- High-throughput sequencing analysis of bacterial diversity in raw and pasteurized 1
- goat milk 2
- Feng Huang^{a1}, Siqi Liu^{a1}, Xiaokang Zhou^a, Pengfei Wang^a, Rengchun He^b, Zhiyang 3
- Zhou^b and Caixia Zou^{a*} 4
- 5
- ^a College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 6
- 530004, China 7
- uscript DOI for deta ^b The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, 8
- Nanning, Guangxi, 530001, China 9

10

Running title: bacterial diversity in goat milk 11 see

12

- *Corresponding author. 13
- Caixia Zou, E-mail address: caixiazou2002@hotmail.com, College of Animal Science 14
- and Technology, Guangxi University, Nanning, Guangxi, 530004, China; 15
- Feng Huang and Sigi Liu contributed equally to this work and are co-authors. 16
- 17

- 19
- 20
- 21
- 22

23 Abstract

24	The aim of this study was to evaluate the microbial composition of both raw and
25	pasteurized goat milk using high-throughput DNA sequencing. This analysis revealed
26	that the dominant phylum found in the raw milk was Proteobacteria, and the
27	dominant genus was Kluyvera; Proteobacteria and Kluyvera constituted up to 67.66%
28	and 28.85% of the total bacteria population, respectively. The microorganisms in goat
29	milk predominantly consist of Gram-negative bacteria. Notably, Akkermansia and
30	Faecalibacterium were identified in goat milk for the first time. In addition, the
31	results also indicate that some bacteria in pasteurized goat milk may exist in a viable
32	but nonculturable (VBNC) state. This study provides a theoretical basis that may aid
33	the community in better understanding bacterial diversity in goat milk. The results of
34	this study will help us to improve the quality and safety of goat milk.
35	Importance The microbial diversity in goat milk and pasteurized goat milk at
36	different refrigeration stages was described. Several bacterial species that have not
37	previously been reported in goat milk were identified, including many VBNC bacteria.
38	The findings provided the necessary microbial information for quality and safety of
39	goat milk and dairy products.
40	Key words: Goat milk, high-throughput sequencing, bacterial diversity, cold storage
41	Introduction
42	Dairy products play an important role in the daily diet of humans with
43	multifarious products including milk, yoghurt and cheese available for consumption.
44	Goat milk contains an abundance of nutrients that are easily digested and absorbed

45	(Park et al., 2007). In recent years, there has been a growing interest in goat milk
46	because of its medical and nutritional benefits, especially for people who are allergic
47	to cow milk. Goat milk also contains many beneficial bacteria, especially lactic acid
48	bacteria (LAB), which have been touted as suitable effectors of goat milk
49	fermentation reactions (Fernanda et al., 2016; García et al., 2014). However, different
50	species of lactic acid bacteria have different functions and these species are known to
51	play decisive roles in the quality of dairy products (Montel et al., 2014). It is hoped
52	that future research investigating the composition of lactic acid bacterial populations
53	in goat milk can help us to better understand the fermentation of dairy products.
54	In general, pasteurization uses the application of heat to reduce the microbial
55	load in raw milk. However, several studies have reported that pasteurized milk can
56	only be stored for 3 to 10 days at refrigerated storage conditions (Petrus et al., 2010;
57	Fan et al., 2016). A previous study by Fonseca et al. (2013) revealed that heat-treated
58	goat milk should not be kept in cold storage for more than 3 days ($4^{\circ}C$); refrigeration
59	for longer than 3 days can affect the shelf-life of milk powder. Thermoduric bacteria
60	are considered to be ubiquitous microorganisms in pasteurized milk (Ternström et al.,
61	1993). In addition, plate-counting methods have been used to show that the
62	prevalence of psychrophilic bacteria in pasteurized milk increases during refrigerated
63	storage and these bacteria can produce heat-resistant proteolytic enzymes and lipases
64	(Meunier-Goddik, L and Sandra, S. 2011, Angelidis et al., 2016), which can lead to
65	reduced dairy product and milk shelf-lives (Doyle et al., 2017). Moreover, it is
66	difficult to observe some of the changes that occur in relative bacterial abundances

due to difficulties associated with cultivation using plate-counting methods duringcold storage.

From the perspective of food quality and storage time, identification of the 69 microbial populations in goat milk is necessary for the safety of milk products. It is 70 71 difficult to determine the entire bacterial composition of milk using culture-dependent methods; this is especially true for bacteria that exist in a VBNC state 72 (Paszyńska-Wesołowska and Bartoszcze, 2009; Kibbee and Örmeci, 2017). Recent, 73 high-throughput sequencing strategies have made it possible to identify many of the 74 75 afore-mentioned bacteria at subdominant levels. These methodologies have been used to detect microorganisms in dairy products thereby helping us to better understand the 76 diversity and dynamics of native microbial populations. Only a limited number of 77 78 studies have reported the bacterial diversity of goat milk in China. Moreover, the composition and associated co-occurrences of microbial populations in pasteurized 79 goat milk during cold storage (about 4°C) have not been investigated. In the current 80 81 study, the primary aim was to determine the bacterial diversity in raw goat milk as 82 well as in pasteurized goat milk at different stages of refrigeration using high-throughput sequencing. This study assessed bacterial diversity in goat milk and 83 provides a basis for further analysis of goat milk. 84 85 Materials and methods **Sample collection** 86 87 The goat milk samples were obtained from a goat farm with 200 Guanzhong

