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Abstract

The functional organization of the brain network (connectome) has been
widely studied as a  graph; however, methodological issues may affect
the results, such as the brain parcellation scheme or the selection of a
proper threshold value. Instead of exploring the brain in terms of a static
connectivity  threshold,  this  work  explores  its  algebraic  topology as  a
function of the filtration value (i.e., the connectivity threshold), a process
termed  the Rips filtration in Topological Data Analysis.  Specifically, we
characterized  the  transition  from  all  nodes  being  isolated  to  being
connected into a single component as a function of the filtration value, in
a public dataset of  children with attention-deficit/hyperactivity disorder
(ADHD) and typically developing children. Results were highly congruent
when using four different brain segmentations (atlases), and exhibited
significant differences for the brain topology of children with ADHD, both
at  the  whole  brain  network  and at  the  functional  sub-network  levels,
particularly  involving  the  frontal  lobe  and  the  default  mode  network.
Therefore,  this  approach  may  contribute  to  identify  the  neurophysio-
pathology of ADHD, reducing the bias of connectomics-related methods.

Keywords
Topological Data Analysis, Attention-Deficit/Hyperactivity Disorder, 
persistent homology, resting-state fMRI, Functional connectivity

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/751008doi: bioRxiv preprint 

https://doi.org/10.1101/751008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Highlights

 Topological Data Analysis was implemented in functional connectomes.

 Betti curves were assessed based on the area under the curve, slope and kurtosis.

 The explored variables were robust along four different brain atlases.

 ADHD showed lower areas, suggesting decreased functional segregation.

 Frontal  and  default  mode  networks  showed  the  greatest  differences  between

groups.
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Graphical Abstract
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1. Introduction

Current  neuroimaging  technology  allows  the  exploration  of  the  human  brain  as  a

network of structurally and/or functionally connected constituents, i.e., voxels or regions

of interest. In particular, functional connectivity is defined as the synchrony of neuronal

activity patterns of anatomically separated brain regions (Aertsen et al., 1989; Friston et

al., 1993) and many studies have explored this property to provide new insights about

the functional organization of the brain in health and disease (Van Den Heuvel and Pol,

2010;  Lee  et  al.,  2013;  Lord  et  al.,  2017),  providing  the  means  to  study  the

neurofunctional  alterations of  neurological  and psychiatric  disorders from a systems

perspective.

One of  the  most  commonly  used frameworks  to  explore  the  functional  brain

network is graph theory, which provides a theoretical basis to describe and characterize

complex networks (Rubinov and Sporns, 2010; Fornito et al., 2013). In this framework,

the brain network is modeled as a graph composed of a set of nodes (mainly voxels or

larger regions) and their connections (in this case, the functional connectivity between

pairs of elements). In practice, this is constructed using a matrix where each entry is a

measure of connectivity between two nodes and then a threshold is applied in order to

construct  an  adjacency  matrix  which  represents  the  non-spurious  connections.

However, there is no general criterion to assign an appropriate set of regions of interest

(ROIs), nor a defined threshold, which may result in divergent results among studies.

For instance, several studies exploring the functional connectome of children diagnosed

with  Attention-Deficit/Hyperactivity  Disorder  (ADHD),  have  reported  different results.

Specifically, some studies have found higher network segregation and lower integration
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in  ADHD patients compared to controls (Wang et  al.,  2009;  Lin et  al.,  2014),  while

others found no differences when exploring the same properties (Cocchi et al., 2012;

Sato et al., 2013). Such divergent results may be partially explained by the variability in

methods,  including  threshold  and  ROIs  selection  (Konrad  and  Eickhoff,  2010;

Castellanos and Aoki, 2016), as well as the variable robustness of some of the most

used approaches (Somandepalli et al., 2015).

