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ABSTRACT 11 

When studying the microbiome using next generation sequencing, DNA extraction method, 12 

sequencing procedures and bioinformatic processing are crucial to obtain reliable data. 13 

Method choice has been demonstrated to strongly affect the final biological interpretation. 14 

We assessed the performance of three DNA extraction methods and two bioinformatic 15 

pipelines for bacterial microbiota profiling through 16S rRNA gene amplicon sequencing, 16 

using positive and negative controls for DNA extraction and sequencing, and eight different 17 

types of high- or low-biomass samples. Performance was evaluated based on quality control 18 

passing, DNA yield, richness, diversity and compositional profiles. All DNA extraction 19 

methods retrieved the theoretical relative bacterial abundance with maximum three-fold 20 

change, although differences were seen between methods, and library preparation and 21 

sequencing induced little variation. Bioinformatic pipelines showed different results for 22 

estimating richness, but diversity and compositional profiles were comparable. DNA 23 

extraction methods were successful for feces and oral swabs and variation induced by DNA 24 

extraction methods was lower than inter-subject (biological) variation. For low-biomass 25 

samples, a mixture of genera present in negative controls and sample-specific genera, 26 

possibly representing biological signal, were observed. We conclude that the tested 27 

bioinformatic pipelines perform equally with pipeline-specific advantages and disadvantages. 28 

Two out of three extraction methods performed equally well, while one method was less 29 

accurate regarding retrieval of compositional profiles. Lastly, we demonstrate the importance 30 

of including negative controls when analyzing low bacterial biomass samples. 31 

IMPORTANCE 32 

Method choice throughout the workflow of a microbiome study, from sample collection to 33 

DNA extraction and sequencing procedures, can greatly affect results. This study evaluated 34 
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three different DNA extraction methods and two bioinformatic pipelines by including 35 

positive and negative controls, and various biological specimens. By identifying an optimal 36 

combination of DNA extraction method and bioinformatic pipeline use, we hope to 37 

contribute to increased methodological consistency in microbiome studies. Our methods were 38 

not only applied to commonly studied samples for microbiota analysis, e.g. feces, but also for 39 

more rarely studied, low-biomass samples. Microbiota composition profiles of low-biomass 40 

samples (e.g. urine and tumor biopsies) were not always distinguishable from negative 41 

controls, or showed partial overlap, confirming the importance of including negative controls 42 

in microbiome studies, especially when low bacterial biomass is expected.  43 

KEYWORDS: microbiome, DNA extraction, positive controls, negative controls, 44 

bioinformatics, 16S rRNA gene amplicon sequencing 45 

INTRODUCTION 46 

Humans constantly interact with microbes that are present in the environment and reside on 47 

or within the human body. Recently, the attention for microbes has shifted from an exclusive 48 

interest in the pathogenicity of specific microbes toward the potential beneficial role of the 49 

microbiota in human health (1). The gastrointestinal tract contains the highest number of 50 

microbes and has been the most extensively studied body site of all human microbial 51 

communities (2). However, many other body sites are inhabited by various microbes 52 

composing a specific microbiome, such as the oral region, skin and urogenital system. 53 

Microbial complexity varies between these niches, e.g. the healthy vaginal microbiota is 54 

mainly composed of a few Lactobacillus strains (3), while gut and skin microbiota are more 55 

diverse (3). 56 

A limiting factor in current microbiome research is that comparison of various study results is 57 

often difficult due to the application of different methodologies and lack of appropriate 58 
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controls. These differences can affect data outcomes and lead to variation as large as 59 

biological differences (4). Variation can be introduced throughout the entire workflow, from 60 

sample collection, storage and processing to data analysis (5-8). Recently, more attention has 61 

been devoted to standardizing the workflow of microbiome research. For instance, it was 62 

observed that DNA extraction has a large impact on obtained data (4, 9) and consensus has 63 

been achieved regarding the application of bead-beating to increase efficiency of cell wall 64 

lysis and thereby improve the yield of Gram-positive bacterial DNA (10). Nevertheless, 65 

various kits and in-house extraction methods are used across different laboratories. Recently, 66 

Costea et al. evaluated 21 DNA extraction methods across three continents and suggested one 67 

protocol, named protocol Q, as ‘golden standard’ for human fecal samples. (9). They stated 68 

that it was unknown whether this method is optimal for other samples than fecal material, e.g. 69 

for low-biomass samples. To evaluate performance of DNA extraction for low-biomass 70 

samples, it is crucial to include multiple negative controls to allow for identification of 71 

bacterial DNA introduced during the entire workflow, from sample collection to sequencing 72 

(11).  73 

As part of optimizing the procedures for 16S rRNA gene amplicon sequencing-based 74 

microbiome studies in our facility, we evaluated three DNA extraction methods and two 75 

bioinformatic pipelines using various positive controls and negative controls. In addition, we 76 

applied these DNA extraction methods to various biological specimens. 77 

MATERIALS AND METHODS 78 

Sample collection and pre-processing 79 

Eight different biological specimens were included in this study, namely feces, urine, saliva, 80 

oral swabs, colorectal cancer tissue, colorectal cancer supernatant, vulvar squamous cell 81 

carcinoma tissue and formalin-fixed vulvar squamous cell carcinoma. Of each biological 82 
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specimen, three unique samples were included. Only for oral swabs, six unique samples were 83 

included (Table S1). These samples were anonymized and treated according to the medical 84 

ethical guidelines described in the Code of Conduct for Proper Secondary Use of Human 85 

