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Abstract 
Lysate-based cell-free systems have become a major platform to study gene expression but 
batch-to-batch variation makes protein production difficult to predict. Here we describe an 
active learning approach to explore a combinatorial space of ~4,000,000 cell-free 
compositions, maximizing protein production and identifying critical parameters involved in 
cell-free productivity. We also provide a one-step-method to achieve high quality predictions 
for protein production using minimal experimental effort regardless of the lysate quality.  
 

Main text 
Cell-free systems, especially lysate-based systems, are major platforms for both prototyping 
of genetic circuits and understanding of fundamental processes 1-7. They provide fast gene 
expression kinetics, low reaction volumes, allowing high-throughput measurements and 
simplified gene characterization via decoupling protein production from host physiology 8-12. 
Cell-free systems could disseminate among laboratories and be standard methods for 
molecular biology if efficient and predictable protein productions were guaranteed. 
Ribosomes, native polymerases and cofactors concentrations remain arduous to control as 
they are provided by the lysate 13,14, making the efficiency of cell-free systems variable. A 
great challenge is to develop a lysate-specific optimization method for cell-free composition 
to maximize protein production. Using a Design of Experiment approach, Caschera et al.13 
explored cell-free compositions by varying one compound concentration at a time and 
obtained a 10 fold increase of protein production in a lysate-based cell-free system. Such 
results reveal the considerable margins of improvement of protein expression in such 
systems.  
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Here, we use an active learning approach15,16 to explore, optimize and understand the 
impact of cell-free composition on protein production in cell-free systems. We demonstrate 
that sufficient amount of data can be obtained to train a machine learning algorithm, achieve 
high quality predictions and increase protein production by 34 times. We next show that only 
20 informative compositions are enough to train our machine learning model and obtain 
accurate predictions. This approach enables to maximize protein production on different cell 
lysates with minimal experimental effort. 

To study cell-free systems productivity, we developed an automatable strategy 
coupling an acoustic liquid handling robot (Echo 550, Labcyte, USA) and a plate reader 
(Infinite MF500, Tecan, USA) to measure ~4000 cell-free reactions (including controls and 
triplicates) and provide data to train a machine learning model. The lysate was obtained by 
sonication and supplemented with compounds described in Fig. 1a. The reference 
concentrations is based on the protocol developed by the Noireaux laboratory 17 (see 
methods, Supplementary Fig. 1). We fixed 4 concentration levels for each of the 11 
compounds leading to a combinatorial space of 4,194,304 possible compositions (Fig. 1a). 
Protein production was measured using the fluorescence level from the expression of sfgfp 
under control of a constitutive promoter (Fig. 1b, Supplementary Table. 1). In order to 
compare measurements between plates, we maximized a relative fluorescence level named 
yield hereafter (Fig. 1b). The yield is defined as the ratio of the fluorescence produced with a 
chosen composition divided by the fluorescence obtained with the reference composition 
(Fig. 1b). To explore our vast combinatorial space, we used an active learning strategy 15, 
combining both exploration and exploitation to increase the yield and reduce model 
uncertainty (Fig. 1c). Each iteration started with 102 new cell-free compositions to be tested. 
The fluorescence level was measured in a plate reader and fed to an ensemble of neural 
networks (Fig. 1c, see methods). Our active learning loop was initiated with a training set of 
102 cell-free compositions (see methods: 22 chosen and 80 random compositions, Fig. 1c). 
The first iteration already led to a maximum of 10 fold improvement of the yield (Fig. 1d). As 
expected, the prediction accuracy was very low (Fig. 1e). After 7 iterations, we reached a 
maximum for both the yield (Fig. 1d) and the prediction accuracy (Fig. 1e). Eventually, we 
stopped at 10 iterations as we were not able to increase neither the yield nor the prediction 
accuracy of our model (Fig. 1d, Fig. 1e, see methods). Throughout our workflow, we 
measured fluorescence levels in 1017 cell-free compositions and validated the efficiency of 
our method with a high quality predictions score (R2=0.93) and a maximum of 34 fold 
increase of the yield. The 1017 cell-free compositions were sorted, from low to high yields, to 
observe the relationship between yield and composition (Fig. 1f). An increase of Mg-
glutamate, K-glutamate, Amino Acids and NTPs concentrations and a decrease of cAMP, 
spermidine and 3-PGA concentrations can be noticed with increasing yield (Fig. 1f). We 
used a mutual information analysis (see methods) to reveal the dependence between our 11 
compounds concentration and the yield. Mg-glutamate, K-glutamate, Amino Acids, cAMP, 
spermidine, 3-PGA and NTPs exhibit a score between 0.25 and 0.75, confirming that a 
variation of their concentrations strongly impacts protein production (Fig. 1g). Variation of 
tRNA, CoA, NAD and Folinic Acid concentrations have little impact on the yield (Fig. 1g).  
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Fig.1| Active learning loop to explore the composition of a cell-free system. a, List of 
chemicals added to the cell-free mix in addition to PEG-8000, HEPES and the lysate. Four concentrations have 
been chosen for each chemical. The concentration in red is the highest concentration, then orange, light green, 
dark green stand for 50%, 30% and 10% of the highest concentration. b, An example of fluorescence obtained 

using 4 cell-free compositions with our plasmid (10 nM). The autofluorescence value is measured with the 
reference composition without DNA and subtracted from every measurement in the plate. The yield is the ratio 
between the fluorescences of a composition x and the reference composition. c, Illustration of the active learning 

approach used to explore the combinatorial space of cell-free composition and trained an ensemble of 25 
machine learning models. d, Yield evolution amongst 10 iterations. The green dots are the mean yields of 3 

replicates obtained in the same plate with the same composition. The vertical grey lines stand for the standard 
deviation of the 3 replicates. The horizontal black line is the median value of all the yields obtained during an 
iteration. The Arrows represent the evolution of the maximal yields value. e, Quantification of the predictive 
accuracy of the model using a 5-Fold cross validation. f, Cell-free compositions tested in the study sorted by yield 
level. A row stand for one mix composition, the colour code is the same as in panel a. g, Results of a mutual 

