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Abstract 

Background: Although male and female rats differ in their patterns of alcohol use, little is 

known regarding the neural circuit activity that underlies these differences in behavior. The 

current study used a machine learning approach to characterize sex differences in local field 

potential (LFP) oscillations that may relate to sex differences in alcohol drinking behavior. 

Methods: LFP oscillations were recorded from the nucleus accumbens shell and the rodent 

medial prefrontal cortex of adult male and female Sprague-Dawley rats. Recordings occurred 

before rats were exposed to alcohol (n=10/sex X 2 recordings/rat) and during sessions of limited 

access to alcohol (n=5/sex X 5 recordings/rat). Oscillations were also recorded from each 

female rat in each phase of estrous prior to alcohol exposure. Using machine-learning, we built 

predictive models to classify rats based on: 1) biological sex; 2) phase of estrous; and 3) alcohol 

intake levels. We evaluated model performance from real data by comparing it to the 

performance of models built and tested on permutations of the data.   

Results: Our data demonstrate that corticostriatal oscillations were able to predict alcohol 

intake levels in males (p<0.01), but not in females (p=0.45). The accuracies of models 

predicting biological sex and phase of estrous were related to fluctuations observed in alcohol 

drinking levels; females in diestrus drank more alcohol than males (p=0.052), and the male vs. 

diestrus female model had the highest accuracy (71.01%) compared to chance estimates. 

Conversely, females in estrus drank similar amounts of alcohol to males (p=0.702), and the 

male vs. estrus female model had the lowest accuracy (56.14%) compared to chance estimates.  

Conclusions: The current data demonstrate that oscillations recorded from corticostriatal 

circuits contain significant information regarding alcohol drinking in males, but not alcohol 

drinking in females. Future work will focus on identifying where to record LFP oscillations in 

order to predict alcohol drinking in females, which may help elucidate sex-specific neural targets 

for future therapeutic development.  
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Background 

 Alcohol use contributes to 5.1% of the global disease burden, accounting for 5% of all 

deaths in men and 1% of all deaths in women in the United States alone (1–3). While historically 

men drink more alcohol than women, this gender gap is closing (4), and women tend to escalate 

to alcohol dependence more rapidly than men (2,5). Though these sex differences partly arise 

from sociocultural factors, there are known sex differences in the activity of brain regions that 

underlie substance use behavior (5,6). However, the specific neurobiological underpinnings 

contributing to sex differences in alcohol drinking are poorly understood, limiting the 

development of more efficacious, targeted therapies for problematic alcohol use. 

 One barrier to the development of better therapies for excessive alcohol use is the fact 

that the majority of preclinical neuroscience studies have used only male animals (7,8). 

However, the available behavioral data in rodent models of alcohol drinking demonstrate that 

female rats, in a non-dependent state, drink more alcohol and show greater alcohol preference 

than male rats (9), as well as display heightened sensitivity to the rewarding effects of alcohol 

compared to males (10). The behavioral differences between females and males are biological 

in nature as neonatal masculinization of females reduces alcohol intake compared with intact 

female rats, resulting in patterns of drinking similar to those displayed by males (11). In a similar 

study, intact female rats showed a heightened reward response to alcohol than either males or 

ovariectomized females, suggesting that ovarian hormones help facilitate the reinforcing 

properties of alcohol (10). Ovarian hormone status has also been associated with small 

fluctuations in alcohol consumption in intact females (12,13). However, it is currently unknown 

whether the neural circuits that regulate alcohol consumption show sexually dimorphic activity 

patterns (and whether these patterns are influenced by ovarian hormone status) that may 

explain the sex differences in alcohol drinking behavior.  

