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Abstract

Classification on the basis of gene expression data derived from RNA-seq promises to
become an important part of modern medicine. We propose a new classification method
based on a model where the data is marginally negative binomial but dependent, thereby
incorporating the dependence known to be present between measurements from different
genes. The method, called qtQDA, works by first performing a quantile transformation (qt)
then applying Gaussian Quadratic Discriminant Analysis (QDA) using regularized covari-
ance matrix estimates. We show that qtQDA has excellent performance when applied to real
data sets and has advantages over some existing approaches. An R package implementing
the method is also available.
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1 Introduction

Classification on the basis of gene expression data has the potential to become an important part
of modern medicine, e.g. for disease diagnosis and personalization of treatment. For example,
consider breast cancer. This is a heterogeneous disease consisting of several distinct types, with
each type being characterized, not necessarily by its morphological or clinical characteristics, but
by its molecular characteristics, thereby making it difficult to diagnose the particular type affect-
ing a patient (Perou et al., 2000). Moreover, the most effective treatment for each of these types
may differ, e.g. breast cancers that are growing in response to HER2 (human epidermal growth
factor receptor 2 protein) can be treated with the targeted therapy drug trastuzumab, while ER+
(oestrogen hormone receptor positive) cancers may respond to hormone therapy that blocks oe-
strogen, on the other hand, triple negative (hormone receptor negative and HER2 negative)
cancers do not respond to targeted therapy nor hormone therapy but respond to chemotherapy.
Thus, if a woman has breast cancer, it is important to classify what type of cancer she has;
this knowledge allows her treatment to be personalized, increasing her chances of survival. One
promising idea for achieving such classifications is to measure the pattern of gene expression in
a patient sample and use this pattern of expression as data to classify which cancer type the
patient has.
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There are many ways of measuring gene expression. One common approach, due to its
numerous advantages, is RNA-sequencing (RNA-seq) which measures gene expression across the
whole genome simultaneously (see Mardis, 2008; Wang et al., 2009). RNA-seq involves three main
steps: (1) mRNA is obtained from a sample and broken into millions of short segments; (2) these
mRNA segments are converted into cDNA; and (3) these cDNA segments are sequenced using
next-generation sequencing. The resulting sequence data is then mapped to genomic regions of
interest, typically genes, and the number mapping to each region is counted. Thus, in essence,
RNA-seq data consists of counts: for each gene we obtain a non-negative integer count which
quantifies the gene’s expression level; roughly speaking, the larger the count the higher the level
of expression.

Several approaches have been proposed for classifying RNA-seq data. General machine learn-
ing approaches have been investigated, e.g. support vector machines (SVMs) and k-Nearest
Neighbour (kNN) classifiers, and general regression approaches have also been applied, e.g. logis-
tic regression (see Tan et al., 2014; Zararsız et al., 2017). Others have focused on modelling the
data more directly. For example, Witten (2011) proposed the PLDA method, which models the
counts using the Poisson distribution, while Dong et al. (2016) proposed the NBLDA method,
which instead models the counts using the negative binomial distribution, thereby taking into
account the overdispersion known to be present in RNA-seq data on biological replicates. Others
still have proposed transforming the counts, e.g. using a log transformation, so that variations
on traditional classification techniques become available, e.g. Gaussian classification. The best
example of this sort is the method voomDLDA (Zararsiz et al., 2017). One common feature of
these direct modelling approaches is that they are, in classification terminology, “naive”: they
assume that measurements on the features used for classification, i.e. the genes, are statistically
independent.

However, this independence assumption is very unrealistic, since genes are typically involved
in networks and pathways, implying that a particular gene’s expression level is likely to be
correlated with the expression level of other genes. Moreover, some have argued, e.g. Zhang
(2017), that the assumption of independence has a non-ignorable impact on our ability to classify:
it causes bias in estimated discriminant scores, making classification inaccurate. Given this, some
have focused on models for the data which incorporate dependence between genes. For example,
Sun and Zhao (2015) proposed the SQDA method which models log-transformed counts with
the multivariate normal distribution using regularized estimates of covariance matrices, which
are assumed to be different for each class. More recently, Zhang (2017) developed a Bayesian
approach where the data is modelled using a (multivariate) Gaussian copula.