information analysis, using the 1017 compositions, of the relationship between the yield and each chemical 
compound.   
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Next, we investigated whether protein production in cell-free using lysates made in 
other conditions (different experimentalists, using a different strain or supplemented with 
antibiotics) could be quickly predicted with a one-step method (Fig. 2a). We selected 102 
cell-free compositions representative of the 1017 already tested with the original lysate (see 
methods, Supplementary Fig. 2a). Amongst the 102 compositions, 20 were used to train the 
model and 82 to test its predictive accuracy (Fig. 2a). The challenge lies in the model's ability 
to accurately predict a large diversity of yields based on a small training dataset. The 20 
compositions (magenta dots in Fig. 2) were chosen to be highly informative (see methods, 
Supplementary Fig. 2b). We used the same 20 and 82 compositions to train and test our 
model with all the lysates used in Fig 2. With new lysates prepared by other experimentalists 
(labeled lysate_PS and lysate_AB), similar cell-free compositions led to different yields but 
the compounds exhibiting a high impact on protein production remained the same (Fig 1g 
and Supplementary Fig. 3). The maximum yield amongst the 102 tested compositions 
differs from one lysate to another, with a maximum yield at 23 and 26 for the lysate_PS and 
lysate_AB respectively (Fig. 2a,b). The 102 yields obtained with the original lysate, labeled 
Lysate_ORI, are presented in Supplementary Fig. 4a. The yield used previously is a relative 
measurement (Fig. 2 and Supplementary Fig. 5) which does not allow absolute comparison 
between our cell-free systems. We calculated a global yield (calculated with the Lysate_ORI 
as a global reference, Supplementary Fig. 4b) and observed a maximum global yield 1.5 
times higher with lysate_PS than lysate_AB (Supplementary Fig. 4c). These results 
highlight the variability in lysates quality even when they are prepared in the same laboratory 
with the same strain and protocol. Despite these differences, we achieved high quality 
predictions with both lysates (Fig. 2 a,b). We obtained a R2 ~ 0.9 for both lysates and linear 
fits with intercepts of 0.2 / 0.1 and slopes of 0.8 / 1.01 with lysate_PS, lysate_AB respectively 
(Fig. 2 a,b). These results validate our approach to both maximize protein production and 
accurately predict protein production regardless of the experimentalists who prepared the 
lysate. 

We then challenged our method by interfering with the transcription or translation 
processes to mimic lysates of lower quality. By adding rifaximin (Fig. 2c) or spectinomycin 
(Fig. 2d) to the cell-free mix, we interfered with the transcription or translation apparatuses 
respectively. The two antibiotics led to a strong decrease in absolute protein production 
(Supplementary Fig. 4c) but opposite behaviours can be observed (high versus low room 
for yield improvement, Fig. 2 c,d, Supplementary Fig. 5c,d). When the transcription process 
is impaired, we obtained a prediction of high accuracy with a R2 of 0.91 and linear fit 
intercepts of 0.2 and slopes of 0.9 (Fig. 2c). The cell-free containing rifaximin exhibits a high 
leeway for yield improvement (Fig. 2c and Supplementary Fig. 5c) with a maximum yield of 
35 amongst the 102 cell-free compositions. When the translation process is impaired, the 
yield is capped to a maximum improvement of 15 (Fig. 2d, Supplementary Fig. 5d). The R2 
value observed in Fig. 2d is lower but the linear fit exhibit an intercept of 0.1 and slopes of 
0.9. Thus, we obtained accurate prediction for the low and high yields value but the 
intermediate yields remains difficult to estimate. Such predictions stay powerful to maximize 
protein production as extreme values are captured and provide precious information 
concerning the lysate quality (Supplementary Fig. 6, supplementary note 1).   

Eventually, we tested our method with a lysate prepared using the strain DH5α. As 
observed with the lysate supplemented with spectinomycin, the R2 value is low but the linear 
fit of the data exhibits an intercept of 0.07 and slopes of 0.96. The maximum global yield 
obtained with this lysate was low, as expected for a strain not optimized for protein 
production18 (Supplementary Fig. 4c). Nevertheless, with half of the tested cell-free 
compositions, the Lysate_DH5α-based cell-free exhibits a high global yield (Supplementary 
Fig. 4c). The yield exhibits a similar behaviour as the lysate supplemented with 
spectinomycin, suggesting an impaired translation process (little room for yield improvement, 
Fig. 2d,e, Supplementary Fig. 5d,e), but with a higher level of protein production. 
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Fig.2| One-step method to predict protein yield in cell-free systems. a, Illustration of the 

method used to predict the yield of protein expression with a new lysate, labelled PS, made by another 
experimentalist. The training of the model is based on yield measurements of 20 compositions (Magenta circles). 
The choice of the 20 combinations leading to the best predictions is described in the methods. The yield obtained 
with 82 compositions (Green circles) were measured and compared to the model predictions to test its accuracy 
(R2 value). The yield is specific to each lysate as the reference composition used the same chemicals 
concentration as in Fig. 1 but with different lysate. b, Comparison of the yields obtained with the lysate AB (made 
by a third experimentalist) vs the model predictions. c, Comparison of the yields obtained with the lysate, of panel 
a, supplemented with 0.25 mg/mL of rifaximin vs the model predictions. d, Comparison of the yields obtained with 
the lysate, of panel a, supplemented with 0.5 mg/mL of spectinomycin vs the model predictions.  e, Comparison of 

the yields obtained with a lysate obtained from the stain DH5a vs the model predictions. In all panels, the model 
predictions are based on a model trained with the same 20 compositions and the same test set of 82 
compositions only lysate differs. In all panels, the horizontal grey lines stand for the standard deviation of 3 
replicates. The vertical grey lines stand for the standard deviation of 25 predictions. 