 The mechanistic role of corticostriatal circuits in regulating the rewarding properties of 

alcohol is well characterized in male rodents (14). In rats (and humans), the nucleus accumbens 

(NAc) integrates cortical inputs and indirectly sends feedback to frontal brain regions (medial 

prefrontal cortex in humans [mPFC]; prelimbic [PL] and infralimbic [IL] cortices in rats) (15), and 

is particularly important in the motivating properties of abused drugs (16). The mPFC is also 

activated in response to reward-related cues, and it has been suggested that deficits in the 

ability to inhibit responses to drugs arises from dysregulated communication between the mPFC 

and striatal regions (17). Thus, we hypothesize that male and female rats might display inherent 
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(i.e., trait-level) differences in corticostriatal circuit activity, which may be associated with sex 

differences in alcohol drinking behaviors.  

 Activity in the corticostriatal circuit can be examined longitudinally by measuring local 

field potential (LFP) oscillations in awake, freely behaving rats. LFP oscillations provide a 

readout of electrical potential from a group of neurons that relates to individual neuronal activity, 

as demonstrated by neuronal phase locking and ensemble classification (18–20). LFP 

oscillations recorded from reward-related regions have been shown to change during behavior 

(21) and reflect pharmacologic manipulation (22–24). For instance, in male rats, low frequency 

oscillations decrease while high frequency oscillations increase following an injection of alcohol 

(25). Furthermore, low frequency oscillations in the cortex and NAc appear to be hypoconnected 

in alcohol preferring rats (sex not reported) compared to outbred rats, which was reversed by 

alcohol exposure (26). LFP oscillations can therefore be a valuable readout of circuit dynamics 

related to alcohol drinking behaviors (i.e., amount of alcohol consumed) in rodents.  

In the current experiment, we measured corticostriatal LFP oscillations in adult male and 

female rats prior to and during alcohol drinking behavior. Using an unbiased machine learning 

approach, we aimed to determine whether LFPs recorded from corticostriatal circuits contained 

information regarding: 1) biological sex; 2) ovarian hormone status; and 3) the amount of 

alcohol consumed during an alcohol drinking session. We hypothesized that sex differences in 

inherent corticostriatal circuit activity might be related to sex differences in alcohol drinking 

behavior. 

Methods 

Subjects and Housing  

Male and female Sprague-Dawley rats (n = 10/sex) were purchased from Charles River 

(Wilmington, MA, USA) and arrived on postnatal day 60. All animals were housed individually on 

a reverse 12-hour light cycle with ad libitum access to food and water. All experiments were 

carried out in accordance with the National Institute of Health Guide for the Care and Use of 

Laboratory Animals (NIH Publications No. 80-23) and were approved by the Institutional Animal 

Care and Use Committee of Dartmouth College. 

Electrode Construction and Implantation  

 Electrodes were designed and constructed in-house and were similar to those used in 

our previous publication (27). Animals were anesthetized with isoflurane gas (4% induction, 2% 

maintenance) and secured into a stereotaxic frame. Custom electrodes were implanted 
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bilaterally targeting the NAc shell (NAcSh; from bregma: DV -8mm; AP +1.2mm; ML +/-1.0mm) 

and PL/IL junction of the mPFC (from bregma: DV -5mm; AP +3.7mm; ML +/-0.75mm). Four 

stainless steel skull screws were placed around the electrode site and dental cement (Dentsply, 

York, PA, USA) was applied to secure the electrodes in place.  

Recording and Processing Local Field Potential Oscillations 

 LFP oscillations were recorded in sound-attenuated chambers distinct from the rats’ 

home cages. Rats engaged in free behavior while tethered through a commutator to a Plexon 

data acquisition system and time-synchronized videos were recorded for each session (Plexon, 

Plano, TX). Noise free data from the entire recording session were analyzed using established 

frequency ranges from the rodent literature [delta (Δ) = 1-4 Hz, theta (θ) = 5-10 Hz, alpha (α) = 

11-14 Hz, beta (β) = 15-30 Hz, low gamma (lγ) = 45-65 Hz, and high gamma (hγ) 70-90 Hz 

(28,29)] and standard LFP signal processing was used to characterize the power spectral 

densities (PSDs) within, and coherence between brain regions for each rat using custom code 

written for Matlab R2017b. A fourth order Chebychev type I notch filter centered at 60 Hz was 

applied to all of the data to account for 60 Hz line noise. The data was then down-sampled by a 

factor of five from 2 kHz to 400 Hz. A threshold of ± 2 mV was used to identify noise artifacts 

and remove data using intervals 12.5 milliseconds before and 40 seconds after the artifacts. To 

capture the power and coherence dynamics of the signal, we used only epochs that were at 

least 3 seconds long. For epochs that were longer than 3 seconds, we segmented them into 3-

second sections removing the remainder to keep all of the data continuous over the same 

amount of time. An example trace LFP oscillation is shown in Figure 1A. 

