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Abstract  
Microtubules are dynamic cytoskeletal polymers whose growth and shrinkage are highly 

regulated as eukaryotic cells change shape, move and divide. One family of microtubule 

regulators includes the ATP-hydrolyzing enzymes spastin, katanin and fidgetin, which sever 

microtubule polymers into shorter fragments. Paradoxically, severases can increase microtubule 

number and mass in cells. Recent work with purified spastin and katanin accounts for this 

phenotype by showing that, in addition to severing, these enzymes modulate microtubule 

dynamics by accelerating the conversion of microtubules to the growing state and thereby 

promoting their regrowth. This leads to the observed exponential increase in microtubule mass. 

Spastin also influences the steady-state distribution of microtubule lengths, changing it from an 

exponential, as predicted by models of microtubule dynamic instability, to a peaked distribution.  

This effect of severing and regrowth by spastin on the microtubule length distribution has not 

been explained theoretically. To solve this problem, we formulated and solved a master equation 

for the time evolution of microtubule lengths in the presence of severing and microtubule 

dynamic instability. We then obtained numerical solutions to the steady-state length distribution 

and showed that the rate of severing and the speed of microtubule growth are the dominant 

parameters determining the steady-state length distribution. Furthermore, we found that the 

amplification rate is predicted to increase with severing, which is a new result. Our results 

establish a theoretical basis for how severing and dynamics together can serve to nucleate new 

microtubules, constituting a versatile mechanism to regulate microtubule length and mass. 

 

Significance 
The numbers and lengths of microtubules are tightly regulated in cells. Severing enzymes 

fragment microtubules into shorter filaments and are important for cell division and tissue 

development. Previous work has shown that severing can lead to an increase in total microtubule 

number and mass, but the effect of severing on microtubule length is not understood 

quantitatively. Combining mathematical modeling and computational simulation, we solve the 

microtubule length distribution in the presence of severing enzymes and explore how severing 

activity and microtubule dynamics collectively control microtubule number and length. These 
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results advance our understanding of the physical basis of severing as a regulatory mechanism 

shaping the cellular cytoskeletal network.  

 

Introduction 
The cytoskeleton is a network of filamentous polymers and is found in all living organisms 

including bacteria, plants and animals. Microtubules form one component of the eukaryotic 

cytoskeleton. They elongate from their ends by addition of tubulin subunits, and alternate 

between phases of slow growth and rapid shrinkage. This alternation, termed dynamic instability, 

causes frequent turnover of polymer and exchange of tubulin subunits with the soluble pool (1, 

2). The dynamics of microtubules can be described quantitatively by four parameters: the growth 

(polymerization) rate, the shrinkage (depolymerization) rate, the catastrophe frequency (the 

transition from growing to shrinking states) and the rescue frequency (the transition from 

shrinking to growing states)(2, 3). As eukaryotic cells undergo cell division, migration or shape 

change, microtubule-associated proteins (MAPs) regulate the dynamics of microtubules so as 

to alter their numbers and lengths (4). Much is known about the mechanisms by which MAPs 

nucleate microtubules, accelerate growth, promote or inhibit catastrophe, increase rescue or 

induce depolymerization (5, 6). However, the mechanisms by which microtubule severing 

enzymes regulate the microtubule cytoskeleton is not well understood. 

The microtubule severing enzymes spastin, katanin and fidgetin are AAA-ATPases that 

use the chemical energy of ATP-hydrolysis to sever microtubules into shorter filaments by 

generating internal breaks in the microtubule lattice(7-9). Microtubule severing, first observed in 

X. laevis oocyte extracts(10), was initially thought of as a destructive process when the first 

severing enzyme katanin was discovered(7). And indeed, when katanin and spastin are 

overexpressed in tissue culture cells, the amount of microtubule mass is reduced(11-13). 

However, in vivo experiments showed, paradoxically, that genetic knockdown and mutations of 

severases actually reduce microtubule mass in neurons of flies and fish(14-16) and in the meiotic 

spindle of worms(17), and reduce the growth of longitudinal cortical microtubule arrays in 

plants(18). These observations suggest that severases have a nucleation-like activity.  

Recent in vitro studies have demonstrated that spastin and katanin indeed possess a 

nucleation-like activities(19, 20). They promote the regrowth of severed microtubules by 
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increasing the frequency of rescue and decreasing the shrinkage velocity and thus lead to a net 

increase in microtubule number and mass. An extension of the Dogterom & Leibler dynamic 

instability model(21) to include severing successfully predicted the exponential amplification of 

total microtubule mass observed in vitro and confirmed that the modulation of dynamics is 

essential to increase microtubule number and mass(19). Spastin-mediated severing also 

changes the length distribution of microtubules from a monotonically decreasing function to a 

peaked function(19). The theoretical basis of this effect, which makes the microtubules more 

uniformly distributed in length, is not understood.  

Here we solve an extended dynamic instability model to investigate the microtubule length 

distribution when the microtubule number and mass are amplified by the combination of severing 

and regrowth. Our work builds on earlier models for actin (22-25) where severing is necessary 

to keep the mean filament length finite when the actin concentration is well above the critical 

concentration for growth. Severing acts as a negative feedback on length because longer 

filaments are cut more frequently. A similar argument holds for microtubules. However, dynamic 

instability(21) leads to more complex microtubule behaviors compared to actin, which does not 

undergo dynamic instability. A theoretical model by Tindemans & Mulder solved the case where 

the microtubule number is constant(26). In this paper, we solve the Tindemans & Mulder model 

in the case where the microtubule number and total polymer mass increase, as is observed in 

vitro and in cells.  

 

Materials and Methods 
Time evolution of microtubule lengths in the presence of severing and dynamics 

In a recent paper(19), we solved a generalization of the dynamic instability model(21) that 

includes microtubule severing(26): 
!"#
!$

𝑥, 𝑡 = −𝑣+
!"#
!,

𝑥, 𝑡 − 𝑓+.𝑛+ 𝑥, 𝑡 + 𝑓.+𝑛. 𝑥, 𝑡 − 𝑘𝑥𝑛+ 𝑥, 𝑡 + 𝑘 𝑛+ 𝑦, 𝑡 𝑑𝑦
4
,    Eq. 1 

!"5
!$

𝑥, 𝑡 = 𝑣.
!"5
!,

𝑥, 𝑡 + 𝑓+.𝑛+ 𝑥, 𝑡 − 𝑓.+𝑛. 𝑥, 𝑡 − 𝑘𝑥𝑛. 𝑥, 𝑡 + 𝑘 𝑛+ 𝑦, 𝑡 + 2𝑛. 𝑦, 𝑡 𝑑𝑦4
,   Eq. 2 

The number of growing and shrinking microtubule plus ends of length 𝑥 at time 𝑡 are denoted by 
𝑛7(𝑥, 𝑡) and 𝑛:(𝑥, 𝑡) respectively. The four dynamic parameters are represented by 𝑣7, 𝑣:, 𝑓7:, 

𝑓:7: the growth rate, shrinkage rate, catastrophe frequency and rescue frequency, respectively. 
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In Eq. 1 and 2, the first three terms originate from dynamic instability. The penultimate term 

represents the disappearance of microtubules of length 𝑥 due to severing (with severing rate 𝑘). 