 
Our method enables a fast lysate-specific optimization of the cell-free composition to 

predict and maximize protein production (Fig. 2, Supplementary Fig. 7, and 
Supplementary note 2). Our results suggest that the optimization of the cell-free 
composition mainly improves the efficiency of the translation apparatus as we observed a 
limited improvement with an impaired translation. On the contrary, a damaged transcription 
machinery can be balanced by the optimization of the cell-free composition. Our approach 
gives precious information about the room for protein production improvement of a home-
made cell-free system, the impact of each compound on cell-free productivity and the 
efficiency of the transcription and translation processes. Our method, based on the 
measurements of GFP production with the same 20 cell-free compositions used in this work 
to train the model provided, can be easily extended to any other bacterial-based cell-free 4,19-

20 to investigate cell-free optimisation beyond E. coli cell-free systems. As our model is not 
based on mechanistic hypotheses, our method can be extended to cell-free systems using 
other organisms as yeast, insect, plant or human cells after performing new explorations to 
find the 20 most informative compositions for those cell-systems.  
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Methods. 
Bacterial strains and DNA constructs. Strains BL21 DE3 (B F– ompT gal dcm lon 
hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS)) and DH5α 
(F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA-
argF)U169, hsdR17(rK–mK+), λ–) were used to prepare the different lysates in this study. 
Our sfgfp plasmid was obtained by modification of the RBS of the plasmid pBEAST-J23101-
sfGFP9. We used PCR amplifications using the reverse primer 
GCGGTCTCACATCTACTATTTCTCCTCTTTCTCTACTAGCTAGC and foward primer 
GCGGTCTCAGCTTACTTTATCTGAGAATAGTC with the backbone, and reverse primer p 
CCGGTCTCAAAGCTTATCATCATTTGTACAGTTCATCC and 
GCGGTCTCAGATGCGTAAAGGCGAAGAG foward primer with the sfgp sequence. The 
PCR amplifications was followed by a golden gate assembly using BsaI and T4 ligase (New 
England Biolab) and transformed into chemically competent E. coli top10.  
 
Plasmid preparation. We noticed with preliminary experiments that the same cell-
compositions gave different results when we used plasmid DNA from miniprep done on 
different days using the same kit. The whole project was done using aliquots from the same 
initial batch of sfgfp plasmid. The plasmid was extracted from a 600 ml LB of E. coli top 10 
using the Plasmid DNA purification NucleoBond Xtra Maxi of Macherey-Nagel. The 500 µl 
aliquots were stored at -80°C. The whole project was done using aliquots from the same 
initial batch of DNA. The final sfgfp plasmid concentration in every reaction was 10nM. 
 
Cell-free reagents preparation. As the reagents preparation can have a significant impact 
on cell-free efficiency21, all our reagents except spermidine and Mg-glutamate (we run out of 
those two compounds during the study) came from aliquots of the same initial batch. We did 
not see an impact on our control when the spermidine and Mg-glutamate were renewed.  
 
Cell lysate mix preparation and reactions. The cell lysate preparation is based on the 
protocol of Sun et al.17. Briefly, the protocol of Sun et al.17 is a 5 day protocol in three phases: 
harvest cells (colonies grow on plate overnight at 37°C, 50 ml preculture at 37°C for 8 h, 12 
liters of cultures at 37°C until OD600= 1.5), lysate preparation (multiple pellet washing 
followed by beads-beating to obtain an lysate). The protocol was modified by using 
sonication instead of use of a bead beater to obtain BL21 or DH5α cell lysates. After washing 
the cells as following the Sun et al. protocol (Day 3 step 18) with S30A buffer (14 mM Mg-
glutamate, 60 mM K-glutamate, 50 mM Tris, 2 mM DTT, pH 7.7), the cells were centrifuged 
2000×g for 8 min at 4 °C. The pellet was re-suspended in S30A (pellet mass (g) × 0.9 ml). 
The solution was split in 1.5 ml aliquots in 2 ml Eppendorf tubes. Eppendorf tubes were 
placed in a cold block and sonicated using Vibracell 72408 (from Bioblock scientific) using 
the following procedure:20 s ON—1 min OFF—20 s On—1 min OFF—20 s ON. Output 
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frequency 20  kHz, amplitude 20%.The remaining protocol followed the procedure of the Sun 
et al. protocol for day 3, step 37. mRNA and protein synthesis are performed by the 
molecular machinery present in the lysate, with no addition of external enzymes. Reactions 
take place in 10.5 μL volumes at 30 °C in 384-well plate. Note that we kept the 50 mM 
HEPES and 2% PEG-8000 fixed in every reaction. Lysate_ORI, Lysate_PS and Lysate_AB 
were obtained from the same E. coli strain BL21 in the same laboratory with the same 
sonicator and centrifuge. The Lysate_ORI came from one-batch prepared from 12 Liters of 
BL21 culture. The 12 liters culture were separated in 4 Liters culture. The culture were 
inoculated, grown and their pellets were washed on different 3 days then freeze and stock at 
-80°C. Then, the pellets were weighed, resuspended in S30 buffer, pooled, sonicated, 
centrifuged, mixed and aliquoted on an extra day. The Lysate Lysate_PS, Lysate_AB and 
Lysate_PS and Lysate_DH5α were each obtained from 2 liters culture.  For the 
Lysate_spectinomycin and Lysat_rifaximin, the final concentration of rifaximin and 
spectinomycin were 0.25 mg/ml and 0.5 mg/mL respectively. They were added to the cell-
free reactions using Lysate_PS. 
 
