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ABSTRACT 15 

Potato late blight triggered by Phytophthora infestans ((Mont.) de Bary) represents a 16 

great food security threat worldwide and is difficult to control. Currently, Bacillus spp. 17 

have been considered biocontrol agents to control many fungal diseases. Here, 18 

Bacillus subtilis WL-2 was selected as the antifungal strain with the most potential 19 

against P. infestans mycelium growth. Additionally, the functional metabolites 20 

extracted from WL-2 were identified as IturinA-family cyclic lipopeptides (CLPs) via 21 
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high-performance liquid chromatography (HPLC) and electrospray ionization mass 22 

spectrometry (ESI-MS). Analyses using scanning and transmission electron 23 

microscopy (SEM and TEM) revealed that IturinA caused a change in the mycelial 24 

surface and damage to the internal cell structure, including cell membrane disruption 25 

and irregular organelle formation. Moreover, propidium iodide staining and nucleic 26 

acid and protein release were detected to clarify the cell membrane damage caused by 27 

IturinA. Additionally, IturinA triggered reactive oxygen species (ROS) generation and 28 

malondialdehyde (MDA) production. Mitochondrial membrane potential (MMP), 29 

mitochondrial respiratory chain complexes activity (MRCCA), respiratory control rate 30 

(RCR), and oxidative phosphorylation efficiency (P/O) assays indicated that P. 31 

infestans mitochondria affected by IturinA were so seriously damaged that the MMP 32 

and MRCCA declined remarkably and that mitochondrial ATP production ability was 33 

weakened. Therefore, IturinA induces cell membrane damage, oxidative stress, and 34 

dysfunction of mitochondria, resulting in P. infestans hyphal cell death. As such, the 35 

results highlight that B. subtilis WL-2 and IturinA have great potential as candidates for 36 

inhibiting P. infestans mycelium growth and controlling potato late blight. 37 

IMPORTANCE 38 

Potato (Solanum tuberosum L.) is the fourth most common global food crop, and 39 

its planting area and yield increase yearly. Notably, in 2015, China initiated a potato 40 

staple food conversion strategy, and by 2020, approximately 50% of potatoes will 41 

be consumed as a staple food. The plant pathogen fungus Phytophthora infestans 42 

((Mont.) de Bary) is the culprit of potato late blight; however, biological agents 43 
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rather than chemicals are highly necessary to control this threatening disease. In 44 

this study, we discovered an antifungal substance, IturinA, a lipopeptide produced 45 

by Bacillus subtilis WL-2. Moreover, our research revealed the actual mechanism 46 

of IturinA against P. infestans mycelium growth and clarified the potential of B. 47 

subtilis WL-2 and IturinA as a biocontrol agent against P. infestans mycelium growth 48 

as well as for controlling the development of late blight in potato cultivation. 49 

 50 
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INTRODUCTION 65 

Behind rice, wheat, and corn, potato (Solanum tuberosum L.) is the fourth most 66 

stable food crop in the world. However, potato production is often endangered by 67 

many pathogens. Worryingly, late blight triggered by Phytophthora infestans ((Mont.) 68 

de Bary) could directly reduce or even eliminate potato production, and an outbreak 69 

of this disease could even result in a grievous economic loss in the agriculture 70 

industry(1, 2). At present, controlling late blight is achieved mainly using 71 

disease-resistant varieties and spraying chemical pesticides(3). However, due to the 72 

rapid variability of P. infestans and increase in physiological complexity of races, 73 

superphysiological races (R1-R11), which can overcome all the late blight protection 74 

genes (1.2.3.4.5.6.7.8.9.10.11), have emerged(4, 5). Additionally, as the result of the 75 

excessive use of chemicals, resistance of P. infestans to chemical pesticides has 76 

become increasingly common. In summary, the chemicals used have posed a massive 77 

challenge to control potato late blight and resulted in a great threat to food safety and 78 

the ecological environment(6). Therefore, exploration of suitable measures to control 79 

potato late blight is urgent. Surprisingly, biocontrol agents (BCAs), including 80 

microorganisms and secondary metabolites, have been further researched and even 81 

considered promising and environmentally friendly alternatives to the chemicals(7). 82 

With biocontrol method development, various antibiotic peptides, including 83 

polymyxin, daptomycin, chromobactomycin, subtilin and subtilosin, which were all 84 

extracted from Bacillus spp., have been considered potential future drugs based on 85 

their broad range of antibiotic activity, reduced toxicity, and safety to our 86 
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environment(3, 7, 8).  87 

With obvious biocontrol properties, cyclic lipopeptides (CLPs) synthesized from 88 

Bacillus spp. have been a focus of research in recent years. Additionally, CLPs with a 89 

wide range of antibacterial activities are one of the most abundant and highly yielded 90 

metabolites from Bacillus spp.(9). For its structure, CLPs consists of a peptide cycle 91 

composed of different amino acid arrangements and a lipid component composed of 92 

fatty acid chains of different lengths, and its molecular weight is approximately 1.1 93 

kDa to 1.5 kDa(3). The structure of the peptide cycle combines with a long fatty acid 94 

chain to produce an amphiphilic trait, which determines the most suitable target sites 95 

on the cellular membranes(10). In addition, due to its variety and the number of amino 96 

acids as well as the diversity of fatty acid chain length, CLPs have multiple 97 

homologs(11). Moreover, CLPs derived from Bacillus spp. can be classified into three 98 

main subfamilies: iturin, surfactin, and fengycin(11-13). Interestingly, surfactin has 99 

powerful antiviral activities but low activities against bacteria and fungi(14), while 100 

iturin and fengycin exhibit an obvious antifungal activity against a range of filamentous 101 

fungi(9, 15). Most of the special biocontrol mechanisms of iturin and fengycin against 102 

phytopathogens have been characterized(16). Specifically, fengycin derived from 103 

Bacillus subtilis BS155 has a strong antagonistic activity against Magnaporthe grisea 104 

by reactive oxygen species (ROS), chromatin condensation, and separation of cell 105 

walls from the membranes(17). Many results have shown that iturin can inhibit the 106 

mycelium growth of many fungi, including Candida albicans, Aspergillus flavus, 107 

Sclerotinia sclerotiorum, Botrytis cinerea, Monilinia fructicola, Fusarium 108 
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graminearum and so on(18-21). More specifically, iturin extracted from Bacillus 109 

amyloliquefaciens FZB42 could cause morphological changes in the plasma 110 

membranes and cell walls of F. graminearum hyphae, lead to ROS accumulation, and 111 

induce cell death in conidia (22). When iturin was used against S. sclerotiorum, it could 112 

also trigger a separation of cell walls from membranes and even form a pore in the cell 113 

membrane, resulting in leakage of the cytoplasm(19). Additionally, IturinA disrupted 114 

the B. cinerea cytoplasmic membrane; created transmembrane channels, resulting in 115 

K+ leakage; prevented spore germination; and impaired mycelium development(23). 116 

CLPs produced by Bacillus have antiphytopathogen activities; however, the inhibitory 117 

effect of lipopeptides on P. infestans remains poorly understood(3). Therefore, through 118 

this study, we intended to compare the potential of three bacteria, B. subtilis WL-2 119 

(MK241790), Pseudomonas fluorescens WL-1 (MH229994) and Bacillus pumilus W-7 120 

(KX056277), as efficient BCAs for the control of P. infestans mycelium growth. 121 

Meanwhile, CLPs extracted from the bacteria were purified using high-performance 122 

liquid chromatography (HPLC) and identified using Fourier transform infrared 123 

spectroscopy (FTIR) and mass spectrometry (MS). In addition, the antifungal 124 

mechanism of CLPs on P. infestans mycelium growth, cell integrity, mitochondrial 125 

damage, and ROS generation were exploited to evaluate the consideration of CLPs as 126 

antifungal agents against potato late blight in the future. 127 

 128 
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1 MATERIALS AND METHODS 131 

1.1 Inhibition effect of three strains against P. infestans 132 

The fungal pathogen Phytophthora infestans ((Mont.) de Bary) W101 was obtained 133 

from the China General Microbiological Culture Collection Center (CGMCC) and 134 

grown on rye (R) solid medium at 20℃ in the dark(24). Bacillus subtilis WL-2 135 

(MK241790), Pseudomonas fluorescens WL-1 (MH229994) and Bacillus pumilus 136 

W-7 (KX056277) bacteria were isolated from Capsicum frutescens leaves and 137 

cultured on Luria Bertani (LB) solid medium at 35℃(25). Living cell (LC) of bacteria 138 

was grown on LB solid medium and incubated for 24 h at 37℃. To obtain cell 139 

suspension (CS), LB liquid medium was inoculated with each strain and incubated for 140 

20 h at 37°C and 200 rpm, and the final concentration (1×107 CFU/mL) was regulated 141 

by distilled water. Prepared 2% seed culture (SC, 1×107 CFU/mL) were transformed 142 

into flasks containing 100 mL of LB liquid medium and incubated at 30℃ and 200 143 

rpm for 96 h. Finally, the liquid culture was centrifuged (10,000 × g, 4℃) for 10 min, 144 

and LC were filtered using cellulose acetate membranes (0.22 µm) to obtain a 145 

cell-free supernatant (CFS) solution (26, 27). Eight-day-old P. infestans mycelium 146 

was scraped into 10 mL of distilled water and oscillated to expose sporangium; then, 147 

the sporangium suspension was regulated to 1×107 CFU/mL using distilled water. 148 