Tissue of the Dutch Federation of Biomedical Scientific Societies. A detailed overview of 86 

sample types, sample processing and storage conditions can be found in Table S1.  87 

Mock communities and DNA standard 88 

Two mock communities (ZymoBiomics Microbial Community Standard, Zymo Research, 89 

Irvine, California, USA and 20 Strain Even Mix Whole Cell Material ATCC® MSA2002™, 90 

ATCC, Wesel, Germany) were included as positive controls for DNA extraction. Exact 91 

composition and relative abundances of 16S copies was provided on the product sheet for 92 

ZymoBiomics Microbial Community standard (hereafter referred to as Zymo mock), while 93 

for ATCC® MSA2002™ (hereafter referred to as ATCC mock) we calculated expected 16S 94 

profiles based on genomic information (Table S2). ZymoBiomics Microbial Community 95 

DNA Standard (hereafter referred to as DNA standard) was taken along as a positive 96 

sequencing control. 97 

DNA extraction  98 

Procedures 99 

Cancer samples were pre-processed for DNA extraction comparably to a recent study on 100 

pancreatic cancer microbiota (12), urine samples according to a recent publication on how to 101 

study urinary microbiota (13) and other samples according to in-house methods for sample 102 

processing (Table S1). For solid cancer samples, the beating steps during pre-processing were 103 

performed using a Qiagen TissueLyser LT (Qiagen Benelux, Venlo, the Netherlands) at 50Hz 104 

for one minute (Table S1). As single saliva samples did not contain sufficient volume for 105 
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multiple extractions, several samples of the same individual were pooled to obtain the 106 

appropriate volume. DNA was extracted in duplicate from three unique samples for each 107 

biological material, only for oral swabs from six unique samples, and from the two mock 108 

communities. DNA was extracted using three different extraction protocols (see Protocols 109 

section), and for each protocol a negative extraction (no sample) was included in duplicate. 110 

The DNA standard was taken along in duplicate. DNA was quantified using a Qubit 3.0 111 

Fluorometer (Invitrogen, Breda, the Netherlands) and the Qubit™ dsDNA HS Assay Kit 112 

(Thermo Fisher, Landsmeer, the Netherlands). A schematic overview of the study setup is 113 

shown in Figure 1.  114 

DNA extraction protocols 115 

Detailed protocols, including all minor adaptations, are present in Supplementary Methods. 116 

DNA extraction was performed using three methods: 1) the Quick-DNA Fecal/Soil Microbe 117 

kit (hereafter referred to as Zymo) (Zymo Research) according to manufacturer instructions 118 

with minor adaptations, 2) protocol Q (hereafter referred to as Q) (9) and 3) automated DNA 119 

extraction with MagNA Pure 96 ™ (hereafter referred to as Magna) (Roche Diagnostics, 120 

Almere, the Netherlands) using the MagNA Pure 96 DNA and viral NA small volume kit 121 

(Roche Diagnostics), according to standard operating procedures with minor adaptations. 122 

Mock communities were diluted to 104-105 cells per sample for extraction using Magna. For 123 

Q, several buffers and other materials were not provided in the kit and therefore purchased 124 

elsewhere, namely BeadBug™ prefilled tubes with 2.0 mL capacity and 0.1 mm Zirconium 125 

beads (Sigma-Aldrich, Zwijndrecht, the Netherlands), RNase A, DNase and protease-free 126 

water (10 mg/mL) (Thermo Fisher, the Netherlands) and TE buffer (Thermo Fisher).  127 

MALDI-TOF Mass Spectrometry (Biotyper) 128 
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To verify whether all bacteria of the ATCC mock were lysed after the first mechanical lysis 129 

step of both Zymo and Q, the lysate was plated on Blood Agar Plate, 5% Sheep Blood in 130 

Tryptic Soy Agar (VWR International, Amsterdam, the Netherlands) and aerobically and 131 

anaerobically incubated at 37°C for five days. The MALDI Biotyper system was used 132 

(Bruker Daltonics, Germany) to identify the bacterial species. Samples were prepared in the 133 

following way: A bacterial colony was taken from the culturing plate and spread in duplicate 134 

on single spots on a Bruker polished steel targetplate. Subsequently, one µl of 70% formic 135 

acid was added on each single spot and when dried, one µl prepared Bruker Matrix HCCA 136 

according to clinical laboratory protocols was added per spot. The Bruker polished steel 137 

targetplate was then used for MALDI-TOF MS Biotyper analysis. 138 

Library preparation and 16S rRNA gene amplicon sequencing  139 

Of each duplicate DNA extraction from biological specimens, the duplicate with highest 140 

genomic DNA concentration was used for sequencing. Duplicate samples from controls were 141 

both sequenced. Quality control, library preparation and sequencing were performed by 142 

