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Abstract 7 

 8 
Flagellar length control in Chlamydomonas is a tractable model system for studying the general 9 

question of organelle size regulation. We have previously proposed that diffusive return of the 10 

kinesin motor that powers intraflagellar transport can play a key role in length regulation. Here 11 

we explore how the motor speed and diffusion coefficient for the return of kinesin-2 affect 12 

flagellar growth kinetics. We find that the system can exist in two distinct regimes, one 13 

dominated by motor speed and one by diffusion coefficient. Depending on length, a flagellum 14 

can switch between these regimes. Our results indicate that mutations can affect length in 15 

distinct ways. We discuss our theory’s implication for flagellar growth influenced by beating and 16 

provide possible explanations for the experimental observation that a beating flagellum is 17 

usually longer than its immotile mutant. These results demonstrate how our simple model can 18 

suggest explanations for mutant phenotypes.  19 

 20 

Statement of Significance 21 

 22 
The eukaryotic flagellum is an ideal case study in organelle size control because of its simple 23 

linear shape and well-understood building mechanism. In our previous work, we proved that 24 

flagellar length in the green algae Chlamydomonas can be controlled by the diffusive gradient 25 

of the kinesin-2 motors that deliver building blocks to the tip. In this study, we expand on the 26 

analytical formulation of the diffusion model to show how physical parameters affect final 27 

length and regeneration time, enhancing the model's potential to explain length mutants and 28 

motivate future research with precise predictions. 29 

 30 

1. Introduction 31 

 32 

Biologists have long been trying to understand how cells build themselves. The proteins that 33 

cells synthesize have to come together to form massive organized structures without any 34 

guidance. A striking case of this is that some single-celled organisms can regenerate missing 35 

pieces, implying that the cell has some form of design specifications embedded within it that 36 

allows the cell to reconstruct the correct form. The single-celled algae Chlamydomonas 37 

reinhardtii is an ideal organism for studying single cell organelle regeneration because it has 38 

two linear flagella that grow back upon being cut or shed (1). The kinetics of flagellar growth 39 

have been well documented, and much is known about its inner components and growing 40 

process, but how the flagellum consistently reaches the same steady-state length is a mystery. 41 

Multiple different theoretical models have been developed to explain this robust regeneration, 42 
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and recent work demonstrated the feasibility of a model in which the length of the flagella is 43 

governed by a diffusive gradient across its length (2, 3).  44 

 45 

In this study, we further develop the diffusion model by analytically deriving the growth curve 46 

as a function of time and the relevant physical parameters. This shines light onto which factors 47 

are limiting at different stages in the growth. It also lets us predict steady-state length from 48 

observed physical parameters and predict physical parameters from observed steady-state 49 

length. 50 

 51 

In order to understand the length control model, one must first understand how a 52 

Chlamydomonas cell builds its flagella. The flagellum is made of nine doublet microtubules, and 53 

to get longer, new tubulin (the building blocks of microtubules) must be delivered to the 54 

flagellar tip. The mechanism for transporting tubulin to the tip is called intraflagellar transport, 55 

or IFT (4–8). In IFT, tubulin and other building materials such as axonemal dynein arms are 56 

bound to protein complexes of ~20 polypeptides called IFT particles. These IFT protein 57 

complexes form linear arrays called “trains”, and are pulled to the distal tip by heterotrimeric 58 

kinesin-2 motors (9–12). Upon arrival at the tip, the tubulin and other building blocks are added 59 

to the flagellum, increasing its length. To counter this length increase, tubulin is continually 60 

removed from the flagellar tip at a constant, length-independent rate (13, 14). IFT happens 61 

continuously throughout the lifespan of a Chlamydomonas cell, and when the rate of IFT-driven 62 

assembly equals the rate of length-independent tubulin removal, steady-state length is 63 

achieved. 64 

 65 

IFT begins through a process called “injection”, in which IFT trains are released from docking 66 

sites at the flagellar basal body and transition zone and transported into the flagellum itself 67 

(15). Injection is not fully understood, but it appears that IFT material injects into the flagellum 68 

from the basal body upon accumulation of motors in the basal body. Quantitative live cell 69 

imaging has shown that the rate of injection is a decreasing function of the length of the 70 

flagellum (16, 17). This implies some sort of sensing mechanism that allows the basal body to 71 

sense the flagellar length. The sensing mechanism here is unknown, and is the core puzzle that 72 

length control models try to solve (16, 18, 19). A clue has come from a recent study that 73 

showed that kinesin motors diffuse within the flagellum and are not actively transported back 74 

to the base (20). In the model explored by Hendel et al., the length-dependent rate of IFT is 75 

generated by the kinesin motors diffusing back to the basal body from the tip, using the time it 76 

takes to diffuse back as a proxy for length measurement. The longer the flagellum, the longer it 77 

takes for kinesins to diffuse back to the base, and therefore the longer it takes for enough 78 

kinesins to accumulate in the base to power injection. This explains, in principle, how longer 79 

flagella inject less building material per second. The model assumes that kinesins are conserved 80 
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and not drawn from the cell body in significant number. This would eliminate the need for a 81 

currently undiscovered signaling pathway, and would allow the already-known components of 82 