In this paper we propose a new classification method for RNA-seq data based on a model
where the counts are marginally negative binomial but dependent. Like previous work, we use
the multivariate normal distribution for classification, where each class is assumed to have its own
covariance matrix. However, our approach has two key differences: (1) instead of modelling log-
transformed counts, we model quantile transformed counts; and (2) we use a novel application
of a powerful regularization technique for covariance matrix estimation. We call the method
qtQDA: quantile transformed (qt) Quadratic Discriminant Analysis (QDA). We demonstrate the
performance of the method by applying it to several real data sets, showing that it performs better
than, or on par with, existing methods. qtQDA has advantages over some existing approaches,
and an R package implementing the method is available.
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2 Methodology

2.1 The model

First we describe the model underpinning qtQDA. Suppose we wish to classify data into one

of K distinct classes on the basis of m genes (i.e. features). Let X(k) = [X
(k)
1 , X

(k)
2 , . . . , X

(k)
m ]T

be a random vector from the kth class where X
(k)
i denotes the count for gene i. Like others,

e.g. NBLDA and the method of Zhang (2017), we assume the counts are marginally negative
binomial, i.e.

X
(k)
i ∼ NB(µ

(k)
i , φ

(k)
i ), (1)

where µ
(k)
i and φ

(k)
i are the mean and dispersion for gene i, respectively (strictly speaking, µ

(k)
i

depends on the “library size”, but for the purposes of clarity, this complication is addressed
later). Note that, for non-zero dispersion,

Var(X
(k)
i ) = µ

(k)
i + φ

(k)
i (µ

(k)
i )2 > µ

(k)
i ,

i.e. the data is over-dispersed relative to Poisson variation, consistent with known properties of
RNA-seq data on biological replicates (see McCarthy et al., 2012). Unlike others, however, we

suppose that X(k) is generated by the following process:

1. Let Z(k) be an m-vector from a multivariate normal distribution: Z(k) ∼ MVN(0,Σk),

where Z
(k)
i ∼ N(0, 1).

2. Then let the ith component of X(k) be the transformed random variable

X
(k)
i = F−1k {Φ(Z

(k)
i )}, (2)

where Φ is the standard normal distribution function and Fk is the NB(µ
(k)
i , φ

(k)
i ) distri-

bution function.

We make two observations. Firstly, observe that the transformation in (2) generates a vector

X(k) with the negative binomial margins specified in (1). This is a consequence of the following
elementary fact from probability theory: if F and G are distribution functions, and X has distri-
bution function F , then the transformed variable G−1{F (X)} has distribution function G (see
Lange, 2010, p. 432). We call the kind of transformation invoked here a quantile transformation.
Note that, given the discreteness of the negative binomial distribution, the ambiguity of F−1k is
obviated by imposing that F−1k (q) = inf{x : Fk(x) ≥ q}, for q ∈ [0, 1].

Secondly, observe that the negative binomial components of X(k) are not independent: the
underlying MVN distribution, with a dependence structure encoded in Σk, generates a depen-
dence structure between the components of X(k). Note especially that each class is assigned a
different covariance matrix. As Sun and Zhao (2015) have suggested, since the presence of dis-
ease, and different disease types, leads to “rewiring” of genetic networks, and hence changes in
gene associations, assuming a different covariance matrix for each class is likely to lead to better
classifications. Finally, note that while the model specified by the process above is reminiscent
of the Gaussian copula model of Zhang (2017), the two models are quite different.

2.2 Classification

We now turn to how the model above is used for classification. Suppose we observe x∗ =
[x∗1, x

∗
2, . . . , x

∗
m]T from unknown class y∗, where y∗ ∈ {1, 2, . . . ,K}. For each class we apply the
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inverse of the quantile transformation (2) to the components of x∗ to produce a new vector z∗(k),
i.e. where

z
∗(k)
i = Φ−1{Hk(x∗i )} (3)

and Hk is a continuity-corrected version of Fk. Here Hk is defined by

Hk(x∗i ) = Pr(X < x∗i ) + 0.5× Pr(X = x∗i ),

where X is a NB(µ
(k)
i , φ

(k)
i ) distributed random variable, and Hk(X) is more nearly uniformly

distributed than Fk(X) itself (Routledge, 1994). The transformation from x∗i to z
∗(k)
i is imple-

mented by the zscoreNBinom function in the R package edgeR (see below).
Once this transformation has been made, given the assumptions of the model, traditional

quadratic discriminant analysis now becomes available, as follows. Under the model, if x∗ is
from the kth class then z∗(k) is an observation from the MVN(0,Σk) distribution. Thus, by
Bayes theorem, the posterior probability that x∗ belongs to the kth class is

Pr (y∗ = k|x∗) ∝ fk
(
z∗(k)