GenomeScan B.V. (Leiden, The Netherlands) using the NEXTflex™ 16S V4 Amplicon-Seq 143 

Kit (BiooScientific, TX, USA) and Illumina NextSeq 500 (paired-end, 150bp) according to 144 

their standard operating procedures. QC passing was based on intact genomic DNA and DNA 145 

concentrations measured by GenomeScan B.V. Therefore, those DNA concentrations were 146 

used for downstream analysis. Several samples were sequenced on multiple lanes, which is 147 

indicated in all relevant figures and tables. 148 

Sequencing data analysis 149 

Read filtering, operational taxonomic unit (OTU)-picking and taxonomic assignment were 150 

performed using two different bioinformatic pipelines, QIIME 2 and NG-Tax 0.4 (14, 15), 151 

both using the Silva_132_SSU Ref database for taxonomic classification (16). The following 152 
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settings were applied for QIIME 2: forward and reverse read length of 120, quality control 153 

using Deblur, identity level of 100%. A read length of 120 was chosen due to low quality 154 

sequence regions at the end of the reads. The following settings were applied for NG-Tax: 155 

forward and reverse read length of 120, ratio OTU abundance of 2.0, classify ratio of 0.9, 156 

minimum threshold of 1*10-7, identity level of 100%, error correction of 98.5. Prior to the 157 

NG-Tax run, potential left over primers were removed with cutadapt v. 1.9.1 (17), in paired-158 

end mode, with additional setting -e 0.2 (increased error tolerance, 20%). This setting was 159 

required since database truncating based on the applied primers is part of the pipeline and, as 160 

such, primer sequences need to be removed to avoid mismatching with the database. 161 

Furthermore, all sequences with any deviating barcode in the fastq header were changed to 162 

the original barcode to allow inclusion into the NG-Tax pipeline.  163 

The obtained OTU-tables were filtered for OTUs with a number of sequences less than 164 

0.005% of the total number of sequences (18). Downstream analysis was performed in R 165 

(v3.5.1), mainly using the phyloseq (v.1.24.2) microbiome (v.1.2.1) and ggplot2 (v.3.0.0) 166 

packages (19-21).  167 

Data accessibility 168 

All raw sequencing data used in the current study are deposited in the European Nucleotide 169 

Archive with accession number PRJEB34118. 170 

RESULTS AND DISCUSSION 171 

Mock communities pass quality control 172 

We evaluated three different DNA extraction methods and two bioinformatic pipelines for 173 

microbiota profiling through 16S rRNA gene amplicon sequencing (Fig 1) using several 174 

positive and negative controls. Included positive controls were two bacterial mock 175 

communities and one DNA standard. Included negative controls were DNA extraction 176 
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controls and sequencing controls. Quality control (QC) passing (DNA concentration and 177 

intact genomic fragment) were evaluated to determine extraction method performance. It was 178 

expected that positive controls would pass QC, while negative controls would not. Regarding 179 

mock communities, all extractions using Zymo and Q passed QC, while for Magna one 180 

extraction did not pass QC for both the ATCC mock community and Zymo mock community 181 

(Table S3). This was not unexpected, as mock communities were diluted for extraction using 182 

Magna and, therefore, DNA concentrations were lower. Negative extraction controls did not 183 

pass QC for Q and Magna, but they did for Zymo. This likely represents a higher 184 

contamination load during the extraction process for Zymo, which was also reflected by 185 

higher DNA concentrations (Table S3). A full overview of all samples included in this study, 186 

their QC passing and DNA concentrations can be found in Table S4. 187 

 188 

Positive controls: Classification, richness, diversity and relative species abundance  189 

Primer choice may limit correct classification of all bacterial species in mock communities 190 

Performance of the three extraction methods in combination with two bioinformatic 191 

pipelines, NG-Tax and QIIME 2, was evaluated on correctly identifying richness, diversity 192 

and relative abundances from bacterial mock communities and a DNA standard. Richness 193 

and diversity were computed at OTU level and at genus level. Analysis of compositional 194 

profiles was performed at genus level. Both pipelines failed to classify one organism from 195 

either mock community; NG-Tax did not detect Cutibacterium from the ATCC mock, while 196 

QIIME 2 did not detect Salmonella from the Zymo mock. The inability to detect 197 

Cutibacterium is most likely a primer choice issue, since the universal 515F and 806R 198 

primers are known to poorly amplify Cutibacterium acnes (22). This could be solved by 199 

choosing primers targeting different 16S regions, or by using adapted V4 region primers 200 

which do allow for accurate amplification of Cutibacterium (22, 23). Regarding QIIME 2 and 201 
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the inability to detect Salmonella, there was an Enterobacteriaceae family with 202 

approximately expected relative abundance for Salmonella, and we were therefore confident 203 

this represented Salmonella. This Enterobacteriaceae family was subsequently included as 204 