Recently, topological data analysis (TDA), has been adopted in neuroimaging as

a tool to quantify and visualize the evolution of the brain network at different thresholds

(Lee et al., 2011, 2017; Sizemore et al., 2018, 2019; Expert et al., 2019). The main

objective of this method is to model the network as a topological space instead of a

graph  (Edelsbrunner  et  al.,  2000;  Zomorodian  and  Carlsson,  2005),  allowing  the

assessment of the functional connectivity matrix as a topological process instead of a

static  threshold-dependent  representation  of  the  network.  One  of  the  possible

applications is to characterize how the isolated nodes gradually bind together into larger

components (sets of connected nodes) as a function of the filtration value (connectivity

threshold), until a single component or simplicial complex is recruited. For this purpose,

the  number  of  components  at  a  given  filtration  value  is  termed  the  Betti-0  (see

Methods). This process is summarized in a so called Betti-0 curve (Figure 1), which has

been shown to differentiate children with developmental disorders from controls using

data from positron emission tomography and defining the brain network at the group-

level (Lee et al., 2011, 2012). However, the consistency of the method across different

brain segmentation schemes has not been explored. Furthermore, it has been typically

applied to brain networks defined at the group level, i.e. exploring the covariance of
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concatenated  physiological  or  structural  data  from  groups  of  subjects,  instead  of

exploring the individual  characteristics of  the network and comparing them between

groups.

In  this  work,  Topological  Data  Analysis  is  applied  to  explore  individual  brain

networks based on the resting state functional MRI (rsfMRI) of children diagnosed with

ADHD and typically  developing children (TDC),  obtained from the publicly  available

ADHD-200 database (Milham et al., 2012). First, the consistency of this methodology

was explored when using four different brain segmentation schemes (atlases), and then

group differences were identified between ADHD and TDC groups, at the whole-brain

and sub-network levels. ADHD is a developmental disorder characterized by a lack of

control of appropriate behavior and a difficulty to maintain attention (WHO, 1992; APA,

1994). Current theories propose the potential alteration of multiple functional networks

and their interaction, including the default, cognitive control (fronto-parietal), dorsal and

ventral  attention,  and  salience  networks (Sonuga-Barke  and  Castellanos,  2007;

Castellanos  and  Aoki,  2016).  Consequently,  it  was  expected  that  the  proposed

methodology  would  reveal significant  differences  between  groups  among  the

components of these functional networks.

2. Methods

2.1 Sample

Imaging and phenotypic  data from 263 participants  corresponding to  the New York

University  Child  Study Center  dataset  were  obtained from the ADHD-200 database

(http://fcon1000.projects.nitrc.org/indi/adhd200/).  Subjects  reported  with  a  secondary

diagnosis and/or not medication-naïve status were discarded. Only those with good
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imaging  quality  and  complete  phenotypic  information  were  used  for  subsequent

analysis, resulting in a total of 182 children. Study protocols were approved by the New

York  University  Institutional  Review  Boards,  and  after  an  explanation  of  study

procedures a written informed consent  from parents and assent from children were

required.

Pediatric  diagnosis  was  based  on  the  Schedule  of  Affective  Disorders  and

Schizophrenia for Children Present and Lifetime Version (KSADS-PL) and the Conners’

Parent Rating Scale-Revised, Long version (CPRS-LV). Moreover, IQ was measured

with  the Wechsler  Abbreviated Scale of  Intelligence (WASI).  Inclusion in the ADHD

group was based on the parent and child responses to KSADS-PL and obtaining a t-

score greater or equal than 65 in any of the ADHD related indices of the CPRS-LV. TDC

had ADHD summarized t-scores below 60, and lack of any DSM-IV axis-I disorders.

Exclusion criteria were an IQ below 80 or any chronic medical conditions. However,

phenotypic data of three ADHD datasets showed full intelligence scores below 80, while

two TDC showed t-scores greater than 60 in the ADHD summary scale.  Data from

those subjects were discarded for further analysis,  resulting in a final sample of 81

ADHD children (average age ± standard deviation: 10.5 ± 2.48 years old) and 96 TDC

(12.26 ± 3.07 years old) (Table 1).
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Table 1. Phenotypic information by diagnostic group.