The last term represents severing of microtubules of length greater than 𝑥 into two fragments, 

one of which has length	𝑥.   

The model makes several additional assumptions: (i) The new plus end is shrinking, while 

the new minus end is stable. This is based on the observation that around 80% of new ends 

satisfy this property ((18, 19, 27, 28), but see Vemu et al. 2018 who reported a lower percentage, 

though this might be due to rapid rescues giving rise to apparent growing ends (20)). A non-zero 

probability that newly created plus ends grow can be included within the same framework and 

will be discussed later. (ii) Microtubule dynamics is dominated by the plus ends. In other words, 

minus ends are considered “passive” in the sense that they neither grow nor shrink, though a 

minus end can disappear when the plus end depolymerizes all the way back to the minus end. 

This assumption is based on the reduced dynamics of minus ends, which are often capped or 

anchored in vivo (5, 29). The model could be extended by also considering minus end dynamics, 

but we have omitted this for the sake of simplicity. (iii) Severing is an instantaneous event that 

takes place stochastically at a random location on the microtubule lattice with uniform probability. 

This has experimental support: the location of spastin severing events on microtubules is 

consistent with a uniform distribution (Fig. S1). The severing rate 𝑘 is constant and has units of 

length-1⋅time-1. These assumptions are identical to those made by Tindemans and Mulder.  

 We solve the equations with following boundary condition: 
𝑛7 0>, 𝑡 = 0   Eq. 3 

which corresponds to the absence of stable seeds and without spontaneous nucleation. This 

boundary condition differs from the case solved by Tindemans and Mulder who assumed a 

constant nucleation rate. In addition, unlike Tindemans and Mulder, we solve for the case where 

the number of microtubules is increasing (which corresponds to the unbounded growth regime 

of the Dogterom & Leibler model). 

 

Computational simulation of the stochastic severing model 

To verify the existence of a length distribution at steady-state, we simulated the stochastic 

equation for microtubule dynamics that includes severing (Eq. 1 and Eq. 2) together with the 
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boundary condition (Eq. 3). The simulation starts with 100 microtubules whose lengths are 

sampled randomly from an exponential distribution, which is motivated by the steady-state 

solution of the Dogterom & Leibler dynamic instability model(21). At each time step, the length 

and state (growing or shrinking) of microtubules may change. In the growing state, a microtubule 

either grows, undergoes catastrophe and becomes a shrinking microtubule, or is severed and 

becomes shorter. Similarly, in the shrinking state, a microtubule either shrinks, undergoes 

rescue and becomes a growing microtubule, or is severed and becomes shorter. In addition, a 

microtubule disappears when its plus end shrinks to its minus end (𝑥 = 0) and each severing 

event creates an additional shrinking microtubule. Owing to severing and the absence of stable 

seeds, the total number of microtubules is not constant and the length probability distribution is 

renormalized at every time point. The model’s input parameters, which we refer to as the 
dynamic parameters, are growth rate 𝑣+, shrinkage rate 𝑣., catastrophe frequency 𝑓+., rescue 

frequency 𝑓.+ and severing rate 𝑘. The dynamic parameters in the unbounded growth regime 

were obtained from in vitro experiments summarized in Table 1(19). The severing activity k is 

set to 0.05 μm-1⋅min-1, though the value does not qualitatively affect the existence of a steady-

state.  

 

Steady-state length distribution and rate of microtubule number and mass increase  

When the length distribution reaches a steady-state, we showed previously that the above model 

predicts that the total number 𝑁 and mass 𝑀 of microtubules increase exponentially with time: 

𝑁 𝑡 = 𝐴	𝑒 C,DEFGF HI $    Eq. 4 

𝑀 𝑡 = 𝑥𝑁 𝑡 = 𝐴	𝑥	𝑒 C,DEFGF HI $  Eq. 5 

where 𝐴 is a positive constant, 𝑝: is the probability density function of shrinking microtubules 

and 𝑥 refers to the mean length at steady-state(19). The rate constant inside the exponential in 

Eq. 4 corresponds to the net creation of new microtubules: it is the difference between the 

increase in microtubules due to severing (𝑘𝑥) and the decrease due to minus ends disappearing 

(𝑣:𝑝: 0> ).  

These equations are a consequence of the assumption that the length distribution of 
growing microtubules, 𝑝7(𝑥, 𝑡), reaches a steady-state and so satisfies:  
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!GK
!$

𝑥, 𝑡 = !
!$

"K ,,$
L $

= M
L
!
!$
𝑛7 𝑥, 𝑡 − GK

L
!L
!$

𝑡 = 0    Eq. 6 

Inserting Eq. 1 and Eq. 4 into Eq. 6 gives the steady-state equation for the growing microtubule 

distribution:  

𝑘𝑥 − 𝑣:𝑝: 0> 𝑝7(𝑥) = −𝑣7
!GK
!,

𝑥 − 𝑓7:𝑝7 𝑥 + 𝑓:7𝑝: 𝑥 − 𝑘𝑥𝑝7 𝑥 + 𝑘 𝑝7 𝑦 𝑑𝑦4
,          Eq. 7 

Similarly, the steady-state equation for the shrinking microtubule distribution 𝑝: is: 

𝑘𝑥 − 𝑣:𝑝: 0> 𝑝:(𝑥) = 𝑣:
!GF
!,

𝑥 + 𝑓7:𝑝7 𝑥 − 𝑓:7𝑝: 𝑥 − 𝑘𝑥𝑝: 𝑥 + 𝑘 [𝑝 𝑦 + 𝑝: 𝑦 ]𝑑𝑦4
, 			Eq. 8 

Summing Eq. 7 and Eq. 8, multiplying both sides by 𝑥 and integrating from 0 to infinity: 

𝑘𝑥 − 𝑣:𝑝: 0> 𝑥 = 𝑣7𝑃7 − 𝑣:𝑃:  Eq. 9 

where 𝑃+ and 𝑃. are the percentage of growing and shrinking microtubules, respectively. Using 

Eq. 9 and the fact that 𝑃+ and 𝑃. sum to 1, we get: 

𝑃. =
EKD, C,DE5G5 HI

E#>E5
   Eq. 10 

 

𝑃+ =
E5>, C,DE5G5 HI

E#>E5
   Eq. 11 

Integrating Eq. 7 with respect to 𝑥 from 0 to infinity: 

𝑘𝑥 − 𝑣:𝑝: 0> + 𝑓7: 𝑃7 = 𝑓:7𝑃:   Eq. 12 

Combining Eq. 10 to 12, we obtain a characteristic equation (the same form as previously 

derived in(19)): 

𝑥(𝑘𝑥 − 𝑣.𝑝. 0> )Q + 𝑥 𝑓+. + 𝑓.+ 𝑘𝑥 − 𝑣.𝑝. 0> + 𝑣. 𝑘𝑥 − 𝑣.𝑝. 0> − 𝑓.+𝑣+ − 𝑓+.𝑣. = 0	 

                                                       Eq. 13 

which is a cubic function of the mean length 𝑥 and a quadratic function of 𝑝. 0> .  