)
πk, (4)

where πk is the prior probability that Pr(y∗ = k), and fk is the density

fk(v) =
1

(2π)m/2 |Σk|1/2
exp

{
−1

2
vT Σ−1k v

}
evaluated at z∗(k). We classify x∗ into the class that maximizes this posterior probability. It
is worth noting that since maximizing (4) is equivalent to maximizing log Pr (y∗ = k|x∗), this
classification rule entails the following (quadratic) discriminant function:

δk(x∗) = −1

2
uT
k uk + log πk,

where uk = Σ
−1/2
k z∗(k), which has the following insightful interpretation: for a given class k, the

further the vector uk is from the origin, the less likely x∗ is to belong to that class.

2.3 Parameter estimation

To use the classifier in practice the parameters of the underlying model need to be estimated,
i.e. the classifier needs to be “trained”. Specifically, for each gene i = 1, 2, . . . ,m and class

k = 1, 2, . . . ,K, we need to estimate the negative binomial means µ
(k)
i and dispersions φ

(k)
i , to

parametrize the quantile transformation (3), and we need to estimate the covariance matrix Σk

of the transformed variables, so QDA can be performed with (4). For each class k, suppose we

have a set of n RNA-seq samples x
(k)
1 ,x

(k)
2 , . . . ,x

(k)
n known to belong to class k.

To estimate the negative binomial parameters we use the methodology implemented in the R
package edgeR (McCarthy et al., 2012; Chen et al., 2014) which is extremely fast and reliable, and
offers three sophisticated approaches for dispersion estimation. Maximum likelihood estimates
(MLEs) of the gene means are found by fitting a negative binomial generalized linear model
(GLM) with logarithmic link function:

logµ
(k)
ij = β

(k)
i + logNj ,

where logNj is a model offset and Nj is the “library size” for sample j, i.e. the total counts∑
i x

(k)
i across all observed genes in the RNA-seq sample. The resulting gene mean estimates are
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then given by µ̂
(k)
ij = Nj exp(β̂

(k)
i ). Note that the use of a GLM with logNj as an offset allows

us to avoid the use of “size factors” which are commonly employed in other Poisson or negative
binomial based methods to scale counts to account for differences in library sizes (e.g. PLDA,
NBLDA, and the method of Zhang, 2017).

The dispersion φ
(k)
i for each gene is estimated using the Cox-Reid adjusted profile likelihood

(APL) function:

APLi(φ
(k)
i ) = `(φ

(k)
i )− 1

2
log det(I

(k)
i ), (5)

where ` is the log-likelihood and I
(k)
i is the Fisher information of β

(k)
i , both functions being

evaluated at the MLE β̂
(k)
i . This modified likelihood function adjusts for the fact that the gene

mean is estimated from the same data, thereby reducing the bias of the MLE of φ
(k)
i . Instead

of simply maximizing (5), however, to achieve even better dispersion estimates, an approximate
empirical Bayes strategy is applied, where the APL for each gene is substituted by a weighted
sum of APLs from carefully chosen sets of genes, resulting in “information sharing” between
genes, and thereby better dispersion estimates for individual genes (see Chen et al., 2014 for
details). Using different variations of this general approach, edgeR offers three kinds of disper-
sion estimates: “common”, “trended”, and “tag-wise”. By default, qtQDA uses the “tag-wise”
dispersion estimates (but, the user is free to choose any of these kinds).

Once the negative binomial parameters have been estimated we apply the quantile transfor-
mation (3) to the components of the RNA-seq sample vectors to produce a corresponding set

of transformed vectors z
(k)
1 , z

(k)
2 , . . . , z

(k)
n where, under the assumed model, z

(k)
j ∼ MVN(0,Σk).

To estimate the covariance matrix Σk, we begin by calculating the standard estimate:

Σ̂k =
1

n− 1

n∑
j=1

{
z
(k)
j − z (k)

}{
z
(k)
j − z (k)

}T

,

where z (k) =
∑n

j=1 z
(k)
j /n. As it stands, however, this estimate is not useful in the present

context where the data is typically “high dimensional”, i.e. where the number of genes used for
classification will be approximately the same or greater then the number of samples (i.e. m ≈ n
or m > n). In such situations this standard covariance matrix estimate is known to perform
poorly (see Tong et al., 2014). To remedy this, we regularize the standard estimate using the
approach developed in Schäfer and Strimmer (2005) and Opgen-Rhein and Strimmer (2007)
which is implemented in the R package corpcor (see also Strimmer, 2008). The corpcor method
separately shrinks the corresponding correlation estimates ρ̂ii′ toward zero and the variance
estimates v̂i toward their median to produce the regularized estimates

ρ̃ii′ = (1− λ1)ρ̂ii′

ṽi = λ2vmedian + (1− λ2)v̂i

where the shrinkage intensities are estimated via

λ̂1 =

∑
i 6=i′ V̂ar(ρ̂ii′)∑

i 6=i′ ρ̂
2
ii′

and λ̂2 =

∑m
i=1 V̂ar(vi)∑m

i=1(vi − vmedian)2
.