IFT to generate its own length dependence. In this study, we will take the conclusions from 83 

Hendel et al. and further develop the analytical formalism of the diffusion model to show how 84 

altering the diffusion coefficient and IFT velocity would affect observables like steady-state 85 

length and regeneration time. We identified three factors that limit flagellar growth at different 86 

phases of its regeneration, which lead to two possible rate-limiting steps of flagellar growth at 87 

steady state. We then used the upgraded model to attempt to explain observed length changes 88 

in length-altering mutants by calculating what changes in diffusion coefficient and IFT velocity 89 

are necessary. We arrived at the conclusion that changes in diffusion coefficient may be 90 

responsible for the length changes in the mutants.   91 

 92 

 93 

 94 

2. Model  95 

 96 
We treat the flagellum as a linear track for kinesin motors (Figure 1). The position on the track 97 
is labeled by 𝑥 with 𝑥 = 0 corresponding to the base and 𝑥 = 𝐿(𝑡) corresponding to the tip of 98 
the flagellum, where 𝐿(𝑡) is the length of the flagellum at time 𝑡. We distinguish four 99 
populations of kinesin motors: (i) motors that actively carry cargos from the base to the tip with 100 
a constant velocity 𝑣; (ii) motors that accumulate at the tip after the delivery; (iii)  motors that 101 
diffuse back to the base from the tip with a diffusion coefficient 𝐷; (iv) motors that accumulate 102 
at the base when diffusion is completed.  103 

 104 
The linear number density of active motors 𝜌𝑎(𝑥, 𝑡) of type (i) is governed by the equation 105 
 106 
(1a) 𝜕𝑡𝜌𝑎(𝑥, 𝑡) = −𝜕𝑥𝐽𝑎(𝑥, 𝑡), 107 
 108 
with the convective current 109 
 110 
(1b) 𝐽𝑎(𝑥, 𝑡) = 𝑣 𝜌𝑎(𝑥, 𝑡).  111 
 112 
The number of type (ii) motors 𝑁𝑡 dwelling at the tip is described by 113 
 114 

(2) 
𝑑𝑁𝑡

𝑑𝑡
= 𝐽𝑎(𝐿, 𝑡) − 𝑘𝑡𝑁𝑡, 115 

 116 
where 𝑘𝑡 is transition rate for a motor dwelling at the tip switching to a diffusive state.  117 
 118 
The linear number density of diffusive motors 𝜌𝑑(𝑥, 𝑡) of type (iii) obeys the simple diffusion 119 
law: 120 
 121 
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(3a) 𝜕𝑡𝜌𝑑(𝑥, 𝑡) =  −𝜕𝑥 𝐽𝑑(𝑥, 𝑡), 122 
 123 
with the diffusive current 124 
 125 
(3b) 𝐽𝑑 =  −𝐷𝜕𝑥𝜌𝑑(𝑥, 𝑡). 126 
 127 
The number of type (iv) motors 𝑁𝑏 accumulating at the base is described by 128 
 129 

(4) 
𝑑𝑁𝑏

𝑑𝑡
= 𝐽𝑑(0, 𝑡) − 𝑘𝑖𝑁𝑏, 130 

 131 
where 𝑘𝑖 is the injection rate of motors from the reservoir at the base to the flagellum track.  132 

 133 
The total number of motors 𝑁 includes all four populations of motors and reads 134 
 135 

(5) 𝑁 = 𝑁𝑏 + 𝑁𝑡 + ∫ (𝜌𝑎 + 𝜌𝑑)𝑑𝑥
𝐿

0
.  136 

 137 
We assume the total number of motors is conserved and this imposes the boundary conditions 138 
at the base 139 
 140 
(6a) 𝐽𝑎(0, 𝑡) = 𝑘𝑖𝑁𝑏, 141 
 142 
and at the tip 143 
 144 
(6b) 𝐽𝑑(𝐿, 𝑡) = 𝑘𝑡𝑁𝑡.  145 
 146 
 147 
The growth dynamics of the flagellum are governed by the equation 148 
 149 

(7) 
𝑑𝐿

𝑑𝑡
= 𝐽𝑎(𝐿, 𝑡)𝛿 − 𝑟𝑑, 150 

 151 
where 𝛿 denotes the length elongation caused by arrival of a single kinesin motor, and 𝑟𝑑 152 
denotes the de-polymerization speed which is independent of the length.  153 

