1	Extreme genomic volatility characterises the evolution of the
2	immunoglobulin heavy chain locus in teleost fishes
3	William J. Bradshaw ^{1,2} and Dario Riccardo Valenzano ^{1,2,*}
4	¹ Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 296, 50937 Cologne, Germany
5	² CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne,
6	Germany
7	[*] To whom correspondence should be addressed. E-mail: dvalenzano@age.mpg.de

a Abstract

The evolution of the adaptive immune system has provided vertebrates with a uniquely sophisticated immune 9 toolkit, enabling them to mount precise immune responses against a staggeringly diverse range of antigens. 10 Like other vertebrates, teleost fishes possess a complex and functional adaptive immune system; however, our 11 knowledge of the complex antigen-receptor genes underlying its functionality has been restricted to a small 12 number of experimental and agricultural species, preventing a systematic investigation of how these crucial 13 gene loci evolve. Here, we analyse the genomic structure of the immunoglobulin heavy chain (IGH) gene 14 loci in the cyprinodontiforms, a diverse and important group of teleosts present in many different habitats 15 across the world. We reconstruct the complete IGH loci of the turquoise killifish (Nothobranchius furzeri) 16 and the southern platyfish (Xiphophorus maculatus) and analyse their in vivo gene expression, revealing the 17 presence of species-specific splice isoforms of transmembrane IGHM. We further characterise the IGH constant 18 regions of ten additional cyprinodontiform species, including guppy, amazon molly, mummichog and mangrove 19 killifish. Phylogenetic analysis of these constant regions reveals multiple independent rounds of duplication and 20 deletion of the teleost-specific antibody class *IGHZ* in the cyprinodontiform lineage, demonstrating the extreme 21 volatility of *IGH* evolution. Focusing on the cyprinodontiforms as a model taxon for comparative evolutionary 22 immunology, this work provides novel genomic resources for studying adaptive immunity and sheds light on 23 the evolutionary history of the adaptive immune system. 24

25 Introduction

The ancient evolutionary arms race between hosts and parasites has given rise to a wide variety of highly so-26 phisticated offensive and defensive adaptations in different taxa¹. Among the most complex and effective of 27 these adaptations is the vertebrate adaptive immune system, in which developing B- and T-lymphocytes gen-28 erate a vast diversity of novel antigen-receptor sequences through dynamic recombination of their genomic 29 sequence¹⁻³. By combining this enormous diversity in antigen specificities with antigen-dependent clonal 30 expansion and long-term immune memory^{4,5}, vertebrates can progressively improve their protection against 31 recurrent immune challenges while also coping effectively with rapidly-evolving pathogenic threats⁶, dramati-32 cally improving their ability to survive and thrive in a complex immune environment. 33

The immunoglobulin heavy chain (IGH) is one of the most important antigen-receptor genes in the adaptive 34 immune system, determining both the effector function and the majority of the antigen-specificity of the anti-35 bodies produced by each B-cell^{7,8}. The native structure of the *IGH* gene locus has a profound effect on adaptive 36 immunity in a species, determining the range of gene segment choices available for the VDJ recombination pro-37 cess giving rise to novel antigen-receptor sequences², the possible antibody classes (or *isotypes*) available, and 38 the relationship between VDJ recombination and isotype choice⁹. Understanding the structure of this locus is 39 therefore essential for understanding adaptive-immune function in any given vertebrate species, while compar-40 ing loci between species can provide important insight into the adaptive immune system's complex evolutionary 41 history⁹. 42 The teleost fishes are the largest and most diverse group of vertebrates, with nearly 30,000 species com-43

prising almost half of extant vertebrate diversity¹⁰. Previous work has characterised the IGH locus structure 44 in a number of teleost species, including zebrafish¹¹, medaka¹², three-spined stickleback^{13,14}, rainbow trout¹⁵, 45 fugu¹⁶, and Atlantic salmon¹⁷. These characterisations have revealed remarkable diversity in the size, structure 46 and functionality of teleost IGH loci^{9,18}. However, the number of loci characterised is very small compared to 47 the total evolutionary diversity of teleost fish, and is mainly confined to major aquaculture species and estab-48 lished research models^{9,18}, with characterised species typically quite distantly related to one another within the 49 teleost clade¹⁹. This relatively sparse sampling of teleost *IGH* loci has prevented higher-resolution analysis of 50 locus structural evolution across groups of closely related species. 51

Here, we present the first characterisations of IGH loci in the Cyprinodontiformes, a large order of teleosts 52 with representatives in diverse habitats and ecological niches across the world. Complete characterisations were 53 performed on the loci of the turquoise killifish (Nothobranchius furzeri) and southern platyfish (Xiphophorus 54 maculatus), two important model organisms for ecological and evolutionary research^{20–23}, while the loci of ten 55 further species (Fig. 1 and Table S2) underwent partial characterisation with a focus on their constant regions. 56 Comparison of these loci revealed dramatic and unexpected differences in IGH locus structure and function, in-57 cluding surprising differences in isotype availability and exon usage among different cyprinodontiform species. 58 Phylogenetic analysis showed that the specialised mucosal antibody isotype IGHZ has undergone repeated du-59 plication and convergent loss in the course of cyprinodontiform evolution, indicating an unexpected degree of 60 volatility in the evolution of mucosal adaptive immunity. Taken together, this work significantly extends our 61 knowledge of constant-region diversity in teleost fish, and establishes the cyprinodontiforms, and especially the 62

⁶³ African killifishes, as an ideal model system for comparative evolutionary immunology.

64 **Results**

⁶⁵ The *IGH* loci of *N. furzeri* and *X. maculatus* are highly distinct.

In order to assemble and characterise the IGH loci in N. furzeri and X. maculatus, published IGH gene segments 66 from zebrafish¹¹, medaka¹² and stickleback^{13,14} were aligned to the most recent genome assemblies of N. furzeri 67 and X. maculatus (Table S2) using BLAST^{24,25}. In X. maculatus, a single promising region was identified on 68 chromosome 16, while in the N. furzeri genome a single region on chromosome 6 and a number of unaligned 69 scaffold sequences were identified as potentially containing parts of the locus. In order to determine which of 70 the candidate scaffolds were genuine parts of the N. furzeri IGH locus and integrate them into a continuous 71 locus sequence, bacterial artificial chromosome (BAC) clones from the killifish genomic BAC library²¹ were 72 identified on the basis of alignment of their end sequences to promising genome scaffolds, sequenced on an 73 Illumini MiSeq machine and assembled using SPAdes²⁶ and SSPACE²⁷, with final refinements made using end-74

⁷⁵ to-end PCR and Sanger sequencing²⁸. The resulting BAC inserts were integrated with the identified genome

Figure 1: Cladogram of species included in the *IGH* locus analysis. Boldface type indicates species for which new, complete *IGH* locus assemblies were generated for this study; other species were either previously-characterised reference species (*G. aculeatus*, *O. latipes*) or underwent constant-region characterisation only (all other species). Labelled vertical bars designate; higher taxa of interest.

⁷⁶ scaffolds (Fig. S3) to produce a single, contiguous locus sequence, on which *IGH* gene segments were identified
 ⁷⁷ through more stringent alignment to sequences from reference species (Methods).

The IGH locus in Nothobranchius furzeri occupies roughly 306 kb on chromosome 16 (NFZ v2.0, ac-

ression TBD), while that of Xiphophorus maculatus occupies roughly 293 kb on chromosome 16 (scaffold

NC_036458.1, Genbank accession GCA_002775205.2). While similar in size, the two loci differ markedly in

organisation and content: while the N. furzeri locus comprises two distinct subloci on opposite strands (IGH1

and IGH2, Fig. 2a), that of X. maculatus forms a single long configuration without any additional subloci

⁸³ (Fig. 2b). The two subloci of the *N. furzeri* locus exhibit a very high degree of synteny with one another in the ⁸⁴ JH and constant regions, while the VH and DH regions are more divergent, with what appear to be repeated

deletion events in the VH/DH regions of *IGH2* (Fig. 2c).

Three constant-region isotypes have been observed in previously-published teleost loci: *IGHM* and *IGHD*, which are universal in teleosts and homologous to the isotypes of the same names in mammals, and *IGHZ*

(also known as *IGHT*), which is teleost-specific and absent in a minority of previously published loci^{9,18}. X.

maculatus IGH, N. furzeri IGH1 and N. furzeri IGH2 all contain intact and highly similar IGHM and IGHD

constant regions, with a six-exon $C_{\mu}1$ - $C_{\mu}2$ - $C_{\mu}3$ - $C_{\mu}4$ -TM1-TM2 configuration for *IGHM* and a twelve-exon

- 91 $C_{\delta}1-(C_{\delta}2-C_{\delta}3-C_{\delta}4)_2-C_{\delta}5-C_{\delta}6-C_{\delta}7$ -TM1-TM2 configuration for *IGHD* (Fig. 2a and 2b). Such expansion
- of *IGHD* through tandem duplications of the $C_{\delta}2$ - $C_{\delta}3$ - $C_{\delta}4$ exons is common in teleosts and has also been

⁹³ observed in zebrafish, channel catfish and Atlantic salmon⁹. Secretory forms of *IGHD* have previously been

observed in a minority of teleost loci, produced via either a specialised secretory $exon^{29}$ or a post- $C_{\delta}7$ secretory

tail³⁰; however, neither of these configurations could be found in either *N. furzeri* or *X. maculatus*, and it may

⁹⁶ be the case that *IGHD* is expressed solely in transmembrane form in these species.

Previous work in rainbow trout has shown that, while IGHM is primarily responsible for the serum response 97 to antigenic stimulus, the mucosal response in at least some teleost species is primarily mediated by $IGHZ^{31,32}$, 98 suggesting that this isoform has a specialised mucosal role analogous to IGHA in mammals. Unlike IGHM and 99 IGHD, IGHZ is completely absent from both subloci of the N. furzeri IGH locus. In contrast, the X. maculatus 100 IGH locus contains two distinct IGHZ constant regions: IGHZ1 and IGHZ2. IGHZ2, like most IGHZ constant 101 regions in characterised teleost loci⁹, is located downstream of the VH region and upstream of the larger DH 102 and JH regions preceding IGHM; in contrast, and much more unusually, IGHZ1 is located at the far 5' end of the 103 X. maculatus locus (Fig. 2b). Despite sharing a common six-exon $C_{\zeta}1$ - $C_{\zeta}2$ - $C_{\zeta}3$ - $C_{\zeta}4$ -TM1-TM2 configuration 104 (Fig. 2b), these two paralogous constant regions are highly distinct, with an average of only 48.0 % amino-acid 105 sequence identity between corresponding C_{ζ} exons (Fig. 2d), indicating a relatively ancient origin; in contrast, 106 corresponding C_{μ} and C_{δ} exons in the two N. furzeri IGH subloci exhibit an average of 100 % and 98.6 % 107 amino-acid sequence identity across subloci respectively (Fig. 2d), suggesting a much more recent duplication 108 event. 109

In terms of the variable regions of the IGH gene, the most striking difference between the two loci is in the 110 total number of VH regions: 125 in X. maculatus compared to only 24 in N. furzeri. In contrast, the number of 111 DH and JH regions are similar between the two species, with 14 DH and 17 JH segments in N. furzeri and 14 112 DH and 15 JH in X. maculatus. In X. maculatus, only a single VH, DH and JH segment are present upstream 113 of IGHZ1, suggesting only a single V/D/J combination is available to antibodies of this isotype; most other 114 segments are present in six $V_n D_{1-3} J_1$ blocks between IGHZ1 and IGHZ2, with larger blocks of DH and JH 115 segments between IGHZ2 and IGHM. This (V-D-J)_n-C block structure, which is also observed in N. furzeri 116 *IGH1*, is in some ways intermediate between the classic translocon configuration seen in most teleost *IGH* loci 117 and the multi-cluster configuration observed in sharks^{18,33}. 118

119 N. furzeri and X. maculatus express distinct forms of transmembrane IGHM.

The six-exon genomic structure of the IGHM constant region is highly conserved across the jawed vertebrates, 120 with similar configurations observed in mammals, teleost fishes and elasmobranchs^{9,18}. In all these groups, the 121 choice between secretory and transmembrane IGHM is made via alternative splicing following transcription, 122 with the secretory form consistently adopting a four-exon $C_{\mu}1$ - $C_{\mu}2$ - $C_{\mu}3$ - $C_{\mu}4$ configuration. Transmembrane 123 *IGHM*, in contrast, differs in configuration between taxa⁹: in mammals, a cryptic splice site within $C_{\mu}4$ is used 124 to connect the transmembrane exons, while in teleosts the canonical splice site at the end of $C_{\mu}3$ is typically 125 used, excising $C_{\mu}4$. Unusually, however, the primary configuration of *IGHM-TM* in medaka (*Oryzias latipes*) 126 has been found to differ from that of other teleosts, with $C_{\mu}2$ spliced directly to TM1 and excising $C_{\mu}3$ and 127 $C_{\mu}4^{9,12}$ (Fig. 3a). Given this surprising diversity, we decided to investigate which splice isoforms are expressed 128 in N. furzeri and X. maculatus. 129

To investigate the exon configuration of expressed *IGH* mRNA in *N. furzeri* and *X. maculatus*, published RNA-sequencing reads from both species (Table S3) were mapped to their respective *IGH* loci using STAR³⁴. Surprisingly, the results revealed that the two species utilised different exon configurations for transmembrane *IGHM*: in *X. maculatus*, the standard teleost five-exon configuration was used (Fig. 3c), while *N. furzeri* utilised the unusual four-exon configuration seen in medaka (Fig. 3b), demonstrating that both configurations persist within the cyprinodontiform lineage.

In contrast to *IGHM*, both *N. furzeri* and *X. maculatus* shared a common configuration of transmembrane *IGHD*, with all twelve exons expressed in series. As in other teleosts⁹, expressed *IGHD* in both species began with a chimeric $C_{\mu}1$ exon from the upstream *IGHM* constant region (Fig. S1). In *X. maculatus*, meanwhile, both *IGHZ1* and *IGHZ2* expressed a six-exon transmembrane isoform, while *IGHZ1* was also found to give

a Nothobranchius furzeri IGH

Figure 3: **RNA-sequencing data reveals distinct transmembrane isoforms of** *IGHM* in *X. maculatus* and *N. furzeri.* **a**, Schematic of *IGHM* splice isoforms in different vertebrate taxa⁹. **b-c**, Read coverage histograms and Sashimi plots of alignment and splicing behaviour of RNA-sequencing reads aligned to the *IGHM* constant regions of **a**, *X. maculatus* and **b**, *N. furzeri*, showing the alternative splicing of transmembrane (blue) and secreted (red) isoforms in both species and the difference in exon usage in *IGHM-TM* between species.

rise to a four-exon secreted isoform comprising $C_{\zeta}1$ to $C_{\zeta}4$ and a run-on secretory tail; while a tail sequence

was also found following $C_{\zeta}4$ in *IGHZ2*, no expression of a distinct secretory isoform was detectable in the

¹⁴² RNA-sequencing data for this constant region (Fig. S2).