 PSDs were computed using MATLAB’s pwelch function using a 1.6 second Hamming 

window with 50% overlap. The PSDs for each 3-second segment were then averaged together 

to get a single representative PSD for the 30-minute recording session. Total power (dB) was 

calculated for each frequency range. To account for the 60 Hz notch filter, power values of 

frequencies from 59 to 61 Hz were not included in the analysis. The power per frequency band 

was then normalized as a percent of the average total power of the signal from 1 to 90 Hz 

(beginning of Δ to end of hγ). 

 Coherence was computed using the function mscohere with a 1.3 second sliding 

Hamming window with 50% overlap. The average coherence between each pair of frequency 

bands from 1 to 90 Hz (excluding 59 to 61 Hz) was used to normalize the average coherence of 

each frequency band within that neural site pair. 
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Determination of Estrous Phase 

After each baseline recording session, estrous cycle was determined via vaginal lavage 

as described previously (13). Slides were stained using thionin and the stage of estrus was 

assessed using an AmScope light microscope (Irvine, CA). Proestrus was characterized as 

>75% of the cells in the sample being nucleated epithelial cells. Estrus was characterized as 

dense sheets of cornified epithelial cells, and diestrus was characterized as scattered nucleated 

and cornified epithelial cells, along with leukocytes (diestrus-1), or the relative lack of any cells 

(diestrus-2). 

Verification of Electrode Placement 

At the end of the experiment, rats were euthanized using CO2 gas, brains were extracted 

and subsequently snap frozen in 2-methylbutane on dry ice. Tissue was stored at -20°C prior to 

being sectioned at 40 µm using a Leica CM1850 cryostat and stained with thionin. Electrode 

placement was verified using an AmScope light microscope (Irvine, CA). Figure 1B shows the 

electrode placements. Three animals’ (two males and one female) brains were not preserved 

properly so we were unable to verify electrode placements in those rats.  

Experimental Overview 

 Following one week of habituation to the animal facility, rats were implanted with bilateral 

recording electrodes targeting corticostriatal regions. After at least one week of recovery, 

baseline LFPs were recorded in two, 30-minute sessions for each male rat, and in each phase 

of estrous (proestrus, estrus, and diestrus) for each female rat. After baseline LFP recordings 

were collected, rats were allowed to drink 10% alcohol in a limited access paradigm for 9 

sessions (90 minutes a day, MWF, in a neutral chamber) in order to introduce each rat to 

alcohol. Animal weights and the volume of alcohol consumed was measured following each 

session in order to calculate g/kg of alcohol consumed. Next, LFP oscillations were recorded 

without access to alcohol for 15-min, and then with access to alcohol for 30-min, across five 

distinct sessions. It is important to note that the male rats in this study were also used for a 

separate study investigating the impact of deep brain stimulation on alcohol drinking behaviors. 

See Figure 1C for an experimental timeline. 

Statistical Analysis 

Linking corticostriatal LFPs to biological sex and phase of estrous 
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 In order to link corticostriatal activity to biological sex or phase of estrous we used an 

unbiased machine learning approach similar to what we have published previously (30,31). We 

built predictive models using corticostriatal LFPs to classify rats by biological sex and female 

rats by phase of estrous. Each recording session produced 60 LFP features: 24 measures of 

power (6 frequency bands X 4 channels) and 36 measures of coherence (6 frequency bands X 

6 channel combinations). We used a penalized regression method (lasso) in order to capture 

potential combinations of LFP features that correlated with biological sex or phase of estrous. 