Salmonella, and designated as Enterobacteriaceae (Salmonella). This classification error 205 

likely resulted from the fact that Enterobacteriaceae members cannot always be 206 

discriminated based on the 16S rRNA V4 region (24). 207 

 208 

DNA standard and Zymo mock community data can be recovered independent of extraction 209 

protocol or pipeline 210 

The Zymo mock and DNA standard consist of respectively cell material or DNA of eight 211 

bacterial species and two fungal species. As the 16S rRNA gene was targeted, fungi should 212 

not be detected. Therefore, theoretical richness is eight and theoretical Shannon diversity was 213 

calculated to be 2.01.  214 

Regarding the DNA standard, NG-Tax overestimated OTU-based estimated richness for both 215 

duplicates, DNA 1 and DNA 2 (Fig 2A, table S3). Richness was however accurately retrieved 216 

at genus level (Fig 2C). The same was observed regarding diversity, which was 217 

overestimated at OTU level (Fig 2B), but accurate at genus level (Fig 2D). QIIME 2 218 

approached theoretical richness and diversity values at OTU level (Fig 2A+B, table S3). 219 

Richness estimates slightly improved at genus level (Fig 2C), while diversity did not differ 220 

from OTU-based diversity (Fig 2D). Thus, QIIME 2 better estimated richness and diversity at 221 

OTU level, while NG-Tax performed better at genus level (Table S3). 222 

Compositional profiles of DNA 1 and DNA 2 are highly similar to theoretical abundance (Fig 223 

3). To quantify differences in compositional profiles, Bray-Curtis dissimilarity and Kullback-224 

Leibler divergence (Fig 4) (25) and fold errors for each taxon (Fig 5) were determined. For 225 

the dissimilarity and divergence values, a value of zero represents an identical microbiota 226 
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composition to the theoretical expectation. NG-Tax obtained values closer to zero than 227 

QIIME 2 for both DNA 1 and DNA 2, although the difference is minimal (Fig 4 and Table 228 

S2) and the performance of both pipelines can therefore be regarded as equal. A similar 229 

conclusion can be drawn from the fold errors (Fig 5), since both pipelines accurately 230 

retrieved expected relative abundance, with all genera having a fold error between -1.5 and 231 

1.5 (Table S3).  232 

Similar analyses were performed for the Zymo mock to evaluate performance of DNA 233 

extraction methods in combination with the bioinformatic pipelines. All DNA extraction 234 

methods, independent of pipeline, resulted in OTU-based richness above 20 for most 235 

samples, far higher than theoretical expectance (Fig 2A). This is especially noteworthy for 236 

QIIME 2, as it was highly accurate in retrieving correct richness for the DNA standard, in 237 

contrast to NG-Tax. Zymo and Q protocols in combination with NG-Tax retrieved accurate 238 

genus level-based richness, while a slightly inflated richness was observed for Magna (Fig 239 

2C). No extraction method was consistent in retrieving correct genus level-based richness in 240 

combination with QIIME 2. Regarding diversity, all DNA extractions, independent of 241 

pipeline, retrieved highly accurate values at genus level (Table S3). At OTU-level, however, 242 

the NG-Tax pipeline resulted in overestimation of diversity independent of DNA extraction 243 

method, and can therefore be considered a result of bioinformatic processing. Magna 244 

extraction resulted in Bray-Curtis and Kullback-Leibler values closer to zero than Zymo and 245 

Q, independent of pipeline (Fig 4 and Table S3). A similar conclusion can be drawn from the 246 

fold errors, which are lowest for Magna and pipeline-independent (Fig 5 and Table S3).  247 

Taken together, results obtained from the DNA standard indicate that QIIME 2 and NG-Tax 248 

perform equally well in general, except for overestimation of OTU-level richness and 249 

diversity when using NG-Tax. Results obtained from the Zymo mock, which is a better 250 

representation of the full procedure for a microbiome study, indicate that richness is most 251 
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accurate at genus level using protocol Zymo or Q in combination with the NG-Tax pipeline. 252 

In addition, bacterial microbiota composition profiles are best retrieved using Magna, 253 

followed by Zymo, and are pipeline-independent. 254 

In concordance with current literature (9) and independent of extraction method, a general 255 

underestimation of Gram-positive bacteria was observed, with Enterococcus being the sole 256 

exception (Fig 5). This is most likely due to incomplete cell wall lysis of Gram-positive 257 

bacteria. Based on the DNA standard and the Zymo mock, we conclude that Zymo and 258 

Magna in combination with either pipeline are the best performing combinations (Table S3). 259 

However, when high-throughput DNA extraction is required (e.g. for large cohort studies), 260 

Magna may be preferred from a practical point of view, although it overestimates richness 261 

independent of pipeline.  262 

In general, overestimation of OTUs may stem from the 100% identity setting for clustering, 263 

combined with the natural divergence of the 16S gene (26, 27). There is no current consensus 264 

on OTU identity setting, and cut-offs between 97% and 100% are used. An advantage of the 265 

100% cut-off is that unique taxa differing a single nucleotide are clustered into different 266 

OTUs. A disadvantage is that, as intragenomic diversity in the 16S rRNA gene is common 267 

within bacterial genomes, a 100% cut-off can lead to multiple OTUs stemming from a single 268 

bacterium and thereby inflate richness (27). Apart from this biological explanation, the 269 

different algorithms and internal filtering steps used in QIIME 2 and NG-Tax can affect the 270 

outcome for richness.  271 

 272 

ATCC mock is recovered incorrectly, independent of extraction protocol or pipeline 273 