 154 

3. Results 155 

 156 
We can numerically solve the dynamic equations of (1)-(4) and (7) to have the exact growth 157 
curve 𝐿(𝑡) for flagellum of length 𝐿 as a function of time 𝑡. The parameters used in our 158 
numerical solutions are listed in Table 1. Due to the small elongation increment 𝛿, we can also 159 
make a quasi-static assumption that at each length 𝐿, the spatial distribution of molecular 160 
motors reaches the steady state for that particular length 𝐿 (see Appendix A). The analytical 161 
results obtained by this quasi-static assumption almost perfectly overlap with the exact 162 
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numerical solution (Figure 2a, c and e). Therefore, for the rest of the paper we only show 163 
results obtained with the quasi-static assumption.  164 
 165 

3.1 The rate-limiting step changes as the flagellum grows 166 

 167 
Typical growth curves of the flagellum are demonstrated in Figure 2 for three diffusion 168 
coefficients. Each growth curve rapidly increases at first and then slowly plateaus to the steady 169 
state length. The growth can be divided into different stages based on the rate-limiting step. To 170 
see this, we express the growth rate of the flagellum under the quasi-static assumption as  171 
 172 

(8) 
𝑑𝐿

𝑑𝑡
=

𝑁𝛿

𝐿

𝑣
 + 

𝐿2

2𝐷
 +  

1

𝑘𝑡
 + 

1

𝑘𝑖

− 𝑟𝑑 =  
𝑁𝛿

𝑡active +𝑡diff + 𝑡dwell
− 𝑟𝑑  . 173 

 174 

where 𝑡active =
𝐿

𝑣
 denotes the time for a motor to transport the assembly unit of the flagellum 175 

from the base to the tip, 𝑡diff =
𝐿2

2𝐷
 denotes the root-mean-square time for a motor to diffuse 176 

back to the base from the tip, and 𝑡dwell =
1

𝑘𝑡
+

1

𝑘𝑖
 denotes the total time a motor dwells at the 177 

base and at the tip. At short length scale, 𝑡dwell always dominates over the other two time 178 
scales, and motors spend most of their time dwelling at the tip and the base (Figure 2b, d and f, 179 
green lines). In this regime, the duration that the motor spends traveling between the base of 180 
the tip is negligible, so the flagellar growth rate is independent of length. When the flagellum 181 
grows longer, either the diffusive time 𝑡diff dominates if 𝐷 is small (Figure 2b), or the 182 
transportation time 𝑡active dominates if 𝐷 is large (Figure 2f). For an intermediate 𝐷, the growth 183 
is divided into three stages, in which the dominant time scales are 𝑡dwell, 𝑡active and 𝑡diff (Figure 184 
2d). Measurements of flagellar growth kinetics have clearly shown that growth rates are 185 
constant for flagella shorter than 4-5 micron (1). In a different algal species, Spermatozopsis 186 
similis, flagella grow at a constant rate over their whole length, suggesting that in that organism, 187 
tdwell is always the dominating factor (20). 188 
 189 

3.2 Diffusion vs. active transport as the rate-limiting step at 190 

the steady state 191 

 192 
One would expect that diffusion will always be the rate-limiting step at steady state. This is 193 
because the diffusion time 𝑡diff scales with 𝐿2, while the motor transportation time 𝑡active 194 
scales with 𝐿. For a sufficiently long flagellum, 𝑡diff always dominates over 𝑡active. However, the 195 
steady state length 𝐿𝑠𝑠 might not be long enough to have 𝑡diff greater than 𝑡active. In Figure 3a, 196 
we show the three time scales at steady state as a function of diffusion coefficient 𝐷. For small 197 
𝐷, 𝑡diff dominates over the other time scales. However, as 𝐷 increases, 𝑡active  becomes greater 198 
than 𝑡diff, and the steady state length of the flagellum becomes limited by the active motor 199 
transport. If we fix the diffusion coefficient but vary the motor velocity, the growth will change 200 
from 𝑡active-dominance to 𝑡diff-dominance (Figure 3B). A phase diagram is shown in Figure 3c. 201 
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Generally, a larger diffusion coefficient 𝐷 favors motor-limited growth, and a faster motor 202 
speed 𝑣 favors diffusion-limited growth.   203 
    204 

3.3 A dramatic increase in steady state length 𝐿𝑠𝑠 requires a 205 

dramatic increase in diffusion coefficient 𝐷 if motor velocity 206 

𝑣 is small 207 

 208 

The steady state length of the flagellum 𝐿𝑠𝑠 can be obtained by setting 
𝑑𝐿

𝑑𝑡
 in Equation (8) to zero. 209 

This leads to the analytical result 210 

(9) 𝐿𝑠𝑠 = −
𝐷

𝑣
+ √−

2𝐷

𝑘𝑖
−

2𝐷

𝑘𝑡
+ (

𝐷

𝑣
)