Finally, the sporangium suspension was released at 10℃ for 3 h to obtain zoospores, 149 

and the zoospore solution was regulated by sterile water up to 1×107 CFU/mL for 150 

further analysis(28).  151 

The inhibitory effect of the three strains on the growth of P. infestans mycelium was 152 
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assessed on LC, CS, and CFS using the plate dual culture method(29). First, a P. 153 

infestans mycelium disk (diameter = 7 mm) was placed on the center of R solid 154 

medium (diameter = 9 cm) and cultivated for three days in advance. Then, LC was 155 

placed at a position 3 cm away from the center disk, and an equal volume of blank LB 156 

liquid medium was placed as the control. Additionally, the punch method(24) was 157 

adopted to determine the inhibitory effect of CS and CFS. Similarly, every punch (9 158 

mm) was added with 100 µL of CS and CFS, and an equal volume of blank LB liquid 159 

medium was added as the control. Finally, after coincubation at 20℃ for five days, 160 

the inhibitory zones (mm) were measured using the cross method(24), and the 161 

inhibition rate was determined by the described formula: 162 

Inhibition rate (%) = (C − T) / C × 100(30) 163 

Where C represents the fungal colony radius of the control, and T symbolizes the 164 

radius of the treatment group. 165 

1.2 Biocontrol assays for the WL-2 strain 166 

A potato-sensitive variety of “Bintje” was used to prepare in vitro tuber slices (2.0 167 

cm×2.0 cm×0.5 cm) and healthy leaves(31). Treatment measures, such as disease 168 

prevention (DP), simultaneous inoculation (SI), and disease therapy (DT), were 169 

conducted to evaluate the biocontrol effect of the WL-2 strain. For DP, a CS (1×106 170 

CFU/mL, 50 µL per slice) was smeared over the potato tuber slices and leaves at 171 

room temperature in advance. Then, an equal volume of blank LB liquid medium was 172 

smeared as the control. After 48 h, a P. infestans mycelium disk (diameter =7 mm) 173 

was placed on the top of the tubers, and the P. infestans zoospore suspension (1 x 107 174 
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CFU/mL, 20 µL per slice) was added at the back of the leaves. Finally, tuber slices 175 

were cultured for six days after inoculation at 20℃ in the dark, and the leaves were 176 

cultured for six days after inoculation at 20℃ in a 16 h light/8 h dark photocycle. For 177 

SI, the CS and P. infestans were inoculated at the same time. For DT, P. infestans was 178 

inoculated two days in advance, and then the CS was processed(32). Based on a 1-9 179 

scale, the disease index was calculated according to the following formula: 180 

Disease index = ∑(di×li)/(L×N)×100(30, 33) 181 

Where di represents the disease grade, and the number of leaves or tubers at different 182 

grades were represented with li. L symbolizes the sample number, and N indicates the 183 

highest disease grade. 184 

1.3 Detection of CLPs production ability and preparation of crude lipopeptide 185 

extract (CLE) 186 

(1): Identification of hemolysis ability. To determine the hemolysis characteristics of 187 

CLPs, the WL-2 strain was inoculated on sheep blood medium at 37℃ for 48 h to 188 

detect hemolysis activity, and inoculation of Escherichia coli (without hemolysis 189 

ability) was used as a control(34). (2): CFS surface tension (ST). CFS was detected 190 

every 12 h for 96 h (8 times), and ST was recorded with a tensiometer (Gibertini, 191 

Milan, Italy) using the Wilhelmy plate method(35). The instrument was calibrated 192 

against distilled water (ST = 73.1 mN/m) for accurate measurements(36). (3): Oil 193 

dispersal diameter measurement(37). Soybean oil (1 mL) was added above the 194 

surface of distilled water (30 mL, 4℃), and then a white oil film on the distilled water 195 

surface was formed. WL-2 CFS (50 μL) was added to the center of the oil film to 196 
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record the diameter of the oil dispersal ring. Meanwhile, blank culture solution was 197 

used as a control. (4): Emulsification index determination(38). CFS (3 mL) and 198 

soybean oil (3 mL) were mixed in a tube, and then the mixture was treated with an 199 

ultrasonic cleaning instrument (SK2510, KUDOS, Shanghai, China) for 1 min to mix 200 

thoroughly. Finally, the mixture was incubated statically for 24 h, the height of the 201 

emulsion layer was measured, and the percentage of emulsifying properties was 202 

calculated as follows: 203 

Emulsifying properties (%) = (emulsion layer height/total height) × 100(39) 204 

The WL-2 strain inoculated into LB liquid medium was cultured at 35°C and 180 rpm 205 

for 24 h to prepare an SC (1×106 CFU/mL). Then, 3% (by vol) SC was transferred 206 

into the flask (1,000 mL) containing 400 mL of Landy liquid medium(40) and 207 

cultured at 30℃ and 180 rpm for 96 h. The acid precipitation method(41) was used to 208 

prepare CLE. The culture was centrifuged (10,000 × g, 4℃) for 10 min to remove LC. 209 

Then, 6 N HCL was added to adjust the pH of the supernatant (pH=2.0) and induce 210 

precipitation(42). Finally, the CLPs contained in the precipitation were fully dissolved 211 

in methanol, and a rotary evaporator (RE52CS-1, YARONG, Shanghai, China) was 212 

then used at 50℃ and 65 rpm to obtain CLE for further analysis. 213 

1.4 MALDI-TOF-MS and antifungal assays 214 

The CLE methanol solution (1 mg/L, 10 µL) was mixed with 1 µL of saturating 215 

matrix solution of α-cyano-4-hydroxy-cinnamic acid. The matrix solution containing 216 

TFA (0.1%) was prepared using H2O and CH3CN (1:1, v/v). Based on a 20 kV 217 

accelerating voltage, the samples were detected, and matrix-assisted laser desorption 218 
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ionization time-of-flight mass spectrometry (MALDI-TOF-MS, AUTOFLEX III, 219 

Bruker Daltonics) was utilized to analyze the sample in positive mode. Finally, the 220 

m/z values in the range from 600 to 1,700 were analyzed (16, 43-45). 221 

The disk diffusion(43) method was adopted to evaluate the antioomycete activity of 222 

CLE. A P. infestans disk (7 mm) was incubated on R solid medium plates for three 223 

days in advance, and filter paper disks (5 mm) containing 6 µL of CLE solution (1, 3, 224 

and 5 mg/mL) were then placed at a position 4 cm away from the center disk. 225 

Meanwhile, the same volume of the fungicide Metalaxyl (15 µg/mL) and a methanol 226 

solution were used as the control. The plates were co-incubated at 20℃ for five days, 227 

and inhibition rates were determined(30). 228 

1.5 HPLC and FTIR analysis 229 

Commercial standard lipopeptides (surfactin and iturin, Sigma-Aldrich, United States) 230 

and CLE methanol solution (10 mg/L) were run on an HPLC system (Waters, E2695, 231 

United States) with a C18 reverse-phase column (5 µm, 4.6 × 150 mm) under the same 232 

conditions(46). Water and acetonitrile were selected as the mobile phase at a ratio of 233 

20:80 by volume. The injection volume was 1 mL per min, and the eluate was 234 

monitored at 214 nm. According to the peak times of standard lipopeptides, the peaks 235 

of potential lipopeptides contained in CLE were collected and dried at room 236 

temperature(45, 46). 237 

According to the matched peaks of CLE, the functional groups presented in the CLE 238 

were determined using FTIR(47). First, 1 mg of every purified lipopeptide (matched 239 

peaks) and standard lipopeptide was ground in KBr (100 mg, spectral grade) to 240 
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prepare translucent pellets(48). Data from the FTIR spectrum were collected 241 

between 500 and 4,000 cm-1, and the characteristic absorbance peaks were 242 

analyzed(49). 243 

1.6 MALDI-TOF-MS/MS and antifungal activity analysis 244 

As described in the MALDI-TOF-MS method, 1 µg/mL purified lipopeptide methanol 245 

solutions (peak a and peak b) were detected using MALDI-TOF-MS/MS 246 

(MALDI-TOF, AUTOFLEX III, Bruker Daltonics) coupled with HCD mode to clarify 247 

the amino acid sequence in lipopeptides(50). Depending on the precursor ion of 248 

interest, a suitable collision energy was used from the range of 35 to 50 eV(51). 249 

Antioomycete activity of purified surfactin and IturinA was evaluated using the disk 250 

diffusion method(43). Similarly, 6 µL of purified surfactin and IturinA solution 251 

(dissolved in distilled water) with different concentrations (20, 30, 40 and 50 µg/mL) 252 

was added to filter paper disks (5 mm), and distilled water was used as a control. 253 