The ATCC mock consists of 20 unique bacterial species, with four of them belonging to two 274 

genera (Staphylococcus and Streptococcus). Therefore, theoretical richness at OTU level 275 
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would be 20, but eighteen at genus level. In addition, these 20 unique bacterial species come 276 

from different environments, including gut, oral and skin microbiome. 277 

No values close to the theoretical profiles for the ATCC mock for any extraction 278 

method/bioinformatic pipeline were observed, and one sample from Q consisted almost 279 

entirely of non-classifiable reads (Fig 6), indicating sample-related issues. Bacillus was 280 

highly overrepresented in all other samples, with a relative abundance over 30% in Zymo and 281 

Magna extracted samples, while 6.13% is expected. Curiously, after the first mechanical lysis 282 

step in Q, we could culture Bacillus cereus and Cutibacterium acnes (identification scores of 283 

1.90 and 2.00, respectively), and Bacillus cereus (identification score 2.05) after mechanical 284 

lysis in Zymo. This is clinically important, as it means that infectious materials cannot be 285 

considered safe or non-infectious after mechanical lysis. As culturing of B. cereus indicates 286 

that cell wall lysis was incomplete, it would be expected that its relative abundance was 287 

underestimated, contrarily to what was observed. Another research group recently reported a 288 

similar overrepresentation of Bacillus in the ATCC community (28). ATCC itself was also 289 

unable to retrieve abundances close to theoretical expectation, neither with 16S amplicon 290 

sequencing nor with shotgun sequencing (29). Several reasons could explain this discrepancy 291 

between theoretical profiles and obtained profiles. For example, physical cell-to-cell 292 

interactions or presence of different metabolites may interfere with DNA extraction (26, 30). 293 

Therefore, based on this synthetic community, no conclusions on the optimal extraction-294 

pipeline combination could be made. This proposed positive control prompts the question 295 

whether mock communities are always reliable for assessing performance of DNA extraction 296 

methods. As can be observed from the Zymo mock, DNA extraction kits do not necessarily 297 

inflict observed deviations, but may rather be a result of mock community-specific properties. 298 

Outcomes may depend on extraction kit / community type combination, indicating the 299 
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potential necessity to use a positive control that strongly resembles the investigated 300 

microbiome. 301 

Negative controls: Contaminating sequences are not always consistent 302 

Negative controls were taken along for each extraction method to check for kit-specific 303 

contaminants, which is especially relevant for deciding whether low-biomass samples contain 304 

real microbiota. Regarding Zymo, clear kit-contaminants were Pseudomonas and Delftia (Fig 305 

S2A+C), consistent across the different pipelines at genus level, and with previous findings 306 

(11, 31). For Magna and Q, specific contaminants were less obvious, although Pseudomonas 307 

was present. Generally, negative controls mostly consisted of genera commonly found in gut 308 

and oral microbiota, most of them also previously described as contaminants (11). In 309 

addition, negative sequencing controls were taken along, and here no consistent contaminants 310 

could be observed (Fig S2B+D). Potential contamination sources are multifold, such as kit 311 

contamination, index hopping, or well-to-well contamination (32, 33). Index-hopping is 312 

however not a likely source of contamination, as the negative control for Magna was 313 

sequenced in different lanes, and profiles look highly similar (Fig S2A+C). Additionally, we 314 

did not observe index-hopping in our positive controls.  315 

One of the contaminants we identified has not been previously described as a contaminant, 316 

namely Clostridioides. This likely represents C. difficile, and contamination by this bacterium 317 

can be explained by the fact that DNA extractions were performed in our National Reference 318 

Laboratory for C. difficile, which probably contains minor amounts of C. difficile spores 319 

during most time points. C. difficile contamination on laboratory surfaces has also recently 320 

been described in another clinical microbiology laboratory (34). 321 

By incorporating this information with the Zymo positive controls, it can be concluded that 322 

Zymo and Magna are most optimal. Magna most accurately captured the expected 323 
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community profile, while kit-specific contaminants are clear and easy to discriminate from 324 

biological signal using Zymo (Table S2). When investigating different biological sample 325 

types it might be warranted to use a kit for which kit contaminants do not overlap with the 326 

biological signal, e.g. Pseudomonas contamination when studying sputum samples from 327 

cystic fibrosis patients who are frequently colonized with Pseudomonas spp. 328 

Automatic Magna extraction yields lowest DNA for biological samples 329 

Twenty-seven biological samples were available per extraction protocol (Table S1) and Q 330 

was most successful in passing QC (22/27), followed by Zymo (20/27) and Magna (17/27) 331 

(Table S3). DNA concentrations were on average lowest for Magna, while yields were 332 

comparable between Q and Zymo (Figure S1). Processing of raw sequencing data from 333 

biological samples was performed using the NG-Tax pipeline at genus level. 334 

 335 

The fecal microbiome can be sufficiently investigated independent of method 336 

DNA extracted from fecal samples using the three different protocols all passed QC. Magna, 337 