143 *IGHZ* has undergone repeated duplication and loss in the Cyprinidontiformes.

Medaka (Oryzias latipes) is the closest relative of either N. furzeri or X. maculatus whose IGH locus has pre-144 viously been characterised, and one of the few teleost species previously known to lack the teleost-specific 145 isoform IGHZ^{9,12,18}. Despite this close relationship, the presence of multiple intact IGHZ constant regions in 146 X. maculatus strongly implies that the absence of this isotype in medaka and N. furzeri is the result of two 147 independent deletion events, suggesting that isotype-loss events in teleost IGH may be relatively frequent. To 148 investigate this hypothesis in more detail, we identified and characterised IGH constant-region sequences in 149 the genomes of ten further cyprinodontiform species (Fig. 1 and Table S2), as well as a new and improved 150 medaka genome assembly (Genbank accession GCA_002234675.1), and investigated the constant-region iso-151 forms present in each species. 152

The analysed species showed a high degree of variety in locus structure, with dramatic variation in the number and arrangement of constant-region sequences (Fig. 4 and Tables S22 to S24). Of the thirteen species investigated, all had at least one tandem pair of *IGHM* and *IGHD* constant regions, while eight possessed at least one complete *IGHZ* constant region (Fig. 4). Of the exceptions, *Austrofundulus limnaeus* was found to exhibit an orphaned, pseudogenised *IGHZ-TM1* exon but no C_{ζ} exons in the current genome assembly, while no *IGHZ* exons at all were found in the genomes of *O. latipes*, *N. furzeri*, *Aphyosemion australe*, or *Nothobranchius orthonotus*. Assuming that *IGHZ*, once deleted, cannot be restored to the *IGH* locus in a lineage, a simple

visualisation on a species tree (Fig. 5a) confirms that that medaka and *N. furzeri* represent two distinct *IGHZ* deletion events; *A. limnaeus* appears to represent another independent deletion event, for a total of at least three

deletion events; *A. limnaeus* appears to represent another independent deletion event, for a to *IGHZ* deletions within the clade containing the cyprinodontiforms and medaka.

In addition to being lost repeatedly, IGHZ also demonstrates a relatively high level of multiplicity within the 163 cyprinodontiforms, with a geometric mean of 1.93 IGHZ constant regions per IGHZ-bearing locus (a 1.62:1 ra-164 tio relative to IGHM or IGHD). This multiplicity suggests a more complex evolutionary history than can be cap-165 tured by a simple presence/absence metric. Concordantly, phylogenetic analysis with PRANK³⁵ and RAxML³⁶ 166 (Fig. 5b, alignment length 1733 bp, 35% gaps/missing characters) reveals three distinct monophyletic clades 167 (or subclasses) of IGHZ constant regions in the Cyprinidontiformes, IGHZA to C, each of which is present in 168 multiple different species and appears to have been present in the common ancestor of the eight IGHZ-bearing 169 species analysed. The only locus whose IGHZ could not be assigned to one of these subclasses, that of Pachy-170 panchax playfairii, appears to have undergone a fusion event, with P. playfairii $C_{\zeta}1$ and $C_{\zeta}2$ aligning strongly 171 to *IGHZB* exons from other species while *P. playfairii* C_{ζ} 3 and C_{ζ} 4 show more ambiguous alignment behaviour 172 favouring IGHZA or IGHZC (Fig. 6). 173 In summary, in addition to the still-universal primitive antibody classes IGHM and IGHD, the cyprinodon-174

tiforms ancestrally possessed at least three subclasses of *IGHZ*, which subsequently evolved in parallel across
the clade. Each of these subclasses has been lost in multiple cyprinodontiform species, with different species
showing distinct patterns of retention and loss, and in at least one lineage – that of *Pachypanchax playfairii*- two different *IGHZ* lineages appear to have fused to produce a chimeric isotype. All three subclasses are
missing from a subset of species in the Nothobranchiidae (including *Nothobranchius furzeri*), and also appear
to have been independently lost in *Austrofundulus limnaeus*, further demonstrating the remarkable volatility of
the *IGH* locus across evolutionary time.

Discussion

The immunoglobulin heavy chain locus is notable for its size and complexity, as well as for the central role it plays in vertebrate adaptive immunity and survival. Previous research in teleost fishes has revealed a remarkable degree of diversity in the length, organisation, and isotype composition of different *IGH* loci^{9,18}, with important but understudied implications for antibody diversity and immune functionality among teleost species.

In this study, we presented the first detailed characterisations of IGH loci from the Cyprinodontiformes, a 187 widespread order of teleost fishes that include many important model systems in evolutionary biology and ecol-188 ogy. Two such species, the turquoise killifish Nothobranchius furzeri and the southern platyfish Xiphophorus 189 maculatus, underwent complete assembly and characterisation of their IGH loci, while ten other cyprinodontif-190 orm species received partial characterisations focused on their constant regions. These additional species were 191 selected on the basis of their relatedness to N. furzeri and X. maculatus and their prevalence in the research liter-192 ature, and included a number of prominent ecological model organisms (including guppy³⁷, mummichog³⁸ and 193 mangrove rivulus³⁹), yielding a dataset with significant relevance to researchers studying the role of infection 194 and immunity in teleost ecology. 195

The *IGH* loci of *X. maculatus* and *N. furzeri* exhibited radically different locus organisations, with dramatic differences in VDJ number, locus organisation and isotype availability. These results are consistent with previous findings of highly-diverse teleost loci and support a process of rapid locus evolution in the cyprinodontiforms. Characterisation of the constant regions of additional cyprinodontiform species confirmed this finding, with several groups of closely-related species (e.g. *Nothobranchius furzeri*, *Nothobranchius orthonotus* and *Callopanchax toddi*) showing highly divergent locus structures and constant-region availability (Fig. 4).

Figure 4: **Constant-region organisation in the Atherinomorpha.** Schematic of newly-characterised *IGH* constant regions in the genomes of thirteen species from the Atherinomorpha (Cyprinodontiformes + medaka). Scaffold orientation is given by the black arrows; constant regions are oriented left-to-right unless otherwise specified (red arrows). Scaffold names are displayed beneath each scaffold on the right-hand side. Links between regions on different scaffolds indicate that exons from what appears to be the same constant region are distributed across multiple scaffolds in the order indicated; the order of unlinked scaffolds is arbitrary. The isotype of each region is given by its colour; *IGHZ* regions are further annotated with their subclass (Fig. 5b). Clearly pseudogenised constant regions are indicated by Ψ . Isotype length, scaffold length, and scaffold position are not to scale. Variable regions and lone, isolated constant-region exons are not shown. The cladogram to the left indicates evolutionary relationships between species (Fig. 1).

Figure 5: *IGHZ* has undergone repeated duplication and loss in the Cyprinodontiformes. a, Cladogram of species from Fig. 1, with three-spined stickleback (*Gasterosteus aculeatus*) as the outgroup, coloured according to known *IGHZ* status. Large coloured points indicate inferred state-change events. b, Phylogram of concatenated C_{ζ} 1-4 nucleotide sequences from *n IGHZ*-bearing Cyprinodontiform species, with C_{μ} 1-4 sequences from two species as outgroup (in orange). Nodes with less than 65 % bootstrap support are collapsed into polytomies, while major monophyletic subclasses are annotated on the right.

It is interesting to speculate on the origins of this extremely rapid diversification in gene structure. Very little 202 is known about the relationship between environmental context and immune locus structure; it is possible that 203 part of the variety in IGH gene locus structure in the Cyprinodontiformes represents divergent adaptations to 204 different immune environments. Alternatively, this diversification may be primarily the result of unusually high 205 rates of stochastic, non-adaptive changes in gene structure in germline IGH, or to relaxation of selective con-206 straints on locus structure. Finally, at least some of the difference between locus structures in different species 207 is likely to be attributable to differences in assembly quality; for example, the characterisation of medaka con-208 stant regions presented here contains many fewer unusual or incomplete constant regions than that presented in 209 the published medaka IGH locus¹², primarily due to the increased quality of the more recent medaka genome 210 assemblies. Issues with assembly quality could also account for the apparent complexity of the Nothobranchius 211 orthonotus locus, as the genome of this species was assembled from a wild-caught individual with a high degree 212 of heterozygosity⁴⁰. 213

The teleost-specific isotype IGHZ is widespread among teleost species, and appears to play a specialised 214 role in mucosal immunity^{31,32}. Before the publication of this work, only two teleost species (medaka and chan-215 nel catfish) were known or thought to lack the IGHZ antibody isotype in their IGH loci, suggesting that the loss 216 of IGHZ may be a relatively rare event. However, in addition to confirming the absence of IGHZ in medaka, 217 the work presented here has identified four new teleost species (Nothobranchius furzeri, Nothobranchius or-218 thonotus, Aphyosemion australe and Austrofundulus limnaeus) that appear to lack IGHZ constant regions in 219 their IGH loci, representing two distinct and previously unknown loss events independent from that affecting 220 the closely-related medaka. This finding, which triples the number of known teleost species without IGHZ and 221 doubles the number of known loss events, is even more striking when combined with the discovery that the 222 cyprinidontiform common ancestor likely had no fewer than three distinct *IGHZ* constant regions (Fig. 5b), all 223

Figure 6: *Pachypanchax playfairii IGHZ* is composed of exons from multiple ancestral subclasses. Boxplots of Needleman-Wunsch alignment scores between the amino-acid sequences of *Pachypanchax playfairii* C_{ζ} exons and those of equivalent exons from seven other *IGHZ*-bearing cyprinodontiform species, demonstrating the differing affinity of different *P. playfairii* exons for each of the three *IGHZ* subclasses. Less negative scores indicate a stronger alignment. Pairwise *p*-values were computed using nonparametric Mann-Whitney *U* tests (*: 0.01 ; **: <math>0.001).

of which would have to be lost on the way to any *IGHZ*-free lineage. Taken together, these observations suggest that the presence/absence of *IGHZ* in the wider teleost clade may be much more volatile than suggested by previously available locus data, and raises the possibility that, given sufficiently high-density analysis of other teleost lineages, a surprisingly high frequency of *IGHZ*-lacking species may also be found elsewhere.

The absence of *IGHZ* from so many species in this analysis naturally raises the important question of how 228 the mucosal adaptive immune system in these species differs from that of their IGHZ-bearing relatives: how, 229 and to what extent, can the primitive isotype IGHM compensate for the loss of a specialised mucosal antibody 230 class? This question is especially interesting in the case of IGHZ-lacking species with close IGHZ-bearing 231 relatives (e.g. Nothobranchius furzeri and Callopanchax toddi, or Austrofundulus limnaeus and Kryptolebias 232 *marmoratus*); if it is the case that mucosal immune responses differ systematically between these species, such 233 that *IGHM* takes up some or all of the roles normally played by *IGHZ*, then uncovering the mechanisms by 234 which this shift is regulated could reveal important new insights into decision-making and control of humoral 235 adaptive immunity. Similarly, characterising the different functional roles and responses of different IGHZ 236 subclasses in cyprinodontiform fishes could yield important information about how these species interact with 237 different aspects of their immune environment. 238

Another important difference between N. furzeri and X. maculatus, whose evolution is more difficult to 239 investigate using genomic data, is the exon-usage behaviour of expressed IGHM. In X. maculatus, transmem-240 brane IGHM adopts the same configuration as that seen in most teleosts: a five-exon isoform in which the end 241 of $C_{\mu}3$ is spliced to the start of TM1 and $C_{\mu}4$ is excised. Conversely, in N. furzeri IGHM-TM adopts the same 242 four-exon configuration observed in medaka, in which $C_{\mu}3$ is also excluded. Given that X. maculatus adopts 243 the primitive configuration, the recurrence of the same unusual configuration in both medaka and turquoise 244 killifish is surprising, and indicates that both configurations are present in the Cyprinodontiformes; more infor-245 mation about the evolutionary history of this divergence in splicing behaviour, along with data on the functional 246 consequences of including or excluding $C_{\mu}3$ from the transmembrane protein structure of IGHM, could yield 247 important new insights into antibody evolution and functionality in teleost fishes. 248

One of the most important advances in immunology in recent years has been the explosion of quantitative, high-throughput approaches for investigating the composition, diversity and functionality of the antibody repertoire^{41–43}. As a direct result of the research presented here, twelve previously-uncharacterised teleost species now have databases of *IGH* constant-region sequences available, enabling these immunoglobulin-sequencing

approaches to be applied in the cyprinodontiforms for the first time. Combining antibody-repertoire data with 253 other information gathered from wild fishes could yield important new insights into the role of the adaptive 254 immune system in the lives and evolution of wild vertebrates. In addition, the possibility of sequencing the 255 repertoires of several related species adds an exciting comparative dimension previously missing in immune-256 repertoire studies, opening up the possibility of simultaneously comparing the response of different closely-257 related species to a common immunogenic stimulus. This comparative element would be especially interesting 258 in the context of investigating the repertoire responses of closely related species with different IGHZ genotypes, 259 as well as for comparing the functional roles of different IGHZ subclasses across species. 260

In combination with the genomic and functional findings discussed above, such large-scale comparative repertoire studies provide a novel opportunity for comparative evolutionary immunology in the Cyprinodontiformes, with the potential to greatly expand our knowledge of the interaction between ecological conditions and the evolution of the adaptive immune system in teleost fishes.

265 Methods

266 Assembling the Nothobranchius furzeri IGH locus.

To identify promising candidate sequences from which to assemble the *N. furzeri IGH* locus sequence, VH, JH and CH sequences from three reference species with published *IGH* loci (zebrafish¹¹, medaka¹² and threespined stickleback^{13,14}) were aligned to the most recent assembly of the *N. furzeri* genome⁴⁴ (NFZ v2.0, Accession TBD) using BLAST^{24,25}. Scaffolds containing promising alignments to at least two distinct types of *IGH* gene segment, or which covered at least 1 % of the total length of the scaffold, were retained as potentially containing parts of the *IGH* locus.

In order to determine which of these candidate scaffolds contained parts of the *IGH* locus and integrate them into a single sequence, clones from the killifish genomic BAC library²¹ were identified on the basis of alignment of their end sequences to promising genome scaffolds. These BAC clones were provided to us by the FLI in Jena and isolated and sequenced as described in the next section.