After coincubation at 20°C for five days, the inhibition zone and inhibition rate were 254 

determined. 255 

1.7 Inhibition effect of IturinA against P. infestans 256 

(1) The recovery of P. infestans mycelium and sporangium after inhibition 257 

P. infestans marginal mycelium disks (diameter = 7 mm) inhibited by IturinA (20, 30, 258 

40, and 50 µg/mL) were transferred onto fresh R solid medium, and mycelium disks 259 

without inhibition were used as a control. All the treated plates were incubated at 260 

20℃ for seven days in the dark, and the colony diameter and growth rate were 261 

calculated according to the formula below. 262 
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Recovery growth rate (%) = (The maximum colony diameter / Total days) × 100(24) 263 

Meanwhile, the sporangia inhibited by IturinA (20, 30, 40, and 50 µg/mL) were 264 

separated using screen mesh (diameter = 50 µm) and adjusted to 1×107 CFU/mL 265 

using distilled water. Finally, the sporangium suspension was induced to release 266 

zoospores at 4℃ for 3 h in the dark, and sporangium direct germination was induced 267 

at 25℃ for 5 h in the dark(52). An optical microscope (OM, BX53, OLYMPUS, 268 

Japan) was used to observe 300 spores to calculate the zoospore release rate and 269 

sporangium direct germination rate according to the formula below: 270 

Release or germination rate (%) = (Total release or germination number /Number of 271 

total spores) × 100(52) 272 

(2) Optical microscopy (OM), Scanning Electron Microscopy (SEM) and 273 

Transmission Electron Microscopy (TEM) observation 274 

The marginal mycelia of IturinA (50 µg/mL)-inhibited P. infestans were collected and 275 

washed twice in PBS (pH 7.2), and then an OM system was utilized to observe 276 

mycelium damage via morphology(24). Meanwhile, mycelia were fixed using 2.5% 277 

(v/v) glutaraldehyde (Solarbio, Beijing, China) for 24 h and dehydrated for 30 min in 278 

every step using aqueous ethanol solutions (30, 50, 70, and 90%, v/v). Then, 279 

morphological and surface changes were observed using an SEM system (JSM-7500F, 280 

JEOL, JAPAN)(53). A TEM (JEM-2100F, JEOL, JAPAN) system(53, 54) was also 281 

adopted to evaluate the structural characteristics of inhibited mycelia. Similar to 282 

above, 2.5% (v/v) glutaraldehyde was used to fix damaged mycelia, 1% (v/v) osmium 283 

tetroxide was used to fix mycelia at 20℃ for 20 min, and finally, a microtome 284 
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(YD335, Leica, Germany) was used to prepare thick specimens (70 nm) for TEM 285 

observation. 286 

(3) P. infestans cell membrane damage induced by IturinA 287 

P. infestans marginal mycelia and sporangia inhibited by IturinA (50 µg/mL) were 288 

collected and washed twice with 20 mM PBS buffer (pH 7.2). Then, 30 µM 289 

propidium iodide was used to stain cells in an ice bath for 10 min. Additionally, a 290 

group without inhibition was used as a control(55). Subsequently, mycelia were 291 

observed using a filter (535 nm/615 nm) under a confocal fluorescence microscope 292 

(CFM, FV3000, OLYMPUS, Japan)(56). 293 

Changes in membrane permeability caused by IturinA were investigated in a 294 

mycelium-soaked solution according to the changes in electrical conductivity and 295 

optical density at 260 nm and 280 nm. First, P. infestans marginal mycelia (100 mg) 296 

inhibited by IturinA (50 µg/mL) were collected into a plate and then washed twice 297 

with distilled water (20 mL). Filter paper was used to remove water drops mixed with 298 

mycelia, and then, the prepared mycelium sample was resuspended in 10 mL of 299 

distilled water. Mycelia without inhibition were treated as a control. Cell membrane 300 

permeability was determined using a conductivity meter (S7-Meter, METTLER 301 

TOLEDO, Switzerland) according to the electrical conductivity of the mycelium 302 

solution after being suspended for 0, 20, 40, 60, 80 and 100 min, respectively. A 303 

mycelium solution boiled for 10 min was considered a control group (final 304 

conductivity). Finally, the relative conductivity of the mycelium was calculated 305 

according to the following formula: 306 
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Relative conductivity (%) = (Conductivity/Final conductivity) × 100(57) 307 

Additionally, the absorbances of the mycelium solution at 260 and 280 nm were 308 

measured by an ultraviolet-visible light detector (UV-1800, SHIMADZU, Japan)(58, 309 

59) to assess nucleic acid and protein leakage. The measurement was conducted at 310 

regular intervals of 20 min, from 0 min to 100 min (6 times), and the significant 311 

difference was compared with that of the control group(60). 312 

1.8 IturinA leads to the accumulation of Reactive Oxygen Species (ROS) and 313 

Malondialdehyde (MDA) production 314 

ROS accumulation in P. infestans cells induced by IturinA was detected with 315 

DCFH-DA, which is commonly used to evaluate oxidative stress in cells(61). First, 316 

five P. infestans mycelium disks (diameter =7 mm) were transferred into a flask 317 

containing 100 mL of R liquid medium and cultured at 20°C and 180 rpm for 48 h. 318 

Afterward, IturinA (50 µg/mL, final concentration) was added to the mycelium 319 

suspension and incubated for 0, 4, 8, 12, 16, 20, and 24 h. Additionally, the 320 

ROS-inducing drug Rosup (10 µg/mL, final concentration) was used to treat for 20 321 

min and considered a positive control, while distilled water was used as a negative 322 

control. Subsequently, P. infestans mycelium was resuspended in PBS buffer (pH 7.2), 323 

and then 10 μM DCFH-DA was co-incubated with mycelia for 20 min. Finally, the 324 

CFM system was used to analyze fluorescence intensity(62). 325 

MDA is the most important product marker of ROS, so detection of the MDA 326 

concentration was performed to assay ROS intensity and cell damage. After treatment 327 

with IturinA, mycelium was analyzed using MDA assay kits (Beyotime 328 
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Biotechnology, China), and the absorbance at 532 nm was measured to assay MDA 329 

production using an ultraviolet-visible light detector (UV-1800, SHIMADZU, 330 

Japan)(60). 331 

1.9 IturinA leads to mitochondrial damage 332 

(1) Assay of Mitochondrial Membrane Potential (MMP)  333 

For determination of MMP (mtΔψ), a mitochondrion-specific lipophilic cationic 334 

fluorescence dye, JC-1, was used to assay MMP in P. infestans mycelium(63). Based 335 

on the results above, the ROS generation induced by IturinA reached the highest value 336 

when the incubation time was 16 h, so mycelium incubated for 16 h was collected and 337 

stained with 10 μg/mL JC-1 in the dark for 20 min. Next, the JC-1 solution was 338 

removed(62), and the mycelium was resuspended in PBS. The fluorescence of JC-1 339 

(red fluorescence and green fluorescence) was monitored at Ex/Em = 490/525 nm and 340 

490/590 nm using a CFM system(64). 341 

(2) Effect of IturinA on Mitochondrial Respiratory Chain Complexes Activity 342 

(MRCCA), Respiratory Control Rate (RCR) and Oxidative Phosphorylation 343 

Efficiency (P/O) 344 

After inhibition by IturinA (50 µg/mL) for 16 h, P. infestans mycelia were collected. 345 

Then, 5 mL of lysis buffer was added to suspend mycelia and extract mitochondria 346 

according to the Mitochondrial Isolation Kit (Beyotime, Shanghai, China) instructions 347 

(65). Next, mitochondrial oxidative phosphorylation detection was conducted after 348 

mitochondrial disruption through four freezing (-80°C) and thawing (30°C) cycles(66, 349 

67). The MRCCA, including that of complex I-V, was measured based on the 350 
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absorbance decline at different values(68, 69). The oxidation rate of NADH catalyzed 351 

by complex I was evaluated according to the absorbance decline at 340 nm to reflect 352 

complex I activity. In the complex II-catalyzed succinic acid oxidation reaction, 353 

DCPIP (2,6-dichlorophenol indophenol) was used as a coloring agent, and the 354 

reduction in absorbance at 600 nm was considered the activity decline of complex II. 355 

Complex III activity was detected according to the reduction rate of ferricytochrome c 356 

by CoQ2 (absorbance at 550 nm), and complex IV activity was evaluated as the 357 

cyanide-sensitive oxidation of ferrocytochrome c (absorbance at 550 nm). The activity 358 

of complex V was reflected by measuring the oxidation rate of NADH (absorbance at 359 

340 nm). Mitochondrial respiratory chain complexes I-V enzyme activity was 360 

detected according to the kit instructions (AmyJet Scientific, Wuhan, China). 361 

However, mycelia without inhibition were treated as a control. 362 

One milligram of inhibited mycelium (IturinA treated for 16 h) was placed in a 363 

respirator (O2k-FluoRespirometer, Oroboros, Austria) pool containing 2 mL of 364 

respiratory solution. Then, 2 mol/L glutamic acid (10 μL), 0.4 mol/L malic acid (5 μL), 365 

and 2.5 mmol/L succinic acid (100 μL) were added into the reaction pool, and 366 

subsequently, 2 μL of 100 mmol/L adenosine diphosphate was added to obtain STATE 367 