The Matlab package Glmnet (32) was used to implement the lasso using a 4-fold cross-

validation with 100 repetitions for each of the following models: 1) male vs. female (diestrus); 2) 

male vs. female (estrus); 3) male vs. female (proestrus); 4) diestrus vs. estrus; 5) diestrus vs. 

proestrus; and 6) estrus vs. proestrus. The accuracy of the model is reported as the average 

cross-validated accuracy.  

Permutation testing 

 In order to assess the relative accuracy of the prediction models, we compared the real 

model performance to models built and tested on 100 different random permutations of the data 

(see Figure 2). As the outcomes of these models are binary, the random permutation models 

should reflect chance predictions. Thus, if the real models performed better than chance, we 

determined that there is some information in the circuit related to our binary outcome. However, 

since our sample sizes were relatively small and we used multiple recording sessions from the 

same animal as separate samples in the real model, we also evaluated models built on 

permutations of binary rat groupings (group permutations). This was done by keeping the LFP 

oscillation data together with the animal it was recorded from and shuffling the group 

assignment of each animal’s set of recordings. This permutation test evaluated the information 

contained within LFPs about all possible rat groupings. Biological sex was equally represented 

in each group permutation. We calculated the mean accuracy and 95% confidence intervals of 

cross-validated accuracy from the real, random permutation, and group permutation 

distributions, as well as z-scores comparing the real and random permutation distributions. 

Linking corticostriatal LFPs to alcohol intake levels  

 In order to analyze the impact of hormone status on alcohol intake during the recording 

sessions, we used a linear mixed model because two females were lacking at least one drinking 

day in either estrus or proestrus. Hormone status (diestrus, proestrus, estrus, or male) was used 

as the fixed effect, controlling for rat identification as the random effect, to predict alcohol intake 

during each session. 
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 We used a similar machine learning approach (as described above) to link corticostriatal 

activity to alcohol intake levels, except the outcomes were continuous (g/kg of alcohol 

consumed by each rat across each day) rather than binary. If the lasso indicated that 

information existed in the LFP signal, we implemented exhaustive single feature regressions 

using each LFP predictor to determine the relative information content of each feature, as we 

have previously described in detail (31). 

Results 

The ability of corticostriatal LFPs to predict biological sex depends on female estrous phase 

 Models built from corticostriatal LFP features were able to outperform randomly 

permuted data in predicting biological sex, and the accuracy of the model performance 

depended on the hormone status of the females. Models predicting males vs. females in 

diestrus performed with the highest average accuracy; Figure 3 shows the predictive models for 

males vs. females in diestrus (random permutation μ = 54.96±0.6%, real μ = 71.01±1%, z = 

1.71; 3A), males vs. females in proestrus (random permutation μ = 43.85±0.8%, real μ = 

57.7±1.5%, z = 1.09; 3B), and males vs. females in estrus (random permutation μ = 

48.15±0.6%, real μ = 56.1±1.3%, z = 0.81; 3C). It is important to note, however, that models 

built on group permutations of male vs. females in diestrus performed just as well as the real 

models (group permutation μ = 73.28±0.0002), indicating that the magnitude of sex-based 

differences corticostriatal circuit activity was no greater than random groupings of rats (balanced 

for sex) in this sample. 

 For the female rats, the accuracy of models built from corticostriatal LFP features to 

predict phase of estrous fluctuated based on hormone status. Models predicting estrus vs. 

diestrus performed with the highest accuracy; Figure 4 shows the predictive models for estrus 

vs. diestrus (random permutation μ = 50.72±0.6%, real μ = 64.92±1.2%, z = 1.57; 4A), estrus 

vs. proestrus (random permutation μ = 40.97±0.6%, real μ = 53.94±1.5%, z = 1.38; 4B), and 

diestrus vs. proestrus (random permutation μ = 57.49±0.6%, real μ = 51.74±1.1%, z = -0.65; 

4C).   