'Motion' stands for the average root mean square (RMS) of the relative head motion within the scanner
(computed with FSL's MCFLIRT).

2.2 Imaging acquisition

Magnetic  resonance  images  were  acquired  with  a  Siemens  Magnetom  Allegra  3T

scanner (Siemens Medical Solutions, Erlangen, Germany). Whole brain fMRI volume

images were obtained using a T2*-weighted echo planar imaging interleaved sequence

(TR/TE = 2000/15ms, flip angle = 90, voxel size 3x3x4 mm3, FOV = 240x192 mm2) with

a scan duration of 6 minutes. Participants were instructed to remain still, close their

eyes,  think  of  nothing  systematically  and  not  fall  asleep.  In  order  to  obtain  an

anatomical reference, high resolution structural  T1-weighted Magnetization Prepared

Rapid Acquisition Gradient Echo (MPRAGE) images were acquired (TR/TE = 2530/3.25

ms, flip angle = 7o, voxel size 1.3 x 1.0 x 1.3 mm3, FOV = 256 x 256 mm2).

2.3 Preprocessing

Preprocessing  was  implemented  using  FMRIB’s  Software  Libraries  (FSL  v.5.0.6)

(Jenkinson et al., 2012). Steps included removing the first four volumes, slice timing,

head motion correction,  brain extraction,  regression of confounding variables, band-

pass temporal filtering (0.01–0.08 Hz), and spatial normalization. Given that psychiatric
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and pediatric  populations usually  show higher  in  scanner  motion than controls  and

adults  (Satterthwaite  et  al.,  2012),  a  rigorous  confounding  regression  strategy  was

implemented  to  minimize  head  motion  artifact.  Specifically,  several  variables  were

regressed out from the functional data, including the six rigid-body motion parameters,

the average signal  from both white matter (WM) and cerebrospinal  fluid (CSF), the

derivative of these eight parameters and the square of these sixteen variables (Gracia-

Tabuenca et al., 2018). In addition, to minimize the impact of physiological noise, five

principal  components  of  the  signal  from  WM  and  CSF  were  also  included  as

confounding variables (Behzadi  et  al.,  2007;  Chai  et  al.,  2012).  Furthermore,  those

volumes with a root mean square (RMS) of relative head motion greater than 0.25 mm

were also included as confounds (Satterthwaite et al., 2013). Subjects with an average

RMS of  relative head motion higher  than 0.55 mm or  less than 4 minutes of  non-

motion-affected data, were discarded. Eventually, each fMRI volume was registered to

its corresponding T1 image with a rigid-body transformation, followed by an affine and

non-lineal registration to a 2 x 2 x 2 mm3 children-specific template, the 4.5–18.5 years

old NIHPD atlas (Fonov et al., 2011).

2.4 Functional connectomes

For every dataset, four functional connectomes (connectivity matrices) were computed

based on different brain atlases: AAL (Tzourio-Mazoyer et al., 2002), P264 (Power et

al., 2011), CC200, and CC400 (Craddock et al., 2012). All of them include cerebrum

and cerebellum. The first one consists of a segmentation of 116 anatomical regions, the

second one is a set of 264 spherical ROIs with high reliability in both task and resting
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fMRI large datasets, while the last two are segmented based on functional connectivity

homogeneity (with 190 and 351 nodes, respectively).

For each subject and atlas, the average fMRI signal of every defined region was

extracted and then the functional connectome was computed as the Pearson’s cross-

correlation between all possible pairs of regions. The variability of the explored TDA

variables along the atlases was assessed by the Kendall’s  Concordance Coefficient

(KCC).

2.5 Topological Data Analysis (TDA)

Given a set of nodes V and a measure xi corresponding to the i-th node, we define the

set  F = {x1, x2, ...  ,  xn}.  For  a  positive number ε  we state that  two nodes in  F are

connected if their distance is less than ε, the filtration value. A k-simplex is a subset of

k-1 nodes in F pairwise connected, then a node is a 0-simplex, a 1-simplex is an edge,

a 2-simplex is a  triangle,  and so on.  The corresponding Rips complex,  denoted by

Rips(F,ε),  is  a  collection of  k-simplices obtained for  the filtration value ε.  For  every

sequence of  filtration values ε1,  ε2,  …  ,  εj there is  a nested sequence of  simplicial

complexes Rips(F,ε1) ⊂ Rips(F,ε2) ⊂  … ⊂ Rips(F,εj) which is called Rips filtration.