3 respiration. At the time of ADP depletion, the respiratory rate was considered 368 

STATE 4; meanwhile, 1 μL of 1 mmol/L rotenone and 5 mmol/L (1 μL) antimycin A 369 

were added to inhibit respiration. Finally, the ratio of STATE 3 to STATE 4 was 370 

considered the RCR(65, 70). The ratio of ATP production to oxygen in the presence of 371 

respiring substrates and ADP was considered the P/O (71, 72). The treatment of 372 
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mycelium without inhibition was assayed as a control. 373 

All the different treatments above were repeated three times, and the final results are 374 

shown via the average value. 375 

2 RESULTS 376 

2.1 Comparison of the inhibition of P. infestans by three strains 377 

The inhibitory effect of three strains against P. infestans is presented in Fig. 1 and Tab. 378 

1. The LC of the three strains expressed a strong inhibitory effect on the growth of P. 379 

infestans mycelium, and all inhibition rates were above 60% (Fig. 1A, Tab. 1). In 380 

addition, the WL-2 strain had the strongest inhibitory effect (Fig. 1A-a), and the 381 

inhibition rate reached a maximum of 75.6%, which was significantly different from 382 

that of the other strains (P<0.05). Suppression of the growth of P. infestans mycelium 383 

by CS was stronger than that by LC treatment for all three strains (Fig. 1A, Fig. 1B, 384 

Tab-1), and the inhibition rates were all above 80%. Meanwhile, the inhibitory effect 385 

of the WL-2 CS was the most prominent, and the inhibition rate reached a maximum 386 

of 93.7%. After inhibition by the WL-2 CS, P. infestans mycelium could barely grow. 387 

Additionally, in the CFS experiment, the inhibition effect (inhibition rate was 80.7%) 388 

of the WL-2 strain was significantly better than that of WL-1 and W-7 (P<0.05). 389 

Altogether, the inhibitory effect of the WL-2 strain on the growth of P. infestans 390 

mycelium was significantly better than that of the other strains. 391 

2.2 Biocontrol effect of WL-2 CS on tubers and leaves in vitro 392 

With the most prominent inhibition effect against P. infestans mycelium growth, the 393 

WL-2 CS was selected to test the biocontrol effect on in vitro potato tissues. After six 394 
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days of treatment using the CS alone, tubers (Fig. 2A-a) and leaves (Fig. 2B-a) were 395 

bright and without evident discoloration and decay, which indicated that the CS had 396 

no side effect on potato tissues. After DP, SI and DT treatments on tubers (Fig. 2A-b, 397 

c, d), the in vitro disease indices were 6.5, 16.2, and 35.4, respectively, which were 398 

significantly lower than those of the control (77.6, P<0.05, Fig. 2A-e). On leaves (Fig. 399 

2B), the in vitro disease indices of DP, SI and DT (Fig. 2B-b, c, d) were 4.3, 10.9, and 400 

25.3, respectively, which were also significantly lower than those of the control group 401 

(52.3, P<0.05). In addition, DP treatment was the best way to control late blight, and 402 

the disease index was the lowest compared with that of the SI and DT groups. 403 

2.3 Detection of CLP production ability 404 

(1) Hemolysis activity: The WL-2 strain inoculated on a sheep blood plate produced 405 

a transparent trace around the strain colony (Fig. 3A-a), while in the control group (E. 406 

coli), there was no transparent trace (Fig. 3B-a). The transparent trace indicated that 407 

the WL-2 strain had an obvious hemolysis activity. (2) Detection of oil dispersal 408 

effect: In the treatment group (WL-2 CFS), the oil film produced a large oil dispersal 409 

ring (diameter = 4.92 cm) in the plate center (Fig. 3A-b), while the oil dispersal ring 410 

that occurred in the control group was very small (diameter = 0.85 cm, Fig. 3B-b), 411 

and there was a significant difference between the two groups (P<0.05). (3) 412 

Emulsification index: The emulsification percentage was as high as 82.1% (Fig. 413 

3A-c) in the treatment group, while the emulsification percentage of the control group 414 

was only 18.6% (Fig. 3B-c), and there was a significant difference (P<0.05) between 415 

the two groups. (4) Measurement of ST: ST properties are critical to the function of 416 
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CLPs(73). With increasing WL-2 incubation time, the ST value was significantly 417 

reduced, and when the incubation time was 60 h, the ST value decreased from 73.1 418 

mN/m (control) to the lowest value, 38.7 mN/m (Fig. 4). 419 

2.4 MALDI-TOF-MS and antifungal assays 420 

The average yield of prepared CLE was 2.3 g/L. Lipopeptides contained in the CLE 421 

appeared at molecular weights ranging from 1,000 to 1,100 (Fig. 5). The obvious 422 

molecular weights of 1,022.68, 1,036.69, and 1,050.71 were inferred to be surfactin 423 

(C14 - C16) with H+ adduct ions. In addition, the peaks at 1,044.66, 1,058.67, 1,072.69, 424 

and 1,086.70 were speculated to be surfactin (C14 - C17) with Na+ adduct ions (Fig. 5, 425 

Tab. 2). The molecular weights of 1,065.53 and 1,079.55 were considered to be 426 

IturinA with a fatty acid chain from C14 to C15 and with Na+ adduct ions (Fig. 5, Tab. 427 

2). Based on the results above, lipopeptides of surfactin and IturinA contained in CLE 428 

were preliminarily determined. 429 

2.5 Purification of CLE using HPLC system and FTIR analysis 430 

Analysis of the retention time of commercial standard lipopeptides exhibited two 431 

obvious peaks at 21.6 min (peak c, surfactin) and 23.2 min (peak d, iturin). The 432 

corresponding peaks from the CLE group were collected, which were peak a at 21.4 433 

min and peak b at 23.6 min (Fig. 7). 434 

From comparison of the results for purified surfactin and standard surfactin (Fig. 8A), 435 

a strong absorbance peak from 3,650 cm-1 to 3,250 cm-1 with a maximum at 3,292 436 

cm-1 signified the presence of hydrogen-bonded -OH and -NH functional groups, 437 

which are characteristics of carbon-containing compounds with amino groups(74). 438 
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Consecutive sharp absorbance peaks were found at 2,956, 2,925 and 2,854 cm-1, 439 

which correspond to the presence of -C-CH3 vibration banding or long alkyl 440 

chains(75). The highest peak at 1,664 cm-1 signified the presence of an amino acid 441 

zwitterion -C=O, which represented a peptide part(76). The weak absorbance peaks at 442 

1,456 cm-1 and 1,406 cm-1 in the absorption signals ranging from 1,350 to 1,460 cm-1 443 

were due to the -C-CH2 and -C-CH3 group vibrations contained in aliphatic chains(77). 444 

The peak at 1,194 cm-1 was probably due to the presence of C-O-C vibrations in 445 

esters(75, 78). The FTIR spectrum above showed that the combination of aliphatic 446 

groups with peptide moieties was a typical feature in lipopeptides. The comparison of 447 

results for purified IturinA and standard iturin (Fig. 8B) exhibited that the obvious 448 

peaks at 2,958, 2,925, 2,854, 1,458, and 1,386 cm-1 signified the aliphatic chains, and 449 

the peptide part was represented by the peaks at 3,307, 1,654, 1,541, and 1,205 cm-1. 450 

2.6 MS/MS analysis of purified lipopeptides and comparison of their 451 

antioomycete activities 452 

The fraction of peak a was subjected to MALDI-TOF-MS, and the m/z signals 453 

ranging from 1,000 to 1,100 were hypothesized to be produced by surfactin with fatty 454 

acid chains ranging in length from C14 to C17 (Fig. 9A, Tab. 4). In detail, the ion peaks 455 

at m/z 1,022.68, 1,044.66 and 1,060.68 were hypothesized to be the [M+H]+, 456 

[M+Na]+ and [M+K]+ adducts for surfactin C14 (1,022), and the ion peaks at m/z 457 

1,036.69 [M+H]+, 1,058.67 [M+Na]+ and 1,074.64 [M+K]+ were assumed to be 458 

surfactin C15 (1,036). In addition, the ion peaks at m/z 1,050.71 [M+H]+, 1,072.69 459 

[M+Na]+ and 1,088.66 [M+K]+ were considered surfactin C16 (1,050). Additionally, 460 
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Na+ and K+ adduct ions of surfactin C17 (1,064) were deduced from m/z values of 461 

1,086.69 and 1,102.68, respectively. Furthermore, MALDI-TOF-MS results of peak b 462 

with intense signals in the m/z range from 1,000 to 1,100 signified ions characteristic 463 

of IturinA C14 and IturinA C15 (Fig. 9B, Tab. 4). The peak series at m/z 1,043.55 464 