88 goats. The goat farm is located at the Animal Husbandry Research Institute of

89	Guangxi Zhuang Autonomous Region in China. All animal experiments were
90	performed in line with experimental animal administration regulations of Guangxi
91	University. All goats were fed uniformly (peanut vine, elephant grass and 2 kg of
92	complete feed, twice a day); the feed did not contain antibiotics, and all breasts of
93	goats were healthy throughout the entire lactation period. All goat milk samples were
94	collected during the fifth month of lactation. Milk samples were collected after teat
95	ends had been disinfected with 70% ethyl alcohol. Raw goat milk was immediately
96	placed into sterilized cone bottles; the samples were subsequently placed in an ice box
97	until they were analyzed in the laboratory. The SCC of samples was below 200,000
98	cells/mL. The average fat and protein contents in raw goat milk were 3.87 g/100 mL
99	and 3.16 g/100 mL, respectively. Raw goat milk was sterilized by pasteurization (at
100	72° C for 15 s), and the pasteurized goat milk samples were immediately placed into
101	an ice box cooling to 4°C. Next, the pasteurized milk samples were stored at 4°C for 5
102	and 10 d before freezing at -80° C. To facilitate DNA extraction, the afore-mentioned
103	goat milk samples were defrosted at 4°C.

104 **DNA extraction**

105 Good quality DNA is important for valid analysis of goat milk microbial diversity.

106 Goat milk samples (20 mL) were concentrated by centrifugation for 10 min at 12,000

- 107 $\times g$ at 4°C. The aqueous and fatty layers were removed and discarded. Cell pellets
- were washed with 0.8% NaCl solution and centrifuged at $12,000 \times g$ for 10 min at
- 109 4°C. Total genomic DNA was extracted using the food DNA Kit according to the
- 110 manufacturer's instructions. The purity and yield of the extracted DNA were

111 determined with a Qubit® dsDNA BR Assay Kit in accordance with the

- 112 manufacturer's instructions; the integrity of the extracted DNA was determined by
- agarose gel electrophoresis (using a 1% agarose gel).
- 114 High-Throughput Sequencing and Bioinformatics Analysis
- 115 The afore-mentioned DNA extracts were sequenced following amplification of the V3
- and V4 regions of 16S rRNA genes using the universal forward primer 338F
- 117 (5'-ACTCCTACGGGAGGCAGCAG-3') and the universal reverse primer 806R
- 118 (5'-GGACTACHVGGGTWTCTAAT-3'). The reverse primer contained a set 6-bp
- 119 barcode. Genomic DNA samples (30 ng) and corresponding fusion primers were used
- 120 to perform the PCRs. The PCRs were performed as follows: 95°C for 3 min followed
- by 30 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 45 s; a final extension step
- 122 of 72°C for 10 min was also performed. Amplified PCR products were purified with
- 123 Agencourt AMPure XP magnetic beads and dissolution in Elution Buffer was

124 performed to construct a DNA Library. The concentration and range of the library

- were analyzed using an Agilent 2100 Bioanalyser according to the manufacturer's
- instructions. The qualified library was sequenced using an Illumina HiSeq 2500
- 127 platform (Fadrosh et al., 2014), and the sequencing type was PE 300. Clean data were
- 128 obtained by processing the raw data using the Windows discard low quality approach,
- 129 while low-quality data were removed. According to the barcode and primers, the
- allowable number of mismatches between barcode sequences and reads was 0 bp.
- 131 Paired-end reads were assembled using FLASH (Magoc and Salzbert, 2011) software
- to generate the raw tags. The effective tags were clustered using USEARCH (Edgar,

133	2013) software to	generate of	perational	taxonomic	units ((OTUs) based	on 97%
-----	-------------------	-------------	------------	-----------	---------	-------	---------	--------

- threshold identity. The taxonomic annotation was performed using the RDP classifier
- 135 (Wang et al., 2007) at the phylum and genus level. Alpha diversity was analyzed using
- 136 Chao1 richness; Shannon, observed species and Good's coverage indices were
- 137 calculated by mothur (Schloss et al., 2009) software. The high-throughput sequencing

for details

- 138 data generated were deposited in the NCBI database (Accession number: SRP
- 139 219141).
- 140 **Results**
- 141 High-Throughput Sequencing of Amplicons

Using high-throughput sequencing, a total of 1,199,746 raw reads were obtained from
9 samples; after filtering, 1,127,473 clean reads were generated. The rarefaction curve
(Figure 1) revealed that sequencing data resulted in sufficient coverage, suggesting
that the data were reliable for further analyses. The rank curve (Figure 1) showed that
the abundance in the samples decreased during prolonged cold storage. The Chao1,
Simpson, observed species, Shannon and ACE diversity indices of each group are
shown in Table 1.

149 **Bacterial composition of raw goat milk**

- 150 The bacterial diversity of the raw goat milk was defined at both phylum and genus
- 151 levels by high-throughput sequencing (Table 2, Figure 2). The sequences
- 152 corresponded to 5 distinct phyla: Proteobacteria, Firmicutes, Deinococcus-Thermus,
- 153 *Bacteroidetes* and *Actinobacteria* were detected in the raw goat milk. The results
- revealed that phylum *Proteobacteria* was the dominant phylum in raw goat milk