The necessary and sufficient condition to find a positive root for 𝑘𝑥 − 𝑣.𝑝. 0> , 

corresponding to the case where the total mass and number of microtubule increase, is that the 
term 𝑓.+𝑣+ − 𝑓+.𝑣. is positive. This is the unbounded growth regime found in the Dogterom & 

Leibler model where the mean length of microtubules increases indefinitely in the presence of 
stable microtubule seeds(21). Another way of stating this condition is that 𝑣+/𝑓+. > 𝑣.𝑓.+: the 

mean length increase in the growing state is longer than the mean length decrease in the 

shrinking state. 
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Numerical integration of the steady-state differential equations  

Taking derivatives with respect to 𝑥 of the steady-state equations Eq. 7 and Eq. 8 yields a system 

of coupled second-order ordinary differential equations (ODEs): 

𝑣+𝑝+TT 𝑥 + 𝑘𝑥 − 𝑣.𝑝. 0> + 𝑓+. + 𝑘𝑥 𝑝+T 𝑥 	– 𝑓.+𝑝.T 𝑥 + 2𝑘𝑝+(𝑥) = 0                     Eq. 14 

𝑣.𝑝:TT 𝑥 + 𝑓+.𝑝+T 𝑥 − 𝑘𝑥 − 𝑣.𝑝. 0> + 𝑓.+ + 𝑘𝑥 𝑝.T 𝑥 − 𝑘𝑝+ 𝑥 − 3𝑘𝑝.(𝑥) = 0    Eq. 15 

Evaluating Eq. 7 and Eq. 8 at 𝑥 = 0 gives the boundary conditions of the first derivatives: 

𝑝+T 0 = W5#G5 HI >CX#
E#

    Eq. 16 

𝑝.T 0 = DE5G5 HI
Y>(C,>W5#)G5 HI DCDCX5

E5
    Eq. 17 

Recall that Eq. 13 is a quadratic equation of 𝑝. 0>  with the root: 

𝑝. 0> = QC,Y>ZD ZY>[,\
Q,EF

   Eq. 18 

where  

𝑎 = 𝑥 𝑓+. + 𝑓.+ + 𝑣.   Eq. 19 

𝑏 = 	𝑓.+𝑣+ − 𝑓+.𝑣.         Eq. 20 

This is the only root of 𝑝. 0>  that gives a positive value for 𝑘𝑥 − 𝑣.𝑝. 0> , which corresponds 

to the condition that the total mass and number increases over time with an amplification rate of: 

𝑘𝑥 − 𝑣:𝑝: 0> = ZY>[,\DZ
Q,

    Eq. 21 

Combining these results, the boundary conditions become: 

𝑝7 0
𝑝: 0
𝑝7T 0
𝑝:T 0

=

0
QC,Y>ZD ZY>[,\

Q,EF
WFKGF H >CXK

EK
(C,>WFKDEFGF H )GF H DCDCXF

EF

    Eq. 22 

Using the characteristic equation, this set of boundary conditions can be expressed as a function 

of 𝑥, the mean microtubule length, which is the only unknown parameter. The steady-state length 

distribution in the severing model with dynamic instability is computed numerically with MATLAB 

using ode15s. To integrate the solution, the boundary conditions are evaluated using an estimate 

for 𝑥 that is iteratively fine-tuned. When the 𝑥 estimate deviates from the true mean length, the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/752006doi: bioRxiv preprint 

https://doi.org/10.1101/752006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

solution diverges and the divergence direction depends on whether the input 𝑥  is larger or 

smaller than the true mean length (see example in Fig. S2A; the blue and red curves diverge in 

opposite directions). Subsequently, a new estimate for 𝑥 is calculated based on the divergence 

observed in the previous iteration. Specifically, the 𝑥  estimate is reduced when a positive 

divergence was observed (and vice versa). This iteration process terminates when the 𝑥 

estimate and the mean length calculated from the solution deviate by less than 0.001% (scheme 

in Fig. S2B). The final solution converges with a pointwise accuracy of at least 10-5 μm-1. The 

parameters of the numerical solution are based on the experimentally measured values (see 

Table 1). To explore the effect of dynamics and severing, each single parameter was altered 

sequentially.  

 

Model parameters Input values 

Growth rate 𝑣7 0.79 (μm/min) 

Shrinkage rate 𝑣: 9.9 (μm/min) 

Catastrophe frequency 𝑓7: 0.098 (min-1) 

Rescue frequency 𝑓:7 3.12 (min-1) 

Severing rate 𝑘 0.001-0.25 (μm-1⋅min-1) 
Table 1. Summary of the dynamic parameters used in the model. The values used in the 
mathematical model are from previous experimental measurements (19). For testing the effect of 
microtubule dynamics, a severing rate of 0.05 μm-1⋅min-1 was used.  
 

As a generalization of the model, we allowed newly generated plus ends to be in the 

growing state, with probability 𝑞. In the model above, 𝑞 = 0. The generalizations of the master 

equations (Eq. 1 and Eq. 2) are: 
!"K
!$

𝑥, 𝑡 = −𝑣7
!"K
!,

𝑥, 𝑡 − 𝑓7:𝑛7 𝑥, 𝑡 + 𝑓:7𝑛: 𝑥, 𝑡 − 𝑘𝑥𝑛7 𝑥, 𝑡 + 𝑘 𝑛7 𝑦, 𝑡 + 𝑞𝑛 𝑦, 𝑡 𝑑𝑦∞

,   

                           Eq. 23 
!"F
!$

𝑥, 𝑡 = 𝑣:
!"F
!,

𝑥, 𝑡 + 𝑓7:𝑛7 𝑥, 𝑡 − 𝑓:7𝑛: 𝑥, 𝑡 − 𝑘𝑥𝑛: 𝑥, 𝑡 + 𝑘 𝑛: 𝑦, 𝑡 + (1 − 𝑞)𝑛 𝑦, 𝑡 𝑑𝑦4
,    

Eq. 24 

The sum of Eq. 23 and Eq. 24 is identical to the sum of Eq. 1 and Eq. 2 and is independent of q. 