Algebraic information extracted from this topological space are called Betti  numbers,

particularly, the Betti-0 number (B0) accounts for the number of components, i.e. the

number of isolated nodes or sets of nodes connected by a sequence of edges; Betti-1

number refers to the number of cavities in the 2-dimensional space between nodes,

and so on (for more extensive reviews on topological data analysis see Edelsbrunner,

2000; and Sizemore et al., 2019). In this work, we focus exclusively on B0. If we start

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/751008doi: bioRxiv preprint 

https://doi.org/10.1101/751008
http://creativecommons.org/licenses/by-nc-nd/4.0/


with a filtration value ε=0, all nodes are disconnected, and the number of components is

the number of 0-simplices (nodes). When ε increases, some isolated nodes will connect

with others and the number of components decreases. Therefore, B0 will diminish as

the nodes gradually connect to each other as ε increases. It is possible to identify the

filtration  values  for  which  there  is  a  change  in  B0,  until  there  is  only  one  large

component containing all the nodes. This process is summarized in the so called B0

curve (Figure 1).

Here, the distance between nodes is defined as in Lee et al (2012), i.e., d(x i  , xj)

= 1-r(xi , xj), where r is the Pearson’s correlation between the pair of nodes x i and xj. The

B0 curves  are computed  with  the  TDA  package  in  R  (https://cran.r-

project.org/web/packages/TDA/index.html),  and  characterized  in  terms  of  the  area

under the curve, slope and kurtosis. The area under the curve accounts for the overall

transition from all nodes being isolated to being connected into a single component,

with smaller areas suggesting that B0 decreases with smaller filtration values. The slope

accounts  for  the  rate  of  change,  being  all  negative,  lower  values  mean  a  faster

transition  to  a  single  component.  Finally,  the  kurtosis  accounts  for  how “tailed"  the

distribution is  with  respect to the average value,  with  higher values meaning faster

transition to a single component.
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Figure 1. The  Betti-0 curve.  A) A set  of 15 nodes,  four filtration values ε,  represented  as the  circle
diameter and their corresponding Betti-0 (B0). B) Betti-0 curve for a hypothetical brain network; each point
in the curve represents the B0 for each filtration value. In both cases, at ε = 0 the number of components
is equal to the number of nodes, n. As the filtration value increases, the number of components reduces,
and eventually will reach a single one containing all nodes. Brain views generated with brain-net (Xia et
al., 2013), r stands for Pearson’s correlation.

2.6 Group inferences

Differences between ADHD and TDC groups were  assessed for  the  filtration  value

when the brain network reached the single component containing all nodes. In addition,

the explored properties of the B0 curves were tested with a logistic regression including

sex, age and average RMS of the relative head motion as confounding variables. All
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dimensional variables were standardized to z-scores. Both approaches were tested for

each of the four brain atlases.

Logistic  regression was also  assessed  for  every  intra-  and  inter-network

combination of nodes. This approach was independently implemented for the seven

lobes of the AAL atlas, and the thirteen functional networks defined in the P264 atlas.

Given the 28 and 91 possible combinations, respectively, significance was set to p <

0.05, corrected for a false discovery rate (FDR), q < 0.05 (Benjamini and Hochberg,

1995).