155	samples, with more than 67.66% of the total population consisting of Proteobacteria
156	(Table 2, Figure 2A). At the family level, Enterobacteriaceae was the predominant
157	family, accounting for 49.29% of all bacteria (data not shown). Genus Kluyvera was
158	the dominant genus in raw goat milk, representing approximately 28.85% of the total
159	population (Table 2, Figure 2B).
160	The most abundant genera Kluyvera, Aquabacterium, Pseudomonas, Burkholderia,
161	Thermus and Acinetobacter detected in goat milk were Gram-negative. Indeed,
162	Gram-negative bacteria accounted for more than 82% of the total population in raw
163	goat milk (Figure 4).
164	We also identified several bacterial genera that had not previously been reported in
165	raw goat milk. These genera included Faecalibacterium and Akkermansia.
166	In this study, the hygienic safety status of raw goat milk was also assessed. Several
167	pathogens, including Shigella, Staphylococcus and Serratia were identified in the raw
168	milk. Probiotics including Lactobacillus, Lactococcus, Bifidobacterium, Weissella and
169	Enterococcus were also identified. This analysis revealed the identity of some LAB at
170	the species level: Lactobacillus_helveticus (0.07%), Lactobacillus_gasseri (0.009%),
171	Lactobacillus_xiangfangensis (0.005%), Lactobacillus_casei (0.01%),
172	Lactobacillus_iners (0.009%), Lactobacillus_pobuzihii (0.01%),
173	Lactobacillus_paralimentarius (0.01%), Lactobacillus_ruminis (0.001%),
174	Lactobacillus_versmoldensis (0.0003%), Lactobacillus_delbrueckii (0.004%),
175	Lactococcus_lactis (0.25%), Lactococcus_chungangensis (0.01%),
176	Bifidobacterium_merycicum (0.006%), Bifidobacterium_pseudolongum (0.02%),

177 Bifidobacterium_psychraerophilum (0.01%), Weissella_paramesenteroides (0.04%),

- and *Enterococcus_faecalis* (0.01%). These results are important for the future
- 179 production of probiotic milks.
- 180 Bacterial composition of pasteurized milk
- 181 The bacterial community of pasteurized goat milk was analyzed at the genus level at
- different stages of 4°C storage (Figure 3). At the phylum level, there was no
- significant change in bacterial diversity (data not shown). In this current study,
- 184 taxonomic analysis revealed that, at the genus level, the predominate genera in
- pasteurized goat milk stored for 5 d was similar to that for raw goat milk (Figure 3).

186 The relative abundance of *Acinetobacter* in pasteurized goat milk was similar to that

187 of raw goat milk (3.78 vs 4.08%) after 5 d of storage. Following 10 d of storage, an

188 increase in the relative abundance of *Acinetobacter* was observed in pasteurized goat

milk (3.78 vs 10.00%); *Acinetobacter* became the dominant genus at d 10 (Figure 3).

190 A relatively low abundance of *Meiothermus* was observed in raw goat milk, whereas

191 the *Meiothermus* population in pasteurized goat milk appeared to increase gradually

during cold storage (0.005 vs 8.68%). Similar results were observed for

193 Sphingomonas and Staphylococcus (Figure 3). By contrast, the proportion of other

- 194 genera (those present in pasteurized goat milk in addition to the afore-mentioned
- genera) gradually decreased in pasteurized goat milk stored between 5 d and 10 d
- 196 (Figure 3). Furthermore, the prevalence of Gram-negative, obligate aerobes
- significantly increased following storage for 5 d to 10 d (20.49 vs 35.90%, Figure 4).
- 198 Correlation between the microbial genus composition of goat milk during cold storage

199	To better understand the abundances and relationships between dominant species
200	(more than 1% of total bacterial composition) during cold storage, a Spearman's
201	correlation heatmap was generated for the dominant species (Figure 5). The results
202	revealed that Acinetobacter_pittii was positively correlated with Burkholderia
203	multivorans (R=0.67, P=0.04). Acinetobacter lwoffii was positively correlated with
204	Sphingomonas oligophenolica (R=0.85, P=0.003) and Meiothermus silvanus (R=0.76,
205	P=0.016). Meanwhile, Acinetobacter lwoffii and Sphingomonas oligophenolica were
206	negatively correlated with Burkholderia multivorans (R=0.88, P=0.001 and R=0.86,
207	P=0.002, respectively). Geobacillus stearothermophilus was positively correlated
208	with Aquabacterium parvum (R= $0.83, P=0.005$).
209	Discussion In this surrent study, the heatenial diversity of row gost milk and the effect of cold
210	In this current study, the bacterial diversity of raw goat milk and the effect of cold
211	storage on the bacterial diversity of pasteurized goat milk from Guangxi, China was
212	investigated using a high-throughput sequencing strategy. The results of this analysis
213	revealed that 5 distinct phyla (i.e., Proteobacteria, Firmicutes, Deinococcus-Thermus,
214	Bacteroidetes and Actinobacteria) and 4 distinct genera were present (i.e., Kluyvera,
215	Geobacillus, Thermus and Pseudomonas) in the raw milk of goats. Notably, the
216	genera, Akkermansia and Faecalibacterium, were identified in raw goat milk for the
217	first time. Furthermore, following prolonged storage under refrigerated conditions, the
218	dominant genera were Geobacillus and Kluyvera after 5 d of storage while Kluyvera,

Acinetobacter and *Meiothermus* were the dominant genera after 10 d.