2
+

2𝐷𝑁𝛿

𝑟𝑑
 .  211 

 212 
The steady state length 𝐿𝑠𝑠 increases with both diffusion coefficient 𝐷 and motor velocity 𝑣. For 213 
a small motor velocity, increasing the diffusion coefficient does not lead to significant increase 214 
in 𝐿𝑠𝑠 because it is mainly set by the small motor velocity (Figure 4a, green line).  For instance, if 215 
the motor velocity 𝑣 is 1μm/s and 𝐿𝑠𝑠 is 5𝜇𝑚, it would be impossible to increase to increase 216 
the length to 10 𝜇𝑚 because even in the limit of an infinitely large diffusion coefficient 𝐷 → ∞, 217 
the maximum length 𝐿𝑠𝑠 is 9.5𝜇𝑚. The analytical proof of this limit is derived in Appendix B. 218 
 219 
However, if the motor velocity 𝑣 is 2 μm/s, the diffusion coefficient 𝐷 must only increase from 220 
1.8 μm2/s to 11.1 μm2/s to increase length to ten microns, the typical length of wild type C. 221 
reinhardtii cells. Similarly, for a small diffusion coefficient, increasing the motor velocity does 222 
not lead to significant increase in 𝐿𝑠𝑠 either (Figure 4b, green line).    223 
 224 

3.4 Growing time T of the flagellum increases with motor 225 

velocity and diffusion.  226 

 227 
In this section, we study the time 𝑇 a flagellum needs to grow to its steady state. 228 
Mathematically the solution of 𝐿(𝑡) to the mean field equation (8) takes an infinite amount of 229 
time to reach steady state length, i.e., 𝐿(𝑡) → 𝐿𝑠𝑠 when 𝑡 →  ∞. However, as the mean field 230 
equation neglects fluctuations of the length at steady state, we define the growing time 𝑇 as 231 
the amount of time to reach 95% of the steady state length, i.e., 𝐿(𝑇) = 0.95 𝐿𝑠𝑠. Figure 5 plots 232 
numerical solutions of T as a function of motor speed and diffusion coefficient. One might 233 
expect that a fast-transporting motor or a fast-diffusive motor will reduce the time to construct 234 
a flagellum, but the results show that the growing time 𝑇 increases with the diffusion 235 
coefficient 𝐷 and the motor velocity 𝑣 (Figure 5a and b). This is because the steady state length 236 
also increases with 𝐷 and 𝑣. The reduction in time due to increased 𝑣 or 𝐷 cannot compensate 237 
for the increased time due to length elongation.  238 
 239 
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3.5 Parameter changes that maintain the steady state length 240 

but alter the growing time. 241 

 242 

One may notice that the contour lines for the steady state length 𝐿𝑠𝑠 do not exactly overlap 243 
with the contour lines for the growing time 𝑇 (Figure 6a). The implication of this difference is 244 
that growth kinetics does not uniquely determine the steady state length, and one can alter the 245 
growing time 𝑇 while maintaining the steady state length 𝐿𝑠𝑠 constant, or vice versa.  A recent 246 
experiment found that mutants in ida5 which affect actin, show a slower growth kinetics (i.e. 247 
longer 𝑇) but reach the same steady state length as wild-type .  Based on our model, this could 248 
be a result of the combination change of reduced motor velocity and enhanced diffusion 249 
coefficient (Figure 6b and c). Our model predicts that the change in the growing time is larger 250 
for longer flagellar, which can be tested by future experiments.  251 
 252 
 253 
 254 
   255 

4. Discussion 256 

 257 
 258 

A large part of the explanatory and predictive power of the model is in generating hypotheses 259 

to explain length mutants and motivating experiments to test these hypotheses. We can now 260 

examine a length mutant, note its length change from wild type, and determine what changes 261 

in velocity and diffusion are necessary to achieve the length change. Here we discuss pf14, a 262 

mutant that is missing the radial spoke head in the flagellum. In wild type Chlamydomomas, the 263 

two flagella beat in a cyclic pattern resembling a breast stroke: a semi-circular power stroke to 264 

swim forward followed by a recovery stroke to return them to their initial position. pf14, on the 265 

other hand, has paralyzed flagella and cannot swim. What is puzzling about this mutant is that 266 

its flagella are about half as long as wild-type (pf14 mutants are 3-6 μm in length, while wild 267 

type flagella are usually of 10-12 𝜇𝑚 (21). This short flagellar phenotype is common among the 268 

group of motility mutants, especially the ones with completely paralyzed flagella (22–27). To 269 

our knowledge, no study has explained the connection between paralysis and length decrease – 270 

in fact, researchers have viewed intraflagellar transport and flagellar beating as two 271 

independent processes. This is not without reason, as beating relies on axonemal dynein and 272 

other regulatory and structural components to bend doublet microtubules, components that 273 

