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Abstract Invasion of healthy tissue is a defining feature of malignant tu-
mours. Traditionally, invasion is thought to be driven by cells that have ac-
quired all the necessary traits to overcome the range of biological and phys-
ical defences employed by the body. However, in light of the ever-increasing
evidence for geno- and phenotypic intra-tumour heterogeneity an alternative
hypothesis presents itself: Could invasion be driven by a collection of cells
with distinct traits that together facilitate the invasion process? In this paper,
we use a mathematical model to assess the feasibility of this hypothesis in
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the context of acid-mediated invasion. We assume tumour expansion is ob-
structed by stroma which inhibits growth, and extra-cellular matrix (ECM)
which blocks cancer cell movement. Further, we assume that there are two
types of cancer cells: i) a glycolytic phenotype which produces acid that kills
stromal cells, and ii) a matrix-degrading phenotype that locally remodels the
ECM. We extend the Gatenby-Gawlinski reaction-diffusion model to derive
a system of five coupled reaction-diffusion equations to describe the result-
ing invasion process. We characterise the spatially homogeneous steady states
and carry out a simulation study in one spatial dimension to determine how
the tumour develops as we vary the strength of competition between the two
phenotypes. We find that overall tumour growth is most extensive when both
cell types can stably coexist, since this allows the cells to locally mix and
benefit most from the combination of traits. In contrast, when inter-species
competition exceeds intra-species competition the populations spatially sep-
arate and invasion arrests either: i) rapidly (matrix-degraders dominate), or
ii) slowly (acid-producers dominate). Overall, our work demonstrates that the
spatial and ecological relationship between a heterogeneous population of tu-
mour cells is a key factor in determining their ability to cooperate. Specifically,
we predict that tumours in which different phenotypes coexist stably are more
invasive than tumours in which phenotypes are spatially separated.

Keywords Tumour Invasion · Cooperation

1 Introduction

Tissue invasion is a hallmark of cancer [31]. If a tumour is detected before it
has started to spread into the surrounding tissue then the tumour is termed
benign and the chances of survival are high. If the tumour has started to spread,
breaching the basement membrane, survival rates are significantly decreased
and the tumour is termed malignant (“badly born”). In 90% of patients the
cause of death is not the primary tumour, but the disruption of normal body
function caused by metastatic disease [46] - for which invasion is the first
critical step.

Due to the profound damage caused by the uncontrolled spread of cells,
a great number of mechanisms have evolved to ensure that cells - even those
that might have started to escape homeostatic control - remain localised. One
important barrier, for example, is the extra-cellular matrix (ECM), a dense
mixture of proteins encapsulating the cells in healthy tissue [47,53]. The pro-
teins in the ECM form a strong scaffolding which physically anchors tissue
cells in place and activates intra-cellular signalling pathways which suppress
cell movement and regulate proliferation [47,53,37,53,9]. A further important
barrier to local expansion of the tumour is the inhibitory environment cre-
ated by the healthy tissue (stroma) surrounding the tumour. For example, an
analysis of 432 different cancer-fibroblast co-cultures found that 41% of the
investigated pairings led to reduced cancer growth [50].
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Fig. 1 Areas of acid production and matrix re-modelling in human breast cancer ducts.
Acid production was defined by expression of the acid adaptation marker LAMP2. Matrix
re-modelling was defined by expression of TGM2. For visualisation purposes masks were
extracted and overlaid on a haemotoxylin and eosin stain of the same tissue (see Section
A1 for details). A) Example of a ductal carcinoma in situ that has not yet invaded the
surrounding tissue. B) Example of an invasive cancer that has breached the duct. We observe
that not all cells are expressing LAMP2 or TGM2. Could there be cooperation between cells
with different traits?

Research over the past decades has elucidated in great detail the molec-
ular mechanisms used by cancer cells to overcome these barriers. In order to
remodel or degrade the ECM, tumour cells use matrix degrading enzymes
(MDEs) such as matrix metalloproteinases [47,16,31]. Similarly, in order to
overcome the growth inhibition from the surrounding stroma, tumour cells
can coerce healthy cells into tumour promoting phenotypes (e.g. tumour asso-
ciated fibroblasts), or eradicate them. In a series of papers, Gatenby and co-
workers have proposed that an important contribution to this transformation
is the acidification of the tissue environment by the tumour, a theory known
as the “acid-mediated invasion hypothesis” [24,26,25,30]. Many invasive can-
cers are characterised by their use of glycolysis for energy generation even in
conditions under which more efficient aerobic respiration would be feasible, a
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paradox known as the “Warburg effect” [51,30]. Gatenby and co-workers argue
that the acidification due to upregulated glycolysis, which ranges over 0.5-1
pH units [54,32], results in death of normal cells, thereby allowing tumour
cells to expand [24,26,25,30]. This hypothesis is supported, for example, by
experiments showing that low pH leads to increased rates of apoptosis [49] or
that administration of a neutralising buffer can reduce tumour expansion in
mice [26].

The advances in our molecular understanding of invasion have been accom-
panied by a significant body of theoretical work that has aimed to integrate the
insights from different spatial and temporal scales to identify clinical implica-
tions and to guide future experiments (see [4] for an excellent review). Gatenby
and Gawlinski developed a mathematical model based on reaction-diffusion
equations to investigate the feasibility and implications of the acid-mediated
invasion hypothesis [24]. In their three-compartment model, the authors repre-
sent tissue as a mixture of healthy stromal cells, cancer cells, and acid released
by the tumour cells [24]. They identify different modes of invasion depending
on the system parameters, and predict that particularly aggressive invasion
gives rise to a gap between the advancing tumour and retreating tissue front
[24]. Subsequent work has more formally analysed this model and suggested
new experiments that could be used to test the underlying assumptions [22,
36].