Corticostriatal LFPs predict alcohol intake levels in males, but not females 

 Due to headcap failures, only 5 rats from each sex were able to be recorded following 

being trained to drink alcohol. A linear mixed effect model indicated that hormone status 

significantly impacted alcohol intake levels [F(3,17.32) = 4.11, p<0.05], with males drinking 

significantly less alcohol than females in diestrus (p = 0.052; 5A). During proestrus and estrus, 
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female drinking amounts were not significantly different than male drinking amounts (p = 0.073 

for proestrus; p = 0.702 for estrus). 

 We also evaluated whether we could predict biological sex in the context of alcohol 

drinking by using LFP oscillations collected during alcohol consumption. Figure 5B shows the 

predictive models for males vs. females in diestrus (random permutation μ = 44.99±0.2%, real μ 

= 86.81±0.01%, z = 3.76; group permutation μ = 86.55±0.0008) while alcohol was available. 

Again, corticostriatal oscillations do not contain more information regarding biological sex (in the 

context of alcohol drinking) than information about all possible groupings of rats balanced for 

sex.  

Notably, models built from corticostriatal LFPs to predict alcohol intake levels were able 

to outperform randomly permuted data in males (random permutation error = 0.11±0.005, real 

error = 0.03±0.001, p < 0.01; 4C), but not in females (random permutation error = 0.37±0.03, 

real error = 0.24±0.01, p = 0.45; 4D). Table 1 lists the top five neural features important in 

predicting alcohol naïve males vs. females in diestrus, as well as the amount of alcohol males 

consumed. 

Discussion 

 Here we demonstrate that LFP oscillations recorded within corticostriatal circuits contain 

significant information regarding alcohol intake levels in males, but not in females. We also 

show that while corticostriatal LFPs may contain some trait-level information (i.e., biological 

sex), the amount of information is similar to that observed in group permutations of animals 

balanced for sex. In the females, we observed small fluctuations in model accuracies as a 

function of ovarian hormone status, which correlated with observed differences in alcohol intake 

across phases of estrous and between sexes. Overall, the current experiment indicates that the 

neural circuits that contain information regarding alcohol consumption are sexually dimorphic. 

The most compelling data from this study is that corticostriatal oscillations contained 

information regarding alcohol intake levels in males, but not in females. When single feature 

logistic regression models were applied to each neural feature, we determined that low 

frequency power in the NAcSh (particularly in the θ, α, and β ranges) was negatively associated 

with alcohol intake levels in males. Interestingly, NAcSh θ power, while negatively correlated 

with alcohol intake in males, also tended to be higher in males compared to females in diestrus 

(when males were drinking significantly lower amounts of alcohol compared to females). While 

these data are correlative, they do suggest that NAcSh θ power might represent a trait-level 
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neural feature that relates to the sex differences observed in alcohol consumption. Previous 

studies have demonstrated that θ oscillations in the striatum, which are coherent with 

hippocampal rhythms, are implicated in working memory and attention tasks, and are inhibited 

by NAc dopamine receptor blockade (36–38). Along with the present study, these findings 

collectively suggest that NAc θ oscillations may be important in reward learning, and that low 

frequency NAcSh oscillations may perhaps serve as a potential therapeutic target in future 

research. 

There are several potential circuits that may contain more information regarding alcohol 

intake levels in females. In clinical samples, women tend to use alcohol for negative 

reinforcement reasons, while men tend to use alcohol for positive reinforcement reasons (39). 

Women are also more sensitive to stress-induced relapse (5,40), and similar results have been 

seen in rodent models of alcohol drinking, where female rats are more sensitive to stress-

induced reinstatement of alcohol seeking (41). Therefore, regions involved in emotional 

regulation may contain more information about female drinking behavior. One particular region 

of interest is the insula, which is activated by natural and drug rewards, is involved in craving, 

and integrates emotional stimuli contributing to mood regulation (14). Clinical studies report that 

reduced insular grey matter volume is correlated with increased alcohol expectancy in female 

problem drinkers, but not in male problem drinkers (42). Interestingly, insular activation is further 

enhanced by alcohol cues in alcohol-dependent women compared to non-dependent women, 

while men show greater alcohol cue reactivity in the striatum compared to women (43,44). In 

light of these previous reports, the current experiment supports the notion that different neural 

circuits regulate alcohol drinking behaviors in males and females. 