are not involved in IFT. Even when detached from the cell body, the flagellum equipped with 274 

the motility apparatus is capable of producing a high-frequency waveform as long as ATP is 275 

provided (28). 276 

 277 
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While it is possible that the length change comes from a structural instability caused by the 278 

mutation, could it instead be because the paralysis of the flagella alters the IFT-diffusion system 279 

that could be responsible for length control? All existing measurements of IFT kinetics have 280 

been carried out in immotile flagella, either in paralyzed mutants or in wild-type cells whose 281 

flagella are adhered to a glass surface. Consequently, there is no experimental information 282 

about how IFT kinetics might or might not change in beating flagella compared to immotile 283 

flagella. Here we use our model to explore the plausibility of the idea that flagellar beating can 284 

influence IFT and thus might act as a wrongfully neglected factor in the length control system. 285 

 286 

 287 

4.1 An increase in diffusion coefficient is necessary for the 288 

increase of steady state length.  289 

 290 
Based on our results, we consider two possible explanations for the significant increase in 291 
length in a beating flagellum compared to an immotile one: (i) The motor velocity remains 292 
unchanged and the increase is due to enhanced diffusion. (ii) The diffusion coefficient remains 293 
unchanged and the increase is due to increased motor velocity. The experimentally measured 294 
diffusion coefficient 𝐷 = 1.68 ± 0.04 μm2/s  and motor velocity 𝑣 =  2.1 ± 0.4 μm/s in a 295 
paralyzed mutant (20). With assumption (i), to account for length increase in a beating 296 
flagellum from 5μm to 10μm, the diffusion coefficient needs to increase from 1.75μm2/s to 297 
10.55 μm2/s. With assumption (ii), it is impossible to account for the length increase because 298 
even in the limit of infinitely large motor velocity 𝑣 → ∞, the length of the flagellum 299 
approaches a maximum of 5.65μm. Therefore, an enhanced diffusion is necessary and sufficient 300 
to account for the observed length increase. In any case, there is no plausible way that flagellar 301 
beating would alter the velocity of the motor. However, we can imagine several ways that 302 
beating could alter the diffusion coefficient of kinesin, which we will consider in turn. 303 
 304 

4.2 Centrifugation effect of kinesin motors 305 

 306 
The first mechanism we considered was inspired by the experimental observation that kinesin-2 307 
is less dense than the flagellar matrix and floats to the top when a matrix preparation is 308 
centrifuged at high speed (H. Qin unpublished data). Based on this observation, we consider a 309 
model in which the roughly circular beating of the flagellum was enough to cause a significant 310 
centripetal force on the kinesin motors back towards the base, speeding up the diffusive return 311 
time. To model this scenario, we approximated the flagellum and its beating as a cylindrical rod 312 
revolving around one of its ends like the hand of a clock. The contents of the cylinder will 313 
experience a centrifugation effect, and the kinesins will move towards the base if they are less 314 
dense than the surrounding solution. While this is not equivalent to increasing the diffusion 315 
coefficient, it is an increase in the speed of diffusive return. Approximating the beating as a 316 
circular motion will exaggerate the centripetal force because the recovery stroke of the beating 317 
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does not have the same circular appearance as the power stroke. To estimate the magnitude of 318 
this effect, we solved the equation for centripetal force to obtain the drift velocity: 319 
 320 

(10) 𝑣drift =
(𝑚−𝑚0)𝜔2𝑟

𝜉
, 321 

 322 
where 𝑚 is the mass of kinesin, 𝑚0 is the mass of the solution displaced by the motor, 𝜉 is the 323 
friction coefficient (equal to 𝑘𝑇/𝐷 where 𝑘 is Boltzmann’s constant, 𝑇 is the temperature, and 324 
𝐷 is the diffusion coefficient), 𝜔 is the rotation rate, and 𝑟 is the length of the rod. Plugging in 325 
the relevant values 𝐷 = 2 μm2/s, 𝑘𝑇 = 4.1 pN ∙ nm,  𝑚 = 0 (extreme case where kinesins are 326 
massless, to give the maximum possible effect), 𝑚0 = 4 × 10−22 kg, 𝜔 = 300 rad/s , and 327 
𝑟 = 10μm, we get that the drift velocity 𝑣𝑑𝑟𝑖𝑓𝑡 is on the order of 10−7 μm/s, which means it 328 

would take three years for the kinesins to get from the tip to the base with this effect alone. If 329 
we translate the time sped up by the centrifugation drift into diffusive time, it amounts to an 330 
effective diffusion constant of 𝐷eff which satisfies  331 

(11) 
𝑟2

2𝐷eff
=

𝑟

𝑣drift
.  332 

The effective diffusion constant increase 𝐷eff is only on the order of 10−6 μm2/s, which is 333 
negligible compared with measured value of 𝐷~2μm2/s. We can therefore rule out the 334 
centrifugation effect as a means of generating any substantial length increase upon beating. 335 
 336 
 337 