[M+H]+, 1,065.53 [M+Na]+ and 1,081.56 [M+K]+ was suggestive of IturinA C14 465 

(1,043), and Fig. 8B also showed ion peaks at m/z 1,057.57 [M+H]+, 1,079.55 466 

[M+Na]+ and 1,093.56 [M+K]+, which all represented isoforms of IturinA C15 467 

(1,057). 468 

The amino acid sequences of the molecules of interest were detected using MS/MS. 469 

Fig. 9C illustrates the MS/MS spectrum of surfactin C14 at m/z 1,044.66 [M+Na]+. 470 

The series of b+ ions at m/z 931→818→703→604→378 (-H2O, 360) signified the 471 

loss of Leu, Asp, Val, and Leu-Leu/Ile at peptide bonds, and the ions at m/z 360 were 472 

the C terminus of a β-OH fatty acid combined with Glu. Starting from the y+ end, 473 

ions at m/z 267→481→594→707 represented the peptide bonds connected by 474 

Leu/Ile-Leu, Asp-Val, Leu, and Leu/Ile, respectively, so ions at m/z 707 were the total 475 

mass of ion fragments containing Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile. The MS/MS 476 

spectrum exhibiting b+ and y+ fragment ions confirmed that the structure of surfactin 477 

C14 was β-OH fatty acid-Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile. The structure of 478 

surfactin C15 at m/z 1,058.67 [M+Na]+ was determined by the result of Fig. 9D. Similar 479 

to above, the series of y+ ions at m/z 154→267→382→481→594→707 represented 480 

the connection of amino acids Leu/Ile, Leu, Asp, Val, Leu, and Leu/Ile, respectively. 481 

From the perspective of the b+ fragment, ions at m/z 945→832→717→618→391 482 
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illustrated the loss of Leu, Asp, Val, and Leu-Leu/Ile from the end of the C terminus, 483 

and the ions at m/z 391 were β-OH fatty acid connected with Glu. Meanwhile, the 484 

MS/MS spectrum of surfactin C16 at m/z 1,072.69 [M+Na]+ is represented in Fig. 9E. 485 

The set of y+ fragment ions was the same as those of surfactin C14 and surfactin C15, 486 

with the sequence of Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile at the end of the N terminus. 487 

As a result of the b+ part, the most significant ion series at m/z 406 (-H2O, 388) 488 

confirmed the structure of β-OH fatty acid (C16) connected with Glu. Additionally, the 489 

y+ fragment ions that occurred in Na adducted ions, which were found at m/z 1,086.69 490 

(C17, Fig. 9F), signified the same peptide connection in surfactin C14-16. The b+ 491 

fragment ions at m/z 973 explained the sequence of β-OH fatty acid 492 

(C17)-Glu-Leu/Ile-Leu-Val-Asp-Leu, and the ions at m/z 973→860 were the result of 493 

losing a Leu. In summary, the MS/MS spectrum peaks at m/z 1,044.66 (Fig. 9C), 494 

1,058.67 (Fig. 9D), 1,072.69 (Fig. 9E), and 1,086.69 (Fig. 9F) were detected as the 495 

same subfamily (surfactin) but had a difference of 14 Da (-CH2-). The MS/MS 496 

spectrum of peak b (IturinA) is shown in Fig. 9G-H. IturinA at m/z 1,065.53 [M+Na]+ 497 

was analyzed in Fig. 9G. In detail, the b+ fragment ions at m/z 186→300→428 498 

represented the sequence of Tyr-Asn-Gln, and ions at m/z 186 ions derived from a 499 

Tyr. In addition, the series of y+ ions at m/z 563→449→362 signified the cleavage 500 

and loss of Asn, Asp and Ser, respectively. The most significant ions at m/z 362 501 

supported the fragment of β-OH fatty acid (C14)-Asn, and ions at m/z 563 illustrated 502 

the sequence of Asn-Ser-β-OH fatty acid-Asn. Fig. 9H shows the detection of IturinA 503 

at m/z 1,079.55 [M+Na]+. First, y+ fragment ions at m/z 300→414→653 symbolized 504 
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the connection of Tyr-Asn, Asn and β-OH fatty acid, and ions at m/z 239 (653 - 414 = 505 

239) matched exactly the fragment ion mass of β-OH fatty acid (C15). In addition, the 506 

b+ ion fragments in the order of m/z 248, 362, 431, and 670 illustrated the sequence of 507 

Gln-Pro-Asn-Ser-β-OH fatty acid. The results of Fig. 9G-H demonstrate IturinA C14 508 

and IturinA C15 with a difference of 14 Da (-CH2-) and represent the structure of 509 

β-OH fatty acid-Asn-Tyr-Asn-Gln-Pro-Asn-Ser. 510 

The antioomycete activity results (Fig. 10 and Tab. 5) showed that surfactin had no 511 

inhibition activity on the growth of mycelium and that there were no obvious 512 

inhibition zones at even the concentration of 50 µg/mL (Fig. 10A). However, the 513 

inhibitory effect was clearly dependent on the increasing concentration of IturinA (Fig. 514 

10B). IturinA at the concentration of 50 µg/mL produced the best inhibition effect, 515 

and the inhibition zone reached a maximum of 10.5 mm (Fig. 10B-d). There was a 516 

significant difference between IturinA and the control (P<0.05). 517 

2.7 Inhibition effect of IturinA against P. infestans 518 

(1) The recovery of P. infestans mycelium and sporangium after inhibition 519 

After inhibiting with IturinA (20, 30, 40, and 50 µg/mL), P. infestans mycelia 520 

recovered to grow (Fig. 11A, b-e) at a lower rate (7.1 mm/d, 5.3 mm/d, 3.2 mm/d, and 521 

2.7 mm/d, respectively) than that of control (10.7 mm/d), and there were significant 522 

differences between IturinA treatments and the control (P<0.05). The results above 523 

signified that the concentration of IturinA was positively correlated with the degree of 524 

mycelium damage. After the inhibition of IturinA at the concentration of 50 µg/mL, 525 

the mycelium recovery rate exhibited the lowest value (only 2.7 mm/d, Fig. 11B). 526 
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Meanwhile, zoospore release and sporangium direct germination rates were calculated, 527 

and the results showed that with the IturinA concentration increasing from 20 to 50 528 

µg/mL, zoospore release and sporangium direct germination rates declined 529 

significantly. In detail, the zoospore release rate declined from 64.9% to 18.6%, and 530 

the sporangium direct germination rate decreased from 48.9% to 14.4% (Fig. 11C). 531 

The lowest zoospore release rate (18.6%) and sporangium direct germination rate 532 

(14.4%) that occurred after treatment with the highest IturinA concentration (50 533 

µg/mL) were significantly different from those of the control (64.9% and 48.9%, 534 

respectively, P<0.05). 535 

(2) Observation using OM, SEM and TEM 536 

Under the OM examination, the mycelia in the control group (Fig. 12A-a) were 537 

smooth, vimineous, straight, and evenly grown. The mycelia affected by IturinA (50 538 

µg/mL) exhibited a series of deformations (Fig. 12A, b-e). After treatment with 539 

IturinA, some mycelia twisted into clusters (Fig. 12A-b), some others grew with 540 

unequal widths, and abnormal branches were observed frequently (Fig. 12A-c). In 541 

addition, many mycelia lost smoothness and formed unusual surface bulges (Fig. 542 

12A-d), the inner mycelium developed large vacuoles, and the cytoplasm condensed 543 

unevenly (Fig. 12A-e). An SEM system was used to observe mycelium deformation in 544 

shapes and appearances. The results showed that the mycelia in the control group 545 

were straight and smooth without any expansion (Fig. 12B-a). However, in the 546 

treatment group, mycelia were rough and uneven on the surface (Fig. 12B-b). In 547 

addition, mycelia were locally raised, with an uneven width (Fig. 12B-c,d). Expansion 548 
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in branches (Fig. 12B-e) and even abnormal branches appeared in parts of the 549 

mycelium (Fig. 12B-f). The TEM method was used to examine the structural variation 550 

within cells. The results showed that normal mycelial cell membranes were intact, 551 

organelles within the cells were distributed in a normal arrangement, and 552 

mitochondria, including inner ridges, were abundant (Fig. 12C-a). After treatment 553 

with IturinA (50 µg/mL), the same mycelial cell membranes were disrupted (Fig. 12C, 554 

b-d), and organelles within the cell were disordered (Fig. 12C-b). A large area of 555 

cavitation appeared in the center of the cytoplasm (Fig. 12C-b,d), and mitochondria 556 

and ridges were sparse (Fig. 12C-b) compared with those of the control. Moreover, 557 

irregular organelle shapes with unclear boundaries and obvious accumulation bodies 558 

were also visible in some cells (Fig. 12C-c). Furthermore, organelles within some 559 

cells gathered in clumps, and the nuclei affected by cavitation shifted to the cell edge 560 

(Fig. 12C-d). 561 

(3) Effects of IturinA on the cell membrane  562 

Cell membrane integrity of P. infestans mycelium were examined using propidium 563 

iodide. The results showed that after treatment with IturinA (50 µg/mL), hyphae 564 