Following sequencing, demultiplexed and adapter-trimmed MiSeq reads were processed with Trimmotatic⁴⁵ to trim low quality sequence and Bowtie 2^{46} to remove contaminating *E. coli* sequences, then corrected with QuorUM⁴⁷ or BayesHammer^{26,48} and assembled with SPAdes²⁶. Following assembly, any *E. coli* scaffolds resulting from residual contaminating reads were identified by aligning scaffolds to the *E. coli* genome using BLASTN^{24,25}, and scaffolds containing significant matches were discarded. The remaining scaffolds were then scaffolded using SSPACE²⁷ using jumping libraries from the killifish genome project^{20,21,44}.

In order to guarantee the reliability of the assembled scaffolds, the assemblies produced with BayesHammer-283 and QuorUM-corrected reads were compared, and scaffolds were broken into segments whose contiguity was 284 agreed on between both assemblies. To integrate these fragments into a contiguous insert assembly, points of 285 agreement between BAC assemblies from the same genomic region (e.g. two scaffolds from one assembly 286 aligning concordantly to one scaffold from another) and between BAC assemblies and genome scaffolds, were 287 used to combine scaffolds where possible. Any still-unconnected scaffolds were assembled together through 288 pairwise end-to-end PCR using Kapa HiFi HotStart ReadyMix PCR Kit according to the manufacturer's in-289 structions, followed by Sanger sequencing²⁸ (Eurofins). PCR primers for end-to-end PCR were designed using 290 Primer349. 291

Following BAC insert assembly, assembled inserts were screened for *IGH* locus segments in the same manner described for genome scaffolds above. Passing BAC inserts were aligned to the candidate genome scaffolds and chromosome sequence with BLASTN and integrated manually (Fig. S3), giving priority in the

event of a sequence conflict to (i) any sequence containing a gene segment missing from the other, and (ii) the genome scaffold sequence if neither sequence contained such a segment. BACs and scaffolds which could not be integrated into the locus sequence in this way were discarded as orphons.

²⁹⁸ BAC isolation and sequencing.

All BAC clones that were sequenced for this research were provided by the FLI in Jena as plate or stab cultures of transformed *E. coli*, which were replated and stored at 4°C. Prior to isolation, the clones of interest were cultured overnight in at least 100 ml LB medium. The resulting liquid cultures were transferred to 50 ml conical tubes and centrifuged (10-25 min, 4°C, 3500g) to pellet the cells. The supernatant was carefully discarded and the cells were resuspended in 18 ml QIAGEN buffer P1.

After resuspension, the cultures underwent alkaline lysis to release the BAC DNA and precipitate genomic 304 DNA and cellular debris. 18 ml QIAGEN buffer P2 was added to each tube, which was then mixed gently but 305 thoroughly by inversion and incubated at room temperature for 5 min. 18 ml ice-chilled QIAGEN neutralisation 306 buffer P3 was added to precipitate genomic DNA and cellular debris, and each tube was mixed gently but 307 thoroughly by inversion and incubated on ice for 15 min. The tubes were then centrifuged (20-30 min, 4° C, 308 12000g) to pellet cellular debris and the supernatant was transferred to new conical tubes. This process was 309 repeated at least two more times, until no more debris was visible in any tube; this repeated pelleting was 310 necessary to minimise contamination in each sample, as the normal column- or paper-based filtering steps used 311 during alkaline lysis resulted in the loss of the BAC DNA. 312

Following alkaline lysis, the DNA in each sample underwent isopropanol precipitation: 0.6 volumes of 313 room-temperature isopropanol were added to the clean supernatant in each tube, followed by 0.1 volumes of 314 3 mol sodium acetate solution. Each tube was mixed well by inversion, incubated for 10-15 min at room tem-315 perature, then centrifuged (30 min, 4° C, 12000g) to pellet the DNA. The supernatant was discarded and the 316 resulting DNA smear was "resuspended" in 1 ml 100% ethanol and transferred to a 1.5 ml tube, which was 317 re-centrifuged (5 min, 4°C, top speed) to obtain a concentrated pellet. Finally, the pelleted samples were resus-318 pended in QIAGEN buffer EB and purified of proteins and RNA using standard phenol-chloroform extraction 319 and ethanol precipitation techniques. 320

The resuspended BAC isolates were sent to the Cologne Center for Genomics, where they underwent Illumina Nextera XT library preparation and were sequenced on an Illumina MiSeq sequencing machine (MiSeq Reagent Kit v3, 2×300 bp reads).

J24 Identifying locus scaffolds in other species.

Candidate *IGH* locus sequences in other species (Table S2) were identified in the same manner as for *N. furzeri*, by aligning VH, JH and CH sequences from reference species to available genome sequences with BLAST. In the case of *X. maculatus* the reference species used were zebrafish, stickleback, medaka and *N. furzeri*, while for all other species the gene segments from the *X. maculatus* locus were also used. Additional sequence refinement with BAC inserts was not necessary in these species: in the case of *X. maculatus* only a single sequence region (on chromosome 16) was identified, while in the other species a complete locus characterisation (requiring a single contiguous sequence) was not performed.

332 Characterising constant-region sequences and expression.

Constant-region sequences on candidate locus scaffolds (or, in the case of *N. furzeri* and *X. maculatus*, on complete locus sequences) were identified by mapping CH sequences from reference species to candidate sequences

using BLAST. Following alignment of reference sequences, overlapping alignments to reference segments of the same isotype and exon number were collapsed together, keeping track of the number of collapsed alignments and the best E-values and bitscores obtained for each alignment group. Alignment groups with a very poor maximum E-value (> 0.001) were discarded, as were groups overlapping with a much better alignment to a different isotype or exon type, where "much better" was here defined as a bitscore difference of at least 16.5. Where conflicting alignments to different isotypes or exon types co-occurred without a sufficiently large difference in bitscore, both alignment groups were retained for manual resolution of exon identity.

Following resolution of conflicts, alignment groups underwent a second filtering step of increased stringency, requiring a minimum E-value of 10^{-8} and at least two aligned reference exons over all reference species to be retained. Each surviving alignment group was then converted to a sequence range, extended by 10 bp at each end to account for truncated alignments failing to cover the ends of the exon, and used to extract the corresponding exon sequence into FASTA format. These sequences then underwent manual curation to resolve conflicting exon identities, assign exon names and perform initial end refinement based on putative splice junctions (Tables S4 and S11).

In order to validate intron/exon boundaries and investigate splicing behaviour among IGH constant-region 349 exons in N. furzeri and X. maculatus, published RNA-sequencing data (Table S3) were aligned to the anno-350 tated locus using STAR³⁴. In both cases, reads files from multiple individuals were concatenated and aligned 351 together, and the IGH locus was masked using RepeatMasker⁵⁰ (using the built-in zebrafish repeat parameters) 352 prior to mapping. Mapped reads spanning predicted exons of more than 10 kb were excluded from the align-353 ment, as were read pairs mapping more than 10 kb apart. Following alignment, the resulting SAM files were 354 processed into sorted, indexed BAM files using SAMtools⁵¹ and visualised with Integrated Genomics Viewer 355 (IGV^{52,53}) to determine intron/exon boundaries of predicted exons, as well as the major splice isoforms present 356 in each dataset. Read-coverage and Sashimi plots (Fig. 3, S1 and S2) were generated from the alignment data 357 using Gviz⁵⁴. 358

For species other than *N. furzeri* or *X. maculatus*, intron/exon boundaries were predicted manually based on BLASTN and BLASTP alignments to closely-related species and the presence of conserved splice-site motifs (AG at the 5' end of the intron, GT at the 3' end⁵⁵). In cases where no 3' splice site was expected to be present (e.g. for CM4 or TM2 exons), the nucleotide exon sequence was terminated at the first canonical polyadenylation site (AATAAA if present, otherwise one of ATTAAA, AGTAAA or TATAAA⁵⁶), while the amino-acid sequence was terminated at the first stop codon. In many cases, it was not possible to locate a TM2 exon due to its very short conserved coding sequence (typically only 2 to 4 amino-acid residues^{11,13}).

366 Characterising variable-region sequences.

Variable-region gene segments in the N. furzeri and X. maculatus were identified and characterised using differ-367 ent methods depending on segment type. For VH and JH segments, segments from reference species were used 368 to construct a multiple-sequence alignment with PRANK³⁵, which was then used by NHMMER⁵⁷ to perform 369 a Hidden-Markov-Model-based search for matching sequences in the locus. The resulting sequence candidates 370 were extended on either end to account for boundary errors, then refined manually. In the case of VH sequences, 371 3' ends were identified by the start of the RSS heptamer sequence (consensus CACAGTG⁵⁸), if present, while 5' 372 ends and FR/CDR boundaries were identified using IMGT/DomainGapAlign⁵⁹ with the default settings; where 373 necessary, IMGT/DomainGapAlign was also used to IMGT-gap the VH segments in accordance with the IMGT 374 unique numbering⁶⁰. For JH segments, 5' ends were identified using the RSS heptamer sequence, while the 3' 375 end was identified using the conserved splice-junction motif GTA. 376

Following extraction and manual curation, VH segments were grouped into families based on their pairwise

sequence identity. In order to assign segments to families, the nucleotide sequence of each VH segment in a 378 locus was aligned to every other segment using Needleman-Wunsch global alignment⁶¹ as implemented in the 379 Biostrings R package⁶², and the resulting matrix of pairwise sequence identities was used to perform single-380 linkage hierarchical clustering on the VH segments. The resulting dendrogram was cut at 80 % sequence 381 identity to obtain VH families (Fig. S4 to S6). These families were then numbered based on the order of the 382 first-occurring VH segment from that family in the first IGH sublocus in which the family is represented, and 383 each VH segment was named based on its parent sublocus, its family, and its order among elements of that 384 family in that sublocus (Table S5 and Tables S12 to S16). JH segments, meanwhile, were named based on their 385 order within their parent sublocus and, in X. maculatus, on whether they were upstream of IGHZ or IGHM 386 constant regions (Tables S9 and S20). 387

Unlike VH and JH gene segments, DH segments are too short and unstructured to be found effectively using 388 an HMM-based search strategy. Instead, DH segments in assembled loci were located using their distinctive 389 pattern of flanking recombination signal sequences in opposite sense³. Potential matches to this pattern were 390 searched for using EMBOSS FUZZNUC⁶³, with a high mismatch tolerance (up to 8 mismatches across the 391 whole pattern) to account for deviations from the conserved sequence in either or both of the RSSs. Promising 392 candidate sequences from this search were oriented based on the orientation of flanking VH or JH sequences on 393 the same scaffold, then underwent a second, more stringent filtering step in which sequences lacking the most 394 conserved positions in each RSS (in particular, the initial CA motif in the heptamer sequence⁵⁸) were discarded. 395 Finally, the identified DH candidates were checked manually, candidates without good RSS sequences were 396 discarded, and flanking RSS sequences were trimmed to obtain the DH segment sequences themselves. As 397 with the JH segments, these were numbered based on their order within their parent sublocus and, in the case 398 of X. maculatus, on whether they were upstream of IGHZ or IGHM constant regions (Tables S6 and S18). 399

400 Phylogenetic inference.

⁴⁰¹ Cladograms of teleost species (Fig. 1 and 5a) were constructed using phylogenetic information from Cui *et al.*⁴⁰ ⁴⁰² (for African killifishes) and Hughes *et al.*¹⁹ (for other species) and visualised using the ggtree R package⁶⁴.

To construct a phylogram of *IGHZ* sequences (Fig. 5b), the nucleotide sequences of C_{ζ} 1-4 exons from each 403 IGHZ constant region in Tables S22 to S24 were concatenated together into a single sequence per constant re-404 gion and aligned to one another using PRANK³⁵. The resulting multiple-sequence alignment was then used to 405 perform maximum-likelihood phylogenetic inference with RAxML³⁶, using the SSE3-enabled parallelised ver-406 sion of the software, the standard GTR-Gamma nucleotide substitution model, and built-in rapid bootstrapping 407 with 1000 bootstrap replicates; during tree inference, the third codon position was partitioned into a separate 408 model. The bootstrap-annotated RAxML_bipartitions file was inspected and rooted manually in Figtree⁶⁵ 409 and again visualised using ggtree; during tree visualisation, nodes with bootstrap support of less than 65 % 410 were collapsed into polytomies. 411

412 Inter- and intralocus sequence comparison.

Synteny between subloci in the *N. furzeri* locus (Fig. 2c) was analysed using the standard synteny pipeline from the DECIPHER R package⁶⁶, which searches for chains of exact *k*-mer matches within two sequences.

415 Comparison between constant-region exons, either within the same locus (Fig. 2d) or between loci (Fig. 6)

were performed using Needleman-Wunsch exhaustive global alignments⁶¹, as implemented in the Biostrings R

⁴¹⁷ package⁶², using the default scoring parameters from that package.

418 Acknowledgements

- ⁴¹⁹ We would like to thank Kathrin Reichwald for providing the BAC clones used in this study; Mario Ventura and
- ⁴²⁰ Nicola Lorusso for early help and support with BAC isolation; Bérénice Benayoun, Anton Korobeynikov, Jorge
- Boucas, Franziska Metge and Bernd Wozny for help and advice with the BAC sequence assembly process; and
- ⁴²² David Willemsen and Rongfeng Cui for critically reading and reviewing the manuscript. This work was funded
- ⁴²³ by the Max Planck Institute for Biology of Ageing, the Cologne Graduate School of Ageing Research, the Max
- ⁴²⁴ Planck Society and the DFG Collaborative Research Center 1310.