The regularized covariance matrix estimate Σ̃k then has entries [Σ̃k]ii′ = ρ̃ii′
√
ṽiṽi′ . This esti-

mate has two excellent statistical properties: (1) is is always positive definite and well conditioned
(making the inverse computable); and (2) it is guaranteed to have minimum mean squared error,
which is a consequence of an important result proved by Ledoit and Wolf (2003). Moreover,
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since the shrinkage intensities are calculated with analytic formulas, the estimate also has two
significant practical advantages: (1) it is computationally very fast to compute; and (2) it does
not require any “tuning” parameters. We note that the corpcor approach to covariance matrix
regularization is quite different to the computationally intensive approach used in SQDA (Sun
and Zhao, 2015). Note also that, while the corpcor method has previously been used for classi-
fication of gene expression data from microarrays (see Xu et al., 2009), we appear to be the first
to use it for RNA-seq data.

The final parameter needed for classification with Bayes theorem (4) is the prior probability
of belonging to the kth class πk = Pr(y∗ = k). This probability can either be specified by the
user, e.g. if epidemiological knowledge is available, or estimated directly from the training data
using

π̂k =

∑n′

j=1 I{yj = k}
n′

,

where I {·} is the indicator function, and n′ is the total number of samples in all K classes.

2.4 Feature selection

Lastly, we turn to the question of which genes to use for classification. When RNA-seq is
performed we typically obtain data on more than 20,000 genes. A vast number of these genes,
however, will not be informative for the purposes to distinguishing between different classes. We
therefore employ the following simple strategy for selecting m genes for classification: (1) we
filter genes with low expression across all samples; (2) for each remaining gene we perform a
likelihood ratio test (LRT) to test for genes differentially expressed between groups; (3) a list
of genes is made, sorted by LRT statistic; (4) finally, the top m genes from this list is used
for classification. As with negative binomial parameter estimation, this strategy is implemented
using edgeR. Others have adopted essentially the same gene selection strategy, e.g. NBLDA,
SQDA, and the method of Zhang (2017).

3 Results

To assess the performance of qtQDA we apply it to three publicly available data sets:

1. Cervical cancer data (see Witten et al., 2010). This consists of two classes, cancer and non-
cancer, each with 29 samples. Each sample consists of counts for 714 different microRNAs
obtained using RNA-seq.

2. Prostate cancer data (see Kannan et al., 2011). This consists of two classes, 20 samples
from cancer patients and 10 samples from benign matched controls. Each sample consists
of RNA-seq data for the whole transcriptome.

3. HapMap data (see Montgomery et al., 2010; Pickrell et al., 2010). The data considered
here consists of two of the HapMap populations: CEU (Utah residents with Northern
and Western European ancestry) and YRI (Yoruba in Ibadan, Nigeria). There are 60 CEU
samples and 69 YRI samples, each consisting of RNA-seq data for the whole transcriptome,
and all from “healthy” individuals.

These data sets are very common in the RNA-seq classification literature (e.g. see Witten, 2011;
Tan et al., 2014; Dong et al., 2016; and Zhang, 2017). Using these data sets, we also compare
the performance of qtQDA to a number of general machine learning classifiers and specialized
RNA-seq classifiers (corresponding R packages used for our analysis are listed in brackets):
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• SVM (e1071)

• kNN (e1071)

• Logistic regression (glmnet)

• PLDA (PoiClaClu)

• NBLDA (http://www.comp.hkbu.edu.hk/xwan/NBLDA.R)

• voomDLDA (MLSeq)

• SQDA (SQDA)

For logistic regression, we use the GLMnet method proposed in Friedman et al. (2010) since this
is one of the best representatives of this approach. This method uses a “lasso” (i.e. `1) penalty in
the log-likelihood function which thus overcomes many of the problems with logistic regression in
high-dimensional settings (see Tan et al., 2014) and encourages regularized regression coefficients,
i.e. shrunken to zero. For the SVM method we used a radial basis kernel, and for the kNN method
we used k = 1, 3, and 5 (but only report results for k = 1 since this consistently performed best),
and both methods were applied to log transformed counts. We apply all methods as recommended
in their documentation and any “tuning” parameters were chosen with the cross-validation tools
provided in the corresponding software package or chosen with our own cross-validation. The
Gaussian copula method of Zhang (2017) has no publicly available implementation.