In addition to the role of acid, the dynamics of ECM remodelling and degra-
dation has also been studied. Considering the ECM as a purely physical bar-
rier, Martin and co-workers [35] used an extension of the Gatenby-Gawlinski
model to demonstrate that if a collaboration between the tumour cells and
the stroma is required to degrade the matrix, then highly acidic tumours may
be encapsulated and unable to invade. Other studies instead considered the
stimulatory effects that certain by-products of matrix degradation have on ac-
tivation and direction of tumour cell movement. Anderson et al [2] showed in
a partial differential equation (PDE) model that such an ECM gradient driven
migration (haptotaxis) can influence the shape of the growing tumour. In a
series of papers, the group led by Mark Chaplain have further characterised
the importance of cell-cell adhesion in tumour invasion [11,28,18] and identi-
fied the plasminogen urokinase activation system as a key driver of invasion
[14,43,1].

While we have an increasing understanding of how tumour cells invade, an
important open question remains as to when in oncogenesis invasion emerges.
Traditionally, invasion is thought to be carried out by a subset of cancer cells
that have acquired all the necessary traits to overcome the host’s various
defence mechanisms. However, over the past decade it has become clear that
tumours are a heterogeneous mixture of cells that differ in their genetic make-
up and phenotypic behaviour [38,29,7]. As part of a recent study, currently
in preparation for publication [17], we observed significant heterogeneity in
the distribution of matrix remodelling activity and acid adaptation amongst
cancer cells in human breast cancer ducts (Figure 1). Even along the invasive
front the overlap of the regions of acid production and matrix remodelling is

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2019. ; https://doi.org/10.1101/750810doi: bioRxiv preprint 

https://doi.org/10.1101/750810
http://creativecommons.org/licenses/by/4.0/


Mix & Match: Phenotypic coexistence as a key facilitator of cancer invasion 5

not complete (Figure 1B). While further experimental work will be required
to ratify these observations, they led us to ask the question: Instead of being
driven by group of “super-cells”, could cancer invasion rather be an emergent
property of cooperating specialist cells?

There is mounting evidence for cooperation among tumour cells [6,5]. A
Wnt1-driven mouse model of breast cancer, for example, has been shown to be
composed of two cell types: one expressing Wnt1, and the other expressing the
associated Lrp5 receptor [34,15]. Interaction with the other cell type allows
each population to grow faster and drives tumour growth [34,15]. Alternatively,
production of diffusible growth factors can allow for cross-feeding amongst
tumour cells, where a cell produces one type of growth factor and receives the
others from its neighbours [6,5]. Given cells have been shown to support each
others’ growth, it seems plausible that they may also cooperate to overcome
the body’s defences during tissue invasion.

The aim of this paper is to use a mathematical model to investigate the fea-
sibility and the implications of this hypothesis in the context of acid-mediated
invasion. We will extend the Gatenby-Gawlinski model so that it includes ob-
struction both from the stroma and the ECM. Specifically, we will assume
that stromal cells suppress growth, whilst the ECM blocks cell movement.
Unlike previous work [43,35] we will assume that no single tumour cell can
remove both obstructions. Instead, we will assume that there are two cancer
phenotypes: i) an acid-producing phenotype which removes stroma, and ii)
an ECM-degrading phenotype. We will assume that these distinct phenotypes
cooperate to remove obstructions, but must also compete with one another
for resources. Through linear stability analysis and numerical simulations of
the resulting system of five differential equations we will study under which
circumstances a mixture of the two populations (as defined by the relative
inter-species competition) develops into an invasive cancer.

2 The Mathematical Model

Our model builds on the Gatenby-Gawlinski model [24], and consists of five
components: stroma (S(x, t)), ECM (M(x, t)), a population of acid producing
tumour cells (TA(x, t)), lactic acid (L(x, t)), and a population of matrix de-
grading tumour cells (TM (x, t)), where x denotes space and t represents time
(Figure 2). Following [24] we assume that densities are large enough to be
describable by continuous functions, and model the spatio-temporal evolution
of the system using a combination of spatially-distributed ordinary differential
equations (ODEs) and PDEs.

2.1 Healthy Tissue Components

We consider two components of healthy tissue: stroma and ECM. The model
for the stroma, denoted as S, is taken from [25] and assumes that:
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Fig. 2 Interaction diagram of our model. Stroma inhibits tumour cell proliferation but is
killed by acid secreted by the acid producing tumour cells, TA. ECM blocks movement of
the tumour cells, but can be removed by the matrix degrading tumour cells, TM . The two
types of tumour cells compete for resources thereby inhibiting each other’s growth.

– Stromal cells grow logistically at a rate rS and carrying capacity KS in the
absence of tumour, reflecting homeostasis.

– Stromal cells are anchored in place and their motility can be neglected.
– Stromal cells are killed by the lactic acid produced by the tumour cells at

a rate proportional to its concentration, L(x, t), with a constant of propor-
tionality dS .

This yields the following governing equation for S(x, t):

dS

dt
=

Growth︷ ︸︸ ︷
rSS

(
1− S

KS

) Acid
Induced Death︷ ︸︸ ︷
−dSLS. (1)

In modelling the ECM dynamics we assume:

– There is a net loss of ECM over the time-frame of interest. Since we are
interested in studying the dynamics of invasion, we will assume that the
break down of matrix by the tumour overcomes any regeneration, as has
been done in other work previously (e.g. [42,52,35]).