425 **References**

- Jack, R. S. in *Pathogen-Host Interactions: Antigenic Variation V. Somatic Adaptations* (eds Hsu, E. & Du Pasquier, L.) 1–20 (Springer, 2015).
- 428 2. David Jung, Cosmas Giallourakis, Raul Mostoslavsky & Frederick W. Alt. Mechanism and Control of
 429 V(d)j Recombination at the Immunoglobulin Heavy Chain Locus. *Annual Review of Immunology* 24,
 430 541–570 (2006).
- 3. Schatz, D. G. & Swanson, P. C. V(D)J Recombination: Mechanisms of Initiation. *Annual Review of Genetics* 45, 167–202 (2011).
- 4. Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. *Nature Reviews Immunology* 15, 149–159 (2015).
- Magor, B. G. Antibody Affinity Maturation in Fishes–Our Current Understanding. *Biology* 4, 512–524 (2015).
- ⁴³⁶ 6. Mayer, A., Balasubramanian, V., Walczak, A. M. & Mora, T. How a well-adapting immune system re⁴³⁷ members. *arXiv*, 1806.05753 (2018).
- ⁴³⁸ 7. Schroeder, H. W. & Cavacini, L. Structure and function of immunoglobulins. *Journal of Allergy and Clinical Immunology* 125, S41–S52 (2010).
- 8. Mix, E., Goertsches, R. & Zett, U. K. Immunoglobulins–Basic considerations. *Journal of Neurology* 253, v9–v17 (2006).
- Fillatreau, S. *et al.* The astonishing diversity of Ig classes and B cell repertoires in teleost fish. *Frontiers in Immunology* 4, 28 (2013).
- Ravi, V. & Venkatesh, B. The divergent genomes of teleosts. *Annual Review of Animal Biosciences* 6, 445
 47–68 (2018).
- ⁴⁴⁶ 11. Danilova, N., Bussmann, J., Jekosch, K. & Steiner, L. A. The immunoglobulin heavy-chain locus in
 ⁴⁴⁷ zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. *Nature Immunology* 6, 295–302 (2005).
- Magadán-Mompó, S., Sánchez-Espinel, C. & Gambón-Deza, F. Immunoglobulin heavy chains in medaka
 (*Oryzias latipes*). *BMC Evolutionary Biology* 11, 165 (2011).
- ⁴⁵¹ 13. Bao, Y. *et al.* The immunoglobulin gene loci in the teleost *Gasterosteus aculeatus*. *Fish & Shellfish Im-* ⁴⁵² *munology* 28, 40–48 (2010).
- Gambón-Deza, F., Sánchez-Espinel, C. & Magadán-Mompó, S. Presence of an unique IgT on the IGH locus in three-spined stickleback fish (*Gasterosteus aculeatus*) and the very recent generation of a repertoire
 of VH genes. *Developmental & Comparative Immunology* 34, 114–122 (2010).

- Hansen, J. D., Landis, E. D. & Phillips, R. B. Discovery of a unique Ig heavy-chain isotype (IgT) in
 rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. *PNAS* 102,
 6919–6924 (2005).
- ⁴⁵⁹ 16. Savan, R. *et al.* Discovery of a new class of immunoglobulin heavy chain from fugu. *European Journal* ⁴⁶⁰ *of Immunology* **35**, 3320–3331 (2005).
- 461 17. Yasuike, M. *et al.* Evolution of duplicated IgH loci in Atlantic salmon, *Salmo salar. BMC Genomics* 11,
 462 486 (2010).
- 18. Bengtén, E. & Wilson, M. in *Pathogen-Host Interactions: Antigenic Variation V. Somatic Adaptations*(eds Hsu, E. & Du Pasquier, L.) 193–234 (Springer, 2015).
- Hughes, L. C. *et al.* Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. *PNAS* 115, 6249–6254 (2018).
- Valenzano, D. R. *et al.* The African Turquoise Killifish Genome Provides Insights into Evolution and
 Genetic Architecture of Lifespan. *Cell* 163, 1539–1554 (2015).
- ⁴⁶⁹ 21. Reichwald, K. *et al.* Insights into Sex Chromosome Evolution and Aging from the Genome of a Short⁴⁷⁰ Lived Fish. *Cell* 163, 1527–1538 (2015).
- 471 22. Cellerino, A., Valenzano, D. R. & Reichard, M. From the bush to the bench: the annual *Nothobranchius*472 fishes as a new model system in biology. *Biological Reviews* 91, 511–533 (2016).
- 23. Schartl, M. *et al.* The genome of the platyfish, *Xiphophorus maculatus*, provides insights into evolutionary
 adaptation and several complex traits. *Nature Genetics* 45, 567–572 (2013).
- 475 24. Altschul, S. F. et al. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990).
- Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25, 3389–3402 (1997).
- ⁴⁷⁸ 26. Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell
 ⁴⁷⁹ Sequencing. *Journal of Computational Biology* **19**, 455–477 (2012).
- ⁴⁸⁰ 27. Boetzer, M. *et al.* Scaffolding pre-assembled contigs using SSPACE. *Bioinformatics* **27**, 578–579 (2011).
- 28. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. *PNAS* 74, 5463–5467 (1977).
- ⁴⁸³ 29. Bengtén, E. *et al.* Structure of the catfish IGH locus: analysis of the region including the single functional
 ⁴⁸⁴ *IGHM* gene. *Immunogenetics* 58, 831–844 (2006).
- 30. Ramirez-Gomez, F. *et al.* Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory
 IgD Is Produced through a Novel Splicing Mechanism. *The Journal of Immunology* 188, 1341–1349
 (2012).
- ⁴⁸⁸ 31. Zhang, Y.-A. *et al.* IgT, a primitive immunoglobulin class specialized in mucosal immunity. *Nature Im-*⁴⁸⁹ *munology* **11**, 827–835 (2010).
- Xu, Z. *et al.* Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. *PNAS* 110, 13097–13102 (2013).
- 492 33. Mashoof, S. & Criscitiello, M. F. Fish Immunoglobulins. *Biology* 5, 45 (2016).
- ⁴⁹³ 34. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics **29**, 15–21 (2013).

- 494 35. Löytynoja, A. in *Multiple Sequence Alignment Methods* (ed Russell, D. J.) 155–170 (Humana Press,
 495 2014).
- 36. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
 Bioinformatics 30, 1312–1313 (2014).
- ⁴⁹⁸ 37. Magurran, A. E. *Evolutionary ecology: the Trinidadian guppy* (Oxford University Press, Oxford, 2005).
- ⁴⁹⁹ 38. Reid, N. M. *et al.* The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in
 ⁵⁰⁰ wild fish. *Science* **354**, 1305–1308 (2016).
- Taylor, D. S. Twenty-four years in the mud: what have we learned about the natural history and ecology
 of the mangrove rivulus, *Kryptolebias marmoratus? Integrative and Comparative Biology* 52, 724–736
 (2012).
- ⁵⁰⁴ 40. Cui, R. *et al.* Relaxed selection limits lifespan by increasing mutation load. *Cell* **178**, 1–15 (2019).
- 41. Weinstein, J. A., Jiang, N., White, R. A. & Quake, S. R. High-Throughput Sequencing of the Zebrafish
 Antibody Repertoire. *Science* 324, 807–810 (2009).
- 42. Georgiou, G. *et al.* The promise and challenge of high-throughput sequencing of the antibody repertoire.
 Nature Biotechnology 32, 158–168 (2014).
- Jiang, N. *et al.* Determinism and stochasticity during maturation of the zebrafish antibody repertoire.
 PNAS 108, 5348–5353 (2011).
- 44. Willemsen, D., Cui, R., Reichard, M. & Valenzano, D. R. Genomics and population genetics in turquoise
 killifish reveal demography as driver for lifespan evolution (In preparation).
- ⁵¹³ 45. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.
 ⁵¹⁴ *Bioinformatics* 30, 2114–2120 (2014).
- 46. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9, 357–359
 (2012).
- 47. Marçais, G., Yorke, J. A. & Zimin, A. QuorUM: An Error Corrector for Illumina Reads. *PLOS One* 10, e0130821 (2015).
- ⁵¹⁹ 48. Nikolenko, S. I., Korobeynikov, A. I. & Alekseyev, M. A. BayesHammer: Bayesian clustering for error ⁵²⁰ correction in single-cell sequencing. *BMC Genomics* **14**, S7 (2013).
- 49. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Research 40, e115 (2012).
- 522 50. Smith, A., Hubley, R. & Green, P. *RepeatMasker Open-4.0*. URL: https://www.repeatmasker.org (2018).
- 51. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
- 525 52. Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology 29, 24–26 (2011).
- 53. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance
 genomics data visualization and exploration. *Briefings in Bioinformatics* 14, 178–192 (2013).
- 54. Hahne, F. & Ivanek, R. in *Statistical Genomics: Methods and Protocols* (eds Mathé, E. & Davis, S.) 335–
 351 (Springer, 2016).
- 55. Shapiro, M. B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics
 and functional implications in gene expression. *Nucleic Acids Research* 15, 7155–7174 (1987).

- ⁵³² 56. Ulitsky, I. *et al.* Extensive alternative polyadenylation during zebrafish development. *Genome Research* ⁵³³ 22, 2054–2066 (2012).
- 534 57. Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. *Bioinformatics* **29**, 2487–2489 (2013).
- 536 58. Hesse, J. E., Lieber, M. R., Mizuuchi, K. & Gellert, M. V(D)J recombination: a functional definition of 537 the joining signals. *Genes & Development* **3**, 1053–1061 (1989).
- ⁵³⁸ 59. Ehrenmann, F. & Lefranc, M.-P. IMGT/DomainGapAlign: IMGT Standardized Analysis of Amino Acid
 ⁵³⁹ Sequences of Variable, Constant, and Groove Domains (IG, TR, MH, IgSF, MhSF). *Cold Spring Harbor* ⁵⁴⁰ *Protocols* 2011, 737–749 (2011).
- ⁵⁴¹ 60. Lefranc, M.-P. *et al.* IMGT unique numbering for immunoglobulin and T cell receptor variable domains ⁵⁴² and Ig superfamily V-like domains. *Developmental & Comparative Immunology* **27**, 55–77 (2003).
- ⁵⁴³ 61. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino
 ⁵⁴⁴ acid sequence of two proteins. *Journal of Molecular Biology* 48, 443–453 (1970).
- ⁵⁴⁵ 62. Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. *Biostrings: Efficient manipulation of biologi-* ⁵⁴⁶ cal strings. R package. URL: https://bioconductor.org/packages/release/bioc/html/
 ⁵⁴⁷ biostrings.html (2019).
- ⁵⁴⁸ 63. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite.
 ⁵⁴⁹ *Trends in Genetics* 16, 276–277 (2000).
- ⁵⁵⁰ 64. Yu, G., Lam, T. T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on
 ⁵⁵¹ phylogeny using ggtree. *Molecular Biology and Evolution* 35, 3041–3043 (2018).
- 552 65. Rambaut, A. *FigTree* version 1.4. URL: https://tree.bio.ed.ac.uk/software/figtree/ (2018).
- ⁵⁵³ 66. Wright, E. S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. *The R Journal* 8, 352–359 (2016).
- Smith, P. *et al.* Regulation of life span by the gut microbiota in the short-lived African turquoise killifish.
 eLife 6, e27014 (2017).
- 68. Pathogen-Host Interactions: Antigenic Variation V. Somatic Adaptations (eds Hsu, E. & Du Pasquier, L.)
 (Springer, 2015).

559 Supplementary figures

Figure S1: Read coverage and Sashimi plots showing alignment and splicing behaviour of RNA sequencing reads aligned to the *IGHD* constant regions of **a**, *Xiphophorus maculatus* and **b**, *Nothobranchius furzeri*, showing the chimeric splicing of $C_{\mu}1$ to the start of the *IGHD* constant region in both species.

Figure S2: Read coverage and Sashimi plots showing alignment and splicing behaviour of RNA sequencing reads aligned to the (a) *IGHZ1* and (b) *IGHZ2* constant regions of *Xiphophorus maculatus*, showing the alternative splicing of secreted (grey) and transmembrane (grey+blue) isoforms in both cases. Note the apparent expression of a post-splice-site secretory tail after $C_{\zeta}4$ in *IGHZ1* but not *IGHZ2*.

Figure S3: Assembling the *Nothobranchius furzeri IGH* locus: Schematic of genome scaffolds and BAC inserts contributing to the *Nothobranchius furzeri IGH* locus sequence, with their corresponding place within the locus sequence (bottom axis). Internal gaps with dotted lines indicate regions on chromosome 16 with no corresponding locus sequence, as a result of intercalation of BAC or scaffold sequences.

Figure S4: VH families in the *Nothobranchius furzeri IGH* locus: (A) Dendrogram of sequence similarity of VH segments in the *Nothobranchius furzeri IGH* locus, arranged by single-linkage clustering on nucleotide sequence identity. The red line indicates the 80% cutoff point for family assignment. (B) Heatmap of family relationships among *Nothobranchius furzeri* VH segments, with shaded squares indicating families and red dots indicating pairwise nucleotide sequence identity of at least 80%. In both subfigures, VH families containing multiple segments are uniquely coloured, single-segment families are in grey, and segments from the *IGH2* sublocus are displayed in boldface.

VH family - 02 - 03 - 12 - 13 - 04 - 09 - 11 - 15

Figure S5: Dendrogram of VH families in the *Xiphophorus maculatus IGH* locus: Dendrogram of sequence similarity of VH segments in the *Xiphophorus maculatus* locus, arranged by single-linkage clustering on nucleotide sequence identity. The red line indicates the 80% cutoff point for family assignment, while branch colour indicates family membership: VH families containing multiple segments are uniquely coloured, while single-segment families are in grey.

Figure S6: Heatmap of VH families in the *Xiphophorus maculatus IGH* locus: Heatmap of family relationships among *Xiphophorus maculatus* VH segments, with coloured shading indicating families and red dots indicating pairwise nucleotide sequence identity of at least 80%. VH families containing multiple segments are uniquely coloured, while single-segment families are in grey.

Figure S7: Recombination signal sequences in *Nothobranchius furzeri IGH*: (A) Sequence composition of conserved heptamer sequences across all *Nothobranchius furzeri* heavy-chain RSSs; (B) length distribution of unconserved spacer sequences in *Nothobranchius furzeri* heavy-chain RSSs; (C) sequence composition of conserved heptamer sequences across all *Nothobranchius furzeri* heavy-chain RSSs.

Figure S8: *Nothobranchius furzeri* recombination signal sequences by segment type: Sequence composition of conserved heptamer (A,C,E) and nonamer (B,D,F) sequences from *Nothobranchius furzeri* heavy-chain RSSs associated with VH (A,B), DH (C,D) or JH (E,F) gene segments.

Figure S9: Recombination signal sequences in the *Xiphophorus maculatus IGH* locus: (A) Sequence composition of conserved heptamer sequences across all *Xiphophorus maculatus* heavy-chain RSSs; (B) length distribution of unconserved spacer sequences in *Xiphophorus maculatus* heavy-chain RSSs; (C) sequence composition of conserved heptamer sequences across all *Xiphophorus maculatus* heavy-chain RSSs.

Figure S10: *Xiphophorus maculatus* recombination signal sequences by segment type: Sequence composition of conserved heptamer (A,C,E) and nonamer (B,D,F) sequences from *X. maculatus* heavy-chain RSSs associated with VH (A,B), DH (C,D) or JH (E,F) gene segments.