At the length distribution steady-state, the microtubule number and mass increase exponentially 
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with time (Eq. 4 and Eq. 5). Following similar methods described above, we can derive the 

steady-state length distribution equations as: 

𝑣7𝑝7TT(𝑥) + 𝑘𝑥 − 𝑣:𝑝: 0> + 𝑓7: + 𝑘𝑥 𝑝7T (𝑥)	– 𝑓:7𝑝:T(𝑥) + 2 + 𝑞 𝑘𝑝7(𝑥) + 𝑘𝑞𝑝:(𝑥) = 0 
Eq. 25 

𝑣:𝑝:TT(𝑥) + 𝑓7:𝑝7T (𝑥) − 𝑘𝑥 − 𝑣:𝑝: 0> + 𝑓:7 + 𝑘𝑥 𝑝:T(𝑥) − 𝑘 1 − 𝑞 𝑝7(𝑥) − 𝑘(3 − 𝑞)𝑝:(𝑥) = 0 
Eq. 26 

The boundary conditions for these coupled ODEs can also be derived as a function of the 

mean length 𝑥: 

𝑝7 0
𝑝: 0
𝑝7T 0
𝑝:T 0

=

0
QC,Y>ZD ZY>[,\>[C,Ya(EK>EF)

Q,EF
WFKGF H >CXK>Ca

EK
(C,>WFKDEFGF H )GF H DC(MDa)DCXF

EF

   Eq. 27 

The steady-state length distribution then can be obtained by solving Eq. 25 and Eq. 26 

numerically with the boundary condition (Eq. 27), using the aforementioned iteration method. 

 

Microtubule severing assay 

Bovine brain tubulin was purified as previously described(30). Stabilized microtubules were 

prepared by polymerizing unlabeled tubulin with the slowly hydrolysable GTP analog GMP-CPP 

(Jena bioscience) and affixed onto the flow channel surface with anti-tubulin antibody (clone 

SAP.4G5, Sigma Aldrich) following the previous method (31). Drosophila spastin was expressed 

and purified as previously described (19). Severing of the GMP-CPP-stabilized microtubules 

was performed with 3.5 nM spastin and visualized by interference reflection microscopy (IRM) 

(32) with a frame rate of 0.5 Hz. Imaging buffer consists of 80 mM K-PIPES, pH 6.9, 1 mM MgCl2, 

1 mM EGTA, 50 mM KCl supplemented with 1 mM MgATP and 5 mM dithiothreitol. Analysis of 

severing position was done using Fiji software(33). 

 

 

Results and Discussion 
 

Existence of the length distribution steady-state 
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To verify that a steady-state length distribution exists, we performed a stochastic 

simulation of the microtubule severing system (Eq. 1 and Eq. 2, with boundary condition Eq. 3). 

The initial lengths of microtubules were randomly sampled from an exponential distribution with 

an average length of 5 μm (Fig. 1A and 1B, blue curves). The initial proportion of shrinking 

microtubules was set to 10%, though we found that the system still reached the steady-state 

regardless of this proportion. The dynamic parameters that were used in the simulation are 

based on previous experimental measurements (Table 1, severing rate 𝑘 = 0.05 μm-1⋅min-1). The 

parameters lie in the unbounded growth regime, meaning that in the absence of severing, the 

mean microtubule length would increase indefinitely.  

The microtubule length distribution converged to a steady-state, which is peaked and has 

a decaying tail (Fig. 1A). The steady-state shrinking microtubule distribution has a small fraction 

of zero-length microtubules, 𝑝. 0  (Fig. 1B); the disappearance rate of these shrinking 

microtubules and the creation rate of new microtubules by severing reach a constant ratio. At 

steady-state, the total number and mass of microtubules increased exponentially (green solid 

lines in Fig. 1C and 1D), as predicted by the ordinary differential equations (Eq. 14. and Eq. 15) 

and the characteristic equation (Eq. 13). Furthermore, when we increased the shrinkage rate 
and decreased the rescue frequency to enter the bounded growth regime, where 𝑓.+𝑣+ − 𝑓+.𝑣. is 

negative, the number of microtubules went to zero (Fig.1C and Fig. 1D, magenta dotted curves). 

Thus, the stochastic model confirms the existence of a steady state and that the unbounded 

growth condition is an essential criterion for amplifying microtubule arrays with severing.  
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Figure 1. Stochastic simulation of microtubule severing. A,B Examples of stochastic simulations showing the 
temporal evolution of the length distributions of growing (left) and shrinking (right) microtubules. C,D The total 
number of microtubules (left) and total microtubule mass (right) evolving over time. In the case of unbounded growth, 
(parameters from Table 1 with 𝑘 = 0.05 μm-1⋅min-1), both the total number and the mass of microtubules increase 
exponentially (green solid curve, in the semi-log plots). In the case of bounded growth (parameters from Table 1 
but the shrinkage rate is increased to 20 μm/min and the rescue frequency is decreased to 1 min-1), the microtubules 
eventually disappear (magenta dotted curves). The average flux of tubulin onto each microtubule, 𝐽, is equal to 
(𝑓:7𝑣7 − 𝑓7:𝑣:)/(𝑓:7 + 𝑓7:).  
 
Simplified no-catastrophe model  

In the stochastic simulation, the total number of growing microtubules is much greater 

than the number of shrinking ones. This implies that, on average, microtubules spend most of 

their time in the growth phase. This inspired us to consider a simplified case where the 

microtubules exist only in the growing state, with no catastrophe or shrinkage events. The 
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approximate solution is valid when the effect of dynamic instability is relatively small compared 

to the net growth, where the tip dynamics can be approximated as a pure drift process with a 

small diffusion coefficient. 