– ECM degradation or remodelling is a localised process. This is based on
the fact that MDEs are either directly located on the cell membrane or
are so large that their diffusion coefficients are very small [53]. We model
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this with a linear mass-action model such that ECM is degraded at a rate
proportional to the density of matrix degrading tumour cells, TM (x, t),
with dM the rate of degradation.

– Because of its fibrous nature, diffusion of ECM can be neglected.

Thus, we model the M(x, t) dynamics as:

dM

dt
=

Degradation by Tumour︷ ︸︸ ︷
−dMTMM. (2)

Similar models have previously been used in [2,35]. We remark that both
(1)-(2) are ordinary differential equations, that are distinct for every spatial
point. Furthermore, the equations between neighbouring spatial points are not
directly coupled. Instead coupling occurs via one of the other variables (e.g.
TA).

2.2 The Tumour Environment

We consider two phenotypically distinct tumour populations: i) glycolytic, acid
producing cells (TA(x, t)), which release lactic acid killing stromal cells, and
ii) matrix degrading tumour cells (TM (x, t)), which degrade the ECM. We
assume that:

– In the absence of other cells, each tumour population grows logistically at
rates rTA , rTM and carrying capacities KTA , KTM respectively.

– The tumour cells compete with each other and with the stroma for re-
sources and space. We assume competition follows a generalized Lotka-
Volterra functional response [39], characterised by competition parameters
ci,j . These describe the inter-species competition that species j experiences
from species i relative to the intra-species competition i exerts on itself.

– The tumour cells are motile, but their movement is restricted by the physi-
cal obstruction of the ECM. Following Martin et al [35], we model obstruc-
tion by the ECM as a linear reduction in the flux of cells. We denote by
DTA and DTM the diffusive fluxes in the absence of ECM, and by KM the
density of ECM such that tumour motility ceases.

– Tumour cells are resilient to the acid. Histology shows adaptation of tumour
cells to acidic environments [24,26] and theoretical work supports that acid
resistance is acquired early in oncogenesis [44].

We note that our assumptions about the interactions between the tumour
cells and their environment differ to those made by Gatenby and Gawlinski
[24] and Martin and co-workers [35], on whose work our study is built. Specif-
ically, Gatenby and Gawlinski choose to neglect competition between tumour
and stroma, and Martin et al include the stroma as an additional physical
obstruction to movement. Our choice of assumptions is motivated by the aim
to make the two barriers act orthogonally, so to compare their effects. As it
appears easier for cells to squeeze through the stroma in a migrating manner
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than the ECM we choose this particular order. Determining which assumptions
are more physiologically realistic will require further study, but we anticipate
that the results presented below will motivate such investigations.

In summary, we propose the following model equations for TA(x, t) and
TM (x, t):

∂TA
∂t

=

Growth & Competition︷ ︸︸ ︷
rTATA

(
1− cS,AS + TA + cM,ATM

KTA

)
+

Migration︷ ︸︸ ︷
∇
[
DTA

(
1− M

KM

)
∇TA

]
,

(3)

∂TM
∂t

=

Growth & Competition︷ ︸︸ ︷
rTMTM

(
1− cS,MS + cA,MTA + TM

KTM

)
+

Migration︷ ︸︸ ︷
∇
[
DTM

(
1− M

KM

)
∇TM

]
.

(4)

The final governing equation is that for the acid. We adopt the model by
[24], and assume that:

– The acid is produced by the glycolytic phenotype, TA, at constant rate rL.
– Acid is removed from the tissue by blood vessels and natural buffering

agents at constant rate dL.
– Because of its small molecular size, acid can diffuse unobstructedly.

This yields the following PDE for L(x, t):

∂L

∂t
=

Production︷ ︸︸ ︷
rLTA

Evacuation︷ ︸︸ ︷
−dLL +

Diffusion︷ ︸︸ ︷
DL∇2L, (5)

where rL is the acid production rate, dL the degradation rate, and DL the
diffusion constant.

2.3 Further Simplifying Assumptions

The aim of this paper is to investigate competition and cooperation between
tumour cells based on distinct phenotypic properties. Thus, we will make
the simplifying assumption that the two tumour populations are biologically
identical, except in their abilities to degrade matrix and produce acid. We
will assume identical growth rates, rTA = rTM := rT , identical carrying ca-
pacities (corresponding to intra-species competition), KTA = KTM := KT

and identical motility, DTA = DTM := DT . Moreover, we will assume that
inhibition received from the stroma is equal for both phenotypes, so that
cS,A = cS,M := cS . Finally, we will also adopt the assumption made by
Gatenby and Gawlinski [24] that stroma and tumour cells have the same car-
rying capacities KT = KS := K.

We will study the model on a 1-d slice of tissue Θ = [0, `], where x = 0 is
the position of the initial core of the tumour and ` is the length of the slice.
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We assume that the tumour has initially infiltrated a distance σ < ` which we
model by the following initial data:

S(x, 0) = 1− f(x;σ, ω),

TA(x, 0) = f(x;σ, ω),

TM (x, 0) = f(x;σ, ω),

L(x, 0) = f(x;σ, ω),

M(x, 0) = 1− f(x;σ, ω),

where f(σ, ω) is a mollified step function and ω, a fixed positive constant,
describes the sharpness of the initial boundary between the tumour and the
healthy tissue. Specifically:

f(x;σ, ω) =


1, if x < σ − ω,
exp

(
1− 1

1−( x−σ+ωω )2

)
, if σ − ω ≤ x < σ,

0, otherwise.