Zymo and Q achieved an average concentration of approximately 29 ng/µl, 111 ng/µl and 338 

212 ng/µl, respectively (Fig. S1). While DNA yield varied between extraction methods, all 339 

were sufficient for sequencing. Microbiota profiles were comparable between extraction 340 

methods for each sample (Figure S3A). In addition, differences in compositional profiles 341 

were quantified using Kullback-Leibler divergence (Figure 7A). This heatmap shows that 342 

technical variation induced by DNA extraction method is much lower than biological 343 

variation between feces samples. Profiles of the feces donors contained many bacterial genera 344 

commonly present in fecal microbiomes (35, 36). Healthy fecal microbiomes largely consist 345 

of Bacteroidetes and Firmicutes phyla (~90%), while Actinobacteria and Proteobacteria are 346 

present in smaller proportions. At genus level, Bacteroides, Prevotella and Faecalibacterium 347 

are among the most prevalent genera, all of which were found in high abundance herein (3).  348 
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 349 

Low DNA yield of oral swabs does not seem to impact the microbiota profile 350 

Out of eighteen DNA extractions, fifteen extractions passed QC for oral swabs. Only for 351 

Zymo, all extractions passed QC. DNA yields were highly variable for all extraction 352 

methods, ranging from 0.12 to 6.34 ng/µl. Half of the extractions (nine/eighteen) yielded a 353 

concentration below one ng/µl. All compositional profiles were dominated by Streptococcus, 354 

Prevotella spp., Haemophilus and Veillonella, which was individual-independent. In addition, 355 

technical variation induced by DNA extraction and subsequent steps was lower than 356 

biological variation (Fig 7B). The oral microbiome, like the gut microbiome, is highly 357 

diverse. Nevertheless, a certain core of genera (e.g. Streptococcus spp. and Prevotella spp.) is 358 

present in most people, all of which were found in our study (3, 37, 38). Together, the good 359 

QC passing rate, DNA concentrations and consistency of compositional profiles between 360 

extraction methods lead us to conclude that all three methods work well for oral swabs. 361 

 362 

Applied methodology renders the urine microbiome unresolved.  363 

During the last decade, microbiome studies showed that urine contains a bacterial microbiota 364 

(39, 40). Despite using 30-40 ml of urine and centrifugation prior to extraction (13), we were 365 

not able to convincingly capture a urinary microbiota for all samples (Fig S3C). DNA 366 

concentrations were high for an infected sample (between thirteen and 42 ng/µl), but 367 

concentrations for the other samples were between 0.11 and 0.99 ng/µl. Six out of nine 368 

samples passed QC. For the infected sample with a high bacterial load, we were able to 369 

classify the cause of infection to Enterobacteriaceae, which is in agreement with the fact that 370 

most UTIs are caused by members of Enterobacteriaceae. One urine sample showed high 371 

similarity to negative controls for respective kits, with non-classifiable reads for Q and 372 

Magna, and high abundance of Pseudomonas for Zymo (Fig S3C). Another urine sample 373 
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contained a high Lactobacillus abundance, which has previously been shown to be abundant 374 

in urine samples (40). In addition, presence of Atopobium, Gardnerella, Campylobacter, 375 

Prevotella and Anaerococcus point towards an existing urinary microbiota (41). However, 376 

Pseudomonas, a common Zymo kit contaminant, was still found in this urine sample, and for 377 

Magna more than 25% of reads could not be classified (Fig S3C). This could indicate that the 378 

biological signal is not much stronger than contamination, and therefore a mixed profile is 379 

observed. Further efforts and method optimization should be undertaken, although this can be 380 

difficult to implement in routine work (42). In addition, culturing could be used as a follow-381 

up method to confirm that contaminants are not viable bacteria, but rather bacterial DNA.  382 

 383 

Applied procedures for saliva handling seem to be unsuitable for microbiome research 384 

DNA yield from saliva samples was lower as compared to literature (43, 44) (Fig S1). Only a 385 

single DNA extraction had a concentration of slightly above one ng/µl (1.18; Table S4), 386 

while all other extractions had concentrations between 0.04 and 0.68 ng/µl. This may be 387 

associated with storage duration (~fifteen years) and the fact that samples were thawed and 388 

refrozen several times. This also explains why only three out of nine DNA extracts passed 389 

QC. The included saliva samples were chosen as investigators within our facility were 390 

interested to see if microbiota studies could be performed using these samples.  391 

Compositional profiles consisted of a mixture of genera present in the normal oral microbiota 392 

(Oribacterium, two Prevotella genera, Streptococcus, Veillonella) (3), genera present in our 393 

negative controls (Pseudomonas, Delftia) and non-classifiable reads (Fig S3D). In 394 

combination with low DNA yields, it is likely that a mixture between biological signal and 395 

contamination signal is present. Therefore, we consider the applied extraction methods 396 

unsuitable for saliva samples with a long duration of storage time and multiple freezing-397 

thawing cycles.  398 
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 399 

The colorectal cancer microbiome cannot be distinguished from negative controls or 400 

fecal microbiome 401 

As colorectal cancer development has been associated with specific gut bacteria, we were 402 

interested to see if colorectal cancer tissue itself also contained bacteria (45, 46). DNA 403 

concentrations were sufficient for all samples to pass QC, but extracted DNA was likely 404 

mostly human-derived. Two of three extraction methods were not successful, as samples 405 

extracted using Zymo and Magna showed high similarity to their respective negative controls 406 