220 In this study, the less prevalent genera in goat milk constituted a significant proportion

of the total bacterial population; this result is similar to results published in other

222	reports	(Kable et al.,	2016; Quigley	v et al., 2013).
-----	---------	----------------	---------------	------------------

223	The most abundant phyla observed in raw goat milk were similar to those published in
224	previous studies (Zhang et al., 2017). Conversely, the predominant genera observed in
225	raw goat milk in this study differed from those identified in other studies. McInnis et
226	al. (2015) reported that the most abundant genera in raw goat milk were Micrococcus,
227	Rhodococcus, Stenotrophomonas, Pseudomonas and Phyllobacterium; these results
228	were not consistent with our research. Meanwhile, previous research revealed that the
229	genus Pseudomonas was abundant in goat milk (Scatamburlo et al., 2015). In this
230	current study, genus Kluyvera constituted a significant proportion of the total bacterial
231	population in raw goat milk. These differences in the associated abundances could be
232	related to many factors, including lactation stage, feed, weather environment, health
233	of the animal, and farm management practices (Callon et al., 2007).
233 234	of the animal, and farm management practices (Callon et al., 2007). In our study, the predominant genera (i.e., <i>Kluyvera</i> , <i>Thermus</i> , <i>Aquabacterium</i> ,
234	In our study, the predominant genera (i.e., Kluyvera, Thermus, Aquabacterium,
234 235	In our study, the predominant genera (i.e., <i>Kluyvera</i> , <i>Thermus</i> , <i>Aquabacterium</i> , <i>Pseudomonas</i> , <i>Burkholderia</i> and <i>Acinetobacter</i>) observed in raw goat milk were
234 235 236	In our study, the predominant genera (i.e., <i>Kluyvera</i> , <i>Thermus</i> , <i>Aquabacterium</i> , <i>Pseudomonas</i> , <i>Burkholderia</i> and <i>Acinetobacter</i>) observed in raw goat milk were Gram-negative bacteria. Dalmasso et al. (2017) studied the bacterial diversity of
234 235 236 237	In our study, the predominant genera (i.e., <i>Kluyvera</i> , <i>Thermus</i> , <i>Aquabacterium</i> , <i>Pseudomonas</i> , <i>Burkholderia</i> and <i>Acinetobacter</i>) observed in raw goat milk were Gram-negative bacteria. Dalmasso et al. (2017) studied the bacterial diversity of donkey milk and reported that, similar to our study, the dominant genera
234 235 236 237 238	In our study, the predominant genera (i.e., <i>Kluyvera, Thermus, Aquabacterium,</i> <i>Pseudomonas, Burkholderia</i> and <i>Acinetobacter</i>) observed in raw goat milk were Gram-negative bacteria. Dalmasso et al. (2017) studied the bacterial diversity of donkey milk and reported that, similar to our study, the dominant genera <i>Pseudomonas, Ralstonia, Cupriavidus, Acinetobacter, Citrobacter</i> and
234 235 236 237 238 239	In our study, the predominant genera (i.e., <i>Kluyvera</i> , <i>Thermus</i> , <i>Aquabacterium</i> , <i>Pseudomonas</i> , <i>Burkholderia</i> and <i>Acinetobacter</i>) observed in raw goat milk were Gram-negative bacteria. Dalmasso et al. (2017) studied the bacterial diversity of donkey milk and reported that, similar to our study, the dominant genera <i>Pseudomonas</i> , <i>Ralstonia</i> , <i>Cupriavidus</i> , <i>Acinetobacter</i> , <i>Citrobacter</i> and <i>Sphingobacterium</i> were also Gram-negative bacteria. Gram-negative bacteria are

243	2012). Larpin-Laborde et al. (2011) also reported that some Gram-negative bacteria
244	could have potential applications in cheese-manufacturing technologies. However,
245	little is currently known about the role of Gram-negative bacteria in associated
246	manufacturing strategies. Hence, the role of Gram-negative bacteria in milk merits
247	further study.
248	The genera Thermus, Burkholderia and Aquabacterium are usually found in hot
249	springs, soil, and water, and are therefore considered environmental microorganisms.
250	In addition, the genera Akkermansia and Faecalibacterium are generally considered
251	gut microbes. Akkernansia is considered to be a potentially protective intestinal
252	bacterium (Arias et al., 2017). Akkermansia is associated not only with the intestinal
253	health of obese and diabetic individuals but is also known to promote the therapeutic
254	effects of tumor PD-1 (Reunanen et al., 2015; Routy et ai., 2018). In a recent study,
255	Akkermansia was shown to promote intestinal mucosal immunity homeostasis
256	(Ottman et al., 2017). The species Faecalibacterium could play an important role in
257	gut homeostasis, and has been shown to exhibit anti-inflammatory activity (Sokol et
258	al., 2009). The effects of these microbes in goat milk on human health remain to be
259	elucidated. Nevertheless, this study will provide us with a platform to identify new
260	functional microorganisms that have not yet been discovered.
261	Our study also revealed high bacterial diversity in pasteurized goat milk. The
262	rarefaction curve and rank abundance curve (Figure 1) confirmed that the bacterial
263	diversity of pasteurized goat milk decreased during cold storage.
264	It is widely perceived that pasteurization is sufficient to eliminate the threat of

265	psychrophilic bacteria. Psychrophilic bacteria exhibit proteolytic and lipolytic
266	enzymatic activities, and therefore can reduce the shelf-life of milk products.
267	However, the study revealed that the prevalence of Acinetobacter can increase during
268	5 to 10 d of refrigeration (Figure 3). The authors speculate that some bacteria (i.e.,
269	Acinetobacter) that are supposed to be eliminated by pasteurization are likely to
270	survive and may be in a damaged and/or VBNC state. Acinetobacter and
271	Pseudomonas are psychrophilic bacteria which increase in prevalence during
272	refrigeration. Our study revealed that the genus Acinetobacter increased in prevalence
273	following storage for 10 d. This finding is similar results published by Raats et al.
274	(2011) where Acinetobacter was the predominant genus after cold incubation for 54 h.
275	Conversely, the genus <i>Pseudomonas</i> gradually decreased during prolonged storage.
276	This result differs from the results of a study published by Porcellato et al (2018)
277	where genus Pseudomonas was abundant following cold storage.
278	Researchers have suggested that the microbial composition of milk changes and
279	affects the quality of milk during cold storage (De Jonghe et al., 2011; von Neubeck et
280	al., 2015). The correlation analysis revealed the relationships among the dominant
281	bacteria in pasteurized goat milk during refrigerated storage (Figure 5); this analysis
282	indicated that there were different interdependence relationships among the
283	microorganisms in goat milk. During prolonged cold storage, Acinetobacter
284	populations play a key role in maintaining the interrelationships between
285	microorganisms. The existence of dominant species leads to a negative correlation
286	between microorganisms in goat milk (Figure 5).