(Fig. 13A-b) and sporangia (Fig. 13A-d) displayed obvious red fluorescence 565 

compared with those of the control (Fig. 13A-a, c), which indicated that IturinA 566 

could result in substantial cell membrane defects and cell death. Meanwhile, the 567 

red fluorescence rate that was exhibited in the sporangium was approximately 568 

68% in the treatment group, while in the control group, the red fluorescence rate 569 

was lower and only 21%. 570 
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The effect of IturinA on cell membrane permeability was shown in Fig. 14A. The 571 

relative conductivity of the control increased from 9.7% to 19.6% at 60 min. However, 572 

in the treatment (IturinA) group, relative conductivity improved from 10.2% at the 573 

beginning to 41.8%. In addition, the maximum relative conductivity of the treatment 574 

group (44.6%) was twice as high as that of the control group (20.9%). Leakage of 575 

nucleic acids revealed that at the soaking time of 100 min, the absorbance value 576 

reached a maximum of 0.251, which was significantly higher than that of the control 577 

group (the highest absorbance value was 0.059, Fig. 14B, P<0.05). In addition, 578 

detection of protein leakage showed that the highest absorbance value (0.410) 579 

appeared at 60 min, and the maximum absorbance of the treatment group was 580 

significantly higher than that of the control group (P<0.05), which had a maximum 581 

absorbance value of only 0.043 (Fig. 14C). 582 

2.8 ROS and MDA production 583 

We hypothesized that IturinA application could lead to ROS generation, which is an 584 

important intermediate in the progression of P. infestans cell damage(79). While 585 

investigating this possibility, we observed a significant increase in intracellular ROS 586 

using DCFH-DA. As shown in Fig. 15, with increasing time of IturinA (50 µg/mL) 587 

treatment, the mean fluorescence intensity became obviously enhanced (Fig. 15A-B). 588 

In detail, the fluorescence intensity in treatment group was significantly higher than 589 

that in the control group after 4 h of generation (P<0.05). In the treatment group, the 590 

highest fluorescence intensity was four times higher than that in the control after 16 h 591 

of generation (P<0.05), and there was no significant difference between IturinA 592 
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treatment and the positive control (Fig. 15A-B, P<0.05). In addition, the 593 

concentration of MDA produced by ROS reaction from 8 h to 24 h in the treatment 594 

group was significantly higher than that in the control group (approximately 20 595 

µmol/L, P<0.05), and the highest MDA concentration reached a maximum of 152 596 

µmol/L after 16 h of IturinA activity (Fig. 15C). 597 

2.9 Mitochondrial damage 598 

(1) Assay of MMP 599 

The effect of IturinA on the MMP of P. infestans mycelium was detected using JC-1 600 

staining and fluorescence microscopy. As shown in Fig. 16, the control group 601 

exhibited an obvious red fluorescence distribution (Fig. 16A-b) and J-aggregates 602 

(orange) in mitochondria (Fig. 16A-d). Compared with the control mycelia, 603 

IturinA-treated mycelia stained with JC-1 displayed dramatically changed 604 

fluorescence patterns and clear green fluorescence (Fig. 16B-c). These results 605 

indicated that IturinA could lead to a decrease in MMP. 606 

 (2) MRCCA, RCR and P/O  607 

The activities of complexes I-V were detected in this experiment, and the results are 608 

shown in Fig. 17A-E. Affected by IturinA, the activities of complex I-V respiratory 609 

enzymes were reduced remarkably and were approximately 61%, 35%, 43%, 31%, and 610 

38%, respectively, which were significantly different from those of the control group 611 

(P<0.05). Meanwhile, the RCR and P/O values in the control group were 95% and 2.7, 612 

respectively, and in contrast, those in the treatment group were 63% and 1.9, 613 

respectively, which were significantly lower than those in the control group (Fig. 614 
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17F-G, P<0.05). 615 

DISCUSSION 616 

The increasing production of potatoes is still facing significant losses because of the 617 

infection of fungi, oomycetes, bacteria, insects, and viruses(80, 81). Among these 618 

pathogens, the P. infestans oomycete is the culprit of potato late blight, which is the 619 

disease that is the most serious and has the largest economic loss(1). The control of 620 

potato late blight based on the massive use of BCAs, including microorganisms and 621 

secondary metabolites, could be a potential measure to relieve or overcome the 622 

problem of food safety, environmental protection and disease resistance resulting 623 

from chemicals(7). Some Bacillus and Pseudomonas species are considered the best 624 

potential candidates used as BCAs because of their diversity, survival ability in 625 

various environments, and their variety of biocontrol molecules(82, 83). Additionally, 626 

as the result of massive number of bioactive compounds involved in their antagonistic 627 

activity, Bacillus and Pseudomonas species also have numerous interesting properties 628 

for industry and agriculture(84). In this study, we compared the inhibitory effects of 629 

LC, CS, and CFS from three bacterial species, B. subtilis WL-2, P. fluorescens WL-1, 630 

and B. pumilus W-7, against P. infestans mycelium growth. The inhibition effect of 631 

WL-2 was overall significantly better than that of the other strains. Although the 632 

biocontrol strains exhibited a strong antifungal effect in a plate confrontation test, the 633 

biological control effect in the in vitro experiment was still worrying due to the 634 

environmental changes(85). Based on previous experience, we suspect that 635 

antagonistic strains themselves are destructive to potato tissues(86). Therefore, in this 636 
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study, the WL-2 strain was selected to test the effect of controlling potato late blight 637 

on tissues in vitro. The results indicated that the WL-2 strain had an obvious ability to 638 

prevent late blight development on tissues in vitro and had no side effect on potato 639 

tissues. 640 

In fact, CLPs with a wide range of antibacterial activities are some of the most 641 

abundant and highly yielded metabolites from Bacillus(9). In addition, the peptide 642 

cycle with 7 ~ 10 amino acids combined with a lipid component (β-hydroxy fatty acid 643 

chain or β-amino fatty acid chain) determines that CLPs are amphiphilic 644 

compounds(3). Furthermore, the hemolysis, oil dispersal, and emulsification 645 

activities(34, 37, 38) could be preliminarily detected to demonstrate the capability of 646 

CLPs secretion. The obvious transparent trace (Fig. 3B-a), large oil dispersal ring 647 

(diameter = 4.92 cm), high percentage of emulsification (82.1%), and decline in ST 648 

indicated that the WL-2 strain had a strong ability to produce CLPs. With the 649 

character that CLPs aggregate and precipitate at the condition of pH = 2, the acid 650 

precipitation method(41) was used to prepare CLE. CFS obtained from Bacillus 651 

species possesses various bioactive substances, such as polysaccharides, proteins, 652 

lipids, and peptides(87); however, whether CLE has the ability to inhibit P. infestans 653 

mycelium growth should be further investigated. In this study, our results showed that 654 

when the CLE concentration was 5 mg/mL, the obvious inhibition zone reached a 655 

maximum of 9.3 mm. 656 

Based on the obvious inhibitory effect of various homologous subfamilies contained 657 

in CLPs, it was extremely meaningful to determine the CLPs classification and clarify 658 
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the molecular mechanism of P. infestans inhibition. In this part, by comparison with 659 

standard lipopeptides, we showed the same retention time via HPLC detection and the 660 

same absorption peaks pattern in FTIR analysis, demonstrating that both subfamilies 661 

of surfactin and IturinA were presented in the CLE. Additionally, in the FTIR 662 

spectrum, the aliphatic groups observed at 2,958, 2,925, 2,854, 1,458, and 1,386 cm-1 663 

were connected with the peptide parts exhibited at 3,307, 1,654, 1,541, and 1,205 cm-1, 664 

indicating that the purified CLPs of surfactin and IturinA possess an amphiphilic 665 

trait(75, 77, 78). Further study was conducted using MS/MS technology to detect the 666 

specific molecular weight and structural formula according to the amino acid numbers 667 

and sequence(16). The results showed that the chemical structural formula of purified 668 

surfactin was β-OH fatty acid-Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile with a fatty acid 669 

chain from C14 to C17. The purified IturinA with ions characteristic of IturinA C14 and 670 

IturinA C15 had a structure of β-OH fatty acid-Asn-Tyr-Asn-Gln-Pro-Asn-Ser. 671 

However, based on previous results, B. amyloliquefaciens S76-3 could produce the 672 

CLPs PlipastatinA and IturinA(51); B. amyloliquefaciens PGPBacCA1 could produce 673 

surfactin, IturinA and fengycin(88), and B. subtilis BS155 has the ability to produce 674 

surfactin and fengycin(17). We found that the CLP types produced by different 675 

antagonistic strains exhibited a great diversity. In addition, environmental factors, 676 

such as pathogens, temperature, and carbon and nitrogen sources, could also affect the 677 

classification, production and proportion of different CLP subfamilies to change the 678 

antagonistic effect(49, 89). 679 

Iturin and fengycin produced by Bacillus spp. are known to exhibit direct antifungal 680 
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activity(83, 90, 91), and their fungal toxicity mechanisms are involved in pore 681 

formation in the cell membrane(9, 92). Similarly, a CLP with 9 amino acids produced 682 

by P. fluorescens SBW25 has direct antioomycete activities and results in 683 

immobilization and subsequent lysis of P. infestans zoospores(93, 94). However, the 684 

specific inhibitory effects of surfactin and iturin against P. infestans remain unclear. 685 