4.3 The increased diffusion coefficient in a beating flagellum 338 

might be explained by shear-thinning.   339 

 340 
An alternative way that flagellar beating could influence diffusive return of kinesin is via shear 341 
of the flagellar matrix (Figure 7a). If we think of the flagellum as an elastic rod, when it is bent, 342 
parts of the rod are stretched and parts are compressed. The maximum shear displacement Δ 343 
can be calculated as (29).  344 
 345 
(10) Δ = 𝑎[𝜓(𝑠, 𝑡) − 𝜓(0, 𝑡)],   346 
 347 
where 𝑎 is the radius of the rod, and 𝜓(𝑠, 𝑡) is the tangent angle along the arclength 𝑠 at time 𝑡. 348 
The corresponding shear rate is 349 
 350 

(11) 𝜒 =
1

𝑎

𝑑Δ

𝑑𝑡
.  351 

 352 
We select 7 frames in a periodic beating cycle of a flagellum and calculate the shear 353 
displacement and shear rate by measuring the tangent angle at equally spaced points along the 354 
arclength of the flagellum (Figure 7 b-f). In a beating period of 𝑇 = 0.014 𝑠 (30), the variation of 355 
the shear displacement 𝛿Δ ≡ max(𝛥) − min (Δ) is typically around 0.4 𝜇𝑚. Here the max and 356 
min are taken with respect to the time 𝑡 in a period. The periodic variation of the shear 357 
displacement can induce a shear flow in the matrix and move the motor back and forth, 358 
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therefore creating an effective diffusion. Assuming the motor completely follows the induced 359 
shear flow, the distance travelled by the motor in a period is 𝛿Δ. The effective constant 360 

𝐷shear =
(

δΔ

2
)2

2𝑇
= 2.86 μm2/s, which is not enough to account for the required increase in 361 

diffusion coefficient from 1.75μm2/s to 10.55 μm2/s. Furthermore, this analysis tends to 362 
overestimate the diffusion coefficient as it assumes the maximum shear Δ at the boundary is 363 
completely transferred to the diffusive motion of motors, which apparently neglects the 364 
gradient of the velocity field and dissipation of the energy transfer. We conclude that shear is 365 
not large enough to increase diffusion constant significantly by means of an advective 366 
mechanism. Could shear have any other effect? 367 
 368 
It is well known that solutions made of soft polymers become less viscous under shear 369 
deformation. This effect is known as shear thinning. In an equilibrium solution, the diffusion 370 
coefficient 𝐷 of a particle and its friction coefficient 𝜉 obey the Einstein relation 𝜉𝐷 = 𝑘𝐵𝑇, 371 
where 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the absolute temperature. Because the friction 372 
coefficient 𝜉 is proportional to the viscosity 𝜂, we would expect the product of the viscosity 𝜂 373 
and the diffusion coefficient 𝐷 is also a constant. Therefore, a reduction in viscosity 𝜂 caused by 374 
shear-thinning might account for the increase in diffusion coefficient 𝐷. Based on our 375 
measurements, the maximum shear rate |𝜒|𝑚𝑎𝑥  ≡ max (|𝜒|) of the flagellum is around 376 
600 s−1 (Figure 7F). The onset shear thinning rate for biopolymer solutions depends on many 377 
factors, such as protein concentration, temperature, ionic strength and even the geometry of 378 
the container. The typical onset shear thinning rate for a polysaccharide solution is ~10 𝑠−1  379 
and the reduction in the viscosity can be orders of magnitude (31). Recent work on bioink 380 
(alginate plus cellulose) shows that the shear thinning effect takes place at very low shear rate 381 
(32). Therefore the shear magnitude is large enough to potentially cause shear thinning in the 382 
matrix of flagella, and this effect may contribute to enhanced diffusion by reducing the viscosity. 383 
Our results thus suggest a novel hypothesis to explain the link between flagellar motility and 384 
length, namely, that paralyzed mutants have shorter length because the diffusion constant for 385 
kinesin is decreased due to a loss of shear thinning in the flagellar matrix. Our modeling results 386 
suggest a need for future experiments to measure viscosity inside the matrix.  387 
 388 

 389 

Appendix 390 

 391 

A. Derivation of the growth rate (8) under quasi-static assumptions. 392 

 393 
In physiological conditions, the length elongation of flagellum is much slower than the motor 394 
transportation-diffusion cycle. This is reflected in the small elongation unit 𝛿 in Eq.(7). We can 395 
therefore make the quasi-static assumption that at any fixed length 𝐿, the distributions of the 396 
four populations of motors reach steady state for that particular 𝐿. This implies that all the time 397 
derivatives in Eqs. (1-4) become zero. The distribution of the active motors (i) is homogenous 398 
over the flagellum track, and the constant density reads 399 
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 400 