287	Our culture-independent analyses revealed a low proportion of Sphingomonas and
288	Meiothermus in raw goat milk, whereas a significantly greater proportion of
289	Sphingomonas and Meiothermus were observed in pasteurized goat milk during cold
290	storage (Figure 3). Sphingomonas spp. are phylogenetically related to Pseudomonas
291	spp., and represent a new type of microbial resource. A Spearman's correlation heat
292	map showed that Sphingomonas and Meiothermus were positively correlated with
293	Acinetobacter spp. (Figure 5), and these bacteria increase during cold storage.
294	However, the effect of these microbes in pasteurized goat milk on the hygienic quality
295	However, the effect of these microbes in pasteurized goat milk on the hygienic quality and shelf-life of goat milk is still unknown.
296	It is generally considered that LAB are the dominant bacteria in milk from several
297	animals. The relatively low abundance of LAB observed in this study is consistent
298	with a study published by Cavallarin et al. (2015). In this study, members of the
299	Lactococcus (0.26%) genus were more prevalent than those off the Lactobacillus
300	genus (0.14%); this result was not consistent with the Setyawardani et al. (2011)
301	report. Some LAB in raw goat milk were detected at the species level. LAB in milk
302	have shown potential in the production of natural antimicrobials for the improvement
303	of human and animal health (Quigley et al., 2013). Recently, Perna et al. (2015)
304	observed that a LAB strain isolated from cow's milk had a positive effect on the
305	fermentation of milk. In another study, Jeronymo-Ceneviva et al. (2014) isolated a
306	new probiotic bacterium from dairy products produced from buffalo milk. Previous
307	studies have shown that goat milk can treat patients with milk allergies and
308	gastrointestinal diseases (Haenlein et al., 2004). Our results provide a theoretical basis

309 for the isolation of beneficial bacteria in goat milk.

310 Conclusions

- 311 This study describes the bacterial diversity in goat milk as well as in pasteurized goat
- milk during refrigerated storage. The analysis revealed the presence of bacteria that
- had not been previously been detected. Furthermore, high-throughput DNA
- sequencing revealed the presence of probiotic and pathogenic strains in goat milk.
- 315 This study also showed that microorganisms believed to be eliminated by
- 316 pasteurization are likely to survive commercial pasteurization. Meanwhile, a
- 317 Spearman's correlation analysis showed that some psychrophilic bacteria were

318 positively correlated with *Sphingomonas* and *Meiothermus*; the effects of these

- 319 microorganisms in goat milk remain unknown. Further studies should focus on the
- 320 dynamic relationship between bacterial populations and goat milk composition as well
- 321 as the isolation of beneficial bacteria from goat milk.

322 Conflict of interest

323 The authors declare that there is no commercial or associative interest that represents

a conflict of interest in connection with the work submitted.

325 Acknowledgements

- 326 This study was supported by the Innovation Project of Guangxi Graduate Education
- 327 (No. YCSW2018028). We thank LetPub (www.letpub.com) for its linguistic
- 328 assistance during the preparation of this manuscript.

329

331 **References**

332	1.	Angelidis, A. S., Tsiota, S., Pexara, A., Govaris, A., 2016. The microbiological
333		quality of pasteurized milk sold by automatic vending machines. Letters in
334		applied microbiology, 62(6), 472-479.
335	2.	Arias, M., Cobo, M., Jaime-Sánchez, P., Pastor, J., Marijuan, P., Pardo, J., Del
336		Campo, R., 2017. Gut microbiota and systemic inflammation changes after bread
337		consumption: The ingredients and the processing influence. Journal of functional
338		foods, 32, 98-105.
339	3.	Callon, C., Duthoit, F., Delbès, C., Ferrand, M., Le Frileux, Y., De Crémoux, R.,
340		Montel, M.C., 2007. Stability of microbial communities in goat milk during a
341		lactation year: molecular approaches. Systematic and applied microbiology, 30(7),
342		547-560.
343	4.	Cavallarin, L., Giribaldi, M., de los Dolores Soto-Del, M., Valle, E., Barbarino,
344		G., Gennero, M. S., Civera, T., 2015. A survey on the milk chemical and
345		microbiological quality in dairy donkey farms located in NorthWestern Italy.
346		Food Control, 50, 230-235.
347	5.	Dalmasso, A., Civera, T., Bottero, M.T., 2017. Characterization of bacterial
348		communities of donkey milk by high-throughput sequencing. International
349		journal of food microbiology, 251, 67-72.
350	6.	De Jonghe, V., Coorevits, A., Van Hoorde, K., Messens, W., Van Landschoot, A.,
351		De Vos, P., Heyndrickx, M., 2011. Influence of storage conditions on the growth
352		of Pseudomonas species in refrigerated raw milk. Appl. Environ. Microbiol, 77(2),

