structural and functional plasticity of dendritic spines is the basis of animal learning.  The 

calcium-dependent protein kinase C isoform, PKCα, has been suggested to be critical for this 

actin-dependent plasticity. However, mechanisms linking PKCα and structural plasticity of 

spines are unknown. Here, we examine the spatiotemporal activation of actin regulators, 

including small GTPases Rac1, Cdc42 and Ras, in the presence or absence of PKCα during 

single-spine structural plasticity. Removal of PKCα expression in the postsynapse attenuated 

Rac1 activation during structural plasticity without affecting Ras or Cdc42 activity.  Moreover, 

disruption of a PDZ binding domain within PKCα led to impaired Rac1 activation and deficits in 

structural spine remodeling. These results demonstrate that PKCα positively regulates the 

activation of Rac1 during structural plasticity. 

 

Introduction 
Dendritic spines of pyramidal neurons in the hippocampus undergo activity-dependent structural 

and functional plasticity that has been reported to be crucial for learning and memory ( Lai and 

Ip, 2013; Lamprecht and LeDoux, 2004; Matsuzaki et al., 2004). This plasticity is mediated by 

the coordinated regulation of complex signaling networks that transduce short-lived synaptic 

input into long-lasting biochemical changes to modulate the strength and structure of synapses 

and, ultimately, animal behavior (Kennedy, 2016; Nishiyama and Yasuda, 2015).   

 

Protein kinase C (PKC) is a family of serine/threonine kinases that have long been implicated as 

essential for synaptic plasticity, learning and memory (Nelson et al., 2008). Inhibition of PKC 

blocks LTP induction and also disrupts the maintenance of pre-established LTP (Malinow et al., 

1989, 1988). In addition, pharmacologically activating PKC or overexpressing constitutively 
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active PKC potentiates synapses and enhances learning (Hu et al., 1987; Rekart et al., 2005; 

Zhang et al., 2005). PKC exists as at least 10 isozymes which are categorized into three 

subfamilies: the classical PKC isozymes (PKCα, PKCβ and PKCγ), the novel isozymes (PKCδ, 

PKCɛ, PKCη, and PKCθ) and the atypical isozymes (PKCζ and PKCλ). The classical PKC 

isozymes, ubiquitously expressed in the brain, transduce signals dependent on Ca2+ and 

diacylglycerol (DAG) (Clark et al., 1991; Ito et al., 1990; Kose et al., 1990; Sossin, 2007). 

Recently, PKCα was demonstrated to be uniquely required for structural LTP in hippocampal 

dendritic spines.  This specificity was defined by a four amino acid C-terminal PDZ-binding motif 

(QSAV).  Evidence suggests that PKCα activity integrates neurotrophic signaling, including the 

activation of TrkB, with Ca2+ influx through NMDARs to facilitate the induction the plasticity in 

dendritic spines (Colgan et al., 2018). However, the downstream molecular mechanisms 

through which PKCα facilitates structural synaptic plasticity remains unknown. 

 

The expression of structural plasticity, through spine enlargement and insertion of additional 

glutamate receptors, requires actin remodeling through the regulated activity of small GTPases 

including Rac1, Cdc42 and Ras (Bailey et al., 2015; Kim et al., 2014; Murakoshi et al., 2011; 

Patterson and Yasuda, 2011). These small GTPases are precisely coordinated across 

spatiotemporal domains by a complex network of GTPase accelerating proteins (GAPs) and 

GTPase exchange factors (GEFs), which attenuate or enhance GTPase activation respectively 

to mediate the cytoskeletal remodeling crucial for activity-dependent spine plasticity (Govek et 

al., 2005; Lai and Ip, 2013; Saneyoshi et al., 2008).   

 

Result 
Here, we examine whether PKCα regulates small GTPases during the induction of plasticity. 

In order to study signaling in single spines during structural plasticity, we combined two-photon 

release of caged glutamate (Matsuzaki et al., 2001), fluorescence resonance energy transfer 

(FRET)-based sensors,  and two-photon fluorescence lifetime imaging microscopy (2pFLIM) 

(Yasuda, 2012) to monitor the dynamics of intracellular signaling events with high 

spatiotemporal resolution.  Specifically, using previously published FRET sensors, we monitored 

the spatiotemporal activation of the actin-regulating small GTPases, including Ras (Harvey et 

al., 2008; Oliveira and Yasuda, 2014; Yasuda et al., 2006), Cdc42 (Murakoshi et al., 2011) and 

Rac1 (Hedrick et al., 2016) during the induction of structural long-term potentiation 

(sLTP). Briefly, these sensors are composed of two components: (1) full length GTPase fused to 

green fluorescent protein (GTPase–eGFP), and (2) a specific GTPase binding domain of a 
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downstream effector fused to two copies of red fluorescent protein (mRFP-effector-mRFP) (Fig. 