sfGFP purification. The sfGFP was produced in E. coli culture. After a 10 min centrifuge at 
4000g, the pellet was resuspended in 20 mM Tris (Ph8), 0.2 M NaCl and sonicated (Output 
frequency 20 kHz, amplitude 40% with the Vibracell 72408). After sonication, the solution 
was centrifuged (4000g, 15 min).  The proteins in the supernatant were purified and 
fractionated using ammonium sulfate. The sfGFP was isolated at more than 70% saturation. 
The solution was centrifuged (4000g, 15 min) and the pellet resuspended in 20 mM Tris 
(Ph8), 100 mM NaCl. The solution was dialysed overnight in 20 mM Tris (Ph8), 100 mM 
NaCl. Eventually, for the last step of purification, we used a Mono Q anion exchange 
chromatography column (GE Healthcare) and obtained a solution of 90% sfGFP. The final 
solution dialyse in a solution 0 mM Tris (Ph8), 100 mM NaCl and 50% glycerol leading to a 
final concentration of 7.62 mg/ml. To obtain an absolute quantification of the protein 
production in cell-free, we measured the sgGFP fluorescence in wells containing 10.5 µl of 
sfGFP solution at different concentration. The G-yield values are calculated as described in 
Supplementary Fig. 4b with the fluorescence measured from sfGFP and no 
autofluorescence divided by the cell-free mix lysate_ORI autofluorescence and the reference 
fluorescence obtained from our plasmid in a cell-free mix with lysate_ORI.  
 
myTXTL commercial kit. We used the commercial kit: myTXTL from Arbor Biosciences 
(Sigma 70 Master Mix Kit, (USA). We used both our plasmid (10 nM final concentration) and 
the control plasmid, pTXTL-P70a(2)-deGFP (20 nM final concentration) provided by Arbor 
Biosciences. The 2 plasmids were expressed with the reactions provided with myTXTL kit 
and with the optimised cell-free reaction with the Lysate_ORI Supplementary Fig. 7b.  
 
Fluorescence quantification. We used a plate reader Infinite MF500 (Tecan) to measure 
fluorescence in 384-well plates (Nunc 384-well optical bottom plates, Thermo-Scientific). The 
excitation wavelength was fixed at 425 nM, the emission at 510 nM and the gain at 50. We 
measured 5 fluorescences values for each well as a quality control of the plate reader 
measurements. The fluorescence was measured from the top of the 384-well plates with no 
lid. 
  
Echo liquid handler. We used the Echo software Cherry Pick to program the Echo 550 
liquid handler. The software was programmed using CSV (comma separated values) files 
that gave machine-readable instructions: namely the well it had to take liquid from 
(containing pure reagents), the well the liquid was destined to and the volume that was to be 
taken. It allows us to program the content of each individual well separately. We calculated 
the concentrations of our chemical compounds stocks so the final volumes sent to the 
destination well were multiples of 2.5 nL (the droplet size managed by the Echo machine). 
The scripts generating the CSV file are presented below in concentrations to instructions 
workflow. We chose our stock volumes so that the minimal volume to transfer was 12.5 (=5 
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droplets). The chemical compounds were dispensed using BP2 fluid class except for K-
glutamate and 3PGA (CP fluid class). 
 
General script descriptions. All scripts mentioned below were written in Python (version 
3.6.5), executed in Jupyter notebooks (version 1.0.0). Scripts are available online at github 
(https://github.com/brsynth). The libraries numpy and csv were used to handle files between 
different scripts. We used scitkit-learn22 (version 0.19.1) for all model training. 
 
Concentrations to instructions workflow. The details of those scripts are described in the 
READme file of the ECHO_handling_scripts of our code. Roughly, it proceeds in 4 steps: 

- Complete concentrations: Taking as input a file containing only concentrations of 
interest for the machine learning algorithm, it adds information of values that are 
constant across all conditions, such as the lysate quantity. 

- Concentration to volume: This file converts a csv file concentrations -to a file of 
volumes one wants to test (in triplicates). This is due to the fact that the ECHO liquid 
handler needs volumes as inputs.  

- Optional: we sorted those volume files according to water content. This allows us later 
to manually pipet important water volumes so that the robot only adjusts small 
volumes. 

- Volume to echo: This file converts a set of transfer volume quantities to the csv file 
expected by the ECHO liquid handler (instructions files). It also provides a file 
containing the name of the wells with their corresponding transfer volumes. This file is 
used to match the well compositions with the fluorescence measurements obtained 
later with the plate reader. The amino acids and water were pipetted manually (for 
volumes > 1µl).  

- Named volumes to concentrations: maps the volumes and the associated well name 
to a concentration file with the associated well name, for integration with the 
fluorescent plate reader at the next step. 

The script matched the named concentration with the yield value as described in Data 
analysis of those methods. 
 
Data analysis. We provide a script to map the fluorescence quantification (see fluorescence 
quantification above) to the tested concentrations with well names (last step of 
concentrations to instructions workflow above). We performed outlier removal based on the 
following criteria: if the coefficient of variation, amongst 3 replicates, was higher than 30%, 
we removed the value farthest from the other 2. This concerned 27 values of our 1017 values 
tested during the active learning. Those are identified in the online data on Github with the 
third value of fluorescence is set to -1. This script also outputs csv files allowing for 
visualisation of where the outliers are, in order to spot potential border effects. It also 
separately outputs the outliers for further analysis. 
 
Data normalisation. We normalised using the following equation: 

𝑌𝑖𝑒𝑙𝑑𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝐴𝑢𝑡𝑜𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐴𝑢𝑡𝑜𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒
 

Where autofluorescence is the fluorescence measured in the cell-free reaction supplemented 
with water and using the reference composition. The yield exhibited in Fig. 2 used a cell-free 
reaction with the new lysate to measure the autofluorescence and the fluorescence with the 
reference composition. In supplementary Fig. 4, all the yields are calculated with 
autofluorescence and reference fluorescence of the Lysate_ORI. 
 
Quality controls. In every 384-well plates we measured 13 control compositions (in 
triplicate) including the reference composition with and without DNA In each 384-well plate, 
we used 2 rows of controls: A and P. The controls in row A never changes. The controls in 
row P changed throughout the workflow. We used the compositions leading to higher yields 
in the previous iteration. When analysing our controls, we checked whether the yields were 
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identical from plate to plate (R² > 0.75 between new plate and all previous plates on yield of 
controls). Plates with R² >0.75 when compared to all previous plates, or systematically above 
or below other plates are discarded and the same combinations were tested again.  
 