(Fig S3E). Using Q, Bacteroides, Fusobacterium and Gemella were identified, all being 407 

previously associated with colorectal cancer development (45, 47). Several gut commensals, 408 

including Faecalibacterium and Escherichia-Shigella were present in both the negative 409 

controls and these colorectal cancer samples. It is therefore difficult to discriminate whether 410 

these are contaminant bacteria, or whether they represent biological signal.  411 

We hypothesized that by spinning down the material, the supernatant would contain more 412 

bacteria than the cancer tissue. DNA concentrations of supernatant were between 0.16 and 413 

2.32 ng/µl, and seven out of nine DNA extractions passed QC (Table S4). For one sample, it 414 

was clear that across all methods many genera were observed which were present in negative 415 

controls (e.g. Pseudomonas), or reads could not be classified at all (Fig S3F). A second 416 

sample seemed to contain a real microbiota. Profiles were consistent across extraction 417 

methods, did not contain many contaminants and had specific bacteria previously linked to 418 

colorectal cancer (e.g. Fusobacterium) (45). The third sample showed a profile reflecting a 419 

mix between biological signal and technical contamination. Profiles were consistent across 420 

methods and contained genera representative of a gut microbiome, but also contained non-421 

classifiable reads and contamination. Therefore, profiles are likely a mixture of biological 422 

signal and technical contamination, and further optimization is necessary prior to using this 423 
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sample type for experimental studies. We have the same recommendation for colorectal 424 

cancer sample types as for urine, as discussed above. 425 

 426 

Vulvar squamous cell carcinoma does probably not contain bacterial DNA 427 

Vulvar squamous cell carcinoma (VSCC) has different etiological pathways, of which one is 428 

associated with human papilloma virus (HPV). The counterpart is non-virally related and is 429 

frequently associated to lichen sclerosis, a benign chronic inflammatory lesion and TP53 430 

mutations (48, 49). We extracted DNA from HPV-negative VSCC tissue as a pilot study to 431 

determine if investigating the relationship between bacterial microbiota and HPV-negative 432 

VSCC would be potentially feasible. DNA concentrations were high (Fig S1), only for three 433 

extractions below one ng/µl, and eight out of nine extractions passed QC. However, DNA 434 

was probably again largely human-derived. This was reflected in the obtained microbiota 435 

profiles, as most reads were not classified or the profiles showed high similarity to negative 436 

controls (e.g. high abundance of Pseudomonas) (Fig S3G). Therefore, it is unlikely that this 437 

cancer tissue contains bacteria, or bacteria are so lowly abundant that they are overshadowed 438 

by contamination load. In general, the vulvar microbiome has not been extensively studied. A 439 

recent study on vulvar microbiome observed that Lactobacillus, Corynebacterium, 440 

Finegoldia, Staphylococcus and Anaerococcus are most abundant on this body site, but the 441 

use of negative controls was not reported (50). These genera are also part of the vaginal 442 

microbiota, and might be sampling contamination or reflect high similarity between vulvar 443 

and vaginal microbiota.  444 

A large amount of formalin-fixed VSCC materials are stored in a biobank at our facility. To 445 

investigate whether this sample collection could be used for microbiota profiling, DNA was 446 

extracted from three formalin-fixed VSCC samples. DNA concentrations were all below 0.3 447 

ng/µl, and only two out of nine extractions passed QC (Fig S4). One sample extracted with Q 448 
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was excluded from further analysis, as no reads were present after sequencing. Extraction and 449 

sequencing of formalin-fixed material poses additional problems, as DNA molecules could be 450 

highly fragmented and too short for amplicon sequencing of the V4 region (51). For Zymo, 451 

samples resembled negative controls, with Delftia and Pseudomonas being highly abundant 452 

(Fig S3H). The same samples had completely different microbiota profiles when using 453 

protocol Q or Magna. Both extraction methods showed genera commonly found in the lower 454 

urogenital tract, including Staphylococcus, Streptococcus, Prevotella and Gordonia (3, 36). 455 

However, many of these genera were also detected in negative controls. In combination with 456 

low DNA yield and inconsistent profiles across extraction methods, we conclude that no 457 

reliable bacterial microbiota profile could be identified in these samples. For both VSCC 458 

types, we suggest the same way forward as for urine samples.  459 

  460 

Sample groups with and without biological signal cluster apart 461 

Lastly, we performed t-distributed stochastic neighbor embedding (t-SNE) clustering using 462 

Bray-Curtis measures on all samples used in the present study (Fig 8) (52). Based on 463 

microbiota composition as measured by Bray-Curtis, t-SNE projects points in a two-464 

dimensional space, while maintaining local structures present in high-dimensional space. 465 