Supplementary tables 560

Program	Version
ape	5.2
Basemount	0.15.96.2154
Biostrings	2.50.1
BLAST	2.7.1
Bowtie 2	2.2.6
BSgenome	1.50.0
DECIPHER	2.10.0
EMBOSS (FUZZNUC)	6.6.0
FigTree	1.4.2
HMMER	3.2
GenomicRanges	1.34.0
ggtree	1.14.4
ggseqlogo	0.1
Gviz	1.27.6
IGV	2.3.68
IMGT/DomainGapAlign	4.9.2
PRANK	v.170427
Primer3	2.3.6
QuorUM	1.0.0
R	3.5.2
RAxML	8.2.12
RepeatMasker	4.0.6
SAMtools	1.9
sed	4.2.2
seqtk	1.3
Snakemake	5.3.0
SPAdes	3.6.1
SSPACE	3.0
STAR	2.5.2b
tidytree	0.2.0
tidyverse	1.2.1
Trimmomatic	0.32

Table S1: Versions of software and R packages used in computational analyses

Genus	Species	Common Name	GenBank Assembly Accession
Nothobranchius	furzeri	Turquoise killifish	NA ^a
Xiphophorus	maculatus	Southern platyfish	GCA_002775205.2
Austrofundulus	limnaeus	_	GCA_001266775.1
Fundulus	heteroclitus	Mummichog	GCA_000826765.1
Poecilia	formosa	Amazon molly	GCA_000485575.1
Poecilia	reticulata	Guppy	GCA_000633615.1
Cyprinodon	variegatus	Sheepshead minnow	GCA_000732505.1
Kryptolebias	marmoratus	Mangrove rivulus	GCA_001649575.1
Aphyosemion	australe	Lyretail panchax	GCA_006937985.1
Callopanchax	toddi	_	GCA_006937965.1
Pachypanchax	playfairii	Golden panchax	GCA_006937955.1
Nothobranchius	orthonotus	Spotted killifish	GCA_006942095.1
Oryzias	latipes	Medaka	GCA_002234675.1

^a Willemsen *et al*.⁴⁴

Table S2: Genome assemblies used to identify IGH locus sequences in cyprinodontiform fishes

Species	N. furzeri	X. maculatus
Tissues	Gut	Various ^a
BioProject Accession	PRJNA379208	PRJNA420092
	SRR5344350	SRR6327069
	SRR5344343	SRR6327070 SRR6327071
	SRR5344344	
	SRR5344345	SRR6327072
	SRR5344346 SRR5344347	SRR6327073 SRR6327074
	SRR5344347 SRR5344348	SRR6327074 SRR6327075
	SRR5344348 SRR5344349	SRR6327075 SRR6327076
	SRR5344349 SRR5344350	SRR6327070 SRR6327077
	SKK5544550	SRR6327077
		SRR6327078
		SRR6327080
		SRR6327080
SRA Run Accessions		SRR6327081
		SRR6327082
		SRR6327084
		SRR6327085
		SRR6327086
		SRR6327087
		SRR6327088
		SRR6327089
		SRR6327090
		SRR6327091
		SRR6327092
		SRR6327093
		SRR6327094
Source	67	Citation not given in PioProject

Table S3: RNA-sequencing datasets used for IGH locus characterisation

^a Tissues used for *X. maculatus* RNA-sequencing included brain, heart, liver, gut, skin or whole fish; see BioProject entry for details.

Name	Isotype	Start	End	Length	Strand
IGH1M-1	М	130848	131144	297	+
IGH1M-2	М	131971	132312	342	+
IGH1M-3	М	132394	132705	312	+
IGH1M-4	М	132816	133288	473	+
IGH1M-TM1	М	134262	134413	152	+
IGH1M-TM2	М	138431	138819	389	+
IGH1D-1	D	139381	139689	309	+
IGH1D-2A	D	139774	140064	291	+
IGH1D-3A	D	140178	140489	312	+
IGH1D-4A	D	140572	140853	282	+
IGH1D-2B	D	145613	145909	297	+
IGH1D-3B	D	146000	146311	312	+
IGH1D-4B	D	146398	146676	279	+
IGH1D-5	D	146795	147124	330	+
IGH1D-6	D	147210	147527	318	+
IGH1D-7	D	147598	147885	288	+
IGH1D-TM1	D	148016	148164	149	+
IGH1D-TM2	D	148323	148504	182	+
IGH2D-TM2	D	187624	187803	180	-
IGH2D-TM1	D	187963	188111	149	-
IGH2D-7	D	188658	188945	288	-
IGH2D-6	D	189016	189333	318	-
IGH2D-5	D	189419	189748	330	-
IGH2D-4B	D	189867	190145	279	-
IGH2D-3B	D	190232	190543	312	-
IGH2D-2B	D	190636	190932	297	-
IGH2D-4A	D	195644	195925	282	-
IGH2D-3A	D	196008	196319	312	-
IGH2D-2A	D	196433	196723	291	-
IGH2D-1	D	196808	197116	309	-
IGH2M-TM2	Μ	198315	198506	192	-
IGH2M-TM1	М	199834	199985	152	-
IGH2M-4	М	200953	201425	473	-
IGH2M-3	М	201536	201847	312	-
IGH2M-2	Μ	201929	202270	342	-
IGH2M-1	Μ	203549	203845	297	-

Table S4: Co-ordinate table of constant-region exons in the N. furzeri IGH locus

CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG	1541 3657 6202 6202 13965 13763 17731 24838 37597 49140 50198 51999 51999 57763		ACAAAAACC ACAAAAACC ACAAAAACT ACAAAAACC ACAAAAACC ACAAAAACC CCACAAAACC CCACAAAACC TCAAAAACC ACAAAAACC ACAAAAACT	1578 3694 6232 14002 15201 17769 24875 37634 49178 50235 50235	38 38 31 33 39 38 Nonsense mutation 38 38
3365 3656 292 + 3657 CACAGTG 5907 6201 295 + 3657 CACAGTA 13690 13964 275 + 13965 CACAGTG 13690 13964 275 + 13965 CACAGTG 14862 15162 301 + 15163 CACAGTG 17433 17730 298 + 15163 CACAGTG 17433 17730 298 + 15163 CACAGTG 37305 37596 292 + 17731 CACAGTG 37305 37596 292 + 17731 CACAGTG 48845 49139 292 + 37597 CACAGTG 48845 49139 295 + 37597 CACAGTG 49909 50197 289 + 51999 CACAGTG 51710 5198 299 + 51999 CACAGTG 56322 56616 295 + 51999 CACAGTG 57465 57762 298 <td></td> <td></td> <td>ACAAAAACC ACAAAAACT ACAAAAACC ACAAAAACC ACAAAAACC CCACAAACC CCACAAACC TCAAAAACC ACAAAAACC ACAAAAACT</td> <td>3694 6232 14002 15201 17769 24875 24875 24875 24875 24875 24875 24875 50235 50235</td> <td></td>			ACAAAAACC ACAAAAACT ACAAAAACC ACAAAAACC ACAAAAACC CCACAAACC CCACAAACC TCAAAAACC ACAAAAACC ACAAAAACT	3694 6232 14002 15201 17769 24875 24875 24875 24875 24875 24875 24875 50235 50235	
5907 6201 295 + 6202 CACAGAA 13690 13964 275 + 13965 CACAGTG 14862 15162 301 + 13965 CACAGTG 17433 17730 298 + 13965 CACAGTG 17433 17730 298 + 17731 CACAGTG 17433 17730 298 + 17731 CACAGTG 37305 37596 292 + 24838 CGCAGTG 37305 37596 292 + 249140 CACAGTG 48845 49139 295 + 49140 CACAGTG 48909 50197 289 + 51999 CACAGTG 51710 5198 289 + 51999 CACAGTG 5617 51999 CACAGTG 56616 295 + 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 57763 CACAGTG 56617 68087 777			ACAAAAACT ACAAAAACC ACAAAAACC ACAAAAACC CCACAAACC CCACAAACC ACAAAAACC TCAAAAACT ACAAAAACT	6232 14002 15201 17769 24875 37634 49178 50235 50235	
13690 13964 275 + 13955 CACAGTG 14862 15162 301 + 15163 CACAGTG 17433 17730 298 + 17731 CACAGTG 17433 17730 298 + 17731 CACAGTG 17433 17730 298 + 17731 CACAGTG 37305 24856 24837 272 + 24838 CGCAGTG 37305 37596 292 + 24838 CGCAGTG 48845 49139 295 + 49140 CACAGTG 48909 50197 289 + 50198 CACAGTG 49909 50197 289 + 51999 CACAGTG 51710 51998 2909 CACAGTG 56322 56616 295 + 51999 CACAGTG 57465 57762 298 + 57763 CACAGTG 5765 5765 5765 5765 5765 5765 5765 5765 5765 57763 CACAGTG 5767			ACAAAAACC ACAAAAACC ACAAAAACC CCACAAACC CCACAAACC ACAAAAACC ACAAAAACT ACAAAAACT	14002 15201 17769 24875 37634 49178 50235 50235	
14862 15162 301 + 15163 CACAGTG 17433 17730 298 + 17731 CACAGTG 17433 17730 298 + 17731 CACAGTG 37305 37596 298 + 17731 CACAGTG 37305 37596 292 + 24838 CGCAGTG 48845 49139 292 + 24816 CACAGTG 48845 49139 295 + 49140 CACAGTG 49909 50197 289 + 50198 CACAGTG 51710 51998 296 + 51999 CACAGTG 51710 51998 289 + 51999 CACAGTG 56322 56616 295 + 51999 CACAGTG 57465 57762 298 + 57763 CACAGTG 58077 68017 6828 + 5967 CACAGTG 58067 29967 CACAGTG 5967 CACAGTG 58017 68028 29967			ACAAAAACC ACAAAAACC CCACAAACC ACAAAAACC TCAAAAACC ACAAAAACC ACAAAAACC	15201 17769 24875 37634 49178 50235 52036	
17433 17730 298 + 17731 CACAATG 24566 24837 272 + 24838 CGCAGTG 37305 37596 292 + 24838 CGCAGTG 37305 37596 292 + 24838 CGCAGTG 48845 49139 295 + 249140 CACAGTG 49909 50197 289 + 50198 CACAGTG 51710 51998 289 + 51999 CACAGTG 56322 56616 295 + 51999 CACAGTG 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 57763 CACAGTG 58017 68017 6878 777 + 68789 TGCAGTG			ACAAAAACC CCACAAACC ACAAAAACC TCAAAAACC ACAAAAACT ACAAAAACC	17769 24875 37634 49178 50235 52036	
24566 24837 272 + 24838 CGCAGTG 37305 37596 292 + 24838 CGCAGTG 48845 49139 292 + 37597 CACAGTG 48845 49139 295 + 49140 CACAGTG 49909 50197 289 + 50198 CACAGTG 51710 51998 289 + 51999 CACAGTG 5322 56616 295 + 51999 CACAGTG 56322 56616 295 + 5763 CACAGTG 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 57763 CACAGTG 58017 68017 6828 777 + 68789 TGCAGTG			CCACAAACC ACAAAAACC TCAAAAACT ACAAAAACT ACAAAAACT	24875 37634 49178 50235 52036	
37305 37596 292 + 37597 CACAGTG 48845 49139 295 + 49140 CACAGTG 49909 50197 289 + 50198 CACAGTG 51710 51998 289 + 51999 CACAGTG 56322 56616 295 + 51999 CACAGTG 56322 56616 295 + 57661 CACAGTG 56322 56616 295 + 57661 CACAGTG 56322 56016 298 + 57763 CACAGTG 59678 59966 289 + 57967 CACAGTG 58017 68288 777 + 68289 TGCAGTG			ACAAAAACC TCAAAAACT ACAAAAACT ACAAAAACC ACAAAAACT	37634 49178 50235 52036	38 39 38
4845 49139 295 + 49140 CACAGTG 49909 50197 289 + 50198 CACAGTG 51710 51998 289 + 51999 CACAGTG 56322 56616 295 + 51999 CACAGTG 56322 56616 295 + 56617 CACAGTG 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 59677 CACAGTG 68017 68288 777 + 68289 TGCAGTG			TCAAAAACT ACAAAAACC ACAAAAACC	49178 50235 52036	39 38 38
49909 50197 289 + 50198 CACAGTG 51710 51998 289 + 51999 CACAGTG 5617 51910 51998 + 51999 CACAGTG 56322 56616 295 + 56617 CACAGTG 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 59677 CACAGTG 68017 68288 777 + 68289 TGCAGTG			ACAAAAACC ACAAAAACT	50235 52036	38 38
51710 51998 289 + 51999 CACAGTG 56322 56616 295 + 56617 CACAGTG 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 57967 CACAGTG 68017 68288 777 + 68289 TGCAGTG			ACAAAAACT	52036	38
56322 56616 295 + 56617 CACAGTG 57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 57967 CACAGTG 68017 68288 773 + 68289 TGCAGTG					20
57465 57762 298 + 57763 CACAGTG 59678 59966 289 + 59967 CACAGTG 68017 68288 272 + 68289 TGCAGTG	-		ACAAAAAUU	56655	39
59678 59966 289 + 59967 CACAGTG 68017 68288 273 + 68289 TGCAGTG			ACTAAATCT	57799	37
68017 68288 272 + 68289 TGCAGTG	+ 59967	CACAGTG 22	ACAAAAACC	60004	38
	+ 68289	rgcAGTG 22	TCACAAACC	68326	38 Nonsense mutation
298 + 70085 CACAGTG	+ 70085	CACAGTG 23	ACAAAAACC	70123	39
279 + 155764 CACAGTG	+ 155764	CACAGTG 22	TCAAAACCC	155801	38
IGH2V2-02 282620 282914 295 - 282915 CACAGTG 23	- 282915	CACAGTG 23	ACAAAAACC	282953	39
IGH2V4-01p 284404 284675 272 - 284676 TGCAGTG 22	- 284676	rgcagtg 22	TCACAAACC	284713	38 Nonsense mutation
IGH2V5-01 288808 289096 289 - 289097 CACAGTG 22	- 289097	CACAGTG 22	ACAGAAACT	289134	38
IGH2V1-03 289977 290271 295 - 290272 CACAGTG 22	- 290272	CACAGTG 22	ACAAAAACC	290309	38
IGH2V1-02 293835 294126 292 - 294127 CACAGTG 22	- 294127	CACAGTG 22	ACAAAAACC	294164	38
IGH2V2-01 303780 304074 295 - 304075 CAGGGCC 24	- 304075	CAGGGCC 24	AGCACAAAG	304114	40
IGH2V1-01 304926 305204 279 - 305205 CACAGTG 22	-	CACAGTG 22	TCAAACCC	305242	38

Table S5: Co-ordinate table of VH segments in the N. furzeri IGH locus

¹⁹⁵ 33

Name	Start	NT Sequence	End	Length	Strand
IGH1D01	25782	ATACGTACTTTCGTGGTATATAGAGA	25807	26	+
IGH1D02	76700	GATATCTGGGTGGGGG	76715	16	+
IGH1D03	77027	TGAAATGATTAC	77038	12	+
IGH1D04	77476	TCGCGTAGCGGC	77487	12	+
IGH1D05	78717	GAAACCACGGCAGC	78730	14	+
IGH1D06	79049	TTTATAGCGGCTAC	79062	14	+
IGH1D07	80417	CAGACTGGAGA	80427	11	+
IGH1D08	81362	TTCATGGCAGCCAC	81375	14	+
IGH1D09	82067	CAGACTGGAGC	82077	11	+
IGH1D10	84282	TGGGGTGGCAGC	84293	12	+
IGH2D04	263497	CAGACTGGAGA	263507	11	-
IGH2D03	270243	TTTATAGCGGCTAC	270256	14	-
IGH2D02	270878	GAAACCACGGCAGC	270891	14	-
IGH2D01	271749	GACTTTTACTAC	271760	12	-