Initiation of the Machine learning. For the first plate of the active learning, we proceeded 
as follows. We chose 22 concentrations that we wished to test: fixing all reagents at the 
maximum allowed concentration, except one which was at the lowest (11 combinations) and 
fixing all reagents at the minimum allowed concentration except one which was at the highest 
(11 combinations). The rest (80 compositions) was filled randomly. 
 
Model training. The models were trained as follows. 

- Input data is normalised: each component maximum concentration is 1, and the other 
values take discrete values of 0.1, 0.3, or 0.5 as described in the legend of Fig. 1. 
While unnormalised inputs could be used, we strongly encourage normalisation due 
to scale differences between the inputs. 

- We train an ensemble of n models, where n = 25. For each model, we train it 10 times 
(models_number) using the whole dataset at the moment (e.g. 3x102 values at the 
3rd iteration). Training the model multiple times allows for optimising for random 
weight initialization of the model. We keep the best model (with the highest 
regression from scitkit-learn R2 score).  

- Multilayer perceptrons give the best results (random forests and linear regressions 
were also investigated early on). They are trained with the default parameters from 
scitkit-learn except the following parameters: maximum iteration of 20000, adaptive 
learning rate, adam solver, early stopping and the following layers: (10, 100,100, 20) 

- We obtain mean and standard error from our predictions by taking the mean and 
standard error from the n results generated by our ensemble of n models. 

 
Active learning. The workflow used the data from all the available plates as an input. It 
trains an ensemble of 25 models and returns instructions for the following round. Here is the 
detailed process: 

- For N times (N= 100,000): 
○ Randomly sample a composition in the composition space (Fig. 1a) 
○ If a composition was drawn previously (either in a previous experiment or 

during current selection), neglect it.  
- Predict mean and standard deviation for all 100,000 points using the ensemble of 25 

models previously trained. 
- Select the best set of compositions, according to the following Upper Confidence 

Bound (UCB) formula: exploitation * yield_pred_mean + exploration * yield_pred_std, 
with exploitation = 1 and exploration = 1.41. Our scripts output the best 500 
compositions based on the mean and std predictions of the yields. A high std value 
stands for an uncertain yield value. We output compositions for full exploitation, full 
exploration and maximisation of the above formula but use the third option for the rest 
of the workflow. We are therefore querying points with both high yield and 
uncertainty. 

 
Model statistics. For model statistics presented in Fig. 1e, we used the same models as 
described in the active learning section above, but using 5 fold cross validation instead of the 
whole training set. The full dataset is separated into 5 subsets then the 25 models are trained 
on 4 subsets, and used to predict the 5th, where scores are obtained. This is done 5 times, 
once on each subset. The scores presented in Fig. 1e are the mean and standard deviation 
of those 5 scores. 
 
Mutual information calculation. Mutual information is a method to quantify the mutual 
dependence between two variables. This concept is intrinsically linked to the concept of 
entropy and is especially useful to quantify non-linear relationships between variables. More 
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information on the theory behind this method can be found in the review ‘estimation of mutual 
information23 and in sci-kit learn documentation22. It was calculated using the 
feature_selection.mutual_info_regression function from scitkit-learn22 (version 0.19.1) 
between each feature and the yield 
(compounds_effect_analysis/mutual_information_analysis jupyter notebook) with default 
parameters.  
 
Identification of informative points. To identify the most informative points, we proceeded 
in the following manner: 
We did 1000 iterations of the following procedure: 

- Randomly sample n combinations from the dataset (n=20 out of a dataset of 102 
values for Fig. 2) 

o Train models on those points using the strategy presented in model training 
for each lysate 

o Predict on the other points (82 for Fig. 2) for each lysate 
o Obtain the average score on all lysate,-s 

- Keep those combinations if this average is better 
Note: Data is saved every 100 iterations 
 

Maximization of the protein production for future users.  
Users must do the following experiments:  

- Maxiprep a LB culture of our plasmid (or MyTXTL plasmid) 
- Measure the yields (or absolute fluorescences) in the 20 cell-free compositions 

described in Fig. 2a 
Then, in order to apply our method to a new extract, a jupyter notebook called 
predict_for_new_lysate is available. It takes as input a csv file containing the 20 tested 
concentrations and the 20 corresponding yields and standard error values. It provides as an 
output a file to maximise exploration, exploitation or a combination of both as in the active 
learning loop. For obtaining the highest possible yield, it is recommended to take the 
exploitation results, which contain the highest predicted yields. It must be noticed that several 
cell-free compositions can be predicted to reach maximum yield or values in the same range. 
The algorithm provides mean yields value with standard deviation errors and so several 
yields will be equivalent to the maximum value. During this study we provided yield values to 
our training algorithms but absolute fluorescence can also be used if a user does not need to 
compare fluorescence values measured on different 384-well plates.  
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Supplementary information 
 

 
Supplementary Figure 1: Preliminary calibration of the cell-free composition. The 
lysate is usually only calibrated for Mg-glutamate, K-glutamate levels. Here we show the end 
point after overnight cell-free reactions with the lysate_ORI used in Fig. 1. Then, we fixed the 
maximum concentration for: a, Mg-glutamate concentration at 4 mM and b, K-glutamate at 
80 mM. The error bars stand for the standard deviation of 3 replicates performed on the 
same day. 