The time evolution of this simplified model can be expressed as: 
!"
!$

𝑥, 𝑡 = −𝑣 !"
!,

𝑥, 𝑡 − 𝑘𝑥𝑛 𝑥, 𝑡 + 2𝑘 𝑛 𝑦, 𝑡 𝑑𝑦4
,    Eq. 28 

where 𝑣 is the microtubule elongation rate. This equation follows from Eq. 1 with 𝑓.+ = 0, 𝑓+. = 0, 

𝑛 = 𝑛+, 𝑛. = 0, 𝑣7 = 𝑣 and we assume that a new plus end is in the growth phase. This equation 

is similar to the integro-differential equation in Edelstein-Keshet & Ermentrout(22) with the 

difference that the factor of 2 in the last term of Eq. 23 is replaced by 1, since only one fragment 

generated from severing is taken into account in their model. With the finite-length assumption, 

integrating Eq. 28 with respect to 𝑥 from 0 to infinity and combining with the boundary condition 

𝑛 0, 𝑡 = 0, we get: 
!L
!$

𝑡 = 𝑘𝑀 𝑡 = 𝑘𝑥(𝑡)𝑁(𝑡)   Eq. 29 

When the length distribution is in the steady-state, the total number and mass of microtubules 

increase exponentially with a characteristic time 1/𝑘𝑥. The equation for the length distribution, 

𝑝 𝑥 , is: 

𝑘𝑥𝑝(𝑥) = −𝑣 !G
!,

𝑥 − 𝑘𝑥𝑝 𝑥 + 2𝑘 𝑝 𝑦 𝑑𝑦4
,   Eq. 30 

Multiplying by 𝑥 and integrating from 0 to infinity, we find the following expression for the mean 

length of the distribution: 

𝑥 = E
C
    Eq. 31 

Eq. 30 can be solved analytically (see Appendix) by rewriting it as a Hermite differential equation, 

which is seen in various physical systems such as the quantum harmonic oscillator, used to 

model the vibrations of chemical bonds(34). The final solution is: 

𝑝 𝑥 = 	 C
E

c/Q
𝑥Q + 2	 E

C
𝑥 𝑒

de fYIY	 g
ef

Y	g     Eq. 32 

The solution is plotted in Fig. 2: the curve is peaked, starts at 0  when 𝑥 = 0  and decays 

approximately like a Gaussian at large 𝑥. Note that the solution is dependent solely on a single 
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parameter: the ratio of elongation rate to severing activity 𝑣/𝑘 . With increasing 𝑣/𝑘 , the 

distribution shifts rightwards (Fig. 2).  
 

Figure 2. Length distribution of the no-catastrophe 
model. The analytic solution to the steady-state length 
distribution (Eq. 32) is plotted for three different values of the 
ratio of the growth rate to severing rate, (𝑣/𝑘). As the ratio 
increases, the lengths increase and the distribution widens.   
 

 

 

 

 

An important result is that the no-catastrophe model always predicts a finite mean length 

(provided that 𝑘 > 0). This is explained by the fact that the severing probability increases with 

length. Therefore, long microtubules are quickly shortened by severing while short microtubules 

can grow longer before they are severed. This principle also applies to the scenario with dynamic 

instability because the rate to sever a single microtubule will still increase with polymer length, 

even in the presence of shrinkage events. 

 

Numerical solution of the dynamic instability with severing model 

To understand the effect of dynamic instability in the presence of severing, we solved the 

steady-state length distribution numerically (Eq. 14 and 15, see Methods). The growing, 

shrinking and total microtubule length distributions are shown in Fig 3A-3C. The total microtubule 

length distribution (Fig. 3C) is mainly determined by the growing microtubules (Fig. 3A), 

consistent with the stochastic simulation results, as growing microtubules are much more 

abundant (see Eq. 10 and Eq. 11). Moreover, the steady-state length distribution in the 

stochastic simulation (Fig. 1) agrees with the numerical solution (Fig. 3A-3C hollow circles for 

simulation distribution and red curves for numerical solution of ODEs). The severing activity 𝑘 

has profound effects on both growing and shrinking microtubules: increasing severing leads to 

the tightening of the distribution, reduces the average length and increases the disappearance 

rate 𝑣:𝑝:(0>). 
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 The model is in good agreement with the experimental results (19). With a severing rate 

𝑘 = 0.05 μm-1⋅min-1, similar to that measured experimentally, the mean length is approximately 

4 μm, and the predicted length distribution (dashed-line in Fig. 3D) resembles the observed one 

(Figure 3D histogram). We have not attempted to comprehensively test the model against 

experiments as several of the experimental parameters are difficult to measure precisely. For 

example, severing can be difficult to distinguish from catastrophe and the length distribution is 

difficult to measure when microtubule fragments are released from the surface. Furthermore, the 

theory makes simplifying assumptions such as no minus-end growth and the new plus ends 

always starting in the shrinking state; the experimental results show that these assumptions only 

hold approximately. Nevertheless, the good agreement between the measured and predicted 

steady-state length distributions seen in Figure 3D is a strong qualitative support for the model. 

Unexpectedly, when investigating the impact of severing activity on the mean length, we 

found that the log-log plot is highly linear, with a slope of ≈ -0.45 when the mean length (on the 

y-axis) is plotted against the severing rate (Fig. 3E black circles and line). This power-law is 

close to the 𝑥 ∝ 𝑘DM/Q  relation in the no-catastrophe model (Eq. 31). Further comparison 

demonstrates that in the presence of dynamic instability, the mean length is close to the no-

catastrophe case ((𝑣/𝑘)M/Q, Fig. 3E red dashed line from Eq. 31). This suggests that the addition 

of dynamic instability in this regime has a relatively small impact on the average length, though 

we do not have a good explanation for the deviation from a slope of −1/2. 

At steady state, the total microtubule mass and number increase exponentially and the 

amplification rate, 	𝑘𝑥 − 𝑣:𝑝: 0> , is determined by the competition between the speed of 

generating new microtubules by cutting and the disappearing of old microtubules (Eq. 4 and 5). 

With increasing severing rate, the average number of cuts on a single microtubule 𝑘𝑥 as well as 

the disappearance rate 𝑣:𝑝: 0>  increase (Fig. 3F hollow circles and hollow squares). The 

amplification rate also increases with the severing rate (Fig. 3F solid circles), but with a lower 

slope at higher severing activity. These results demonstrate that faster severing can lead to 

faster expansion of the microtubule network, but the effect quickly saturates with increasing 

cutting rate due to the shortening of lengths and higher probability of losing microtubules.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/752006doi: bioRxiv preprint 

https://doi.org/10.1101/752006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 
Figure 3. Numerical solution of the steady-state severing model with dynamic instability. Distributions of 
growing (A) and shrinking (B) microtubules computed numerically from the ODEs (Eq. 14 and Eq. 15) with boundary 
conditions (Eq. 22) are plotted for three different severing rates 𝑘. The dynamic parameters used for the solution 
are contained in Table 1. More frequent cutting leads to the shortening and compaction of length distribution. C The 
total microtubule length distribution, which is the sum of distributions in A and B. The steady-state distributions from 
the stochastic simulations (𝑘=0.05 μm-1⋅min-1) are shown as hollow circles in A-C and agree with the ODE solution. 
The proportion of shrinking microtubules is much smaller than that of growing microtubules, so the total distribution 
is similar to the growing one. D Comparison of the experimental length distribution (blue histogram, (19), with the 
predicted length distribution (dashed line, 𝑘  = 0.05 μm-1⋅min-1). Both distributions have a mean length of 
approximately 4 μm ≈ 𝑣+/𝑘. E Log-log plot of the mean length as a function of the severing rate. The hollow circles 
are the mean length obtained from the numerical solution. Black line is the linear regression of log 𝑘 and log 𝑥 (𝑅Q >
	0.9999). Red dashed line indicates (𝑣/𝑘)M/Q of the no-catastrophe model case where 𝑣 = 𝑣+ = 0.79 μm/min.  F 
Severing rate 𝑘 versus the amplification rate 𝑘𝑥 − 𝑣:𝑝: 0>  (black circles), the average number of cuts on a single 
microtubule 𝑘𝑥 (hollow circles), and the microtubule disappearance rate 𝑣:𝑝: 0>  (squares). These three functions 
all increase with severing activity, but the amplification rate quickly reaches a plateau. 
 