Table S6: Co-ordinate table of DH segments in the N. furzeri IGH locus

Table S7: Co-ordinate table of DH 5'-RSSs in the N. furzeri IGH locus

Name	5'-RSS Start	Nonamer	Spacer Length	Heptamer	5'-RSS End	Length
IGH1D01	25754	GGTTGTTGT	12	CACTGTG	25781	28
IGH1D02	76672	AGTTTTTGA	12	CACAGTG	76699	28
IGH1D03	76999	TGTTGTTGT	12	CACAGTG	77026	28
IGH1D04	77448	AGTTTTTGT	12	CACGGTG	77475	28
IGH1D05	78688	GATGTTTTT	13	CACAGTG	78716	29
IGH1D06	79021	TGTTTTTGT	12	CGCTGTG	79048	28
IGH1D07	80389	AGTTTTGGT	12	CACAGTG	80416	28
IGH1D08	81334	TGTTTTTGT	12	CGCTGTG	81361	28
IGH1D09	82039	AGTTTTGGT	12	CACAGTG	82066	28
IGH1D10	84254	TCATTCATT	12	CACTGTG	84281	28
IGH2D04	263469	AGTTTTGGT	12	CACAGTG	263496	28
IGH2D03	270215	TGTTTTTGT	12	CGCTGTG	270242	28
IGH2D02	270850	TGTTTTTGT	12	CACAGTG	270877	28
IGH2D01	271721	AGTTTTTAT	12	CATGGTG	271748	28

Table S8: Co-ordinate table of DH 3'-RSSs in the N. furzeri IGH locus

Name	3'-RSS Start	Heptamer	Spacer Length	Nonamer	3'-RSS End	Length
IGH1D01	25808	CACAGTG	12	ACAAAAACC	25835	28
IGH1D02	76716	CACAGTG	12	ACAAAAACC	76743	28
IGH1D03	77039	CACTGTG	11	AATATAACC	77065	27
IGH1D04	77488	CACAGCG	12	ACATAAAAC	77515	28
IGH1D05	78731	CACAGCG	12	ACAAAAGCC	78758	28
IGH1D06	79063	CACTGTG	12	ACAAGATCC	79090	28
IGH1D07	80428	CACAACG	12	ACAAAAACC	80455	28
IGH1D08	81376	CACTGTG	12	ACAAAATCC	81403	28
IGH1D09	82078	CACAATG	12	ACAAAAACC	82105	28
IGH1D10	84294	CACAGTG	12	ACAAAAACC	84321	28
IGH2D04	263508	CACAACG	12	ACAAAAACC	263535	28
IGH2D03	270257	CACTGTG	12	ACAAGATCC	270284	28
IGH2D02	270892	CACAGCG	12	ACAAAAGCC	270919	28
IGH2D01	271761	CACAATG	12	ACAAAAACC	271788	28

Name	Start	NT Sequence	AA Sequence	End	Length	Strand
IGH1J01	26187	GTGCTTTAGACAACTGGGGAAAAGGAACGGAGGTTACTGTTTCAACCTG	ALDNWGKGTEVTVQP	26234	48	+
IGH1J02	128176	ATGACTACTTTTGACTACTGGGGAAAAGGAACAATGGTGACGGTCACATCAG	DYFDYWGKGTMVTVTS	128226	51	+
IGH1J03	128354	ACCGTGGGGTAAAGGGACAACAGTCACGGTCAAAACAG	PWGKGTTVTVKT	128391	38	+
IGH1J04	128533	ACGGTGCTCTTGACTACTGGGGTAAAGGGGACCGCAGTCACTGTAACATCAG	GALDYWGKGTAVTVTS	128583	51	+
IGH1J05	128887	ACAACGCTTTTTGACTACTGGGGAAAAGGAACAACGGTCACCGTCACTTTCAG	NAFDYWGKGTTVTVTS	128937	51	+
IGH1J06	129346	CTACGATGCTTTTTGACTACTGGGGGGAAAAGGACGATGGTCACGTCACTTCAG	YDAFDYWGKRTMVTSLQ	129397	52	+
IGH1J07	129635	TTAACTGGGCTTTTCGACTACTGGGGGAAAAGGGGACGATGGTAACGGTGACTTCAG	NWAFDYWGKGTMVTVTS	129688	54	+
IGH1J08	129965	TTACCACGCAGCTTTTGGACTACTGGGGGAAAAGGGACGACGGTCACCTCAG	YHXALDYWGKGTTVTVTS	130020	56	+
IGH1J09	130612	TCTACGCTGCTTTTTGACTACTGGGGTAAAGGTACAACGGTAACCGTTTTCATCAG	YAAFDYWGKGTTVTVSS	130665	54	+
IGH2J08	204031	TCTACGCTGCTTTTTGACTACTGGGGTAAAGGTACAACGGTAACCGTTTTCATCAG	YAAFDYWGKGTTVTVSS	204084	54	ı
IGH2J07	204673	TTACCACGCAGCTTTTGGACTACTGGGGGAAAAGGGACGACGGTCACCTCAG	YHXALDYWGKGTTVTVTS	204728	56	ı
IGH2J06	205005	ATAACTGGGCTTTTCGACTACTGGGGGAAAAGGGGACGATGGTAACGGTGACTTCAG	NWAFDYWGKGTMVTVTS	205058	54	ı
IGH2J05	205296	CTACGATGCTTTTTGACTACTGGGGGGAAAAGGACGATGGTCACGTCACTTCAG	YDAFDYWGKRTMVTSLQ	205347	52	ı
IGH2J04	205756	ACAACGCTTTTTGACTACTGGGGGAAAAGGAACAACGGTCACCGTCACTTCAG	NAFDYWGKGTTVTVTS	205806	51	ı
IGH2J03	206111	ATGGTGCTTTTTGACTACTGGGGTAAAGGGACCGCAGTCACTGTAACATCAG	GAFDYWGKGTAVTVTS	206161	51	ı
IGH2J02	206303	ACCGTGGGGTAAAGGGACAACAGTCACGGTCAAAACAG	PWGKGTTVTVKT	206340	38	ı
IGH2J01	206466	ATGACTACTTTGACTACTGGGGGAAAAGGAACAATGGTGACGGTCACATCAG	DYFDY WGKGTMVTVTS	206516	51	ı
		Table S9: Co-ordinate table of JH segments in the N. furzeri IGH locus	rzeri IGH locus			

J05 128899 GGTTTTAGT 23 TACTGTG 128886 J06 129360 TCTTCTTGT 22 TACTTG 129345 J07 129563 AGTTTTAGT 23 TACTGTG 129634 J08 129563 AGTTTTAGT 23 TACTGTG 129634 J09 130628 CGTTTTAGT 22 TACTGTG 129654 J09 130628 CGTTTTAGT 22 CACTGTG 129654 J09 130628 CGTTTTAGT 22 CACTGTG 129964 J019 130628 CGTTTTAGT 22 CACTGTG 129964 J010 130620 AGTTTTAGT 22 CACTGTG 204030 J010 204691 AGTTTTAGT 22 TACTGTG 204672 J010 205503 AGTTTTGT 23 TACTGTG 20504 J010 205758 JACTGTG 20504 205755 206110 J010 205123 GGTTTTGT 23 TACTGTG </th <th>128899 129360 129360 129650 12983 130628 204047 204041 205020 205310 205310 205310 205310 205310 205310 205310 205310 205310 206478 10. C</th>	128899 129360 129360 129650 12983 130628 204047 204041 205020 205310 205310 205310 205310 205310 205310 205310 205310 205310 206478 10. C
---	--

RSS Length

RSS End

Heptamer

Spacer Length

Nonamer

RSS Start

Name

569

دی 35 571

Name	Isotype	Start	End	Length	Strand
IGHZ1-1	Ζ	3380	3667	288	+
IGHZ1-2	Ζ	3814	4098	285	+
IGHZ1-3	Ζ	4195	4497	303	+
IGHZ1-4	Ζ	4934	5263	330	+
IGHZ1-S	Ζ	5264	5459	196	+
IGHZ1-TM1	Ζ	6345	6490	146	+
IGHZ1-TM2	Ζ	6645	7043	399	+
IGHZ2-1	Ζ	256059	256337	279	+
IGHZ2-2	Ζ	256453	256734	282	+
IGHZ2-3	Ζ	256893	257171	279	+
IGHZ2-4	Ζ	257319	257636	318	+
IGHZ2-S	Ζ	257637	257850	214	+
IGHZ2-TM1	Ζ	258059	258213	155	+
IGHZ2-TM2	Ζ	258410	258629	220	+
IGHM-1	Μ	279664	279960	297	+
IGHM-2	Μ	280880	281224	345	+
IGHM-3	М	281321	281629	309	+
IGHM-4	М	281789	282291	503	+
IGHM-TM1	М	282910	283034	125	+
IGHM-TM2	М	285028	285740	713	+
IGHD-1	D	285902	286219	318	+
IGHD-2A	D	286310	286597	288	+
IGHD-3A	D	286814	287128	315	+
IGHD-4A	D	287250	287534	285	+
IGHD-2B	D	288876	289166	291	+
IGHD-3B	D	289262	289576	315	+
IGHD-4B	D	289680	289964	285	+
IGHD-5	D	290052	290381	330	+
IGHD-6	D	290472	290789	318	+
IGHD-7	D	290865	291152	288	+
IGHD-TM1	D	291286	291434	149	+
IGHD-TM2	D	291541	291642	102	+

Table S11: Co-ordinate table of constant-region exons in the X. maculatus IGH locus

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV01-01	1159	1450	292	+	1451	CACAGTG	23	GTAAAACC	1489	39	
IGHV02-01	10534	10825	292	+	10826	CACAGTG	23	ACAAAACCC	10864	39	
IGHV02-02	11961	12261	301	+	12262	CACTGTG	23	ACAAAACT	12300	39	
IGHV02-03	13319	13616	298	+	13617	CACAGTG	23	ACACAAACT	13655	39	
IGHV03-01	15440	15734	295	+	15735	CACAGTG	22	ACAAAACT	15772	38	
IGHV02-04	16618	16908	291	+	16909	CACAGTG	23	ACAAAAACC	16947	39	
IGHV02-05	17522	17822	301	+	17823	CACTGTG	22	ACAAAACT	17860	38	
IGHV02-06	18881	19178	298	+	19179	CACAGTG	23	ACACAAACT	19217	39	
IGHV03-02	21000	21294	295	+	21295	CACAGTG	22	ACAAAACT	21332	38	
IGHV02-07	22179	22467	289	+	22468	CACAGTG	23	ACAAAAACC	22506	39	
IGHV02-08p	24234	24514	281	+	24515	CACAGTG	23	ACAAAACT	24553	39	Frameshift
IGHV04-01	25359	25659	301	+	25660	CACAGTG	23	ACAAAAACT	25698	39	
IGHV04-02	27066	27366	301	+	27367	CACAGTG	23	ACAAAACA	27405	39	
IGHV02-09	28669	28958	290	+	28959	CACAGTG	23	ACAAAAACC	28997	39	
IGHV02-10p	30460	30741	282	+	30742	CACAATG	23	ACAAACTC	30780	39	Frameshift
IGHV02-11	32395	32681	287	+	32682	CACAGTG	23	ACAAAAACC	32720	39	
IGHV03-03	33663	33957	295	+	33958	CACTGTG	22	ACAAAACT	33995	38	
IGHV02-12	35012	35299	288	+	35300	CACAGTG	23	ACAAAAACC	35338	39	
IGHV03-04	36281	36575	295	+	36576	CACTGTG	22	ACAAAAACT	36613	38	
IGHV02-13	37639	37931	293	+	37932	CACAGTG	23	ACAAAACT	37970	39	
IGHV02-14	39019	39311	293	+	39312	CACAGTG	23	ACAAAAACT	39350	39	
IGHV03-05	41008	41302	295	+	41303	CACAGTG	22	ACAAAAACT	41340	38	
IGHV02-15	42660	42952	293	+	42953	CACAGTG	23	ACAAAAACT	42991	39	
IGHV03-06	45081	45375	295	+	45376	CACAGTG	22	ACAAAAACT	45413	38	
IGHV02-16	46732	47024	293	+	47025	CACAGTG	23	ACAAAAACT	47063	39	