For evaluation, we estimated the true error rate, i.e. the rate at which false classifications are
made, using the following bootstrap procedure: (1) each data set is randomly divided into two
parts, one part consisting of 70% of the data, put aside for training the classifier, and one part
consisting of 30% of the data, used as a test set to apply the trained classifier from which an
error rate is recorded; (2) this is repeated 1,000 times and the error rates from each iteration is
averaged to produce an estimate of the true error rate. This is the same procedure used by Dong
et al. (2016) and Zhang (2017). We estimated the error rates for m = 100, 200, 300, 500, 700
genes, where these genes are selected using the procedure detailed in the previous section.

Results are shown in Figure 1 and Table 1. We see that qtQDA performs best for both
cancer data sets, achieving the lowest error rate at 200 genes for the cervical cancer data and 100
genes for the prostate cancer data. Interestingly, for the cervical cancer data, qtQDA uniformly
achieves the smallest error rate. For the HapMap data, qtQDA essentially performs as well as
the SVM, kNN, and logistic regression classifiers. We note that even though these classifiers
have similar performance, we think qtQDA or logistic regression would be preferred, at least in
a medical context, since these classifiers do more than merely assign a sample to a particular
class: they also provide a posterior probability of belonging to each class. This is important in a
medical context where the different treatments or further diagnostic procedures which could be
prescribed, following a classification, may be associated with very different risks.
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Figure 1. Error rate vs genes selected. These plots show classification error rate as a function
of the number of genes chosen for classification for the (a) cervical cancer, (b) prostate cancer, and (c)
HapMap data sets.

Method Cervical cancer Prostate cancer HapMap

qtQDA 0.0125 (200) 0.0203 (100) 0.0018 (300)
SVM 0.0276 (100) 0.0364 (100) 0.0014 (500)
kNN 0.0277 (100) 0.0523 (200) 0.0009 (200)
GLMnet 0.0406 (200) 0.0341 (300) 0.0009 (500)
PLDA 0.0608 (100) 0.1609 (100) 0.0123 (100)
NBLDA 0.0402 (200) 0.0634 (200) 0.0058 (100)
voomDLDA 0.0425 (100) 0.1076 (300) 0.0029 (100)
SQDA 0.0318 (100) 0.0483 (100) 0.0046 (300)

Table 1. Minimum error rates. This table shows the minimum error rates achieved for each classifier
in each data set. The number of genes used to obtain this minimum error rate is reported in brackets.

4 Discussion

Early investigations into classification with gene expression data from microarrays, e.g. Dudoit
et al. (2002), showed that making the (unrealistic) assumption of independence between mea-
surements from different genes can still lead to classifiers with good performance. Our results,
however, seem to suggest that incorporating dependence between genes can lead to even better
performance, at least for RNA-seq data.

Our method has two key advantages. Firstly, unlike some approaches (e.g. kNN, GLMnet,
PLDA, SQDA), qtQDA does not have any “tuning” parameters which need to be chosen with
cross-validation, thus making it more straightforward to apply in practice. Secondly, in com-
parison to approaches which take gene dependence into account, e.g. SQDA and the method of
Zhang (2017), qtQDA is computationally much faster. SQDA adopts a computationally intensive
method for covariance matrix regularization. In an effort to reduce the required computation, the
authors impose a block diagonal structure on the covariance matrix where each block is assumed
to be the same size (but which needs to be determined by cross-validation), simplifications which
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even the authors acknowledge are unrealistic (e.g. under these assumptions the order of the genes
used for classification matters). Yet, despite these simplifications, extensive computation is still
required, making the method very slow. On the other hand, the regularization approach applied
in qtQDA requires no special assumptions for the covariance matrix and requires minimal com-
putation since the regularized estimate is obtained with analytic formulas. The Gaussian copula
method of Zhang (2017) is also computationally intensive, but for a different reason: it is cast in
a Bayesian framework and requires a Metropolis-Hasting algorithm, in combination with Gibbs
sampling, for parameter estimation. As the author acknowledges, the computations required are
time consuming even when implemented in a fast language like C++.