 
Microtubule growth rate is a key regulator of length distribution and amplification rate 

Motivated by the close resemblance of the mean length in the full dynamic case and the 
no-catastrophe model, we next examined the effect of growth rate 𝑣+  by solving the length 

distribution at a severing rate 𝑘 = 0.05 μm-1⋅min-1 with various growth rates, ranging from that 

measured with tubulin alone to that measured in high concentrations of the polymerase 

XMAP215 (35). Similar to the no-catastrophe case, higher growth rate leads to longer lengths of 
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microtubules and broader length distributions (Fig. 4A-B). Interestingly, the proportion of 

shrinking microtubules also increases with growth rate, while the disappearance probability 

𝑝: 0>  is insensitive to this change (Fig. 4B). The mean length and polymerization rate also 

showed a power-law relation with a power of ~0.45 (Fig.4C black circles and line). Similar to the 

earlier findings, the mean length can also be well approximated by (𝑣+/𝑘)M/Q (red dashed line in 

Fig. 4C). Owing to the combination of longer mean length, which increases the average number 

of cuts per microtubule, and the invariance of disappearance probability, the amplification rate 

𝑘𝑥 − 𝑣:𝑝: 0>  shows a strong increase with the polymerization rate (Fig. 4D solid circle). This 

large increase of the amplification rate with growth rate compared to the small increase with the 

severing rate (Fig. 3F) shows that modulation of the amplification rate is more effectively 

achieved by changing the growth rate rather the severing rate, even though they both strongly 

affect the mean length.  Thus, the polymerization rate substantially affects both the length and 

amplification rate of the microtubule network.  

 
Figure 4. Effect of growth rate on the steady-state length distribution. The growing (A) and shrinking (B) 
microtubule length distributions with different growth rates 𝑣+ . The severing rate 𝑘  is 0.05 μm-1⋅min-1. Faster 
polymerization rates increase the mean length and broaden the distribution. The disappearance probability 𝑝: 0>  
varies little with the growth rate (see the y-intercept in B). C Steady-state mean length and growth rate from the 
numerical solution (circles) shows a power-law relation with a slope close to ½ (red dashed line). D Amplification 
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rate 𝑘𝑥 − 𝑣:𝑝: 0>  (black circles), average number of cuts on a single microtubule 𝑘𝑥  (hollow circles), and 
microtubule disappearance rate 𝑣:𝑝: 0>  (squares) versus the growth rate 𝑣+. The mean length increases quickly 
with growth rate while the microtubule disappearance rate is much less affected. The amplification rate, 𝑘𝑥 −
𝑣:𝑝: 0> , therefore increases with faster growth, mainly due to the longer mean length and the increasing number 
of cuts on a single microtubule. 
 
Steady-state length distribution is insensitive to other dynamic parameters  

Next, we explored how the other dynamic parameters (shrinkage rate 𝑣., catastrophe 𝑓+. 

and rescue frequency 𝑓.+ ) affect the steady-state length distribution. Constrained by the 

unbounded growth criterion, which is essential for increasing microtubule mass with severing, 

the rescue frequency has a lower bound and the shrinkage rate and catastrophe frequency have 

upper bounds. We found that these parameters have a comparably small effect on the steady-

state mean lengths, even when varied over physiologically relevant ranges attained in the 

presence of various MAPs (e.g. EB1 increases catastrophe to ~1 min-1(35), CLASP increases 

rescues up to 10 min-1 (36), and spastin and TPX2 decreases shrinkage to ~5 μm/min(37))  (Fig. 

5A-C). In all tested conditions, the change on the mean length was within 0.5 μm (~10%). 

As one might expect, a higher catastrophe frequency decreases the microtubule length 

(Fig. 5A). However, higher rescue frequency and lower shrinkage rate actually shorten the 

steady-state mean length (Fig. 5B and C), which may appear to be counterintuitive at first sight. 

Examining the length distribution in these cases revealed that this is due to the increasing 

survival of shorter microtubules. Lower shrinkage rate leads to an increase in shorter 

microtubules, both growing and shrinking ones (Fig. S3A and B). As opposed to the growth 

velocity, varying the shrinkage velocity has a relatively small impact on the growing microtubules 

(Fig. S3A), but changes the shrinking microtubule distribution more prominently (Fig. S3B). On 

the other hand, the rescue frequency modulates both the growing and shrinking microtubule 

distributions: a high rescue frequency increases the proportion of short growing microtubules 

(Fig.S3C) while it decreases the amount of short shrinking ones (Fig. S3D). Due to the 

dominance of growing microtubules (Eq. 10 and Eq. 11), increasing the rescue frequency leads 

to an overall shorter average length (Fig. 5B). Despite the mean length depending only weakly 

on the shrinkage rate and rescue frequency, they have a more pronounced effect on the 

amplification rate by modulating the microtubule disappearance rate. In conclusion, these results 
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show that promoting rescue and slowing down shrinkage can decrease the microtubule 

disappearance rate and lead to a faster amplification with little effect on length.  

 
Figure 5. Effects of dynamic parameters on the steady-state mean length. Higher catastrophe frequency (A) 
and rescue frequency (B) shorten the mean length, while increasing the shrinkage rate leads to a longer average 
length (C). The mean length change is small. D The mean length depends only weakly on the probability that a 
newly generated plus end starts in the growing state, denoted by q. Earlier in this analysis we assumed that 𝑞 = 0. 
E The amplification rate (black circles) increases strongly as the probability that a newly generated plus end starts 
in the growing state. This increase is mainly due to the decrease in the rate of disappearance of microtubules (open 
squares).  

 

Effect of stabilizing newly generated plus ends 

All the modeling thus far has assumed that the new plus ends generated by severing start 

in the shrinking phase. This assumption is based on in vivo and in vitro experimental results 

showing that ~85% of new plus ends are shrinking (see Methods). This fraction can be regulated 

by plus-end binding proteins such as CLASPs(27) in cells. 