After defining the types of CLPs in this research, the inhibition mechanisms of 686 

IturinA and surfactin against P. infestans were the most important issues to explore in 687 

this research. 688 

Subsequently, our results showed that surfactin had no direct inhibition activity on 689 

the growth of P. infestans mycelium (Fig. 10A), which is similar to reports that 690 

surfactin alone lacks antifungal activities(14, 17, 89).
 However, some research results 691 

indicated that the surfactin family produced by Bacillus spp. has an indirect 692 

antagonistic activity by triggering induced systemic resistance (ISR) in plant(95-97). 693 

This indirect activity of surfactin on potato plants against late blight should be 694 

investigated as a meaningful work in the future. Most interesting to us was the fact 695 

that after direct inhibition with IturinA (50 µg/mL), the inhibition zone against P. 696 

infestans mycelium growth reached a maximum of 10.5 mm (Fig. 10B-e), and the 697 

lowest zoospore release and sporangium direct germination rate were only 18.6% and 698 

14.4%, respectively. These results corresponded to the report that the fengycin family 699 

produced by P. fluorescens SBW25 has a specific inhibitory effect on P. infestans 700 

zoospore activity through zoospore membrane solubilization(94). In fact, the 701 

inhibited P. infestans mycelium must be in a damaged state; however, the specific 702 
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injury mechanisms caused by IturinA remain unclear. Just as former articles reported 703 

that Iturin produced by Bacillus species exhibited direct fungal toxicity involving cell 704 

membrane damage and pore formation in the plasma membrane(9, 92), in this 705 

research, we found that the affected P. infestans mycelia were rough and uneven on 706 

the surface (Fig. 12B-b), and that unusual surface bulges (Fig. 12A-d) were formed in 707 

the mycelia. Much of the changes in mycelial appearance are probably due to the 708 

damage of the internal cell structure(53, 54). Next, our TEM results showed that the 709 

inhibited cell membranes were disrupted (Fig. 12C, b-d), organelles adopted an 710 

irregular shape (Fig. 12C-c) and were disordered (Fig. 12C-b), and a large area of 711 

cavitation appeared in the center of the cytoplasm (Fig. 12C-b,d). All the OM, SEM 712 

and TEM analysis results were basically similar to previous findings, with a report 713 

that F. graminearum mycelium affected by IturinA derived from B. amyloliquefaciens 714 

S76-3 displayed severe morphological changes, including mycelium distortions, cell 715 

membrane leakage, and separation of the plasma membrane from the cell wall(51). In 716 

contrast with reported cellular content inactivation and branch formation 717 

inhibition(51), in our research, many tiny and irregular branches (Fig. 12A-c) 718 

stretched to the surrounding environment to evade the toxic effects of IturinA. 719 

Moreover, the cell membrane damage probably led to the release of nucleic acids and 720 

protein from the cell and directly changed the relative conductivity of the 721 

mycelium-soaked solution(60). Additionally, the fluorescent dye propidium iodide is a 722 

kind of nucleus-staining reagent, and the red fluorescence displayed by propidium 723 

iodide can distinguish damage of the cell membrane from an intact membrane present 724 
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in a living state (17). In this part, our results showed that IturinA results in P. 725 

infestans mycelium cell membrane defects and cell death, that the inhibited hyphae 726 

(Fig. 13A-b) and sporangia (Fig. 13A-d) displayed red fluorescence, and that the 727 

ratio of sporangia with red fluorescence reached a maximum of 68%. In addition, 728 

when inhibited by IturinA, the released protein and nucleic acids increased the 729 

relative conductivity of the mycelium-soaked solution to approximately two times 730 

higher than that of the control (Fig. 14). 731 

Intracellular chaos caused by long-term adversity could also induce ROS generation 732 

in cells to adapt to the adverse environment(54). The ROS generation caused by 733 

detrimental conditions is an important intermediate in the progression of cell 734 

damage(62). In our research, ROS detection results showed that after 4 h of exposure 735 

to IturinA, the highest ROS generation was four times as high as that of the control. 736 

In addition, the highest MDA concentration reached a maximum of 152 µmol/L after 737 

16 h of treatment. However, possibly because MDA is a subsequent product of ROS 738 

generation, the highest values of ROS generation and MDA concentration did not 739 

appear at the same time(60, 98). In addition, when living in harsh environments and 740 

affected by ROS generation, mitochondria might develop an abnormal state, in which 741 

the cell respiratory process is obstructed, and the power plants needed for cell life 742 

might have abnormal working conditions(63, 70-72). During ROS generation, the 743 

accumulation of oxidized products could also lead to MRCCA decline and electron 744 

transport chain dysfunction resulting in an immature respiration process, which 745 

ultimately leads to a decrease in P/O(65, 70-72). 746 
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In this study, JC-1 staining showed that IturinA leads to a decrease in MMP in P. 747 

infestans cells. The respiratory enzyme activity of complexes I-V declined by 748 

approximately 61%, 35%, 43%, 31%, and 38%, respectively (Fig. 17A-E). 749 

Meanwhile, the RCR and P/O values were only 63% and 1.9, respectively, which 750 

were significantly lower than those of the control (Fig. 17F-G, P<0.05). Energy 751 

production is closely related to mitochondrial function and oxidative phosphorylation 752 

processes(80). Therefore, the decline in MMP and MRCCA in P. infestans and the 753 

weakness of ATP production in P. infestans mitochondria strongly indicated that 754 

IturinA resulted in serious mitochondrial damage that affected cellular respiratory state. 755 

Taken together, these data clarified that the WL-2 strain can produce the CLPs 756 

surfactin and IturinA. Surfactin had no direct inhibitory effect on P. infestans 757 

mycelium growth, While IturinA could cause P. infestans cell membrane disruption, 758 

induce cellular ROS generation and, most importantly, lead to mitochondrial damage, 759 

blocking ATP production. All the results above highlight that B. subtilis WL-2 and its 760 

IturinA lipopeptides have great potential for inhibiting P. infestans mycelium growth 761 

and controlling the development of potato late blight in the future. 762 

In this article, we have performed many studies on controlling potato late blight using 763 

CLPs; however, many issues are worth resolving. For instance, the indirect inhibition 764 

effects and the differences among surfactin, Iturin, and fengycin in triggering the ISR 765 

in potato plants are still unknown. The inducer from pathogens aimed at CLPs seems 766 

to be specific for one of the CLPs subfamilies, for example, Fusarium oxysporum 767 

significantly induced fengycin production by B. amyloliquefaciens SQR9, while when 768 
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strain SQR9 was induced by other pathogens (Rhizoctonia solani and Fusarium 769 

solani), surfactin production increased obviously, and fengycin secretion decreased 770 

significantly(99). Therefore, this specific inducing phenomenon with a potentially 771 

high impact for biological control is well worth knowing in future. Cooperation of 772 

surfactin with iturin or fengycin is still a controversial issue. Parent Zihalirwa 773 

Kulimushi once suggested that surfactin from B. amyloliquefaciens FZB42 could 774 

somehow interfere with fengycin activity against Rhizomucor variabilis(89). 775 

Additionally, a mixture the CLPs surfactin and fengycin against Verticillium dahlia 776 

and Rhizopus stolonifer also lost the inhibitory effect of fengycin on spore 777 

germination and hyphal growth(100, 101). This phenomenon may be explained by the 778 

stabilizing effect of surfactin on certain lipid bilayers(101, 102) and by the inactive 779 

complexes formed by coaggregation of surfactin and fengycin(103). In contrast, the 780 

cooperation of surfactin with iturin and fengycin extracted from Bacillus velezensis 781 

(Y6 and F7) against Ralstonia solanacearum and F. oxysporum displayed an 782 

obviously improved antifungal effect(61). Therefore, the relationship of surfactin and 783 

iturin regarding inhibition of P. infestans should also be investigated in future 784 

research. 785 
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Tables 1145 

Tab. 1 Comparison of the inhibition of P. infestans by three Bacillus species 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 

Note: The different letters a, b, c, and d in the same column symbolize a significant difference 1153 

(P<0.05), and the same is true below. 1154 

 1155 

 1156 

Tab. 2 Analysis of CLE using MALDI-TOF-MS 1157 

Lipopeptide Fatty acid chain Molecular formula 
Molecular weight (m/z) 

[M+H]+ [M+Na]+ 

Surfactin 

C14 C52H91N7O13 1,022.68 1,044.66 

C15 C53H93N7O13 1,036.69 1,058.67 

C16 C54H95N7O13 1,050.71 1,072.69 

C17 C55H97N7O13 - 1,086.70 

IturinA 
C14 C48H74N12O14 - 1,065.53 

C15 C49H76N12O14 - 1,079.55 

 1158 

 1159 

Tab. 3 Inhibition effect of CLE on P. infestans mycelial growth 1160 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 

 1171 

 1172 

 1173 

 1174 

Strains 
Inhibition rate (%) 