3. Results

3.1 Agreement across brain atlases

The  three  explored  properties  of  the  B0 curves showed  a  generalized  sample

agreement  along  the  four  brain  parcellations.  Significant  agreement  was  found

considering every atlas and each feature: area (KCC = 0.87; X2
176 = 609; p = 4.67e-49),

slope (KCC = 0.68; X2
176 = 477; p = 1.33e-29) and kurtosis (KCC = 0.44; X2

176 = 307; p =

3.65e-09). Moreover, pairwise concordance coefficient was significant for every pair of

atlases and every TDA metric (Figure 2; Supplementary Tables 1-3).
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Figure  2.  Kendall’s  Concordance  Coefficient  (KCC)  between  brain  parcellations  for  the  explored
properties of the B0 curves: area under the curve, slope and kurtosis. KCC value is depicted in yellow-
red, with p(KCC > 0.59) < 0.05, given two raters and 176 degrees of freedom.

3.2 Whole brain topology

The  average  minimum  filtration  value  for  which  the  large  single  component  was

connected  was  in  the  range  between  0.54  and  0.59  for  all  atlases  and  groups.

However, for every atlas, the mean filtration value was higher for the TDC group, being

statistically significant for the CC400 atlas (t175 = 2.273; p = 0.024; d = 0.338). This

means that the ADHD functional connectomes tend to reach the single component with

lower filtration values compared to those of the TDC.
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Table 2.  Descriptive statistics for the minimum filtration value to reach a single component, for each
group and atlas.

The area under the B0 curves showed significantly lower odds for the ADHD group, no

matter the brain atlas (0.572 < OR < 0.622; 0.0028 < p < 0.014; Supplementary Table

4), which means that the ADHD group has smaller areas compared to the TDC group

(Figure 3). The area under the  B0 curves accounts for the overall  transition from all

nodes being isolated to being connected into a single component, with smaller areas

when B0 decreases faster as the filtration value increases. In other words, less area

under  the  curve  implies  lower  number  of  components,  i.e.  less  segregation,  which

should be mediated by increased connectivity in the edges mediating the integration of

components.  In  order  to  explore  such  edges,  the  proportion  of  subjects  showing

connectivity was compared between groups for each edge at some filtration values

(Figure 4). These tests showed widespread frontal short-range and cortical long-range

edges being more frequently present in the ADHD group (p<0.01, uncorrected; Figure

4). No group differences were found for the slope nor the kurtosis (Supplementary Table

4).
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Figure 3. B0 curves for each group and brain parcellation. Group average with 95% confidence interval of
the B0 curves. Notched boxplots of the area under the curve (z-values) are depicted for each brain atlas:
AAL (top-left), CC200 (top-right), P264 (bottom-left), and CC400 (bottom-right). Vertical lines on the B0

curves depict the average filtration value at which all the nodes connect into a single component.
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Figure 4. Edges with differences in the proportion of subjects between groups at four different filtration
values (ε = 0.35, 0.5, 0.75, and 1). Nodes from each lobe (AAL atlas) are represented with different
colors in the chord diagrams. Only edges with a proportion difference at p < 0.01 (uncorrected) are
depicted. For ε = 0.35 the edges are represented in the brain using brain-net (Xia et al., 2013). R stands
for the right side of the brain.

3.3 Intra- and inter-network inference

The same analyses were performed in subsets of nodes, corresponding to the nodes of

a single lobule or functional network (intra-network) or the nodes of two networks (inter-

network), according to the lobular and the functional parcellation of the AAL and P264

atlases,  respectively.  Only  those  combinations  including  the  frontal  lobe  showed

significant differences for the area under the  B0 curves (FDR corrected at q < 0.05).
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These  subsets  included  the  intra-network  and  every  possible  inter-network  subset

including the frontal  lobe, and in every case the ADHD group showed a lower area

compared to the TDC (Table 3; Figure 5). A subset of nodes including the temporal and

subcortical  nodes showed marginally significant  differences (p < 0.05,  uncorrected),

also  evidence  for  less area  for  the  ADHD  group.  These  results  demonstrate a

widespread decreased segregation of the brain network in the ADHD group, particularly

involving the frontal lobe. When considering the functional systems in the P264 atlas,

notably, all the subsets of nodes that included the DMN also showed smaller areas for

the ADHD group, but other intra- and inter-network subsets showed similar patterns

(Figure 5). However, these results were marginally significant (p < 0.05, uncorrected)

given the higher number of tests to correct for (n=91).