1a). Activation of the GTPase increases the affinity between the two components of the sensor 

and the FRET between the fluorophores. Using 2pFLIM we can monitor changes in the binding 

of the sensor components by quantitatively measuring decreases in the fluorescence lifetime of 

GFP in order to measure small GTPases activation. 

   

We transfected organotypic hippocampal slices from wildtype (WT) or PKCα knockout (KO) 

mice with small GTPase sensors and imaged CA1 pyramidal neurons using 2pFLIM. In 

response to glutamate uncaging targeted to a single dendritic spine (30 pulses at 0.5 Hz), the 

stimulated spine from WT slices rapidly enlarged by ~150% (transient phase) and persisted with 

an increased volume of ~40% lasting at least 25 min (Fig. 1b, c). This structural plasticity is 

associated with an increase in the functional strength of the stimulated spine (Gipson and Olive, 

2017; Matsuzaki et al., 2004).  Consistent with previous work, hippocampal CA1 neurons from 

PKCα knockout mice showed a deficit in sLTP regardless of sensor expression (Fig. 1c, (Colgan 

Figure 1 | PKC regulates Rac1 activation during sLTP. a, Schematic of small GTPase FRET sensors. b, 2pFLIM 
images of Rac1 activation averaged across indicated time points. Arrowhead represents point of uncaging. Warmer 
colors indicate shorter lifetimes and higher Rac1 activity. Scale bar, 1μm. c, Time courses and quantification of 
sustained (10–25 min) spine volume change induced by glutamate uncaging in neurons expressing Rac1 sensor 
from WT and KO littermates for PKCα.  d, Time courses and quantification of transient (1.5-3.5 min) and sustained 
(10-25 min) Rac1 activation in stimulated spines from WT and PKCα KO littermates. e, Spatial profile and 
quantification of spreading Rac1 activation along the dendrite at indicated times and distances from the stimulated 
spine in WT and PKCα KO littermates. Data are mean ± s.e.m.  Grey shading indicates time of uncaging. *P < 0.05, 
two-tailed t-test (c, d) and two-way ANOVA with Sidak's mutiple comparisons test (e). n (neurons/spines) = 18/22 
WT and 19/22 PKCα KO.  
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et al., 2018)). When sLTP was induced in single dendritic spines, we observed rapid and 

sustained activation of Rac1 (Fig. 1b, d) in the WT slices that was consistent with previously 

reported findings (Hedrick et al., 2016). However, we found that in the absence of PKCα Rac1 

activation during sLTP is significantly attenuated (Fig. 1d). Rac1 activity in WT mice was 

restricted to the stimulated spines at early time points (2 – 4 min), but spread into the dendrite 

and nearby spines at later time points (10 – 20 min), consistent with a previous study (Hedrick 

et al., 2016). In PKCα KO mice, Rac1 activity both in stimulated spines and adjacent dendrites 

were inhibited (Fig. 1e). Thus, PKCα positively regulates Rac1 activation to facilitate plasticity.   

 

In order to test the specificity of PKCα signaling toward Rac1, we tested whether the plasticity-

induced activation of other small GTPases involved in plasticity,  Ras or Cdc42, (Lai and Ip, 

2013; Sit and Manser, 2011; Zhu et al., 2002), was also impaired in the absence of PKCα.  

Although the impairment of sLTP was observed in PKCα KO neurons transfected with Ras or 

Cdc42 sensor (Fig. 2a, c), the activation of these two small GTPases during sLTP were not 

affected by loss of PKCα (Fig, 2b, d).  This demonstrates that Rac1 but not Ras or Cdc42 is 

downstream of PKCα during sLTP.  