(A1)    𝜌𝑎
𝑠  = 𝜌𝑎

0 =
𝑁/𝑣

𝐿

𝑣
 + 

1

𝑘𝑡 
 + 

1

𝑘𝑖
 + 

𝐿2

2𝐷

 401 

For the diffusive motor, the spatial distribution shows a gradient and reads 402 
 403 

(A2)    𝜌𝑑
𝑠 = 𝜌𝑑

0 𝑥

𝐿
=

𝑁(𝐿/𝐷)

𝐿

𝑣
 + 

1

𝑘𝑡
 + 

1

𝑘𝑖
 + 

𝐿2

2𝐷

 
𝑥

𝐿
 . 404 

For the motors accumulated at the base, the number  405 
 406 

(A3) 𝑁𝑏 =
𝑁/𝑘𝑖

𝐿

𝑣
 + 

1

𝑘𝑡
 + 

1

𝑘𝑖
 + 

𝐿2

2𝐷

.  407 

 408 
For the motors accumulated at the tip, the number 409 
 410 

(A4) 𝑁𝑡 =
𝑁/𝑘𝑡

𝐿

𝑣
 + 

1

𝑘𝑡
 + 

1

𝑘𝑖
 + 

𝐿2

2𝐷

 411 

 412 
Substituting Equation (A1) into (7), we obtain (8), which is the key equation of our discussion 413 
for the dynamics of flagellum growth.   414 
 415 

B. Derivation of the steady state length in the limit of large diffusion 416 

coefficient 417 

 418 

Denoting 𝛽 = −
1

𝑘𝑖
−

1

𝑘𝑗
+

𝑁𝛿

𝑟𝑑
, we can rewrite Eq. (9) as 419 

(B1) 𝐿𝑠𝑠 =  −
𝐷

𝑣
+ √(

𝐷

𝑣
)

2
+ 2𝛽𝐷 = −

𝐷

𝑣
+

𝐷

𝑣
√1 +

2𝛽𝑣2

𝐷
.  420 

In the limit of 𝐷 →  ∞, we can invoke the Taylor series (1 + 𝑥)𝑘 = 1 + 𝑘𝑥 + 𝑂(𝑥2) for |𝑥| ≪ 1. 421 

=  
𝐷

𝑣
(−1 + 1 +

𝑣2𝛽

𝐷
) + 𝑂(

1

𝐷
) 

=
𝐷

𝑣
(

𝑣2𝛽

𝐷
) + 𝑂(

1

𝐷
) 

= 𝑣𝛽 + 𝑂 (
1

𝐷
) 

𝐿𝑠𝑠 = −
𝐷

𝑣
+

𝐷

𝑣
(1 +

1

2
∗

2𝑣2𝛽

𝐷
+ 𝑂 (

1

𝐷2
)) 

(B2) 𝐿𝑠𝑠 = −
𝐷

𝑣
+

𝐷

𝑣
(1 +

1

2
∗

2𝑣2𝛽

𝐷
+ 𝑂 (

1

𝐷2)) = 𝑣𝛽 + 𝑂(
1

𝐷
). 422 

Therefore 𝐿𝑠𝑠 → 𝑣𝛽 in the limit of 𝐷 →  ∞. 423 
 424 
 425 
 426 
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Parameters Description Reference Value Varied range References 

𝑣 Kinesin motor 
velocity 

2 μm/s 0.1 – 10 μm/s 
(20) 

𝐷 Kinesin motor 
diffusion 
coefficient 

20 μm2/s 0.1 – 80 μm2/s 

(20) 

𝑘𝑖 Injection rate of 
motors at the base 

1 s−1 1 s−1 
Arbitrary 

𝑘𝑡 Transition rate to 
diffusive state for 
motors dwelling at 
the tip 

0.5 𝑠−1 0.5 𝑠−1 

(20) 

𝑟𝑑 Spontaneous 
depolymerization 
speed of flagellum  

0.004 μm/s 0.004 μm/s 
(33, 34) 

𝑁 Total number of 
motors 

40 40 
(13) 

𝛿 Elongation length 
of the flagellum 
upon the arrival of 
a motor at the tip  

0.00125 μm 0.00125 μm 

(13) 

 