(6)

To facilitate numerical simulation we follow previous work (e.g. [24,35]) in
assuming that there are hard boundaries at x = 0 and x = `, which allows us
to close the system with zero-flux boundary conditions (at x = 0, `). However,
as the choice of the domain Θ is motivated more by numerical convenience than
biological reality, we will only simulate this system for as long as the tumour is
far away from the right boundary, to avoid introducing any boundary condition
artefacts.

2.4 Non-Dimensionalisation

We introduce the following scalings, adopted from [24] and motivated by the
natural scales present in the system:

S̃ =
S

K
, T̃A =

TA
K
, T̃M =

TM
K

, L̃ =
LdL
rLK

, M̃ =
M

KM
, (7)

t̃ = rSt and x̃ =

√
rS
DL

x.

Based on the parameters used in this study (see also Section 2.5), this corre-
sponds to a time scale of 11.57 days and a spatial scale of 2.24 cm. Following
previous work [24,35,36] we choose ` such that x̃ ranges from 0 to 1 for con-
venience. Preliminary simulations showed that this allows us to simulate for a
time frame of > 600 days for most parameter combinations before the tumour
starts interfering with the right boundary, which is a clinically realistic time
scale (equivalent to 1 cm of tumour growth).
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Table 1 Parameters used in the numerical simulation of the model.

Parameter Value Reference
δ 12.5 [24]
ρT 1 [24]
∆T 4× 10−5 [24]
ρL 70 [24]
κ 10 [2]
cS 1.5 Estimated
cM,A 0-2 Estimated
cA,M 0-2 Estimated

Dropping the ˜ for notational convenience, the re-scaled model reads:

∂S

∂t
= S(1− S)− δSL, (8)

∂TA
∂t

= ρT TA(1− cSS − TA − cM,ATM ) +∆T∇x · [(1−M)∇xTA], (9)

∂TM
∂t

= ρT TM (1− cSS − cA,MTA − TM ) +∆T∇x · [(1−M)∇xTM ], (10)

∂L

∂t
= ρL(TA − L) +∇2L, (11)

∂M

∂t
= −κTMM, (12)

where the dimensionless parameters are given by:

δ =
dSrL
dLrS

K, ρT =
rT
rS
, ∆T =

DT

DL
, ρL =

dL
rS
, κ =

dMK

rS
.

2.5 Parameters

As far as possible we take parameters obtained from the literature. A summary
of all the parameters is shown in Table 1. The value for κ was adapted from
[2] where it represents the maximum rate at which the MDEs can degrade
the ECM. We carry out parameter sweeps in the competition parameters, as
these are difficult to estimate from existing data. As we will see, the choices
of ranges for competition parameters encapsulates all of the behaviours we
would expect from such a model, and simulations outside these ranges can be
inferred from our results.

3 Steady State Analysis

During invasion, tumour cells arrive in healthy tissue and establish a self-
sustaining population. In principle this corresponds to a travelling wave solu-
tion (TWS) to Equations (8) - (12) which connects two spatially homogeneous
steady states: the state (S, TA, TM , L,M) = (1, 0, 0, 0,M∗), where M∗ is an

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2019. ; https://doi.org/10.1101/750810doi: bioRxiv preprint 

https://doi.org/10.1101/750810
http://creativecommons.org/licenses/by/4.0/


Mix & Match: Phenotypic coexistence as a key facilitator of cancer invasion 11

arbitrary level of the matrix density (henceforth referred to as SS0), represent-
ing healthy tissue and another spatially homogeneous state (S, TA, TM , L,M)
which describes the composition of the invaded tissue. Neglecting the triv-
ial steady state where all cell populations are extinct, the system admits six
further steady states:

– SS 1: (S, TA, TM , L,M) = (0, 1, 0, 1,M∗), which represents a tumour com-
posed only of acid producing cells, TA.

– SS 2: (S, TA, TM , L,M) = (0, 0, 1, 0, 0), which describes a tumour composed
only of matrix degrading cells, TM .

– SS 3: (S, TA, TM , L,M) = (0,
1−cM,A

1−cM,AcA,M ,
1−cM,A

1−cA,McA,M ,
1−cM,A

1−cM,AcA,M , 0), which

describes cancerous tissue in which TA and TM coexist. Both the stroma
and the ECM have been eradicated.

– SS 4: (S, TA, TM , L,M) = ( 1−δ
1−cSδ ,

1−cS
1−cSδ , 0,

1−cS
1−cSδ ,M

∗), which models a tu-
mour composed of a mixture of acid producing cells, stroma and ECM.

– SS 5: (S, TA, TM , L,M) = (1, 0, 1 − cS , 0, 0), which is representative of a
tumour consisting of a mixture of matrix degrading cells and stroma. As
we assume that cS > 1, this state is never feasible and so not relevant to
this study.

– SS 6: If (cM,A, cA,M ) = (1, 1), (S, TA, TM , L,M) = (1 − δTA, TA, 1 − cS −
(1 − cSδ)TA, TA, 0), where TA ∈ (0, 1). Otherwise, (S, TA, TM , L,M) =

(
1−δ−cA,McM,A+cM,Aδ

1−cSδ−cA,McM,A+cM,AcSδ
,

1−cS−cM,A+cM,AcS
1−cSδ−cA,McM,A+cM,AcSδ

,
1−cS−cA,M+cA,McS

1−cSδ−cA,McM,A+cM,AcSδ
,

1−cS−cM,A+cM,AcS
1−cSδ−cA,McM,A+cM,AcSδ

, 0). As such, SS6 represents acidic cancerous tissue

in which all three cell populations coexist. The matrix has been degraded.