354	7.	Delbès-Paus, C., Pochet, S., Helinck, S., Veisseire, P., Bord, C., Lebecque, A.,
355		Montel, M.C., 2012. Impact of Gram-negative bacteria in interaction with a
356		complex microbial consortium on biogenic amine content and sensory
357		characteristics of an uncooked pressed cheese. Food microbiology, 30(1), 74-82.
358	8.	Doyle, C.J., Gleeson, D., O'Toole, P.W., Cotter, P.D., 2017. High-throughput
359		metataxonomic characterization of the raw milk microbiota identifies changes
360		reflecting lactation stage and storage conditions. International journal of food
361		microbiology, 255, 1-6.
362	9.	Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial
363		amplicon reads. Nature methods, 10(10), 996.
364	10.	Ercolini, D., Russo, F., Ferrocino, I., Villani, F., 2009. Molecular identification of
365		mesophilic and psychrotrophic bacteria from raw cow\"s milk. Food
366		Microbiology, 26(2), 228-231.
367	11.	Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., Ravel,
368		J., 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene
369		sequencing on the Illumina MiSeq platform. Microbiome, 2(1), 6.
370	12.	Fernanda, P.D.S.F., Biscola, V., Leblanc, J. G., Dora, G.D.M.F.B., 2016. Effect of
371		indigenous lactic acid bacteria isolated from goat milk and cheeses on folate and
372		riboflavin content of fermented goat milk. LWT - Food Science and Technology,
373		S0023643816301694.
374	13.	Fonseca, C.R., Bordin, K., Fernandes, A.M., Rodrigues, C.E.C., Corassin, C.H.,

375		Cruz, A.G., 2013. Storage of refrigerated raw goat milk affecting the quality of
376		whole milk powder. Journal of Dairy Science, 96(7), 4716-4724.
377	14.	García, V., Rovira, S., Boutoial, K., López, M. B., 2014. Improvements in goat
378		milk quality: A review. Small Ruminant Research, 121(1), 51-57.
379	15.	Haenlein, G.F.W., 2004. Goat milk in human nutrition. Small Ruminant Research,
380		51(2), 155-163.
381	16.	Jeronymo-Ceneviva, A.B., de Paula, A.T., Silva, L.F., Todorov, S.D., Franco,
382		B.D.G. M., & Penna, A.L.B., 2014. Probiotic properties of lactic acid bacteria
383		isolated from water-buffalo mozzarella cheese. Probiotics and antimicrobial
384		proteins, 6(3-4), 141-156.
385	17.	Kable, M. E., Srisengfa, Y., Laird, M., Zaragoza, J., McLeod, J., Heidenreich, J.,
386		Marco, M.L., 2016. The core and seasonal microbiota of raw bovine milk in
387		tanker trucks and the impact of transfer to a milk processing facility. MBio, 7(4),
388		e00836-16.
389	18.	Kibbee, R.J., Örmeci, B., 2017. Development of a sensitive and false-positive
390		free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate
391		disinfection performance in wastewater effluent. Journal of microbiological
392		methods, 132, 139-147.
393	19.	Larpin-Laborde, S., Imran, M., Bonaïti, C., Bora, N., Gelsomino, R., Goerges, S.,
394		Swings, J., 2011. Surface microbial consortia from Livarot, a French
395		smear-ripened cheese. Canadian Journal of Microbiology, 57(8), 651-660.
396	20.	Magoc, T., Salzbert, S., 2011. FLASH: Fast length adjustment of short reads to

397		impr ove genome assemblies. Bioinformatics. 27, 2957-2963.
398	21.	McInnis, E.A., Kalanetra, K.M., Mills, D.A., Maga, E.A., 2015. Analysis of raw
399		goat milk microbiota: impact of stage of lactation and lysozyme on microbial
400		diversity. Food Microbiology, 46, 121-131.
401	22.	Meunier-Goddik, L., Sandra, S. 2011. LIQUID MILK PRODUCTS Liquid Milk
402		Products: Pasteurized Milk. Encyclopedia of Dairy Sciences, 274–280.
403	23.	Montel, M.C., Buchin, S., Mallet, A., Delbes-Paus, C., Vuitton, D.A., Desmasures,
404		N., Berthier, F., 2014. Traditional cheeses: rich and diverse microbiota with
405		associated benefits. International journal of food microbiology, 177, 136-154.
406	24.	Neugebauer, K.A., Gilliland, S.E. 2005. Antagonistic action of Lactobacillus
407		delbrueckii ssp. lactis RM2-5 toward spoilage Organisms in cottage cheese.
408		Journal of dairy science, 88(4), 1335-1341.
409	25.	Ottman, N., Reunanen, J., Meijerink, M., Pietilä, T.E., Kainulainen, V., Klievink,
410		J., Satokari, R., 2017. Pili-like proteins of Akkermansia muciniphila modulate
411		host immune responses and gut barrier function. PLoS One, 12(3), e0173004.
412	26.	Park, Y.W., Juárez, M., Ramos, M., Haenlein, G.F.W., 2007. Physico-chemical
413		characteristics of goat and sheep milk ${\asymp}$. Small Ruminant Research, 68(1),
414		88-113.
415	27.	Paszyńska-Wesołowska, I., Bartoszcze, M., 2009. Bacteria in the state of
416		VBNC-a threat to human health. Medycyna Weterynaryjna, 65(4), 228-231.
417	28.	Perna, A., Intaglietta, I., Simonetti, A., Gambacorta, E., 2015. Donkey milk for
418		manufacture of novel functional fermented beverages. Journal of food science,