Table 3. Logistic regression odds ratios (OR) for the area under the B0 curves for the subsets of AAL
nodes with significant differences between groups (ADHD < TDC)

p < 0.05, FDR-corrected. 
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Figure 5. Group differences for anatomical and functional sub-networks. Pairwise plot
and chord diagrams (Gu et al., 2014) of significant differences for the area under the B0

curves (p  <  0.05)  between  groups.  Anatomical  lobes  (top)  are  based  on  AAL
parcellation and functional networks (bottom) are based on P264 parcellation. * denotes
FDR-corrected  (q  <  0.05)  in  the  pairwise  plots.  Abbreviations:  auditory  (AUD),
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cerebellar  (CBL),  cingulo-opercular  (CinOp),  default  mode  (DMN),  dorsal  attention
(DAN),  fronto-parietal  (FPN),  memory  retrieval  (MEM),  salience  (SAL),
sensory/somatomotor  hand  (SMN.H),  sensory/somatomotor  mouth  (SMN.H),
subcortical (SUB), ventral attention (VAN), visual (VIS).

4. Discussion

In  this  work,  methods  from Topological  Data  Analysis  were  applied  to  explore  the

topology of the brain network as a function of the filtration value (i.e., the connectivity

threshold). Resulting  B0 curves were characterized in terms of three parameters, the

area under the curve, slope and kurtosis, and compared between ADHD and TDC. The

consistency across four brain segmentation schemes was highest for the area, then the

slope and lowest for the kurtosis. In addition, application of this model to a pediatric

sample showed that the area under the curve was significantly lower for the ADHD

group, both at the whole brain and at the sub-network levels. These results showed

decreased functional segregation in the ADHD group, mainly involving the frontal lobe

and the default mode network.

Pairwise agreement between brain parcellations was high for the area under the

curve (KCC range: 0.83-0.97) and the slope (KCC range: 0.68-0.9), and medium to low

for the kurtosis (KCC range: 0.57-0.67). These results suggest that this methodology is

consistent among different parcellation schemes, especially for the area under the  B0

curve. In addition, considering that the Rips filtration does not depend on a particular

connectivity threshold, but instead explores all the filtration values with a change in the

topology  of  the  network,  this  methodology  contributes  to  provide  a  more  complete

picture  of  the  brain  network,  overcoming  one  of  the  main  limitations  of  other

approaches. Taken together, these are potentially important advantages compared to
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other methods applied to brain networks, such as graph theory, which has been shown

to be highly dependent on the brain parcellation scheme (Wang et al., 2009a; Chen et

al.,  2018;  Doucet  et  al.,  2019),  and on the selection of  a  connectivity  threshold or

connectivity cost (van den Heuvel et al., 2008; Fornito et al., 2010; Tomasi and Volkow,

2010; Gracia-Tabuenca et al., 2018; Termenon et al., 2016).

The area under the B0 curve was significantly lower for the ADHD group, both at

the whole brain network and at the sub-network level, being strikingly significant for the

interactions involving the frontal lobe. As mentioned above, the area under the curve

accounts for the overall transition from all nodes being isolated to being connected into

a single component, with smaller areas suggesting that B0, the number of components,

decreases faster as the filtration value increases. Such differences in B0 for a given

filtration value are mediated by edges that bind together previously split components,

which results from increased connectivity in some edges mediating the integration into

larger components. Taken together, the results here presented can be interpreted as

higher functional connectivity within the brain network and specific sub-networks in the

ADHD group, especially those involving the frontal lobe. Previous evidence has also

suggested increased functional connectivity in a variety of regions of the frontal lobe in

ADHD (Tomasi and. Volkow, 2012; Hoekzema et al., 2014; Mostert et al., 2016), as well

as fronto-occipital (Cocchi et al., 2012) and fronto-subcortical connections (Cocchi et

al., 2012; Tomasi et al., 2012), particularly those associated with reward and motivation