A linear stability analysis shows that all steady states involving a non-zero
density of ECM (SS1 and SS4) have a zero eigenvalue (for details see Appendix
A2). This corresponds to a perturbation in the ECM density and reflects the
fact that, in the absence of TM , the ECM density will remain constant and all
values for M are admissible as steady states. Furthermore, we find that SS2,
SS4 and SS6 always have at least one eigenvalue with positive real part for
the range of parameters considered (Figure A1). This implies that these states
can not be part of a TWS representing an invading tumour. In contrast, SS1 is
linearly stable if cA,M > 1, whereas SS3 is stable if cA,M , cM,A < 1 (assuming
δ > 1; Appendix A2). We conclude that there are four possible scenarios for
invasion:

1. Stable Coexistence: If cA,M < 1 and cM,A < 1, then both tumour pop-
ulations stably coexist inside the tumour (SS3), resulting in an invading
tumour corresponding to a TWS connecting SS3 and SS0.

2. Competitive Exclusion of TA: If cA,M < 1 and cM,A > 1, then TM drives
TA to extinction inside the tumour. Where stroma is present the healthy
tissue is restored (SS0), where it is absent the system settles into a mono-
culture of TM (SS2). The tumour becomes encapsulated and invasion halts.

3. Competitive Exclusion of TM : If cA,M > 1 and cM,A < 1, then TA drives
TM to extinction inside the tumour (SS1). While this might nevertheless
give rise to a TWS we conjecture that the associated speed of invasion is
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Fig. 3 In isolation the tumour populations fail to invade. A: Snapshots at three time points
from a long term simulation (tend = 10, 000, corresponding to more than 10 years) in which
only TA is present. Expansion stalls because of obstruction by the matrix. B: Analogous
simulation of the dynamics with TM in isolation. This time the tumour can not overcome the
stroma. C: Plot showing the position of the tumour edge in A and B over time, determined
as minx∈[0,1] {d/dt(Ti(t))} for i = A,M, respectively. We conclude that the model and the
numerical scheme behave as expected and that any invasion seen later in this paper is due
to the interaction between the two cell types.

zero due to the obstruction from the matrix. We provide numerical evidence
for this in Figure 3.

4. Bi-Stability: If cA,M > 1 and cM,A > 1, then the system is bi-stable and
the outcome of invasion is dependent on the initial conditions. We explore
this case numerically in Section 4.2.3.

4 Numerical Simulations

We simulate our model using the method of lines by discretizing space, and
then applying a standard ODE integration scheme in time. We discretise the
equations in space using the following central difference scheme:

∂
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+ 2D
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r+1

)
ur+(

D
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r

+D
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r+1

)
ur+1

)
,

where
∣∣
r

denotes evaluation at the rth spatial grid point, xr, of an equi-spaced
grid with grid size h. In the case of the standard Laplacian operator (as in
(11)) this reduces to the standard three-point stencil, whereas for (9)-(10)
it provides a consistent discretization of the nonlinear diffusive flux due to
the presence of the matrix M . The resulting system of ODEs is solved with
backwards differentiation formulas (BDF1-BDF5) [48] implemented in Scipy
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(specifically, the scipy.integrate.ode class). To improve numerical stability,
a stabilisation scheme is used to guide state variables back to zero should
they become negative. Convergence in space and time for this scheme was
checked thoroughly (not shown). The solutions presented are at a resolution
of δx = 5×10−3 in space (200 equally spaced points) and relative and absolute
numerical tolerances of 1 × 10−10 were used for the solution in time. Unless
otherwise stated, simulations were run until time t = 50 (corresponding to
around 575 days). All simulations were carried out in Python 3.6, using Scipy
1.1.0 and Numpy 1.15.1. Visualisations were produced with Pandas 0.23.4,
Matplotlib 2.2.3, and Seaborn 0.9.0. The code will be made available upon
acceptance of the manuscript.

4.1 Neither acid-producing nor matrix-degrading tumour cells invade in
isolation

In Figure 3 we show model simulations in which only one of the two populations
is present. We see that in isolation neither TA nor TM can invade. In accordance
with the linear analysis in Section 3, we see that if only TA is present, then
the tumour initially advances but invasion halts because of obstruction by
the matrix (Figure 3A). Similarly, if only TM is present, then the tumour is
encapsulated by the stroma (Figure 3B). Plotting the position of the tumour
edge in each case confirms this (Figure 3C).

4.2 Intra-tumoural competition determines the tumour’s invasion properties

Our results in Section 3 show that when both tumour cell populations are
present there are four different possible outcomes depending on the strength
of the inter-species competition between TA and TM . To further investigate this
relationship we simulated invasion for 104 combinations of values of (cM,A, cA,M )
equally spaced on the grid [0, 2]× [0, 2], corresponding to rates of inter-species
competition between 0- and 2-fold that of the intra-species competition. We
initialised the tumour as described in Section 2.3 with σ = 0.2 and ω = 0.1
and simulated until time t = 50.

4.2.1 Stable coexistence of multiple tumour phenotypes promotes invasion

Figure 4A shows the position of the tumour edge at t = 50 for these 104 param-
eter combinations. We find that the tumour invades furthest for cM,A, cA,M <
1, corresponding to the case when inter-species competition is weaker than
intra-species competition. Studying the solution for (cM,A, cA,M ) = (0, 0)
shows that for this range of values the two populations mix and advance as a
single front (Figure 5A).