419	80(6),	S1352-	S1359.
-----	--------	--------	--------

420	29.	Petrus, R.R., Loiola, C.G., Oliveira, C.A.F., 2010. Microbiological shelf life of
421		pasteurized milk in bottle and pouch. Journal of food science, 75(1), M36-M40.
422	30.	Porcellato, D., Aspholm, M., Skeie, S. B., Monshaugen, M., Brendehaug, J.,
423		Mellegård, H., 2018. Microbial diversity of consumption milk during processing
424		and storage. International journal of food microbiology, 266, 21-30.
425	31.	Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T.P., Ross, R.P., Fitzgerald,
426		G.F., Cotter, P.D., 2013. The complex microbiota of raw milk. FEMS
427		G.F., Cotter, P.D., 2013. The complex microbiota of raw milk. FEMS microbiology reviews, 37(5), 664-698.
428	32.	Raats, D., Offek, M., Minz, D., Halpern, M., 2011. Molecular analysis of
429		bacterial communities in raw cow milk and the impact of refrigeration on its
430		structure and dynamics. Food microbiology, 28(3), 465-471.
431	33.	Reunanen, J., Kainulainen, V., Huuskonen, L., Ottman, N., Belzer, C., Huhtinen,
432		H., Satokari, R., 2015. Akkermansia muciniphila adheres to enterocytes and
433		strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol.,
434		81(11), 3655-3662.
435	34.	Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P., Alou, M.T., Daillère, R.,
436		Fidelle, M., 2018. Gut microbiome influences efficacy of PD-1-based
437		immunotherapy against epithelial tumors. Science, 359(6371), 91-97.
438	35.	Scatamburlo, T.M., Yamazi, A.K., Cavicchioli, V.Q., Pieri, F.A., Nero, L.A. 2015.
439		Spoilage potential of Pseudomonas species isolated from goat milk. Journal of
440		dairy science, 98(2), 759-764.

441	36.	Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.				
442		B., Sahl, J.W., 2009. Introducing mothur: open-source, platform-independent,				
443		community-supported software for describing and comparing microbial				
444		communities. Appl. Environ. Microbiol., 75(23), 7537-7541.				
445	37.	Setyawardani, T., Rahayu, W.P., Maheswari, R., Palupi, N.H.S., 2011.				
446		Identification and characterization of probiotic lactic acid bacteria isolated from				
447		indigenous goat milk. Animal Production, 13(1).				
448	38.	Sokol, H., Seksik, P., Furet, J.P., Firmesse, O., Nion - Larmurier, L., Beaugerie, L.,				
449		Doré, J., 2009. Low counts of Faecalibacterium prausnitzii in colitis microbiota.				
450		Inflammatory bowel diseases, 15(8), 1183-1189.				
451	39. Ternström, A., Lindberg, A.M., Molin, G. 1993. Classification of the spoilage					
452		flora of raw and pasteurized bovine milk, with special reference to Pseudomonas				
453		and Bacillus. Journal of Applied Bacteriology, 75(1), 25-34.				
454	40.	von Neubeck, M., Baur, C., Krewinkel, M., Stoeckel, M., Kranz, B., Stressler, T.,				
455		Wenning, M., 2015. Biodiversity of refrigerated raw milk microbiota and their				
456		enzymatic spoilage potential. International journal of food microbiology, 211,				
457		57-65.				
458	41.	Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier				
459		for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl.				
460		Environ. Microbiol., 73(16), 5261-5267.				
461	42.	Zhang, F., Wang, Z., Lei, F., Wang, B., Jiang, S., Peng, Q., Shao, Y., 2017.				
462		Bacterial diversity in goat milk from the Guanzhong area of China. Journal of				

492 Figure legends

493 Figure 1. Rarefaction curve and rank abundance curve of bacterial diversity in goat

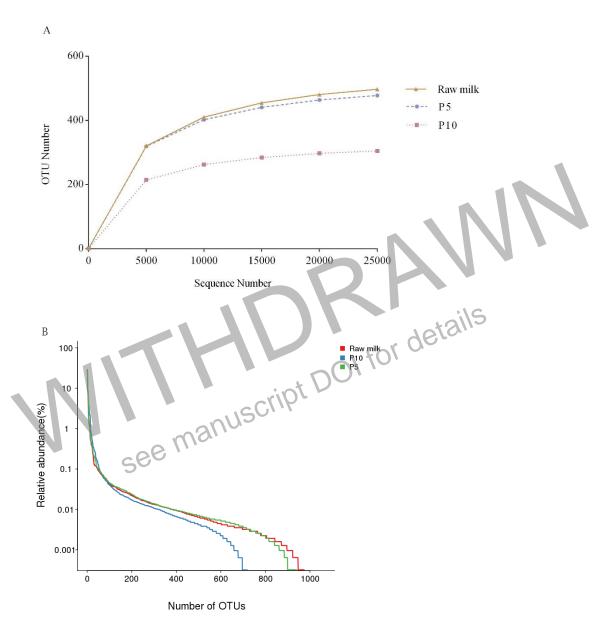
- 494 milk. P_5 = pasteurized goat milk samples stored for 5 d at refrigeration temperature;
- 495 P_{10} = pasteurized goat milk samples stored for 10 d at refrigeration temperature. OTU
- 496 = operational taxonomic units.
- 497 Figure 2. Relative abundance of the indigenous microflora (present above 0.1%)
 498 phyla (A) and genera (B) in raw goat milk.
- 499 Figure 3. Relative abundance of the microflora (present above 0.5%) at the genus
- level in pasteurized goat milk at refrigeration temperature. $P_5 =$ pasteurized goat milk
- samples stored for 5 d. P_{10} = pasteurized goat milk samples stored for 10 d.
- 502 Figure 4. Relative abundance of the Gram-positive and Gram-positive bacteria
- 503 (present above 0.5%) at the genus level in pasteurized goat milk at refrigeration
- 504 temperature. P_5 = pasteurized goat milk samples stored for 5 d. P_{10} = pasteurized goat
- 505 milk samples stored for 10 d.
- **Figure 5.** Correlations among predominant bacterial genera of pasteurized goat milk
- 507 during cold storage.