 
Supplementary Figure 2: The choice of 102 cell-free compositions for training and 
testing of our model. a, Distribution of the yields obtained with the 102 training cell-free 
compositions along the 1017 cell-free compositions tested in Fig 1. The 102 cell-free 
compositions were chosen based on the highest R2 obtained by training on 102 points and 
predicting on the 915 remaining points. The vertical error bars stand for the standard 
deviation of 3 replicates. The horizontal error bars stand for the standard deviation of 25 
predictions. b, Comparison of the prediction efficiency of the model when trained with a 
training set of 8, 16, 20 or 24 cell-free compositions, for prediction on the reminder of the 102 
points. The training set is chosen amongst the 102 cell-free compositions fixed in panel a. 
The training set leading to the highest mean R2 amongst the 3 lysates has been selected. 
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Supplementary Figure 3: Mutual Information analysis based on the 102 compositions 
tested with lysate-PS, lysate_AB and lysate_DH5α. Mutual information analysis of the 
relationship between the yield and each chemical compound, using the yields measured in 
cell-free reactions using 102 cell-free compositions and a, lysate_PS, b, lysate_AB, c, 
lysate_DH5α. 

 
Supplementary Figure 4: Global comparison between the yields obtained with different 
lysates. a, Comparison of the yields obtained with the lysate original (same as Fig. 1) vs the 
model predictions for the 102 cell-free compositions used in Fig. 2, Formula of the global 
yield compared to the local yield. In contrary to the Yields presented in Fig. 2, the Global 
yield always use the same reference yield from the lysate of Fig. 1 named Lysate_ORI. The 
Global yield, noted G_yield, allows comparison between yields obtained with our different 
lysates. c, The 102 cell-free compositions were ranked from low to high values based on the 
yields obtained with the Lysate_ORI. The same ranking of the same 102 cell-free 
compositions was used for each lysate. Linear fit is used for Lysate_ORI, Lysate_PS, 
Lysate_AB and Lysate_PS + Riflaximin. Michaelis-Menten like fit is used for Lysate_PS + 
Spectinomycin and Lysate_DH5α. 
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Supplementary Figure 5: Comparison between the behaviour of the local yields 
measured with different lysates and the yields measured with the lysate_ORI. 
Comparison between the yields measured with Lysate_ORI and a, Lysate_PS. b, 
Lysate_AB. c, Lysate_PS + rifaximin. d, Lysate_PS + spectinomycin. e, Lysate_DH5α. The 
blue lines stand for linear fit and the dot lines stand for the perfect correlation (intercept 0 and 
slope 1). We used the same 102 cell-free compositions for all the measurements. The error 
bars stand for the standard deviation of 3 replicates   
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Supplementary Figure 6:   A decrease in ribosome availability is sufficient to explain 
the saturation of the yields with Lysate_Spectinomycin . a, Comparison between the 
yield obtained with Lysate_PS and the yield obtained with Lysate_PS supplemented with 
Spectinomycin (same data as Supplementary Fig. 5d). We used a Michaelis-Menten like 
function to fit the data. b, We used the well described Michaelis-Menten1 like relationship 
between translation efficiency and available ribosomes concentration (Rfree). We assumed 
that a change in cell-composition impact the translation efficiency via a change of Vmax and 
KM. At a fixed Rfree concentration (blue arrow), an increase of Vmax,KM values lead to an 
increasing translation efficiency. c, As the spectinomycin binds to the 30S subunit of the 
ribosome to inhibit the translation process, its activity can be represented by a decrease in 
Rfree concentration (red arrow). The impact of less ribosomes will lead to a decrease in 
translation efficiency (blue vs red line in the second plot). d, Relationship between a 
translation efficiency with spectinomycin versus a translation efficiency without spectinomycin 
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(see supplementary note 1). The yield as the protein production results from the translation 
but also the transcription process. The relationship between Translation efficiency and 
yieldsis described in supplementary note 1. 

 
Supplementary Figure 7: Absolute measurements in cell-free reaction 
a, Relationship between purified sfGFP and the Global yield. (See supplementary note 2). 
b, Comparison between the yield obtained with our best cell-free composition with 
lysate_ORI and the commercial kit myTXTL from Arbor (pTXTL-P70a(2)-deGFP). We used 
both our plasmid and myTXTL plasmid. Noted that the y-axis with sfGFP concentration is 
used only for the measurements with our plasmid as myTXTL plasmid produce deGFP and 
not sfGFP.     
 
Supplementary Table 1: Sequence of the plasmid used in this study. The sfgp is under 
control of the promoter J23101 (http://parts.igem.org/Part:BBa_J23101) and RBS B0034 
(http://parts.igem.org/Part:BBa_B0034). The plasmid contains the gene of ampicillin 
resistance and the origin of replication PBR322. 
 