 The current findings align well with previous work describing sex differences in alcohol 

drinking behavior. Here we replicate findings that female rats drink more alcohol than male rats 

when accounting for body weight, with female alcohol intake levels fluctuating slightly across the 

different phases of estrous (12,13,33). Interestingly, when predicting phase of estrous in 

females from corticostriatal LFPs, the accuracies of the prediction models line up with 

differences in drinking levels across estrous phases. Specifically, the model predicting estrus 

from diestrus performed the best, which aligns with the phases in which female drinking 

behavior is most different. These data are particularly interesting considering that ovarian 

hormone status has been shown to influence addictive behavior in female rats and in women 

[though less so with alcohol and more so with other addictive substances like cocaine 

(5,34,35)]. Our future work will continue to investigate the role of ovarian hormones in altering 
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substance use behaviors (and the underlying neural circuits) with the aim of developing a more 

comprehensive picture of the neurobiology of addiction in female rodents. 

 This work is further supported by previous studies using corticostriatal oscillations to 

characterize alcohol drinking behaviors in male rats. For instance, in male rats chronically 

exposed to alcohol, β power in the NAcSh is reduced during alcohol consumption periods 

compared to alcohol deprivation periods (21). This change in NAcSh β power coincides with an 

increase in NAcSh dopamine content, suggesting that changes in NAcSh β oscillations are 

influenced by dopamine signaling in the striatum (or vice-versa). Additionally, alcohol-preferring 

P rats (sex unspecified) show reduced PFC-NAc θ coherence, which is enhanced during alcohol 

drinking, compared to Wistar rats, suggesting that reduced connectivity in corticostriatal circuits 

may be related to the increased alcohol consumption in P rats (26). A significant amount of 

future work is required to understand the neural circuit dynamics of reward behavior across 

spatial resolutions (e.g., from single-cell to multi-cell to LFP recordings), but the current data 

supports the notion that electrical signals recorded in the NAcSh can serve as a valuable 

readout of substance use behaviors in male rodents. 

 It is important to consider one limitation to the current study. When attempting to predict 

males vs. females in diestrus, the real model outperformed models built on random 

permutations (chance), however the group permutation models had a similar accuracy to the 

real model. This adds a layer of complexity to the interpretation of the data, as the accuracy of 

the group permutations suggests that the information in the circuit regarding biological sex is no 

greater than the information describing natural variability in circuit activity between groups of 

animals (balanced for sex). There are likely many psychological domains in which corticostriatal 

circuit activity contains information; thus, some of the group permutations may be finding real 

differences between rats that are not related to biological sex. However, if biological sex was 

associated with substantially different corticostriatal oscillations, we would expect the real 

models to perform better than both the random and group permutations. It is unclear whether 

adding more rats to the experiment would have altered the relative accuracies of the real 

models and group permutations, so our future work will systematically analyze how many 

animals/samples are necessary to build a group permutation model with accuracies that 

approach chance. Nevertheless, this limitation does not reduce the importance of the present 

data. The models predicting alcohol intake levels in males and females were within animal, 

meaning the neural features identified in the continuous prediction models are directly related to 

the variability in alcohol intake in males. Furthermore, our future work will attempt to provide a 
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causal link by specifically manipulating the neural features identified in the male models in the 

hopes of changing alcohol drinking behavior. 