Figure 2 | PKCα does not regulate Ras or Cdc42 activation during sLTP. a,c, Time courses and quantification of 
sustained (10–25 min) spine volume change induced by glutamate uncaging in neurons expressing Ras1 sensor (a) 
or Cdc42 sensor (c) from PKCα WT and KO littermates.  b,d, Time courses and quantification of transient (1-3 min) 
and sustained (10-25 min) Ras1 (b) or Cdc42 (d) activation in stimulated spines from WT and PKCα KO littermates. 
Data are mean ± s.e.m. n(neurons/spines) Ras: n= 8/10 WT, n= 7/8 KO. Cdc42: n= 14/19 WT and n= 7/10 KO *P < 
0.05, two-tailed t-test. 
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We next investigated whether the PDZ binding domain of PKCα, which was shown to be critical 

for its isozyme-specific signaling in spine plasticity (Colgan et al., 2018), was required for 

downstream regulation of Rac1 (Fig. 3a).  PKCα or PKCα lacking its PDZ binding domain was 

sparsely and postsynaptically expressed alongside the Rac1 sensor in hippocampal slices from 

PKCα knockout mice. We found impairment of Rac1 activation and sLTP only when the PDZ 

binding domain was disrupted.  This finding suggests a crucial role for PDZ binding domain of 

PKCα in Rac1 activation during sLTP (Fig. 3b). 

 

 

 

Figure 3 | PKCα regulates Rac1 activation during sLTP via PDZ binding domain. a, Primary structure of PKCα 
showing pseudosubstrate, C1A and C1B domains, C2 domain, kinase domain, C-terminal tail, and PDZ binding 
motif. b, c Time courses and quantification of sustained (10–25 min) spine volume change (b) and transient and 
sustained Rac1 activation (c) induced by glutamate uncaging in PKCα KO hippocampal neurons expressing PKCα 
and PKCα without PDZ domain (PKCα-no PDZ). n = 20/23 PKCα and 14/18 PKCα-no PDZ (neurons/spines). Data 
are mean ± s.e.m. *P < 0.05, two-tailed t-test. d, Schematic of potential PKCα regulation of Rac1.  
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Discussion 
In this study, we have described that PKCα regulates the activation of Rac1, but not Ras or 

Cdc42, during sLTP of dendritic spines (Fig. 3d).  This modulation relies on PKCα’s PDZ-

binding motif, which may localize PKCα to a signaling complex scaffold that also recruits Rac1 

GTPase-activating proteins (GAPs) or Guanine nucleotide-exchange factors (GEFs). Although 

the specific mechanism through which PKCα regulates Rac1 activity remains to be determined, 

potential scaffolds include PICK1, SAP-97 or PSD-95, which can interact with PKCα through its 

C-terminal PDZ binding domain and have been implicated in plasticity of spines (Callender and 

Newton, 2017; Ehrlich et al., 2007; Nakamura et al., 2011;; Staudinger et al., 1997; Volk et al., 

2010; Waites et al., 2009).   

 

The regulation of Rac1 during plasticity through GAPs and GEFs is highly complex in order to 

allow for tightly-regulated remodeling of various cytoskeletal domains in a precise spatial and 

temporal pattern. While PKCα could modulate Rac1 through inhibition of a GAP or Rho GDP 

dissociation inhibitors (RhoGDIs) (Garcia-Mata et al., 2011; Van Aelst and D’Souza-Schorey, 

1997; Zhang et al., 1998), much of the specificity of Rac1 GTPase signaling is reportedly 

regulated by GEFs (Bellanger et al., 2000; Cook et al., 2014; Van Aelst and D’Souza-Schorey, 

1997). At least ten different RhoGEFs have been identified to be localized to the post-synaptic 

density (Kiraly et al., 2010). Of these, Kalirin 7, Tiam1 and B-Pix all show preferential GEF 

activity for Rac1, are able to be phosphorylated by classic PKC isozymes in-vitro and are 

required for sLTP of spines (Buchanan et al., 2000; Chen et al., 2012; Fleming et al., 1999, 

1997; Mandela and Ma, 2012; Mertens et al., 2003; Shirafuji et al., 2014; Saneyoshi et al., 

2019).  Kalirin7 and B-Pix also contain a PDZ binding domain which could localize them to PDZ 

containing-scaffolds together with activated PKCα (Park et al., 2003; Penzes et al., 2001; 

Saneyoshi et al., 2019).  On the other hand, although Tiam1 itself contains a PDZ domain, the 

structure of its PDZ domain does not predict PKCα as a preferred binding partner (Shepherd et 

al., 2010).  