Clear clusters could be identified for Zymo positive controls, feces, oral swabs and ATCC 466 

mock (all but one sample) (Fig 8). Other biological samples and negative controls were more 467 

dispersed throughout the plot, indicating that either more biological or technical variation was 468 

present. This is in agreement with our detailed analysis, showing that their microbiota cannot 469 

necessarily be distinguished from the negative controls. An example of the importance of 470 

including negative controls comes from two studies aiming to unravel the placental 471 

microbiota (53, 54). It is currently unclear whether a placental microbiota exists, but when 472 
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comparing placental samples of healthy deliveries to included negative controls, microbiota 473 

compositions could not be distinguished (53, 54). 474 

 475 

Strengths and limitations 476 

The current study had several strengths and limitations. By using a positive control of cell 477 

material with a corresponding DNA standard, we differentiated variation induced from 478 

sequencing procedures and DNA extraction. We demonstrate the importance of using 479 

positive and negative controls in microbiome studies, and show that negative controls are 480 

crucial for interpretation of low-biomass samples. Another strength of the study was that for 481 

several biological samples (feces and oral swabs), we showed that technical variation was 482 

much smaller than biological variation. A shortcoming of the study is that we did not perform 483 

any other quantification next to 16S sequencing (e.g. qPCR), which may be particularly 484 

useful for quality control of the ATCC mock. Furthermore, the current study used only three 485 

unique samples of most biological sample types. Especially for samples for which DNA 486 

extraction was challenging (urine samples, colorectal cancer supernatant), a higher number of 487 

unique samples would have allowed for a more thorough evaluation. 488 

 489 

CONCLUSION 490 

The current study evaluated three DNA extraction methods and two bioinformatic pipelines 491 

for bacterial microbiota profiling using several positive and negative controls, and a range of 492 

biological specimens. All three extraction methods quite accurately retrieved theoretical 493 

abundance of the Zymo mock, but not of the ATCC mock. For DNA extraction, we 494 

recommend using the Zymo and Magna protocol, since they showed good overall 495 

performance for all samples. Sequencing procedure only induced minor variation, as shown 496 
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using a DNA standard. We furthermore showed that the NG-Tax and QIIME 2 pipelines 497 

perform equally well overall, each having their specific flaws. 498 

By including negative controls and comparing these with low-biomass samples, we evaluated 499 

whether low-biomass samples consisted of technical noise, biological signal or a mixture. In 500 

most cases, identification of a unique microbiome was not achieved, highlighting the 501 

importance of negative controls and sufficiently sensitive methods. The results from this 502 

study can help other microbiome study groups to select an appropriate DNA extraction 503 

method and bioinformatic pipeline. We hope this study contributes to further standardization 504 

in methodology in the microbiome field, and to increased awareness of the usage of controls, 505 

especially when studying low-biomass samples.  506 
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 694 

 695 

Figure 1: Study design workflow. DNA was extracted from human specimens and positive 696 

and negative controls using three different DNA extraction methods. DNA extraction 697 

performance was assessed on DNA yield and QC passing. Extracted DNA, and positive and 698 

negative sequencing controls were sequenced. Raw sequencing data was processed using two 699 

bioinformatic pipelines. Performance was assessed on microbiota composition, richness and 700 

diversity.  701 
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 702 

Figure 2: Richness (Chao1) and diversity (Shannon) computed for Zymo DNA and Zymo 703 

mock at OTU level (A+B) and at genus level (C+D) for each combination of bioinformatic 704 

pipeline and DNA extraction method. Dashed lines indicate theoretical values. 705 
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 706 

Figure 3: Compositional profiles at genus level for QIIME 2 (A) and NG-Tax (B) for Zymo 707 

mock, theoretical composition is indicated in the first bar graph. 708 

 709 

 710 
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 711 

Figure 4: Comparison of compositional profiles expressed by Kullback-Leibler divergence 712 

(A+C) and Bray-Curtis dissimilarity (B+D) per pipeline. QIIME 2 results are shown in figure 713 

A+B, NG-Tax results are shown in figure C+D. For both Kullback-Leibler and Bray-Curtis, 0 714 

indicates an identical compositional profile, while higher numbers indicate more dissimilar 715 

profiles. 716 
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  717 

Figure 5: Fold error per bacterium as compared to theoretical values for QIIME 2 (A) and 718 

NG-Tax (B). A value above 1 represents overestimation, and a value below -1 represents 719 

underestimation. 720 
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 721 

Figure 6: Compositional profiles at genus level for QIIME 2 (A) and NG-Tax (B) for the 722 

ATCC mock. 723 

 724 
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Figure 7: Kullback-Leibler divergence heatmap of feces (A) and oral swabs (B). Blue 725 

indicates highly similar composition, while yellow indicates divergence in composition. F1-726 

F2-F3 represent samples which have been sequenced in duplicate, but on different flow cells.  727 

 728 

Figure 8: Bray-Curtis distance measures visualized by t-distributed stochastic neighbour 729 

embedding (t-SNE) for all samples. Each dot in the plot represents a single sample, and short 730 

distances between samples indicate high similarity. 731 

 732 
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