To investigate how the state of the newly created plus ends affects the microtubule 

amount and length distribution, we extended Eq. 1 and 2 to include the probability (denoted by 

𝑞) that a newly generated end starts in the growing phase immediately after severing and 

obtained the new time evolution equations (Eq. 23 and Eq. 24). The summation of these two 
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equations is independent of 𝑞 and thus the temporal solutions of microtubule number and mass 

are unchanged, and both increase exponentially with time when the distributions reach a steady-

state (Eq. 4 and Eq. 5). 

The steady-state length distribution can be solved numerically with the same approach 

(Eq. 25 to Eq. 27). Increasing the probability 𝑞 is analogous to rescue promotion and leads to a 

slight shortening of growing microtubules (Fig. S2E, the distributions shift left with higher 𝑞), and 

decreases the proportion of shrinking microtubules (Fig. S2F).  

The steady-state mean length is only weakly perturbed by the stabilization of the newly 

generated plus ends (Fig. 5D) (using the dynamic parameters in Table 1). Intriguingly, the 

disappearance rate of microtubules (𝑣.𝑝:(0>)) decreases almost linearly with 𝑞 (Fig. 5E, hollow 

squares); therefore, the stabilization of newly created plus ends (𝑞) almost linearly increases the 

amplification rate (Fig. 5E black circles). Thus, stabilization of severed ends can be a potent 

method to generate microtubules with a minor change in their length.  

 

Comparison to a system with a steady-state number of microtubules  

Previous work by Tindemans & Mulder also investigated the impact of severing on the 

steady-state length distribution. In their scenario, a constant spontaneous nucleation rate 

balances the loss of microtubules from shrinkage, leading to a constant number of 

microtubules(26). This corresponds to the bounded growth condition in the Dogterom & Leibler 
model (𝑓:7𝑣7 − 𝑓7:𝑣: < 0 )(21). In contrast, we consider the scenario where the number of 

microtubules is increasing, corresponding to the unbounded growth condition (𝑓:7𝑣7 − 𝑓7:𝑣: > 0). 

These two scenarios give rise to important differences between the length distributions. First, in 

the Tindemans & Mulder scenario, the steady-state microtubule number is independent of the 

severing rate, while we show that the number increases exponentially with a rate that increases 

with the severing rate (Fig. 3F). Second, in the Tindemans & Mulder scenario, spontaneous 

nucleation and the bounded growth condition together cause a high percentage of very short 

microtubules, while in our scenario the proportion of short microtubules is small due to a higher 

survivability of longer microtubules (Fig. 3C). Third, in the Tindemans & Mulder scenario, the 

ratio of the total number of growing and shrinking microtubules is equal to the ratio of the 

shrinkage and growth rates, while we found that severing introduces an additional bias towards 
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growing microtubules (Eq. 10 and 11), and thus gives rise to an overall increase in the total 

microtubule mass and number. Last, the power-law relations between the mean length and the 

severing or growth rate arise only in the scenario considered here (Fig. 3E and 4C). Thus, the 

constraint of constant microtubule number and the presence of spontaneous nucleation 

profoundly affect the length distribution and total microtubule number. 

In the Tindemans & Mulder scenario, spontaneous nucleation is essential to compensate 

for the loss of shrinking microtubules. This scenario, which may be important in plant cells, may 

not be as relevant in animal cells, where spontaneous nucleation of microtubules (away from the 

centrosome) is normally rare (38, 39). Our results suggest that severing can also serve as a 

nucleation-like mechanism that rapidly increases the production of microtubules in the 

unbounded growth regime, regardless of the spontaneous nucleation rate. Indeed, if there is an 

exponential increase in new microtubules by severing and regrowth, existing nuclei or 

spontaneous nucleation will make decreasing contributions to the total number of new 

microtubules. However, if the amplification is autocatalytic, other cellular mechanisms will be 

required to stop this activity before free tubulin is depleted.  

 

The similarity between models with and without dynamic instability in the presence of severing 

 Microtubule dynamics measurements in various systems such as sea urchin and 

Xenopus egg extracts(40, 41), budding yeast (42), C. elegans (43), and tissue culture cells(44-

46) have shown that the in vivo dynamic parameters are highly diverse across different species, 

cell lines and cell cycle stages. Growth and shrinkage rates can span from ~0.3-20 μm/min and 

~5-50 μm/min respectively. Wide ranges also exist for cellular catastrophe (~0.3-10 min-1) and 

rescue frequency (< 0.1-20 min-1), and subsets of highly stable microtubules with little turnover 

have been observed in tissue culture cells and neurons(47, 48). While our simulations have not 

covered this entire range, they have shown some general principles of how severing influences 

microtubule length and number. A surprising finding is that the steady-state mean length can be 

well approximated by the no-catastrophe simplified model (Fig. 3E and 4C), implying that in the 

presence of severing, the effect of dynamic instability on the length distribution is fairly small. 

This phenomenon can be understood by the fact that the total growing time of microtubules is 

much longer than the shrinking time, and thus approximates the simplified model where no 
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shrinking microtubules are present. On average, the growing time before catastrophe is 1/𝑓7: 

and the shrinking time before rescue is 1/𝑓:7. The microtubules with a length shorter than 𝑣:/𝑓:7 

will shrink and disappear faster, leading to an even shorter mean shrinking lifetime. 

A final point is that microtubule dynamics with severing is a non-ergodic system: the ratio 

of average growing and shrinking lifetimes is higher than the proportion of growing and shrinking 

microtubule numbers. This is because the short shrinking microtubules vanish rapidly. In the 

unbounded growth condition, where the rescue frequency is high and catastrophe frequency is 

low, a single microtubule is thus predominantly in the growing phase, and this can explain why 

the overall effect of severing on length resembles the no-catastrophe model even when dynamic 

instability is present. Thus, the impact of dynamic instability on the steady-state length 

distribution is fairly small and the dynamics can be well approximated by a model that considers 

only microtubule polymerization and severing. 

 

Conclusions 
We have explored how microtubule dynamics affects the length distribution and the amplification 

rate of microtubule number and mass in the presence of severing by mathematical modeling. 

Unexpectedly, dynamic instability has a small impact on the steady-state length, at least over 

observed microtubule dynamics parameters. The microtubule length is mainly governed by the 

polymerization and severing rates, and can be well-approximated by a no-catastrophe simplified 

model, which we have solved analytically. Rescue frequency, catastrophe frequency, shrinkage 

rate and the probability that newly severed ends start in the growing phase perturb the length 

distribution only weakly, but have a more profound impact on the amplification rate. Comparison 

with previous experimental measurements provides strong qualitative support for our 

mathematical model, despite the simplifications such as omitting the minus end dynamics and 

assuming severing as a single-step instantaneous process.  