 

Both Rac1 and PKCα activation are downstream of TrkB receptor activation in the stimulated 

spine (Colgan et al., 2018; Hedrick et al., 2016) (Fig. 3d). One important future direction is to 

determine if TrkB-dependent activation of Rac1 is solely through PKCα or whether a more 

complex feedback loop is in play. The increased activity and spreading of Rac1 promoted 

by PKCα is consistent with an essential role for PKCα in integrating neurotrophic signals to 

facilitate plasticity.  Moreover, this link between PKCα and Rac1 supports a growing 
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understanding of the molecular mechanisms underlying heterosynaptic facilitation, whereby the 

induction of plasticity in one spine lowers the threshold of plasticity induction in nearby spines 

(Colgan et al., 2018; Hedrick et al., 2016).   

 

This study identified a novel molecular pathway that links short-lived calcium influx and 

activation of PKCα, to long-lasting Rac1 activation and changes in spine structure. Taken 

together with previous findings that another Ca2+-dependent kinase, CaMKII, also activates 

Rac1 during sLTP (Saneyoshi et al., 2019; Hedrick et al., 2016), Rac1 appears to be a key 

convergence point of multiple upstream calcium-dependent pathways (Fig. 3d).  We anticipate 

that the better understanding of Rac1 signaling pathway may ultimately help us to uncover the 

signaling network with which memories are encoded.  

 

 

Materials and Methods 
Animals: All experimental procedures were approved by the Max Planck Florida Institute for 

Neuroscience Animal Care and Use Committee.  P4-P8 mouse pups from both sexes were 

used for organotypic slices for imaging studies. The genotype of each animal was verified 

before preparing slices. PKCα KO 129/sv animals were received from Dr. Michael Leitges.  

Animals were crossed to C57Bl/6N Crl and are on a mixed background.  For all the experiments 

WT littermates were used as controls for KO animals. 

Plasmids: All the plasmids used were previously developed and described in publication  and 

are available on Addgene (Colgan et al., 2018; Hedrick et al., 2016; Oliveira and Yasuda, 2013).  

Briefly, the Rac1 sensor consisted of mEGFP-Rac1 (Addgene #83950) and mCherry-PAK2 

binding domain-mCherry (Addgene #83951), the Ras sensor consisted of pCI-mEGFP-HRas 

((Addgene #18666) and pCI-mRFP-RBDK65E,K108A- mRFP (Addgene #45149), the Cdc42 sensor 

consisted of mEGFP-Cdc42 (Addgene #29673) and mCherry-Pak3(60-113)/S74A/F84A-

mCherry-C1 (Addgene #29676). 

Organotypic hippocampal slice cultures and transfection:  Organotypic hippocampal slices 

were prepared from wildtype or transgenic postnatal 4-8 day old mouse pups of both sexes as 

previously described (Stoppini et al., 1991). In brief, the animals were anaesthetized with 

isoflurane, after which the animal was quickly decapitated and the brain removed. The 

hippocampi were dissected and cut into 350 µm thick coronal hippocampal slices using a 

McIlwain tissue chopper (Ted Pella, Inc) and plated on hydrophilic PTFE membranes (Millicell, 
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Millipore) fed by culture medium containing MEM medium (Life Technologies), 20% horse 

serum, 1mM L-Glutamine, 1mM CaCl2, 2mM MgSO4, 12.9mM D-Glucose, 5.2mM NaHCO3, 

30mM Hepes, 0.075% Ascorbic Acid, 1µg/ml Insulin. Slices were incubated at 37 °C in 5% 

CO2. After 7-12 days in culture, CA1 pyramidal neurons were transfected with biolistic gene 

transfer (O’Brien and Lummis, 2006) using 1.0 µm gold beads (8–12 mg) coated with plasmids 

containing 50 μg of total cDNA of interest in the following ratios. Rac1 sensor, donor: acceptor = 

1:2; Rac1 sensor plus PKCα, donor: acceptor: PKCα = 1:2:1; Rac1 sensor plus PKCα without 

PDZ binding domain, donor: acceptor: PKCα- no PDZ domain = 1:2:1; Ras sensor, donor: 

acceptor = 1:3; Cdc42 sensor, donor: acceptor = 1:1). Neurons expressing all plasmid 

combinations were imaged 2–5 days after transfection. 