(Tomasi  and Volkow,  2012).  In  addition,  our  results  showed a  similarly  widespread

pattern in several functional sub-networks, mainly the default mode, but also attention,

salience,  fronto-parietal  and auditory nodes,  among others (Figure 5).  Although the
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latter results did not survive FDR correction, they provide the basis to infer the potential

functional systems being affected in ADHD, being consistent with the current theories

involving  such  networks  (Castellanos  and  Aoki,  2016),  particularly  with  the  DMN

interference hypothesis, which is based on the findings of altered interactions between

the DMN and networks involved in top-down executive control (Fox et al., 2005, 2007;

Kelly et al.,  2008; Castellanos and Aoki, 2016; Elton et al.,  2014; Hoekzema et al.,

2014; Bos et al., 2017; Qian et al., 2019).

Previous studies have reported a myriad of differences in network properties

between  ADHD  and  TDC  participants.  At  the  whole-brain  level,  higher  functional

segregation and lower functional integration in ADHD subjects compared to controls

have been reported (Wang et al., 2009b; Lin et al., 2014), although other groups did not

reproduce those results (Cocchi et al., 2012; Sato et al., 2013). Since the decreased

area  under  the  B0 curves could  be  interpreted  as  higher  integration  and  lower

segregation  of  isolated  components,  our  results  seem  to  be  contradictory  to  the

aforementioned ones. Nevertheless, the previous studies explored connectivity costs

higher than 10%, which according to Lin et al., (2014) would correspond to filtration

values  higher  than  ε  =  0.5,  when  most  of  the  subjects  actually  exhibit  a  single

component (Figure 3). Therefore, these results are actually complementary, given that

B0 curves consider a wider range of connectivity thresholds, rarely explored with graph

theory. Indeed, when exploring the edge-wise proportions between groups at different

connectivity thresholds (Figure 4), the ADHD group showed consistently widespread

increases compared  to  the  TDC.  However,  at  lower  connectivity  thresholds  (higher

filtration values), the ADHD group showed decreased proportion of edges in several
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interactions, mainly including the frontal, temporal, subcortical and cerebellar regions,

which  seem  consistent  with  previous  reports  of  decreased  connectivity  in  ADHD

(Tomasi and Volkow, 2012; Di Martino et al., 2013; Elton et al., 2014). These results

evidence that the static representation of the network changes as a function of the

connectivity threshold, therefore an approach that takes into account wider threshold

ranges should provide better insights into the neurophysiological substrate of ADHD.

As far  as  we are  concerned,  only  two previous studies  have  explored B0 in

ADHD brain networks (Lee et al., 2011, 2012), using fludeoxyglucose positron emission

tomography (FDG-PET) and inter-region covariation at the sample level, qualitatively

reporting higher number of components for the ADHD group compared to the TDC.

Such  findings  seem  to  be  opposite  to  the  results  here  presented;  however,

methodological  differences  prevent  direct  comparisons  between  results.  First,  time-

scales are significantly different, with the FDG-PET scans reflecting the glucose uptake

occurring  during  several  minutes;  in  contrast,  rsfMRI  reflects  variations  in  blood

oxygenation  during  tens  of  seconds.  Furthermore,  FDG-PET  connectivity  matrices

reflect inter-region covariation of (long term) glucose metabolism across subjects, while

rsfMRI connectivity matrices reflect inter-region covariation (within seconds) within the

same  subject  and  later  compared  between  groups.  Overall,  both  methodologies

potentially reflect complementary aspects of the functional connectomes in ADHD.

Conclusion

In  summary,  the present  study showed a robust  and informative  implementation of

topological data analysis in functional connectomics. The results exhibited significant
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differences  for  the  brain  topology  of  children  with  ADHD,  both  at  the  whole  brain

network and at the functional sub-network levels, particularly involving the frontal lobe

and  the  DMN.  Therefore,  this  approach  may  contribute  to  identifying  the  physio-

pathology of neurodevelopmental disorders, reducing the bias of connectomics-related

methods selection.
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