Sample	Raw reads	Clean reads	Observed	Chao	Shannon	ACE
			species			
Raw milk	374,136	356,787	551	562.25	3.09	556.35
P_{5}^{1}	402,612	385,036	526	541.44	3.17	533.95
P_{10}^{2}	422,998	387,056	331	337.89	2.96	335.91

Table 1. Characteristics of high-throughput sequencing data 508

 ${}^{1}P_{5}$ = Pasteurized goat milk samples were stored for 5 d at refrigeration temperature. 509

 $^{2}P_{10}$ = Pasteurized goat milk samples were stored for 10 d at refrigeration temperature. 510


511

at refrigeration

Table 2. Prevalence of bacterial phyla and genera detected in raw goat milk by

513 high-throughput sequencing

	Phylum	Mean	Genus	Mean
	Proteobacteria	67.66	Kluyvera	28.85
	Firmicutes	18.56	Geobacillus	9.30
	Deinococcus-Thermus	ermus 8.50 Th	Thermus	8.49
	Bacteroidetes	3.30	Pseudomonas	8.28
			Acinetobacter	4.08
			Shigella	1.93
		11	Aquabacterium	1.02
			Burkholderia	1.02
			Streptococcus	1.06
514				
515	Ser	manuscrit	-	

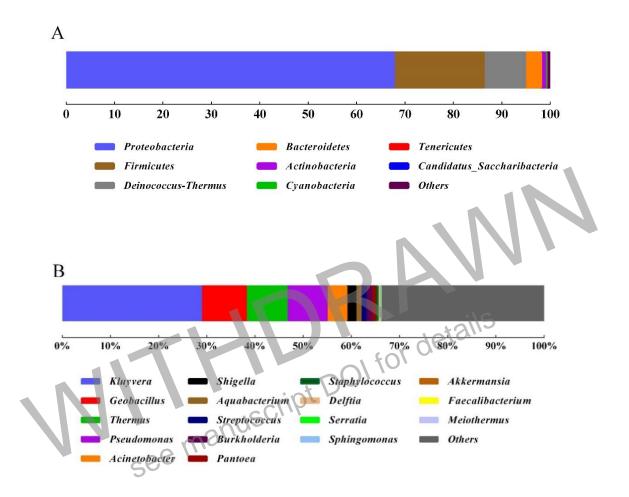
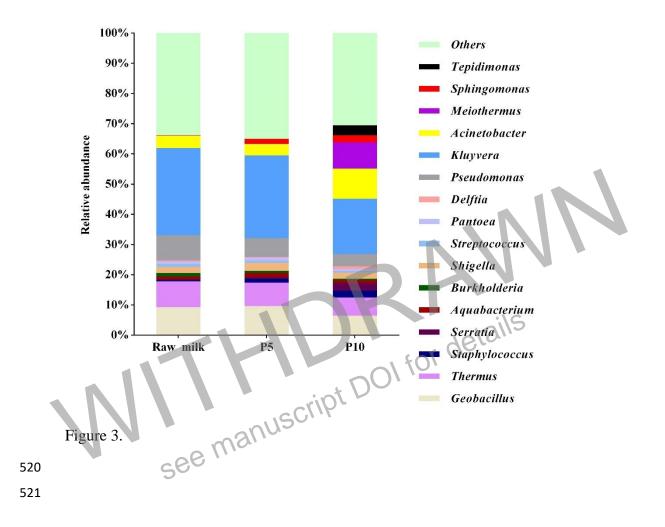
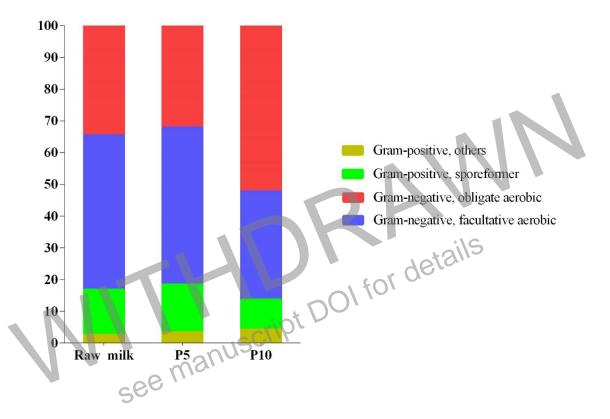




Figure 2.

518

522

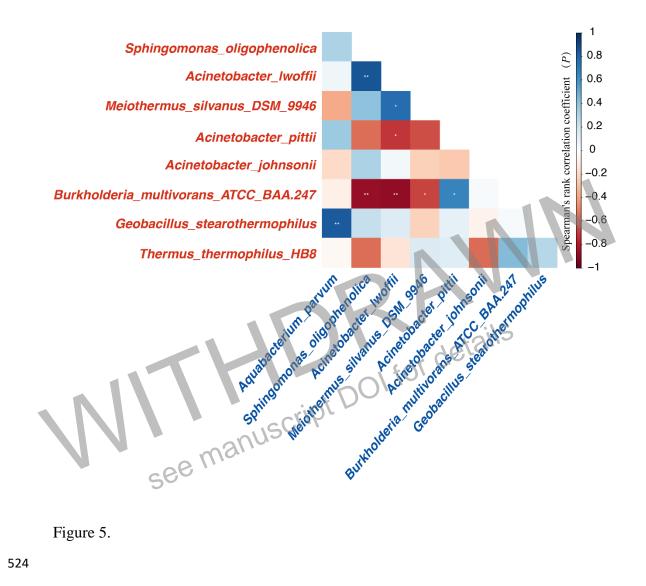


Figure 5.

524