LC CS CFS 

WL-2 75.6 a 93.7 a 80.7 a 

WL-1 65.4 b 86.1 b 56.6 b 

W-7 62.5 b 84.2 b 58.7 b 

CK 0 c 0 c 0 c 

Concentration (mg/mL) Inhibition zone (mm) 

CK - 0.0 a 

 

CLE 

1 5.2 b 

3 8.9 c 

5 9.3 c 

Metalaxyl 15 µg/mL 13.6 d 
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Tab. 4 Detection of purified lipopeptides 1175 

Lipopeptide Fatty acid chain Molecular formula 
Calculated (m/z) 

[M+H]+ [M+Na]+ [M+K]+ 

surfactin 

(peak a) 

C14 C52H91N7O13 1,022.68 1,044.66 1,060.68 

C15 C53H93N7O13 1,036.69 1,058.67 1,074.64 

C16 C54H95N7O13 1,050.71 1,072.69 1,088.66 

C17 C55H97N7O13 - 1,086.69 1,102.68 

IturinA 

(peak b) 

C14 C48H74N12O14 1,043.55 1,065.53 1,081.56 

C15 C49H76N12O14 1,057.57 1,079.55 1,093.56 

 1176 

Tab. 5 Inhibition effect of surfactin and IturinA against P. infestans 1177 

 1178 

 1179 

 1180 

 1181 

 1182 

 1183 

 1184 

 1185 

 1186 

 1187 

 1188 

Figures 1189 

 1190 

 1191 

Note: a: LC; b: CS; c: CFS; A: WL-2; B: WL-1; C: W-7; D: Control. 1192 

Fig. 1 Comparison of three strains against P. infestans 1193 

 1194 

Concentration 

(µg/mL) 

Inhibition zone (mm) 

surfactin IturinA 

CK (0) 0.0 a 0.0 a 

20 0.0 a 4.8 b 

30 0.0 a 7.1 c 

40 0.0 a 10.2 d 

50 0.0 a 10.5 d 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 29, 2019. ; https://doi.org/10.1101/751131doi: bioRxiv preprint 

https://doi.org/10.1101/751131


55 
 

     1195 

 1196 
Note: A: In vitro tubers, A-a: Negative control (LB liquid medium); A-b: DP (disease prevention); 1197 

A-c: SI (simultaneous inoculation); A-d: DT (disease therapy); A-e: Control (C, sterilized water); 1198 

B: In vitro leaves; C: Comparison of disease indices. The different lowercase letters between 1199 

different groups indicate a significant difference (P<0.05); the same is true below. 1200 

Fig. 2 Biocontrol effect of the WL-2 CS on potato tissues in vitro 1201 

 1202 

 1203 

Note: A: Treatment group; B: Control group. a: Hemolysis activity (E. coli as control); b: Oil 1204 

dispersal diameter; c: Determination of emulsification index. 1205 

Fig. 3 Determination of hemolysis, oil dispersal, and emulsification activities 1206 
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 1207 

Note: The ST of distilled water was 73.1 mN/m. 1208 

Fig. 4 Measurement of ST 1209 

 1210 

 1211 

 1212 

Fig. 5 Analysis of CLE using MALDI-TOF-MS 1213 

 1214 

 1215 

 1216 

Note: a: Control (distilled water); b: 1 mg/mL; c: 3 mg/mL; d: 5 mg/mL; e: Metalaxyl (15 µg/mL).  1217 

Fig. 6 Inhibition effect of CLE on mycelial growth 1218 
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 1219 

Note: The black line above shows the result for the CLE (peak a at 21.4 min, and peak b at 23.6 1220 

min). The red line below represents the results for standard lipopeptides; peak c at 21.6 min was 1221 

commercial surfactin, and peak d at 23.2 min was commercial iturin. 1222 

Fig. 7 Purification of CLE using HPLC system 1223 

 1224 

 1225 

 1226 

Note: A: Comparison of purified surfactin (PS) and standard surfactin (SS); B: Comparison of 1227 

purified IturinA (PI) and standard iturin (SI). The black line above shows the result for purified 1228 

lipopeptides, and the red line below shows the result for standard lipopeptides. 1229 

Fig. 8 FTIR analysis of purified lipopeptides 1230 

 1231 

 1232 

 1233 

 1234 
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  1235 

1236 

 1237 
 1238 

Note: A: Full MS of peak a (surfactin); B: Full MS of peak b (IturinA); C-F: MS/MS spectrum of 1239 

the surfactin C14 precursor ion at m/z 1,044.66 [M+Na]+, surfactin C15 precursor ion at m/z 1240 

1,058.67 [M+Na]+, surfactin C16 precursor ion at m/z 1,072.69 [M+Na]+ and surfactin C17 1241 

precursor ion at m/z 1,086.69 [M+Na]+, respectively; G-H: MS/MS spectrum of the IturinA C14 1242 

precursor ion at m/z 1,065.53 [M+Na]+ and spectrum of the IturinA C15 precursor ion at m/z 1243 

1,079.55 [M+Na]+. 1244 

Fig. 9 Detection of purified lipopeptides using MADI-TOF-MS/MS 1245 

 1246 

 1247 
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 1248 
Note: A: Surfactin group; B: IturinA group. a: Control (distilled water); b: 20 µg/mL; c: 30 µg/mL; 1249 

d: 40 µg/mL; e: 50 µg/mL. 1250 

Fig. 10 Inhibition effect of purified surfactin and IturinA 1251 

 1252 

 1253 

  1254 

 1255 
Note: A-a: Control (normal mycelium growth); A-b: 20 µg/mL; A-c: 30 µg/mL; A-d: 40 µg/mL; 1256 

A-e: 50 µg/mL. B: Mycelium recovery rate. C: Zoospore release and direct germination rates of 1257 

sporangium after inhibition. The lowercase letters indicate a comparison between the different 1258 

groups. 1259 

Fig. 11 The recovery of P. infestans mycelia and sporangia after inhibition 1260 
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   1267 

          1268 

Note: A: OM observation (a-c, bar = 50 µm, and d-e, bar = 25 µm). A-a: Normal mycelium 1269 

growth of the control, with a smooth, vimineous, straight and evenly grown mycelium; A-b: 1270 

Mycelium twisted into clusters; A-c: Mycelium growth with unequal widths and increased 1271 

branching; A-d: Loss of smoothness and formation of unusual surface bulges in the mycelium; A-e: 1272 

Large vacuoles and condensed cytoplasm. B: SEM observation (bar = 25 µm). B-a: Straight and 1273 

smooth mycelium (control group); B-b: Mycelium surface was rough and uneven; B-c,d: 1274 

Mycelium was locally raised, with uneven width and roughness on the surface; B-e: Mycelium 1275 

expansion of branches; B-f: Abnormal branches in the mycelium. C: TEM observation (bar = 1 1276 

µm). C-a: Mycelium grew normally, the mycelium cell membrane was intact, organelles were 1277 

distributed in a normal arrangement, and there were numerous mitochondria with abundant inner 1278 

ridges (control group); C-b: Disrupted cell membrane, disordered organelles, large cavitation area 1279 

in the center, and sparse mitochondria with few ridges; C-c: Irregular organelles and body 1280 

accumulation; C-d: Nonintact cell membrane, large cavitation area, organelles gathered in clumps 1281 

and shifted nucleus. 1282 

Fig. 12 P. infestans mycelium deformation after inhibition 1283 

 1284 

 1285 

 1286 

Note: A: Observation in the red fluorescence channel; B: Observation in the optical channel. a-b, 1287 

Mycelium; c-d, Sporangium. IturinA in the treatment group was at a concentration of 50 µg/mL. 1288 

Fig. 13 IturinA affects cell membrane integrity 1289 
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        1290 

 1291 
Note: A: Relative conductivity; B: Nucleic acid leakage; C: Protein leakage. IturinA in the 1292 

treatment group was at a concentration of 50 µg/mL. The different letters indicate a significant 1293 

difference (P<0.05). 1294 

Fig. 14 Effects of IturinA on cell membrane permeability 1295 

 1296 

    1297 

Note: A: ROS detection. A-a: Control, A-b: IturinA (50 µg/mL), generation for 16 h, A-c: Positive 1298 

control (P, Rosup), generation for 20 min. B: Mean fluorescence intensity. C: MDA production. 1299 

The lowercase letters indicate a comparison within the same treatment group. 1300 

Fig. 15 ROS generation and MDA production 1301 
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 1302 
Note: A: Control group, B: Treatment group (IturinA). a: Optical channel; b: Red fluorescence 1303 

channel; c: Green fluorescence channel; d: Red and green channels merged. 1304 

Fig. 16 IturinA changes MMP  1305 

 1306 

 1307 

    1308 

 1309 

Note: The letters C and I represent the control group and IturinA treatment group, respectively. 1310 

A-E: Complex I to Complex V, respectively. F: Respiratory control rate (RCR). G: Oxidative 1311 

phosphorylation efficiency (P/O). 1312 

Fig. 17 Detection of mitochondrial respiratory activity 1313 
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