Furthermore we observe that the relationship between the invaded distance
and the competition parameters is not symmetric about cM,A and cA,M . In
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Fig. 4 The invasive potential of a tumour is determined by the competition between its
subpopulations. A: Position of the tumour front at time t = 50 (575 days) as a function of the
strength of inter-species competition (cM,A and cA,M ). This was defined as max(xA, xM ),
where xi = minx∈[0,1] {d/dt(Ti(50))} for i = A or M , respectively, is the position of the
wave front of TA and TM at time 50. Annotations correspond to the time series plots
shown in Figure 5. We find the tumour advances furthest when inter-species competition is
weaker than intra-species competition (cM,A, cA,M < 1). B: Total tumour mass, defined as

M =
∫ 1
x=0 TA(x, 50) + TM (x, 50)dx, as a function of the inter-species competition. We see

that the total tumour mass in the invading tumour, which may be interpreted as a proxy
for the total cell number, is a strictly and rapidly decreasing function of the competition
parameters. Thus, competition between tumour cells influences not only how far they invade,
but also how many cells make up the advancing tumour. Note: cases in which the cell
populations were small (

∫ 1
x=0 Ti(x, 50)dx < 0.1) were disregarded in this analysis to avoid

issues associated with the simulation and interpretation of low densities.

particular, provided cM,A, cA,M < 1 the invaded distance is more sensitive to
a higher competitiveness of TA than TM . Repeating the experiment in Figure
4A with different rates of matrix degradation, κ, shows that this asymmetry
is due to κ (Appendix A3). For the parameters shown in Figure 4A matrix
remodelling is less effective than removal of the stroma for the parameters
shown, essentially creating a bottleneck. Our results in Section 3 show that a
larger ratio of cM,A to cA,M corresponds to a larger proportion of TM in steady
state allowing for more matrix degradation to take place. To summarise, we
find that the most invasive tumours are those in which TA and TM mix and
locally coexist in the correct proportions.

4.2.2 Competitive exclusion slows tumour invasion

As cM,A is increased through 1, so that cM,A > 1 and cA,M < 1, we ob-
serve a rapid reduction in tumour expansion (Figure 4A). A simulation for
(cM,A, cA,M ) = (1.2, 0.7) shows that in this domain, TM drives TA to extinc-
tion inside the tumour, and is subsequently encapsulated by the stroma due
to a lack of acid to keep the stroma in check (Figure 5B).
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Fig. 5 Simulations illustrating the four different scenarios that can occur depending on the
inter-species competition between TA and TM . Panels correspond to the locations in the
competition parameter space marked in Figure 4A (1:A, 2:B, 3:C, 4:D). A: (cM,A, cA,M ) =
(0, 0). Both tumour populations coexist and together invade rapidly. B: (cM,A, cA,M ) =
(1.2, 0.7). TM drives TA to extinction and invasion halts. C: (cM,A, cA,M ) = (0.7, 1.2). TA
dominates over TM . While invasion eventually stops due to a lack of ECM degradation,
the tumour initially invades thanks to a small population of TM persisting at the tumour
edge. D: (cM,A, cA,M ) = (1.7, 1.7). Mutual exclusion of TA and TM . When seeded at equal
densities the two populations will invade as shown, but the invading front is not stable. If
a small perturbation is introduced the two populations will separate and invasion will halt
(Figure A2).
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Similarly, if TA out-competes TM (cM,A < 1 and cA,M > 1), then invasion
is also reduced (Figure 4A). However, this reduction is less significant than in
the converse case. This is because the TM population transiently survives near
the edge of the tumour (t = 25 in Figure 5C), where it degrades the ECM for
the advancing bulk of the tumour until it is eventually eradicated (t = 50 in
Figure 5C and Figure A4).

4.2.3 Strong inter-species competition prevents clonal mixing and reduces
invasion

When inter-species competition is stronger than intra-species competition for
both populations (cM,A, cA,M > 1), we observe three possible outcomes: i)
the two populations co-exist and invade (cM,A = cA,M in Figure 4A), ii) TA
out-competes TM and the tumour advances only temporarily (cM,A < cA,M in
Figure 4A), and iii) TM out-competes TA and invasion rapidly halts (cM,A >
cA,M in Figure 4A).

When invasion does occur (cM,A = cA,M ), the tumour is also a mixture
of the two phenotypes (Figure 5D), however, the advancing front is unstable
to small perturbations (Figure A2). Similarly, if the two populations are not
initialised identically, but placed slightly apart, they separate spatially (Fig-
ure A2B). Moreover, the solution is strongly sensitive to the parameters, with
slight perturbations generating qualitatively different outcomes from the same
initial conditions (Figures A2C & D). In summary, this indicates that coop-
eration in this regime is unstable, and most likely competitive exclusion or
spatially separated populations (parapatry) would be observed.

Formally speaking, solutions along the line in the (cM,A, cM,A) parameter
space are structurally unstable, corresponding to a separatrix between com-
petitive exclusion of each species. Specifically, away from the invasion front,
the stroma, matrix, and acid can be neglected, and the system is simply two
Lotka-Volterra-type equations with identical parameters. Neglecting the spa-
tial dynamics and considering the phase-plane of such a system, we see that
the stable manifold of the coexistence steady state (which is a saddle) forms
a separatrix between the single-species equilibria (see, for instance, Chapter
3 of [39]). This implies that any asymmetry in the initial condition between
these two species will lead to one or the other species becoming extinct. Spatial
dynamics can then lead to a stabilization of local equilibria of each species,
but not to any kind of homogeneous coexistence equilibria, and the spatial
structure of the populations can depend sensitively on the initial data. We
remark that this separatrix exists even for distinct competition parameters,
but for comparable initial densities we do not observe coexistence.