Cellular microtubule lengths are controlled by various machineries(49-51) including 

depolymerases(52-54), polymerases(55, 56), the centrosome(57), severases(58) and 

motors(59, 60). Our theoretical analysis shows that microtubule severing, in addition to 

shortening microtubules, also makes the microtubule length distribution more uniform. For 

example, the coefficient of variation of microtubule lengths (SD/mean) is ~0.58 for the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/752006doi: bioRxiv preprint 

https://doi.org/10.1101/752006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

parameters used in Table 1 (see Figure 3C), compared to 1, which is for the exponential 

distribution that solves the Dogterom & Leibler model under the bounded growth condition in the 

absence of severing. In this respect, severing has a similar functional consequence to the length-

dependent depolymerase kinesin-8(52), which also tightens the length distribution of dynamic 

microtubules(53, 61). Our results also demonstrate that spastin has an effective nucleation 

activity: the exponential increase in microtubules is a consequence of the microtubule-

dependence of severing, and in this respect, nucleation by severases is analogous to the 

explosive nucleation by augmin, which nucleates new microtubules from the sides of extant 

microtubules (51, 62). Thus, our analysis provides a quantitative understanding of how severing 

and dynamics can jointly regulate the morphology of microtubule networks.  
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Appendix 
Analytical solution of simplified no-catastrophe model 

The master equation of the simplified no-catastrophe model reduces to the following integro-

differential equation at steady state: 

𝑘𝑥𝑝 𝑥 = −𝑣 !G
!,

𝑥 − 𝑘𝑥𝑝 𝑥 + 2𝑘 𝑝 𝑦 𝑑𝑦4
, , 𝑝 0 = 0, 𝑝 𝑦 𝑑𝑦4

H = 1, 𝑥 = E
C
     Eq. A1 
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First, we differentiate with respect to 𝑥 to obtain an equivalent second-order differential equation: 

𝑣 !
YG
!,Y

𝑥 + 𝑘 𝑥 + 𝑥 !G
!,

𝑥 + 3𝑘𝑝 𝑥 = 0     Eq. A2 

Using the normalization condition on 𝑝(𝑥), (Eq. A1) we can derive a boundary condition for !G
!,

0  

that is consistent with the differential equation: 
!G
!,

0 = M
E
−𝑘𝑥𝑝 0 + 2𝑘 𝑝 𝑦 𝑑𝑦4

H = QC
E

      Eq. A3 

Using the substitution 𝑣 = 𝑘𝑥Q, the differential equation problem becomes: 

𝑥Q !
YG
!,Y

𝑥 + 𝑥 + 𝑥 !G
!,

𝑥 + 3𝑝 𝑥 = 0, 𝑝 0 = 0, !G
!,

0 = QC
E
, 𝑥 = 	 E

C
     Eq. A4 

Next, we perform a change of variable to center the distribution around the mean. Let 𝑧	 = 	 ,>,
,

, 

the problem becomes: 
!YG
!tY

𝑧 + 𝑧 !G
!t

𝑧 + 3𝑝 𝑧 = 0, 𝑝 1 = 0, !G
!z

1 = 2 C
E
	     Eq. A5 

By performing the substitution 𝑝 𝑧 = 𝑒D
uY

Y 𝑞(𝑧), the differential equation becomes: 
!Ya
!tY

𝑧 − 𝑧 !a
!t

𝑧 + 2𝑞 𝑧 = 0, 𝑞 1 = 0, !a
!t

1 = 2 C
E
	𝑒

v
Y     Eq. A6 

The second order ODE is recognized as the Hermite differential equation for the specific case 

where 𝜆 = 2. The convergent solutions of the Hermite equation are known as the Hermite 

polynomials, which were first described by Pierre-Simon de Laplace and later by Pafnuty 

Chebyshev and Charles Hermite in the 1800s. Since we are seeking well-behaved solutions, we 

require that 𝑞(𝑧) be polynomially bounded and the solution for 𝑞(𝑧) corresponds to the second-

order Hermite polynomial: 

𝑞 𝑧 = 𝐶(𝑧Q − 1)     Eq. A7 

where 𝐶 is a constant that can be determined by the boundary condition. One notable application 

of Hermite polynomials in physics is the quantum harmonic oscillator, where they give rise to the 

eigenstates of the Schrödinger equation(34). The solution for Eq. A6 is also found when solving 

the wave function of the second excited state in quantum harmonic oscillator system (vibrational 

quantum number 𝑣 = 2 for a one-dimensional molecular vibrational system).  

To satisfy the boundary conditions, we set 𝐶 = 𝑒 C
E

M/Q
. Reverting the substitutions, the final 

solution becomes: 
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𝑝 𝑥 = ,Y>Q	,	,
,y

𝑒
d fYIY	f	f

Y	fY = 	 C
E

c/Q
𝑥Q + 2	 E

C
𝑥 𝑒

de fYIY	 g
ef

Y	g       Eq. A8 
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Supplementary Figure 1. Severing positions on stabilized microtubules. A Example of GMPCPP-stabilized 
microtubules severed by Drosophila spastin. Breakages of microtubules are visible with interference reflection 
microscopy (IRM). B Distribution of severing position along microtubule length showed as histogram and rug plot. 
The severing position is quantified by measuring the shorter fragment length divided by the full length before a cut 
occurred. The lower frequency near the tip (<0.1) results from the difficulty of detecting short fragments limited by 
the optical resolution. The uniformity of the severing position is tested using a chi-squared test that excludes the 
first three bins. The test results (χ2=7.34, p-value = 0.60, degrees of freedom=9) suggest that the experimental 
distribution is consistent with a uniform distribution. The total number of measurements (N=159) were collected 
from duplicate experiments. 
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Supplementary Figure 2. Numerical solution of microtubule length distribution. A The numerical integration 
results diverge with opposite sign when input 𝑥 deviates from the true mean length, and the direction depends on 
whether it is an over- or under-estimation. The dynamic parameters used were described in Table 1, with a severing 
rate of 0.05 μm-1min-1. The true mean length is 3.991 μm in this condition (Fig. 3A-3C, red curves for the converge 
and self-consistent solution). B Iterative procedure for solving the steady-state length distribution numerically. 
Normalization error is smaller than 0.001. 
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Supplementary Figure 3. Steady-state length distribution with respect to different dynamic parameters. A,B 

Effect of shrinkage rate 𝑣. on growing and shrinking microtubule distribution. The growing probability distribution is 

almost unperturbed while the shorter shrinking microtubules probability is more affected. C,D Growing and shrinking 

microtubule distribution for different rescue frequencies. Promotion of rescue has an opposite effect on growing and 

shrinking distribution: it increases the amount of short growing microtubules but decreases the amount of short 

shrinking ones. E,F Steady-state length distribution with different probability of new plus ends immediately starting 

in the growing state after cut (denoted by q). The effect of q is similar to rescue and has a strong effect on the 

microtubule disappearance probability 𝑝:(0>). The solutions are solved with a severing rate of 0.05 μm-1min-1. 
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