²²³ 37 Table S12: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 1

4618 48912 295 + 48913 CACAGTG 22 ACAAAAACT 48950 33 50323 50611 289 + 50612 CACAGTG 23 ACAAAAACC 5050 39 51880 51181 295 + 5012 CACAGTG 22 ACAAAAACC 5050 39 51402 53741 286 + 54745 CACAGTG 23 ACAAAAACC 5050 39 55462 292 + 54748 CACAGTG 23 ACAAAAACC 57650 39 57663 292 + 5474 CACAGTG 23 ACAAAAACC 57700 38 5898 5898 CACAGTG 23 ACAAAAACC 59055 39 5893 5898 CACAGTG 23 ACAAAAACC 59025 39 5893 5893 CACAGTG 23 ACAAAAACC 59025 39 61249 61234 2023 CACAGTG	Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
50323 50611 289 + 50612 CACAGTG 23 ACAAAAACC 50650 39 p 51890 51184 295 + 5011 289 + 50612 CACAGTG 22 ACAAAAACC 5650 39 p 54462 54747 286 + 5718 CACAGTG 23 ACAAAAACC 5700 39 p 55720 5866 193 + 57371 CACAGTG 23 ACAAAAACC 57903 39 p 55730 5896 289 + 5763 CACAGTG 23 ACAAAAACC 5700 39 59940 60234 263 CACAGTG 23 ACAAAAACC 5700 38 61249 61537 289 + 61383 CACAGTG 23 ACAAAAACC 5700 39 61341 6278 289 + 61383 CACAGTG 23 ACAAAAACC 61376 39	IGHV03-07	48618	48912	295	+	48913	CACAGTG	22	ACAAAAACT	48950	38	
51890 52184 295 + 52185 CAGATIG 22 ACAAAACT 52222 33 p 53026 53274 249 + 53275 3275 3275 33 p 55729 53874 249 + 53877 57635 5740471 5710 39 p 55731 57662 292 + 57663 26CAGTIG 23 ACAAAACC 57100 39 p 55731 57662 292 + 57663 CACAGTIG 23 ACAAAACC 57700 39 p 55731 5766 289 + 60235 CACAGTIG 23 ATAAAACC 61576 39 55940 60235 CACAGTIG 23 ATAAAAACC 61576 39 61249 6137 289 + 6138 CACAAAACT 65925 38 65341 6574 2575 285 ACAAAAACT 65875 38	IGHV02-17	50323	50611	289	+	50612	CACAGTG	23	ACAAAAACC	50650	39	
p 53026 53274 240 + 53275 p 54462 54747 286 + 54748 CACAGTG 23 33 p 55729 55866 138 + 55867 CACAGTG 23 ACAAAAACC 55905 39 p 55731 57662 239 + 55867 CACAGTG 23 ACAAAAACC 55905 39 p 55731 57662 239 + 55872 CACAGTG 23 ACAAAAACC 57700 38 59490 60234 289 + 6533 CACAGTG 23 ATAAAAACC 59025 39 6340 65337 295 + 65338 CACAGTG 23 ATAAAAACC 61576 39 65043 65337 295 + 65338 CACAGTG 23 ACAAAAACT 62375 38 65043 65337 295 + 65338 CACAGTG 23 <	IGHV03-08	51890	52184	295	+	52185	CACAGTG	22	ACAAAACT	5222	38	
54462 54747 286 + 54748 CACAGTG 23 ACAAAAACC 54786 39 p 55729 55866 138 + 55867 CACAGTG 23 ACAAAAACC 55905 39 p 55729 55866 138 + 55867 CACAGTG 23 ACAAAAACC 55905 39 p 58688 58986 289 + 57603 CACAGTG 23 ACAAAAACC 55905 39 59940 60234 299 + 61537 289 CACAGTG 23 ACAAAAACC 5700 38 612491 6737 289 + 61538 CACAGTG 23 ACAAAAACC 65776 39 65043 65337 289 + 61538 CACAGTG 23 ATAAAAACC 65776 39 65043 65640 238 CACAAAAACC 65776 38 5700 38 65041 6574 2	IGHV03-09p	53026	53274	249	+	53275						3'-truncated, no RSS
p 55729 5586 138 + 55867 CACAGTG 23 ACAAAAACC 55905 39 p 57371 57662 222 + 577663 CACAGTG 23 ACAAAAACC 55905 39 p 58698 58986 289 + 57663 CACAGTG 23 ACAAAAACC 57000 38 59940 60234 295 + 61538 CACAGTG 23 ATAAAAACC 5905 39 612491 6737 289 + 61538 CACAGTG 23 ATAAAAAACC 61576 39 65043 65043 65337 295 + 62786 CACAGTG 23 ATAAAAACC 61276 39 65043 65337 295 + 65338 CACAGTG 23 ATAAAAAACC 61276 39 65043 65337 299 + 65338 CACAGTG 23 ACAAAAAACT 66779 39 <	IGHV02-18	54462	54747	286	+	54748	CACAGTG	23	ACAAAAACC	54786	39	
57371 57662 292 + 57663 CACAGTG 22 ACAAAACT 57700 38 p 58698 58986 289 + 5887 CACAGTG 23 ATAAAACC 59025 39 59940 60234 295 + 61338 CACAGTG 23 ATAAAACC 59025 39 612491 61537 289 + 61338 CACAGTG 23 ATAAAACC 66023 39 65043 65337 295 + 65738 CACAGTG 23 ATAAAAACT 6679 39 65043 65337 295 + 65338 CACAGTG 23 ATAAAAACT 6679 39 65043 65337 295 + 65738 CACAGTG 23 ATAAAAACT 6579 39 65043 65344 6640 2874 CACAAAACT 6579 38 65043 65343 26641 CACATG 23 ACAAAAACT	IGHV02-19p	55729	55866	138	+	55867	CACAGTG	23	ACAAAAACC	55905	39	3'-truncated
p 58698 58986 289 + 58987 CACAGTG 23 ATAAAACC 59025 39 59940 60234 295 + 61538 CACAGTG 22 ATAAAAACC 59025 33 612491 61537 289 + 61538 CACAGTG 23 ATAAAAACC 61576 39 612491 62785 295 + 62786 CACAGTG 23 ATAAAAACC 61576 39 63801 64090 289 + 65738 CACAGTG 23 ATAAAAACT 62375 38 65043 65341 6540 287 + 65338 CACAGTG 23 ACAAAAACT 65375 38 66354 6640 287 + 65338 CACAGTG 23 ACAAAAACT 65375 38 66354 6640 287 + 65316 23 ACAAAAACT 65375 38 70101 70389 287 <	IGHV03-10	57371	57662	292	+	57663	CACAGTG	22	ACAAAACT	57700	38	
59940 60234 295 + 60235 CACAGTG 22 ACAAAAACT 60272 33 61249 61537 289 + 61538 CACAGTG 23 ATAAAAACC 61576 39 612491 62785 295 + 61538 CACAGTG 23 ATAAAAACC 61576 39 63801 64089 289 + 65738 CACAGTG 23 ATAAAAACC 61576 39 65043 65334 6640 287 + 65738 CACAGTG 23 ACAAAAACT 62375 38 65354 66640 287 + 65338 CACAGTG 23 ACAAAAACT 6579 39 65354 66640 289 + 70390 CACAGTG 23 ACAAAAACT 6579 38 70101 70389 289 + 70390 CACAGTG 23 ACAAAAACT 6579 38 77206 72501 296	IGHV02-20p	58698	58986	289	+	58987	CACAGTG	23	ATAAAACC	59025	39	Nonsense mutation
61249 61537 289 + 61538 CACAGTG 23 ATAAAAACC 61576 39 62491 62785 295 + 61538 CACAGTG 22 ACAAAAACT 62823 38 653801 64089 289 + 64090 CACAGTG 23 ACAAAAACT 62823 38 65043 65337 295 + 65338 CACAGTG 23 ACAAAAACT 62823 38 65043 65337 295 + 65338 CACAGTG 23 ACAAAAACT 65375 38 66354 66640 287 + 65338 CACAGTG 23 ACAAAAACT 65375 38 70101 70389 289 + 70390 CACAGTG 22 ACAAAAACT 66679 39 72206 72501 296 + 70390 CACAGTG 23 ACAAAAACT 74128 39 72304 75799 289 +	IGHV03-11	59940	60234	295	+	60235	CACAGTG	22	ACAAAACT	60272	38	
62491 62785 295 + 62786 CACAGTG 22 ACAAAACT 62823 33 63801 64089 289 + 64090 CACAGTG 23 ATAAAAACC 64128 39 65043 65337 295 + 65338 CACAGTG 23 ATAAAAACC 64128 39 65043 65347 55377 295 + 65338 CACAGTG 22 ACAAAAACT 65375 38 66354 66640 287 + 66641 CACAGTG 23 ACAAAAACT 65775 38 70101 70389 289 + 70390 CACAGTG 23 ACAAAAACT 7428 39 72206 72501 296 + 73773 CACAGTG 22 ACAAAAACT 74239 39 73710 70389 289 + 73773 CACAGTG 22 ACAAAAACT 74128 39 75799 76090 292	IGHV02-21	61249	61537	289	+	61538	CACAGTG	23	ATAAAACC	61576	39	
63801 64089 289 + 64090 CACAGTG 23 ATAAAACC 64128 39 65043 65337 295 + 65338 CACAGTG 22 ATAAAACC 64128 39 66543 65338 CACAGTG 22 ACAAAAACT 65375 38 66354 66640 287 + 65641 CACAGTG 23 ACAAAAACT 65775 38 70101 70389 292 + 68744 CACAGTG 23 ACAAAAACT 65775 38 72206 72501 296 + 70390 CACAGTG 23 ACAAAAACT 70428 39 72206 72501 296 + 73773 CACAGTG 23 ACAAAAACT 71239 38 73484 73772 289 + 73773 CACAGTG 23 ACAAAAACT 71239 38 77773 78067 293 + 75799 7809 77013	IGHV03-12	62491	62785	295	+	62786	CACAGTG	22	ACAAAACT	62823	38	
65043 65337 295 + 65338 CACAGTG 22 ACAAAACT 65375 38 66354 66640 287 + 66641 CACAGTG 23 ACAAAAACT 66579 39 68452 68743 292 + 66641 CACAGTG 23 ACAAAACT 66679 39 70101 70389 289 + 70390 CACAGTG 23 ACAAAAACT 6679 39 7206 72501 296 + 70390 CACAGTG 23 ACAAAAACT 70428 39 73148 73772 289 + 73773 CACAGTG 23 ACAAAAACT 71428 39 75799 76090 292 + 73773 CACAGTG 23 ACAAAAACT 76128 38 77773 78067 295 + 76091 CACAGTG 22 ACAAAAACT 76128 38 77177 78067 295 + <	IGHV02-22	63801	64089	289	+	64090	CACAGTG	23	ATAAAACC	64128	39	
66354 66640 287 + 66641 CACAGTG 23 ACAAAACT 66679 39 68452 68743 292 + 68744 CACTATG 22 ACAAAACT 66679 39 70101 70389 289 + 70390 CACAGTG 23 ACAAAACT 68781 38 70101 70389 289 + 70390 CACAGTG 23 ACAAAAACT 70428 39 72206 72501 296 + 72502 CACAGTG 23 ACAAAAACT 70428 39 73484 73772 289 + 73773 CACAGTG 23 ACAAAAACT 713811 39 75799 76090 292 + 76091 CACAGTG 22 ACAAAAACT 76128 38 77773 78067 295 + 78068 CACAGTG 23 ACAAAAACT 76128 38 79010 79289 29 ACAAAAAACT	IGHV03-13	65043	65337	295	+	65338	CACAGTG	22	ACAAAACT	65375	38	
68452 68743 292 + 68744 CACTATG 22 ACAAAACTC 68781 38 70101 70389 289 + 70390 CACAGTG 23 ACAAAACTC 68781 38 70101 70389 289 + 70390 CACAGTG 23 ACAAAAACC 70428 39 72206 72501 296 + 72502 CACAGTG 23 ACAAAAACC 70428 39 73484 73772 289 + 75792 CACAGTG 23 ACAAAAACC 70428 39 75799 76090 292 + 76091 CACAGTG 23 ACAAAAACT 7519 38 77773 78067 295 + 78068 CACAGTG 23 ACAAAAACT 76128 38 79010 79289 289 + 79290 CACAGTG 23 ACAAAAACT 78105 38 80492 80785 CACAGTG 23	IGHV02-23	66354	66640	287	+	66641	CACAGTG	23	ACAAAACT	66679	39	
70101 70389 289 + 70390 CACAGTG 23 ACAAAAACC 70428 39 72206 72501 296 + 72502 CACAGTG 22 ACAAAAACT 72539 38 73484 73772 289 + 73773 CACAGTG 23 ACAAAAACT 75399 38 75799 76090 292 + 73773 CACAGTG 23 ACAAAAACT 75191 39 77773 78067 292 + 76091 CACAGTG 22 ACAAAAACT 76128 38 79001 79289 289 + 79290 CACAGTG 23 ACAAAAACT 78105 38 80492 80784 293 + 79290 CACAGTG 23 ACAAAAACT 78105 38 81799 82082 284 + 87085 CACAGTG 23 ACAAAAACT 78105 38 81799 84030 29 + 87083 CACAGTG 23 ACAAAAACT 80822 38 81799 <td>IGHV03-14</td> <td>68452</td> <td>68743</td> <td>292</td> <td>+</td> <td>68744</td> <td>CACTATG</td> <td>22</td> <td>ACAAAACTC</td> <td>68781</td> <td>38</td> <td></td>	IGHV03-14	68452	68743	292	+	68744	CACTATG	22	ACAAAACTC	68781	38	
72206 72501 296 + 72502 CACAGTG 22 ACAAAAACT 72539 38 73484 73772 289 + 73773 CACAGTG 23 ACAAAAACT 75539 38 75799 76090 292 + 76091 CACAGTG 22 ACAAAAACT 76128 38 77773 78067 295 + 76091 CACAGTG 22 ACAAAAACT 76128 38 79001 79289 289 + 77929 CACAGTG 23 ACAAAAACT 78105 38 79001 79289 289 + 77929 CACAGTG 23 ACAAAAACT 78105 38 80492 80784 293 + 77290 CACAGTG 23 ACAAAAACT 80822 38 81799 82082 284 + 87083 CACAGTG 23 ACAAAAACT 80822 38 81799 84030 295 + 84031 CACAGTG 23 ACAAAAACT 84068 38 8000 <td>IGHV02-24</td> <td>70101</td> <td>70389</td> <td>289</td> <td>+</td> <td>70390</td> <td>CACAGTG</td> <td>23</td> <td>ACAAAAACC</td> <td>70428</td> <td>39</td> <td></td>	IGHV02-24	70101	70389	289	+	70390	CACAGTG	23	ACAAAAACC	70428	39	
73484 73772 289 + 73773 CACAGTG 23 ACAAAAACC 7311 39 75799 76090 292 + 76091 CACAGTG 22 ACAAAAACT 76128 38 77773 78067 292 + 76091 CACAGTG 22 ACAAAAACT 76128 38 79001 79289 299 + 77920 CACAGTG 22 ACAAAAACT 78105 38 79001 79289 299 + 77920 CACAGTG 23 ACAAAAACC 79128 39 80492 80784 293 + 80785 CACAGTG 22 ACAAAAACT 80822 39 81799 82082 284 + 80785 CACAGTG 23 ACAAAAACT 80822 38 81799 84030 295 + 84031 CACAGTG 23 ACAAAAACT 84068 38 8033 6403 295 + 84031 CACAGTG 23 ACAAAAACT 84068 38 8030	IGHV03-15	72206	72501	296	+	72502	CACAGTG	22	ACAAAACT	72539	38	
75799 76090 292 + 76091 CACAGTG 22 ACAAAAACT 76128 38 77773 78067 295 + 78068 CACAGTG 22 ACAAAAACT 78105 38 79001 79289 289 + 79290 CACAGTG 23 ACAAAAACT 78105 38 80492 80784 293 + 80785 CACAGTG 23 ACAAAAACC 79238 39 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACC 80822 38 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACC 80822 38 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACC 80822 38 81799 84030 295 + 8403 23 ACAAAAAACC 80822 38 80302 295 + 8403 23 ACAAAAAACC 84068 39	IGHV02-25	73484	73772	289	+	73773	CACAGTG	23	ACAAAAACC	73811	39	
77773 78067 295 + 78068 CACAGTG 22 ACAAAACT 78105 38 79001 79289 289 + 79290 CACAGTG 23 ACAAAAACC 79328 39 80492 80784 293 + 80785 CACAGTG 22 ACAAAAACC 79328 39 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACC 80822 38 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACC 80822 38 81799 82082 284 + 84083 CACAGTG 23 ACAAAAACC 82121 39 83736 84030 295 + 84031 CACAAAAACC 84068 38 8000 200 200 22 ACAAAAAACC 84068 39 8000 200 200 22 ACAAAAAACC 84068 38	IGHV03-16	75799	76090	292	+	76091	CACAGTG	22	ACAAAACT	76128	38	
7901 79280 289 + 79290 CACAGTG 23 ACAAAACC 79328 39 80492 80784 293 + 79290 CACAGTG 22 ACAAAAACC 79328 39 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACT 80822 38 83736 84030 295 + 84031 CACAGTG 22 ACAAAAACT 84068 33	IGHV03-17	77773	78067	295	+	78068	CACAGTG	22	ACAAAACT	78105	38	
80492 80784 293 + 80785 CACAGTG 22 ACAAAACT 80822 38 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACT 80822 38 81799 82082 284 + 82083 CACAGTG 23 ACAAAAACC 82121 39 83736 84030 295 + 84031 CACAGTG 22 ACAAAAACT 84068 38 8000 2000 295 + 84031 CACAGTG 22 ACAAAAACT 84068 38	IGHV02-26	79001	79289	289	+	79290	CACAGTG	23	ACAAAAACC	79328	39	
81799 82082 284 + 82083 CACAGTG 23 ACAAAACC 82121 39 83736 84030 295 + 84031 CACAGTG 22 ACAAAACT 84068 38	IGHV03-18	80492	80784	293	+	80785	CACAGTG	22	ACAAAACT	80822	38	
83736 84030 295 + 84031 CACAGTG 22 ACAAAACT 84068 38	IGHV02-27p	81799	82082	284	+	82083	CACAGTG	23	ACAAAAACC	82121	39	Frameshift
	IGHV03-19	83736	84030	295	+	84031	CACAGTG	22	ACAAAACT	84068	38	
82093 85381 289 + 85382 CACAGGG 23 GCAAAAACC 85420 39	IGHV02-28p	85093	85381	289	+	85382	CACAGGG	23	GCAAAAACC	85420	39	Nonsense mutation