2pFLIM. FLIM imaging using a custom-built two-photon fluorescence lifetime imaging 

microscope was performed as previously described (Murakoshi et al., 2011).  2pFLIM imaging 

was performed using a Ti-sapphire laser (Coherent, Cameleon) at a wavelength of 920 nm with 

a power of 1.4-1.6 mW. Fluorescence emission was collected using an immersion objective 

(60×, numerical aperture 0.9, Olympus), divided with a dichroic mirror (565 nm) and detected 

with two separated photoelectron multiplier tubes placed after wavelength filters (Chroma, 

510/70-2p for green and 620/90-2p for red). Both red and green channels were fit with 

photoelectron multiplier tubes (PMT) having a low transfer time spread (H7422-40p; 

Hamamatsu) to allow for fluorescence lifetime imaging. Photon counting for fluorescence 

lifetime imaging was performed using a time-correlated single photon counting board (SPC-150; 

Becker and Hickl) and fluorescence images were acquired with PCI-6110 (National instrument) 

using modified ScanImage (Pologruto et al., 

2003)(https://github.com/ryoheiyasuda/FLIMimage_Matlab_ScanImage). Intensity images for 

analysis of sLTP volume changes were collected by 128x128 pixels as a z stack of three slices 

with 1 µm separation and averaging 6 frames/slice. Spine volume was measured as the 

integrated fluorescent intensity of EGFP after subtracting background (F). Spine volume change 

was calculated by F/F0, in which F0 is the average spine intensity before stimulation. 

Two-photon glutamate uncaging. A second Ti-sapphire laser tuned at a wavelength of 720 

nm was used to uncage 4-methoxy-7-nitroindolinyl-caged-l- glutamate (MNI-caged glutamate) in 

extracellular solution with a train of 4–8 ms, 2.8-3.0 mW pulses (30 times at 0.5 Hz) in a small 

region ~0.5 µm from the spine of interest as previously described(Colgan et al., 2018). 

Experiments were performed in Mg2+ fee artificial cerebral spinal fluid (ACSF; 127 mM NaCl, 2.5 

mM KCl, 4 mM CaCl2, 25 mM NaHCO3, 1.25 mM NaH2PO4 and 25 mM glucose) containing 1 
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µM tetrodotoxin (TTX) and 4 mM MNI-caged L-glutamate aerated with 95% O2 and 5% CO2. 

Experiments were performed at room temperature. 

2pFLIM analysis:  To measure the fraction of donor that was undergoing FRET with acceptor 

(Binding Fraction), we fit a fluorescence lifetime curve summing all pixels over a whole image 

with a double exponential function convolved with the Gaussian pulse response function: 

F(t) = F0[PD H(t, t0, τD, τG) + PAD H(t, t0, τAD, τG)]    

where τAD is the fluorescence lifetime of donor bound with acceptor, PD and PAD are the fraction 

of free donor and donor undergoing FRET with acceptor, respectively, and H(t) is a 

fluorescence lifetime curve with a single exponential function convolved with the Gaussian pulse 

response function: 

𝐻(𝑡, 𝑡%, 𝑡&, 𝑡') =
*
+
exp / 01

2

+03
2 −

5657
08
9erfc /01

2603(5657)
√+0301

9, 

in which τD is the fluorescence lifetime of the free donor, τG is the width of the Gaussian pulse 

response function, F0 is the peak fluorescence before convolution and t0 is the time offset, and 

erfc is the complementary error function.   

We fixed τD to the fluorescence lifetime obtained from free eGFP (2.6 ns), and then fixed τAD to 

fluorescence lifetime of the donor bound with acceptor (1.1 ns).   For experimental data, we 

fixed τD and τAD to these values to obtain stable fitting.  To generate the fluorescence lifetime 

image, we calculated the mean photon arrival time, <t>, in each pixel as:  

<t> = ∫ tF(t) dt / ∫ F(t) dt,  

Then, the mean photon arrival time is related to the mean fluorescence lifetime, <τ>, by an 

offset arrival time, to, which is obtained by fitting the whole image:  

<τ> = <t> - t0. 

For small regions-of-interest (ROIs) in an image (spines or dendrites), we calculated the binding 

fraction (PAD) as: 

PAD = τD (τD - <τ>) (τD - τAD) -1(τD + τAD - <τ>)-1. 
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Data with lifetime fluctuations in the baseline that were greater than .15 ns were excluded 

before further analysis. 

Statistical analysis. All values are presented as mean ± SEM unless otherwise noted. Number 

of independent measurements (n[neurons/spines]) is indicated in figure legends. Unpaired two-

tailed student’s t test was used for comparing two independent samples. Two-way ANOVA 

followed by multiple comparison test was used to compare grouped data sets (Prism 6, 

GraphPad). Data were only excluded if obvious signs of poor cellular health (for 

example, dendritic blebbing, spine collapse) were apparent. 
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