Conclusions 

 The current dataset contributes to our long-term goal of characterizing the neural circuits 

that underlie alcohol drinking behavior in males and females, and our data suggest that these 

circuits are sexually dimorphic in nature. Moreover, the present data set reinforces the need to 

develop more personalized therapies for alcohol-related problems, and to help achieve this aim, 

current work in our laboratory aims to identify the neural circuits that underlie female alcohol 

drinking behavior. Additionally, we aim to characterize how circuit oscillations change across 

states of alcohol dependence in males and females in order to isolate (perhaps sex-specific) 

neural targets for reducing problematic alcohol use.  
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Figure Captions 

Figure 1: A sample trace of corticostriatal oscillations used in the prediction models (A). 

Histology figures representing electrode placements in the NAcSh and mPFC. Males are 

represented by black dots and females are represented by grey dots (B). Experimental timeline 

(C).  

Figure 2: Schematic representation of the permutation testing. Each set of bars represents data 

from one rat (if each rat has two recordings), with males in blue and females in orange. 

Randomly permuted models are built on 100 iterations of shuffled data. Group permutation 

models are built on all possible combinations of rats assigned to each group (e.g., male or 

female), but the two recordings from each rat are kept together and males and females are 

equally represented in each permutation. 

Figure 3: Biological sex (i.e., trait-level) prediction models (n=10/sex X 2 recordings/rat). 

Corticostriatal LFP oscillations predicting males vs. females in diestrus (random permutation μ = 

54.96±0.6%, animal permutation μ = 73.28±0.0002%; real μ = 71.01±1%, z = 1.71; A), males 

vs. females in proestrus (random permutation μ = 43.85±0.8%, real μ = 57.7±1.5%, z = 1.09; B), 

and males vs. females in estrus (random permutation μ = 48.15±0.6%, real μ = 56.1±1.3%, z = 

0.81; C). 

Figure 4: Phase of estrous prediction models (n=10 X 2 recordings/phase). Corticostriatal LFP 

oscillations predicting estrus vs. diestrus (random permutation μ = 50.72±0.6%, real μ = 

64.92±1.2%, z = 1.57; A), estrus vs. proestrus (random permutation μ = 40.97±0.6%, real μ = 

53.94±1.5%, z = 1.38; B), and diestrus vs. proestrus (random permutation μ = 57.49±0.6%, real 

μ = 51.74±1.1%, z = -0.65; C). 

Figure 5: Predicting alcohol intake levels (n=5/sex X 5 recordings/rat). Female rats in diestrus 

drank more alcohol than male rats (p = 0.052; A). Corticostriatal LFP oscillations predicting 

males vs. females in diestrus during alcohol intake sessions (random permutation μ = 

44.99±0.2%, animal permutation μ = 86.55±0.0008, real μ = 86.81±0.01%, z = 3.76; B). 

Corticostriatal LFP oscillations predict alcohol intake levels in males (random permutation error 

= 0.11±0.005, real error = 0.03±0.001, p < 0.01; C), but not in females (random permutation 

error = 0.37±0.03, real error = 0.24±0.01, p = 0.45; D). 
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Table legends 

Table 1: The top 5 LFP features used in models predicting males vs. diestrus females and 

alcohol intake levels in males. Frequency bands [delta (Δ), theta (θ), alpha (α), beta (β), low 

gamma (lγ), and high gamma (hγ)] are described for power features within and coherence 

features between neural sites. 

 

Table 1: Neural features important in model prediction accuracies 

Male vs. Female (Diestrus) Predicting Alcohol Intake Levels: Males 

Feature Mean AUC Direction Feature R
2
 Slope 

Left NAcSh θ 0.818 
Male > 
Female 

Right NAcSh 
α 0.505 -243.08 

Right NAcSh 
θ 0.788 Male < 

Female Left NAcSh α 0.483 -283.80 

Left mPFC – 
Right NAcSh 

lγ 
0.782 Male < 

Female Left NAcSh θ 0.422 -186.40 

Left mPFC – 
Right NAcSh 

hγ 
0.767 

Male < 
Female 

Right mPFC 
– Right 

NAcSh lγ 
0.409 -4.37 

Left mPFC – 
Left NAcSh Δ 0.766 Male > 

Female 
Right NAcSh 

β 0.393 -82.98 
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