4.2.4 The ratio of invaded distance to tumour mass reflects tumour ecology

In addition to the distance the tumour has invaded, another important feature
in the clinic is the total tumour mass that has developed. We compute this as

M =
∫ 1

x=0
TA(x, 50) + TM (x, 50)dx and present the results in Figure 4B. This
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Mutual ExclusionDominance of TA

Fig. 6 Summary of the key findings of this paper. If the two phenotypes can coexist, a highly
invasive community of cells emerges. Conversely, if TM dominates, tumour invasion comes
to a halt as the cells are unable to overcome the stroma. If TA dominates, a temporarily
invasive tumour mass forms in which TM cells find a temporary habitat in the matrix at
the tumour edge. Finally, in the case where the two cell types mutually exclude each other’s
growth, the cells separate into spatially distinct regions and fail to invade.

shows that the two measures are not identical. While the progress of the front
is almost identical along the line (cM,A, cA,M ) = (s, 0) for s ∈ [0, 1] (Figure
4A), the mass of the resulting tumour decreases rapidly (Figure 4B). A similar
pattern holds true along the line cM,A = cA,M , and suggests that the strength
of competition between tumour sub-populations affects not only the speed of
invasion, but also the density of the resulting tumour mass.

5 Discussion

While tumour heterogeneity is now widely recognised [38,29,3], we are only
beginning to comprehend its implications for cancer progression. The fact that
the cells in a tumour are not identical, and instead might act as a collective
composed of phenotypically distinct individuals, is particularly important in
the context of cancer invasion. Invasion of tissue requires both the ability to
degrade or remodel the ECM, and the ability to remove surrounding stromal
cells. While over time it is possible for the necessary genetic changes to all
accumulate in one tumour cell type, it seems more likely that these abilities
initially arise in separate cells. Here we aimed to investigate whether coop-
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eration between distinct phenotypic populations is a viable mechanism for
invasion, and to characterise the dynamics of such cooperative invasion.

We summarise our findings in Figure 6. Our theoretical results show that
cooperation between two cell types gives rise to an invading tumour at clini-
cally realistic speeds (1-2cm in a year). Further, we identify two possible modes
of invasion: Firstly, when the two cell types compete weakly with each other,
allowing both to stably co-exist. Our model predicts that the resulting mutual-
istic community has strong invasive potential, as all required traits are present
in the same place at the same time (Figure 5A). It has previously been ob-
served that tumours with high degrees of clonal mixing are more aggressive
[45,55]. This has so far been explained by higher cell motility and resulting
invasive potential [45]. Based on our results, we propose that an additional
explanation could be that mixing allows individual cells to more readily share
their traits. As such we advocate further research into the clinical importance
of clonal mixing.

In addition, our model predicts a second mode of invasion, in which the acid
producing cells drive the matrix degrading cells to extinction throughout the
tumour, but can temporarily invade as a population of matrix degrading cells
transiently survives near the edge of the tumour (Figure 6). While invasion
in this case is only transient, it could be a contributing factor to cancer inva-
sion, since further mutations could develop or blood vessels could be reached
that would allow for continued growth. Current literature suggests that acid
producing cells would have a competitive advantage over matrix degrading
cells since they are better adapted to low pH conditions [26,25,27], and that
the onset of invasion is marked by the expansion of a highly glycolytic cancer
phenotype [44]. Our results indicate that commensualistic or parasitic rela-
tionships might develop between aggressive glycolytic cells in the core of the
tumour and cells at the tumour edge which might facilitate invasion. Mathe-
matically, our work also illustrates recent results showing that if the dominant
species in a diffusive Lotka-Volterra system moves at a slower rate, then the
two species invade empty space as a “propagating-terrace”, where the weaker
species invades first but is subsequently eradicated by the dominant species
[13].

Although it was not our primary objective, our work also highlights the
differences between physical and biological barriers to tumour invasion. In our
model, the ECM was a purely physical barrier, whereas the stroma acted by
suppressing tumour growth. Figure 3 shows that the biological barrier of the
stroma is more effective in blocking tumour invasion than the “wall” of ECM.
Unless the level of the ECM is precisely 1, TA can invade even in the absence of
matrix degrading activity and advances until x = 0.3 (Figure 3A). In contrast,
TM is stopped at x = 0.2 because the arriving tumour cells fail to establish a
locally self-sustaining population due to the growth inhibition by the stroma
(Figure 3B). This makes the point that a key challenge for invading tumour
cells is to survive and grow in this new environment. Furthermore, we found in
modelling obstruction that there remains a number of unsolved mathematical
challenges: i) How do the travelling wave solutions to this nonlinear diffusion
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model of movement obstruction develop (Equations (10) & (12))? ii) How do
these compare with alternative models of a hard boundary, such as a mov-
ing boundary [19,20]? iii) How should one model distinct, yet simultaneously
acting physical obstructions?

We note that there are a number of potentially important interactions not
accounted for in the model. Firstly, we do not model matrix regeneration (e.g.
[35]). It seems plausible that matrix regeneration might make it significantly
more challenging for the matrix degrading cells to invade. As a result, the inva-
sive capabilities of a tumour with a “pocket” of matrix degrading cells might
be much smaller than predicted by our model. Conversely, as we discussed
in the introduction, some MDEs generate by-products which can stimulate
movement of the cells. Anderson et al [2] found that this can result in the
leading edge of the tumour separating from the main mass. In our model this
might allow the matrix degrading cells to penetrate further into the tissue and
increase invasiveness. Finally, the ECM is composed of proteins and as such
also subject to acid degradation [37]. Because the aim of this paper was to
acquire a first understanding of what general behaviours might emerge we ne-
glected this degradation in our model. However, clearly, this will influence the
invasive behaviour and it would be important to include such a term in future
models. Finally, we remark that our approach focused on understanding the
invasive front itself, using a simplified model of phenotype interaction (direct
competition). It is now well-known that the selection pressures at the edge of
an invasive front are different from within an organism’s “home range” due to
a range of differences near an invading front (the Allee and Olympic Village
effects, for instance) [33,41,21,12]. More generally, evolution and life-history
can have strong impacts on dispersal efficiency and range expansion [8,10,
40]. Investigating these different modes of selection could provide insight into
phenotypic heterogeneity throughout a tumour compared to its invading edge.