 427 
Table 1: Parameters of the model.  428 
 429 
 430 
 431 
 432 
 433 
 434 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/751990doi: bioRxiv preprint 

https://doi.org/10.1101/751990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 435 
 436 
Figure 1: Illustration of the model. Molecular motors carry the building blocks for flagellar 437 
assembly from the base to the tip and travel with a constant speed 𝑣. When reaching the tip, 438 
the motors unload the cargo and the flagellum elongates by a unit of 𝛿. The motors dwell at the 439 
tip and switch to a diffusive state with a transition rate 𝑘𝑡. The motors diffuse back to the base 440 
with a diffusion coefficient 𝐷 and accumulate at the base, waiting for injection into the 441 
flagellum with a transition rate 𝑘𝑖. The flagellum has a spontaneous disassembly rate of 𝑟𝑑. The 442 
total number of molecular motors is assumed to be constant.    443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
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 457 
Figure 2: Growth dynamics of the model. (a, c, e) Growth curve of the flagellum for small 458 
diffusion coefficient 𝐷 = 2 μm2/s in (a), medium 𝐷 = 8 μm2/s in (c) and large 𝐷 = 20 μm2/s 459 
in (e). The blue curve represents the numerical solution, i.e., the exact solution. The orange curve 460 
represents the analytical solution obtained by the quasi-static assumption. The two curves almost 461 
overlap to the extent that the blue one is invisible. The horizontal lines represent the length at 462 
which the rate limiting step changes. (b, d, f) The time a single motor spends on different steps 463 
during a transportation-diffusion cycle for the same diffusion coefficient as in (a, c, e). The three 464 
curves include 𝑡active for a motor to travel from the base to tip (orange),  𝑡diff for a motor to 465 
retrieve from the tip to the base via diffusion (blue), and 𝑡dwell for a motor to dwell at the tip 466 
waiting from retrieval and at the base waiting for injection (green).     467 
 468 
 469 
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 470 
Figure 3: Influence of the motor velocity 𝑣 and diffusion coefficient 𝐷 on the rate-limiting 471 
step at steady state. (a) The three time scales as a function of diffusion coefficient 𝐷. (b) The 472 
three time scales as a function of motor velocity 𝑣. (c) Phase diagram for the rate limiting step at 473 
steady state.   474 
 475 
 476 
 477 
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 478 
 479 
 480 
 481 
Figure 4: Influence of the motor velocity 𝑣 and diffusion coefficient 𝐷 on the steady state 482 
length 𝐿ss of the flagellum. (a) The steady state length 𝐿𝑠𝑠 as a function of diffusion coefficient 483 
𝐷 for different motor velocities. (b) The steady state length 𝐿𝑠𝑠 as a function of motor velocity 𝑣 484 
for different diffusion coefficients. (c) The contour plot of 𝐿𝑠𝑠 as a function of both diffusion 485 
coefficient 𝐷 and motor velocity 𝑣.  486 
 487 
 488 
 489 
 490 
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 491 
Figure 5: Influence of the motor velocity 𝑣 and diffusion coefficient 𝐷 on the growing time 𝑇 492 
of flagellum. (a) The growing time 𝑇 as a function of diffusion coefficient 𝐷 for different motor 493 
velocities. (b) The growing time 𝑇 as a function of motor velocity 𝑣 for different diffusion 494 
coefficients. (c) The contour plot of 𝑇 as a function of both diffusion coefficient 𝐷 and motor 495 
velocity 𝑣.  496 
 497 
 498 
 499 
 500 
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 501 
 502 
Figure 6: Possible parameter changes that keep the steady state length 𝑳𝐬𝐬 constant while 503 
altering the growing time 𝑻.  (a) Overlay of the contour plots for growing time 𝑇 (blue) and for 504 
steady state length 𝐿𝑠𝑠 (red). From left to right, the contours for growing time 𝑇 are 505 
50,100,150,200 min, and for steady state length 𝐿ss are 5, 10, 15, 20, 25 𝜇𝑚. (b, c) Relative 506 
change of motor velocity (left axis) and growing time (right axis) as a function of the diffusion 507 
coefficient along the contour of 𝐿𝑠𝑠 = 10μm  in (b) and 𝐿𝑠𝑠 = 15μm in (c). The reference 508 
velocity is defined as 𝑣∗ = 𝑣(𝐷 = 20μm2/s) and the reference growing time 𝑇∗ = 𝑇(𝐷 =509 
20μm2/s).  510 
 511 
 512 
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 513 
 514 
Figure 7: Beating of flagellar leads to enhanced diffusion of motors. (a) The flagellum is 515 
depicted as a rod. Bending of the rod leads to stretch on one side, and compression on the other 516 
side. The two blue curves represent curves on the rod’s surface that have the same length as the 517 
central axis (black line). The red circle represents all the end points on the rod’s surface that have 518 
the same length with the central axis. The shear induced by periodic beating of flagellum can 519 
enhance the diffusion of molecular motors via the shear-thinning mechanism, thus increasing the 520 
length of flagellum compared with paralyzed mutants. (b) Selected beating shapes of a flagellum 521 
in a beating cycle. The number indicates the order of the sequence. (c, d) Shear displacements Δ 522 
in (c) and its variation 𝛿Δ in a beating period in (d). (e, f) Shear rates 𝜒 in (c) and its maximum in 523 
a beating period in (f).    524 
 525 
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