Promoter J23101 tttacagctagctcagtcctaggtattatgctagc 

RBS B0034 aaagaggagaaa 

sfgp atgcgtaaaggcgaagagctgttcactggtgtcgtccctattctggtgga

actggatggtgatgtcaacggtcataagttttccgtgcgtggcgagggtg

aaggtgacgcaactaatggtaaactgacgctgaagttcatctgtactact

ggtaaactgccggtaccttggccgactctggtaacgacgctgacttatgg

tgttcagtgctttgctcgttatccggaccatatgaagcagcatgacttct

tcaagtccgccatgccggaaggctatgtgcaggaacgcacgatttccttt

aaggatgacggcacgtacaaaacgcgtgcggaagtgaaatttgaaggcga

taccctggtaaaccgcattgagctgaaaggcattgactttaaagaagacg

gcaatatcctgggccataagctggaatacaattttaacagccacaatgtt

tacatcaccgccgataaacaaaaaaatggcattaaagcgaattttaaaat

tcgccacaacgtggaggatggcagcgtgcagctggctgatcactaccagc

aaaacactccaatcggtgatggtcctgttctgctgccagacaatcactat

ctgagcacgcaaagcgttctgtctaaagatccgaacgagaaacgcgatca

tatggttctgctggagttcgtaaccgcagcgggcatcacgcatggtatgg

atgaactgtacaaatga 

rrnB T1 terminator ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgt

tttatctgttgtttgtcggtgaacgctctc 
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SUPPLEMENTARY NOTE 1: Deterministic model of protein production 
behavior in cell-free system with an imparied translation process 
(Supplementary Figure 6) 
Assumption 1: Adding spectinomycin lead to a similar impact on the translation process as a 
decrease in concentration of the available ribosome. Spectinomycin binds to the 30S subunit 
stopping protein synthesis. Thus, a subset of ribosomes should be unavailable for 
translation. 
[Rfree]spec=[Rfree]-cst.  
Assumption 2: We simplified our calculation by considering that a variation in cell-free 
composition has a similar impact on both Vmax and KM.  
Vmax = cst2 x KM. 
Assumption 3: The relationship of transcription efficiencies (noted TxE) between lysates is 
modeled by a linear relationship with a negligible intercept. We observed such a linear 
relationship (with an intercept close to 0) between yields from lysates with and without a 
damage transcription machinery in Supplementary Figure 5c. 
TxEspec=cst3.TxE 
Assumption 4: The variation in cell-free composition mainly impact the translation process. 
We observed in Supplementary Figure 5d that a lysate with a damaged translation 
machinery is poorly improved by a change in cell-free composition. The opposite is observed 
with a damaged transcription machinery in Supplementary Figure 5c suggesting that the 
efficiency of the translation machinery is the limiting factor for cell-free improvement and not 
the efficiency of the transcription machinery.  
TxE=cst4 (TxE is independent of the variations in cell-free compositions) 
 
We used the well-defined model of the translation efficiency (TlE) based on a Michaelis-
Menten equation24: 

𝑇𝑙𝐸 =
𝑉𝑚𝑎𝑥.[𝑅𝑓𝑟𝑒𝑒]

𝐾𝑚+[𝑅𝑓𝑟𝑒𝑒]
          (1) 

𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =
𝑉𝑚𝑎𝑥.[𝑅𝑓𝑟𝑒𝑒]𝑠𝑝𝑒𝑐

𝐾𝑚+[𝑅𝑓𝑟𝑒𝑒]𝑠𝑝𝑒𝑐
        

 (2) 
where Vmax and KM values depends on the RBS sequence and the cell-free composition. 
[Rfree] stands for the concentration in available ribosomes. 
 
Assumption 1: [Rfree]spec=[Rfree]-cst.  
 

(2) ⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 = 𝑉𝑚𝑎𝑥.([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)
𝐾𝑚+([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)

        (3) 

 
Assumption 2: Vmax = cst2 x KM 
 

(1) ⇔ 𝑇𝑙𝐸 =
𝑐𝑠𝑡2.𝐾𝑚.[𝑅𝑓𝑟𝑒𝑒]

𝐾𝑚+[𝑅𝑓𝑟𝑒𝑒]
          (4) 

(3) ⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =
𝑐𝑠𝑡2.𝐾𝑚.([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)

𝐾𝑚+([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)
         (5) 

 
Thus, 
 

(4) ⇔ 𝐾𝑀 =
𝑇𝑙𝐸.[𝑅𝑓𝑟𝑒𝑒]

𝑐𝑠𝑡2.[𝑅𝑓𝑟𝑒𝑒]−𝑇𝑙𝐸
        (6) 

 

(5&6)   ⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =
𝑐𝑠𝑡2.

𝑇𝑙𝐸.[𝑅𝑓𝑟𝑒𝑒]

𝑐𝑠𝑡2.[𝑅𝑓𝑟𝑒𝑒]−𝑇𝑙𝐸
.([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)

𝑇𝑙𝐸.[𝑅𝑓𝑟𝑒𝑒]

𝑐𝑠𝑡2.[𝑅𝑓𝑟𝑒𝑒]−𝑇𝑙𝐸
+([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)
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⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =
𝑐𝑠𝑡2. 𝑇𝑙𝐸. [𝑅𝑓𝑟𝑒𝑒]. ([𝑅𝑓𝑟𝑒𝑒] − 𝑐𝑠𝑡)

𝑇𝑙𝐸. [𝑅𝑓𝑟𝑒𝑒] + ([𝑅𝑓𝑟𝑒𝑒] − 𝑐𝑠𝑡)(𝑐𝑠𝑡2. [𝑅𝑓𝑟𝑒𝑒] − 𝑇𝑙𝐸)
 

 

⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =
𝑐𝑠𝑡2. 𝑇𝑙𝐸. [𝑅𝑓𝑟𝑒𝑒]. ([𝑅𝑓𝑟𝑒𝑒] − 𝑐𝑠𝑡)

𝑇𝑙𝐸. 𝑐𝑠𝑡 + ([𝑅𝑓𝑟𝑒𝑒] − 𝑐𝑠𝑡)𝑐𝑠𝑡2. [𝑅𝑓𝑟𝑒𝑒]
 

 

⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =

𝑐𝑠𝑡2. [𝑅𝑓𝑟𝑒𝑒]. ([𝑅𝑓𝑟𝑒𝑒] − 𝑐𝑠𝑡)
𝑐𝑠𝑡

. 𝑇𝑙𝐸

𝑇𝑙𝐸 +
𝑐𝑠𝑡2. [𝑅𝑓𝑟𝑒𝑒]. ([𝑅𝑓𝑟𝑒𝑒] − 𝑐𝑠𝑡)

𝑐𝑠𝑡

 

 

⇔ 𝑇𝑙𝐸𝑠𝑝𝑒𝑐 =
𝐴.𝑇𝑙𝐸

𝑇𝑙𝐸+𝐴
 with 𝐴 =

𝑐𝑠𝑡2.[𝑅𝑓𝑟𝑒𝑒].([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)

𝑐𝑠𝑡
   (7) 

 
The protein production (and so the yield) is the result of the expression of sfgfp by the 
transcription and translation processes. 
  