To sum up, we have explored cooperation of tumour cells as a mode of
tumour invasion. We found that the most invasive tumour emerges when cells
coexist in the same region in space as this allows cells to most effectively
share their traits. This point is simple but important: To fully understand the
implications of tumour heterogeneity we have to ask not only what cells are
present but also where are these cells located? Do they live in separate regions
or can they spatially mix and, thus, match their traits?
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A1 Image Collection and Processing

A TMA containing formalin-fixed and paraffin-embedded human breast tissue
specimens was constructed at the Moffitt Cancer Center histology core. The
TMA contains 27 normal breast tissue, 30 DCIS, 48 invasive ductal carcino-
mas without metastasis, 49 invasive ductal carcinomas with metastasis and
48 lymph node macrometastases of breast cancer. Cores were selected from
viable tumour regions and did not contain necrosis. A 1:200 dilution of anti-
LAMP2b (#ab18529, Abcam) and 1:200 of anti-TGM2 (#ab109200, Abcam)
were used as primary antibodiy. Normal placenta was used as a positive control
for LAMP2 and normal human kidney for TGM2. For the negative control,
an adjacent section of the same tissue was stained without application of pri-
mary antibody, and any stain pattern observed was considered as nonspecific
binding of the secondary.

Immunohistochemical analysis was conducted using digitally scanning slides.
A pathologist reviewer scored the intensity of each stain on a scale from 0 to
3, where a 0 was considered negative, score 1 was weakly positive, score 2 was
moderately positive and score 3 was strongly positive. For further information
see [17].

In order to create the visualisations in Figure 1 we extracted masks of only
the areas with the highest score (a score of 3). To do so we first aligned the
slides for each stain (LAMP2b and TGM2) using VALIS (in preparation; see
also [23]), and subsequently extracted the areas with the highest score using
OpenCV. Finally we overlaid the extracted masks on top of the TGM2 slide.

A2 Stability Analysis

In Table A1, we list the eigenvalues computed for each steady state. For SS4
and SS6 no simple analytic forms were obtainable. Instead, we numerically
computed the eigenvalues for the range of parameters of interest and show
maxi∈1,2,3,4,5(<(λi)), where λi denotes the ith eigenvalue of the Jacobian (Fig-
ure A1). We conclude that only SS0, SS1, and SS3 are stable. Analytic results
were obtained by hand and confirmed with Maple 2018. Numerical computa-
tions were carried out in Python 3.6 (for further details on the environment
see Section 4).

A3 Sensitivity Analysis for κ and cS

As the parameters for the strength of competition between the stroma and
the tumour (cS) and the rate of matrix degradation are difficult to obtain
experimentally, we performed a sensitivity analysis over the plausible range
in which they might lie. In Figure A3 we show the distance invaded by the
tumour, calculated as for Figure 4. We see that as κ is increased the tumour
invades further. Moreover, whilst for values of κ = 10 tumours with higher

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2019. ; https://doi.org/10.1101/750810doi: bioRxiv preprint 

https://doi.org/10.1101/750810
http://creativecommons.org/licenses/by/4.0/


Mix & Match: Phenotypic coexistence as a key facilitator of cancer invasion 21

State Description λ1 λ2 λ3 λ4 λ5 Stability
SS0 Healthy Tissue 0 -1 −ρL ρT (1− cS) ρT (1− cS) Yes

SS1 TA Monoculture 0 −ρT −ρL 1− δ ρT (1− cA,M ) If cA,M > 1

SS2 TM Monoculture 1 −ρT −ρL −κ ρT (1− cM,A) No

SS3 TA − TM Coexistence −ρT −ρL
ρT (1+cA,M cM,A−cA,M−cM,A)

cA,M cM,A−1

κ(1−cA,M )

cA,M cM,A−1

ρT (1+cM,Aδ−cA,M cM,A−δ)
1−cA,M cM,A

If cA,M , cM,A < 1

SS4 Stroma-TA Coexistence See Figure A1 No

SS5 Stroma-TM Coexistence -1 ρL ρT (cS − 1) κ(cS − 1) ρT (1 + cM,AcS − cS − cM,A) No

SS6 Stroma-TA-TM Coexistence See Figure A1 No

Table A1 The eigenvalues describing the linear stability of the steady states. Stability is
assessed based on the parameter values in Table 1. Boxed values indicate eigenvalues that
are positive in at least parts of the parameters space. For SS4 and SS6 no simple analytic
forms were attainable, and instead stability was assessed numerically (see Figure A1).

A B

Fig. A1 Numerical stability analysis of SS4 (A) and SS6 (B) for the range of parameters
considered in this paper (see Table 1). Stability was assessed by computing the eigenvalues
of the Jacobian at the steady state, and assessing whether at least one eigenvalue had a
strictly positive real part. We find that both SS4 and SS6 are unstable across the range of
parameters considered.

proportion of TM (corresponding to lower cA,M ; see also Figure 4A) appear
more aggressive, this is less apparent when the matrix can be degraded faster
(κ = 100).
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Fig. A3 Sensitivity analysis for the parameters cM,A, cA,M , cS and κ. Each heatmap shows
the position of the front of the tumour at t = 50 (computed as for Figure 4A).
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