As Dudoit et al. (2002) points out, there are three related statistical problems in the area of
classifying disease with gene expression data: (1) identifying new disease subclasses, i.e. cluster
analysis; (2) classifying samples into known disease classes, i.e. discriminant analysis; and (3)
identifying “marker” genes that characterize different disease subclasses, i.e. variable selection.
This paper has firmly focused on problem (2), which is why it was sufficient to evaluate classifier
performance solely in terms of error rate and not sparsity, i.e. the number of features used to
make classifications. The feature selection method we proposed, while likely to deliver many
genes informative for classification, is clearly too simplistic to deliver only those genes which are
informative for distinguishing between classes. Thus, future research will aim at developing a
sparse version of qtQDA, involving some level of regularization for features, i.e. identifying less
informative features and reducing their influence to zero (e.g. like the GLMnet logistic regression
classifier). A sparse qtQDA may also help address problem (3) above, the answer to which
has practical advantages, e.g. knowing which subset of genes need to be measured for effective
classification, and theoretical advantages, e.g. obtaining insight into the underlying biological
process driving the disease (or subclass) in question. A sparse qtQDA may also deliver a further
bonus: it may lead to a better answer to problem (2), i.e. to even better disease classifications.

5 Conclusion

We have proposed a new classification method for RNA-seq data based on a model where the
data is marginally negative binomial but dependent, thereby incorporating dependence between
genes. The method works by first performing a quantile transformation then applying Gaussian
quadratic discriminant analysis, where each class is assumed to have its own covariance matrix.
The classifier is trained by using the sophisticated edgeR methodology for negative binomial
parameter estimation, to parametrize the quantile transformation, and by using the powerful
corpcor methodology for regularized covariance matrix estimation, so that effective quadratic
discriminant analysis can be performed on the transformed data. We have shown that, when
applied to real data sets, the classifier has excellent performance in comparison to other methods,
and has two key advantages which makes it easy to apply in practice: (1) it does not have any
tuning parameters; and (2) it is computationally very fast. An R package implementing the
method is also available.

6 Appendix

6.1 Software availability

An R software package implementing the qtQDA method is available via the following link:
https://github.com/goknurginer/qtQDA
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Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical applications in genetics and
molecular biology, 4(1).

Strimmer, K. (2008). Comments on: Augmenting the bootstrap to analyze high dimensional
genomic data. Test, 17(1):25–7.

Sun, J. and Zhao, H. (2015). The application of sparse estimation of covariance matrix to
quadratic discriminant analysis. BMC bioinformatics, 16(1).

Tan, K. M., Petersen, A., and Witten, D. (2014). Classification of RNA-seq data. In Datta,
S. and Nettleton, D., editors, Statistical analysis of next generation sequencing data, pages
219–46. Springer.

Tong, T., Wang, C., and Wang, Y. (2014). Estimation of variances and covariances for high-
dimensional data: a selective review. Wiley Interdisciplinary Reviews: Computational Statis-
tics, 6(4):255–64.

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics, 10(1):57–63.

Witten, D., Tibshirani, R., Gu, S. G., Fire, A., and Lui, W.-O. (2010). Ultra-high through-
put sequencing-based small RNA discovery and discrete statistical biomarker analysis in a
collection of cervical tumours and matched controls. BMC biology, 8(1):58.

Witten, D. M. (2011). Classification and clustering of sequencing data using a poisson model.
The Annals of Applied Statistics, 5(4):2493–518.

Xu, P., Brock, G. N., and Parrish, R. S. (2009). Modified linear discriminant analysis approaches
for classification of high-dimensional microarray data. Computational Statistics and Data
Analysis, 53(5):1674–87.

Zararsiz, G., Goksuluk, D., Klaus, B., Korkmaz, S., Eldem, V., Karabulut, E., and Ozturk, A.
(2017). voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.
PeerJ, 5:e3890.

Zararsız, G., Goksuluk, D., Korkmaz, S., Eldem, V., Zararsiz, G. E., Duru, I. P., and Ozturk,
A. (2017). A comprehensive simulation study on classification of RNA-Seq data. PloS one,
12(8).

Zhang, Q. (2017). Classification of RNA-Seq data via Gaussian copulas. Stat, 6(1):171–83.

11

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/751370doi: bioRxiv preprint 

https://doi.org/10.1101/751370
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methodology
	The model
	Classification
	Parameter estimation
	Feature selection

	Results
	Discussion
	Conclusion
	Appendix
	Software availability
	Author contributions
	Acknowledgements