𝑌𝑖𝑒𝑙𝑑 = [𝐷𝑁𝐴]. 𝑇𝑥𝐸. 𝑇𝑙𝐸         (8) 

𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐 = [𝐷𝑁𝐴]. 𝑇𝑥𝐸𝑠𝑝𝑒𝑐. 𝑇𝑙𝐸𝑠𝑝𝑒𝑐       
 (9) 
 
Assumption 3: TxEspec=cst3.TxE. Moreover, the DNA concentration is the same in every cell-
free reaction so [DNA] =cst5. 
 

(9)⇔ 𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐 = 𝑐𝑠𝑡5. 𝑐𝑠𝑡3. 𝑇𝑥𝐸. 𝑇𝑙𝐸𝑠𝑝𝑒𝑐               (10) 

 
Assumption 4: TxE=cst4 

 

(8)  ⇔ 𝑌𝑖𝑒𝑙𝑑 = 𝑐𝑠𝑡5. 𝑐𝑠𝑡4. 𝑇𝑙𝐸               (11) 

(10) ⇔ 𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐 = 𝑐𝑠𝑡5. 𝑐𝑠𝑡3. 𝑐𝑠𝑡4. 𝑇𝑙𝐸𝑠𝑝𝑒𝑐              (12) 

Then, 

(11) ⇔
𝑌𝑖𝑒𝑙𝑑

𝑐𝑠𝑡5.𝑐𝑠𝑡4
= 𝑇𝑙𝐸                (13) 

and 

(12) ⇔
𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐

𝑐𝑠𝑡5.𝑐𝑠𝑡3.𝑐𝑠𝑡4
= 𝑇𝑙𝐸𝑠𝑝𝑒𝑐               (14) 

Then, 

(14&7) ⇔
𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐

𝑐𝑠𝑡5.𝑐𝑠𝑡3.𝑐𝑠𝑡4
=

𝐴.𝑇𝑙𝐸

𝑇𝑙𝐸+𝐴
               (15) 

Then, 

(15&11) ⇔
𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐

𝑐𝑠𝑡5.𝑐𝑠𝑡3.𝑐𝑠𝑡4
=

𝐴.
𝑌𝑖𝑒𝑙𝑑

𝑐𝑠𝑡5.𝑐𝑠𝑡4
𝑌𝑖𝑒𝑙𝑑

𝑐𝑠𝑡5.𝑐𝑠𝑡4
+𝐴

 

⇔ 𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐 =
𝑐𝑠𝑡5. 𝑐𝑠𝑡3. 𝑐𝑠𝑡4. 𝐴.

𝑌𝑖𝑒𝑙𝑑
𝑐𝑠𝑡5. 𝑐𝑠𝑡4

𝑌𝑖𝑒𝑙𝑑
𝑐𝑠𝑡5. 𝑐𝑠𝑡4

+ 𝐴
 

⇔ 𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐 =
𝑐𝑠𝑡5. 𝑐𝑠𝑡3. 𝑐𝑠𝑡4. 𝐴. 𝑌𝑖𝑒𝑙𝑑

𝑌𝑖𝑒𝑙𝑑 + 𝐴. 𝑐𝑠𝑡5. 𝑐𝑠𝑡
4
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⇔ 𝑌𝑖𝑒𝑙𝑑𝑠𝑝𝑒𝑐 =
𝐵.𝑌𝑖𝑒𝑙𝑑

𝑌𝑖𝑒𝑙𝑑+𝐶
                (16) 

 

With 𝐵 =
𝑐𝑠𝑡5.𝑐𝑠𝑡3.𝑐𝑠𝑡4.𝑐𝑠𝑡2.[𝑅𝑓𝑟𝑒𝑒].([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)

𝑐𝑠𝑡
 and 𝐶 =

𝑐𝑠𝑡5.𝑐𝑠𝑡4.𝑐𝑠𝑡2.[𝑅𝑓𝑟𝑒𝑒].([𝑅𝑓𝑟𝑒𝑒]−𝑐𝑠𝑡)

𝑐𝑠𝑡
 

 
Eventually, we obtained a Michaelis-Menten equation for the relationship between Yield and 
Yieldspec (eq. 16) which explain the data in Supplementary Fig. 6a. Despite the multiple 
assumptions (that are difficult to verify by experimental measurements) this model gives a 
simple explanation of our observations.  
 

SUPPLEMENTARY NOTE 2: Commercial kit and absolute sfGFP measurements 
(Supplementary Figure 7) 
Both plasmids (our plasmid and myTXL plasmid) led to similar yield when the lysate_ORI 
with the optimized composition (max yield in Fig. 1d) and myTXTL mix are used. This result 
suggests that pTXTL-P70a(2)-deGFP can also be used, instead of our plasmid to optimize 
cell-free composition. The higher Global yield come from the higher fluorescence obtained 
with this plasmid. The pTXTL-P70a(2)-deGFP seems to be a derivative of the pBEST-OR2-
OR1-Pr-UTR1-eGFP-Del6-229-T500 25 optimize for expression in cell-free reaction. We don’t 
have access to the cell-free composition of myTXTL mix but we assumed that it was 
optimized to obtain a maximum protein production and that the lysate was prepared from a 
modified strain of E. coli. The quality of the result obtained with our lysate-specific 
optimization compared to the commercial kit is a validation of our method efficiency. The 
protein concentration obtained from the expression of our plasmid with lysate_ORI is at 0.22 
µM sfGFP equivalent. We can notice, with the arbor plasmid, that the the 7 µM sfGFP 
equivalent is irrelevant as the plasmid produce deGFP.    
 
References 

24. Koch, M., Faulon J-L. & Borkowski O.  Models for cell-free synthetic biology: make 

prototyping easier, better and faster. Front Bioeng Biotechnol. 6, 182 (2018). 

25. Shin J., & Noireaux V. Efficient cell-free expression with the endogenous E. Coli RNA 

polymerase and sigma factor 70. Journal Biological Engineering 4, 8 (2010). 
 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2019. ; https://doi.org/10.1101/751669doi: bioRxiv preprint 

https://doi.org/10.1101/751669
http://creativecommons.org/licenses/by-nd/4.0/