²²²38

Table S13: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 2

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV02-29	86225	86505	281	+	86506	CACAGTG	23	ATAAAACC	86544	39	
IGHV03-20	87419	87713	295	+	87714	CACAGTG	22	ACAAAAACT	87751	38	
IGHV03-21	94532	94826	295	+	94827	CACAGTG	23	ACAAAAACC	94865	39	
IGHV03-22	96192	96489	298	+	96490	CACAGTG	23	ACAAAAACC	96528	39	
IGHV03-23	98068	98368	301	+	98369	CACAGTG	23	ACAAAAACC	98407	39	
IGHV03-24	99482	6779	298	+	99780	CACAGTG	23	ACAAAAACC	99818	39	
IGHV03-25	101639	101936	298	+	101937	CACAGTG	23	ACAAAAACC	101975	39	
IGHV05-01p	102818	103096	279	+	103097	CAGAAGC	0	ACAAAAACT	103112	16	Frameshift
IGHV03-26	104098	104389	292	+	104390	CACAGTG	23	ACAAAATCC	104428	39	
IGHV06-01	105551	105831	281	+	105832	CACAGTG	23	ACAAAAACC	105870	39	
IGHV03-27	107274	107571	298	+	107572	CACAGTG	23	ACAAAAACC	107610	39	
IGHV03-28	108775	109072	298	+	109073	CACAGAG	23	ACAAAAACC	109111	39	
IGHV03-29	110372	110672	301	+	110673	CACAGTG	23	ACAAAAACC	110711	39	
IGHV07-01	111565	111856	292	+	111857	CACAATG	23	ACAAAAACT	111895	39	
IGHV08-01p	113033	113330	298	+	113331	CACAGAG	23	CCAAGAACC	113369	39	Nonsense mutation
IGHV09-01	115512	115800	289	+	115801	CACAGTG	22	ACAAAAACT	115838	38	
IGHV10-01	117078	117379	302	+	117380	CACAGTG	22	ACATAAACT	117417	38	
IGHV11-01	119462	119760	299	+	119761	CACAGTG	23	ACAAAAACT	119799	39	
IGHV03-30	126125	126416	292	+	126417	CACAGTG	22	ACAAAAACC	126454	38	
IGHV03-31	127109	127400	292	+	127401	CACAGTG	23	GCAAAAACC	127439	39	
IGHV12-01	128489	128786	298	+	128787	CACAGTG	23	ACAAAAACC	128825	39	
IGHV02-30	135711	136000	290	+	136001	CACAGTG	22	ACAAAACA	136038	38	
IGHV13-01	136757	137057	301	+	137058	CACAGTG	23	ACAAAAACT	137096	39	
IGHV02-31	138344	138637	294	+	138638	CACAGTG	23	ACAAAAATC	138676	39	
IGHV02-32	140024	140315	292	+	140316	CACTGTG	23	ACAAAAACT	140354	39	

5 39 Table S14: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 3

Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
	142620	289	+	142621	CACAGTG	23	ACAAAAACA	142659	39	
	144625	292	+	144626	CACAGTG	23	ACAAAACT	144664	39	
	146031	292	+	146032	CACAGTG	23	ACAAAAAT	146070	39	
	147194	292	+	147195	CACAGTG	23	ACAAAACT	147233	39	
	148138	300	+	148139	CACAGTG	23	ACAAAAATC	148177	39	
	150797	294	+	150798	CACAATA	23	ACAAAAACC	150836	39	Nonsense mutation
152249	152537	289	+	152538	CACAGTA	23	ACAAAAACC	152576	39	
	154374	300	+	154375	CACAGTG	23	ACAAAAGT	154413	39	
155433	155709	277	+	155710	CACAGTG	23	ACAAAAACC	155748	39	
156583	156870	288	+	156871	CACAGTG	23	ACAAAAACC	156909	39	
163977	164269	293	+	164270	CACAGTG	23	ACAAAACCC	164308	39	
165416	165708	293	+	165709	CACAGTG	22	ACAAAACA	165746	38	
166994	167293	300	+	167294	CACAATG	23	ACAGAAACT	167332	39	
169602	169900	299	+	169901	CACAGTG	23	ACAAAAACC	169939	39	
171452	171752	301	+	171753	CACTGTG	23	GCAAAAACT	171791	39	
173096	173384	289	+	173385	CTCAGTG	23	ACAAAAACC	173423	39	
174714	175009	296	+	175010	CACAGTG	23	ACAAAAACT	175048	39	
176396	176697	302	+	176698	CACAGTG	23	ACAAAACT	176736	39	
178422	178719	298	+	178720	CACAGTG	23	ACAAAACA	178758	39	
181245	181543	299	+	181544	CACAGTG	23	ACAAAAACC	181582	39	
182977	183236	260	+	183237	CACAGGT	8	ACAAAACT	183260	24	5'-truncated
184323	184611	289	+	184612	CACAGTG	23	ACAAAAACC	184650	39	Nonsense mutation
185946	186244	299	+	186245	CACAGTG	23	ACAAAAACT	186283	39	
187624	187925	302	+	187926	CACAGTG	23	ACAAAACT	187964	39	
190987	191284	298	+	191285	CACAGTG	23	ACAAAACA	191323	39	

Table S15: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 4

Nonsense mutation, 3'-truncated, 3'-truncated, no RSS Nonsense mutation Nonsense mutation Nonsense mutation 5'-truncated Comment no RSS 39 39 39 40 38 39 38 **RSS Length** 208816 218213 228877 230306 236369 240619 242204 244203 **RSS End** 192903 193945 204732 206542 208058 210253 211664 219707 231967 235141 238452 195611 216001 220671 245851 ACAAAAACC ACAAAAAA ACAAAAACC ACAAAAACC ACAAAAACA ACAAAAACC ACAAAAACT ACAAAAACA ACAAAATCC CTGAAAACC ACAAAAACT ACAAAAACT ACGAAAACT ACAAAAACT ACAAAAACT ACAAAAACT ACAAAAATT ACAACCCCC TCAAAAACT ACAGAATCC ACAAAAACT ACAAAATCC ACAAATACT Nonamer Spacer Length 23 23 23 23 23 23 23 23 24 19 23 23 23 23 23 23 23 23 22 23 22 23 23 CACAGCG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACAGTG CACGGTG CACAGTG CACACTG CACAGTG CACAGTG CACAATG CACAGTG CACAGTG CACACTG CACAGTG CACAGTG CACAATC CACAGTA CACAGTA CACCATA Heptamer 211626 215963 192869 206504 210216 218175 219669 228839 235103 238414 244165 245814 93907 195573 204694 208778 230268 231929 **RSS Start** 208021 214861 220633 233231 236331 240580 242167 Strand + + + + + + Length 304 304 299 292 299 289 298 290 299 299 302 298 301 295 301 295 261 292 301 301 292 305 162 149 302 242166 210215 211625 214860215962 219668 228838 231928 233230 236330 End 193906 195572 206503 208020 208777 218174 220632 230267 235102 238413 240579 244164 245813 192868 204693 217874 228547 229963 193608 204396 206203 208477 211322 214600 215671 219368 220329 231630 233069 236029 238122 241878 243867 192570 195271 207726 240281 Start 209921 234954 245524 IGHV22-01p IGHV21-01p IGHV03-36p IGHV11-02p IGHV02-54p IGHV13-03 IGHV15-02_l IGHV02-55 IGHV03-35 IGHV02-56 IGHV23-01 **IGHV12-06** IGHV13-02 IGHV16-01 IGHV03-33 IGHV17-01 IGHV03-34 **IGHV09-02** IGHV02-57 **IGHV02-53** IGHV15-01 IGHV18-01 IGHV19-01 **IGHV20-01** IGHV02-52 Name

> ق 41

Table S16: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 5

bioRxiv preprint doi: https://doi.org/10.1101/752063; this version posted September 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Name	Start	NT Sequence	End	Length	Strand
IGHDZ01	2243	GTGGGCAGGAGGCTATGC	2260	18	+
IGHDZ02	119768	AGG	119770	3	+
IGHDZ03	128794	ACTAAAGG	128801	8	+
IGHDZ04	129907	ATCGGG	129912	6	+
IGHDZ05	158017	ATATATGGGGG	158027	11	+
IGHDZ06	197791	ATATACTGGGGTGG	197804	14	+
IGHDZ07	222022	ATGGACTGGGGGG	222034	13	+
IGHDZ08	247941	GTGATTACGGCTACGGGGC	247959	19	+
IGHDZ09	249514	TTATGGGCTGGGGAG	249528	15	+
IGHDZ10	253752	TGGGTGGGGC	253761	10	+
IGHDM01	267392	TATACAGTGGCAAC	267405	14	+
IGHDM02	268498	CAGTATAGCAAC	268509	12	+
IGHDM03	268836	TACAATGGCAAC	268847	12	+
IGHDM04	269694	TAAACAGTGGCTAC	269707	14	+

Table S17: Co-ordinate table of DH segments in the X. maculatus IGH locus

Table S18: Co-ordinate table of DH 5'-RSSs in the X. maculatus IGH locus

Name	5'-RSS Start	Nonamer	Spacer Length	Heptamer	5'-RSS End	Length
IGHDZ01	2215	GGTTTTTGT	12	CACTGTG	2242	28
IGHDZ02	119739	TGTATTACT	13	CACAGTG	119767	29
IGHDZ03	128766	TTTACTTCT	12	CACAGTG	128793	28
IGHDZ04	129879	GGTTTTTGT	12	CACAGTG	129906	28
IGHDZ05	157989	AGTTTTTGT	12	CACAGTG	158016	28
IGHDZ06	197763	GGTTTTTGC	12	TACTGTG	197790	28
IGHDZ07	221994	GGTTTTTGT	12	CGCTGTG	222021	28
IGHDZ08	247913	TGTTTTTGT	12	ATCTGTG	247940	28
IGHDZ09	249486	AGTTTTTGT	12	TGTGGTG	249513	28
IGHDZ10	253724	AGTTTTTGT	12	TGTAGTG	253751	28
IGHDM01	267364	AGTTTTTGT	12	TACAGTG	267391	28
IGHDM02	268470	TGTTTTTGT	12	CACAGTG	268497	28
IGHDM03	268808	AGTTTTTGC	12	TACTGTG	268835	28
IGHDM04	269666	CGTTTTTGT	12	CATTGTG	269693	28

Table S19: Co-ordinate table of DH 3'-RSSs in the X. maculatus IGH locus

Name	3'-RSS Start	Heptamer	Spacer Length	Nonamer	3'-RSS End	Length
IGHDZ01	2261	CACTAAG	12	ACAAAAAGT	2288	28
IGHDZ02	119771	CAAAATG	13	ACAAAAACT	119799	29
IGHDZ03	128802	CAGAGAA	8	ACAAAAACC	128825	24
IGHDZ04	129913	CACAATG	12	TCAAAAACC	129940	28
IGHDZ05	158028	CACAGAG	12	ACAAAAACC	158055	28
IGHDZ06	197805	CACACAG	12	ACAAAAACC	197832	28
IGHDZ07	222035	CACAGAG	12	ACAAAAACC	222062	28
IGHDZ08	247960	CACAATA	12	ACAAAAACC	247987	28
IGHDZ09	249529	CACAATG	12	ACAAAAACC	249556	28
IGHDZ10	253762	CACAGTA	12	ACAAAAACC	253789	28
IGHDM01	267406	CACAGTG	12	GCAAAAACC	267433	28
IGHDM02	268510	CACAGTG	12	ACAGAAACC	268537	28
IGHDM03	268848	CACAGTG	12	ACAAAAACC	268875	28
IGHDM04	269708	CACTGTG	12	ACAAAATCA	269735	28

Name	Start	NT Sequence	AA Sequence	End	End Length	Strand
IGHJZ01	2653	ATGCCTTAGATTACTGGGGTGAAGGGACCAGAGTCACAGTGACTTCAG	ALDYWGEGTRVTVTS	2700	48	+
IGHJZ02	120639	ATTACGCTCTTGACTACTGGGGGGGGGGGGGGAGCCAAAGTTACTGTAAAGCCAG	YALDYWGAGTKVTVKP	120689	51	+
IGHJZ03	130376	ACTACGGCTTTTGATTACTGGGGGGGGGGGGGGAGCTGAAGTTACTGTTGAACCAG	YGFDYWGDGTEVTVEP	130426	51	+
IGHJZ04	158408	AGATTTAGACTACTGGGGTAATGGAACAACAGTCACGGTTCTACCAG	DLDYWGNGTTVTLP	158454	47	+
IGHJZ05	198186	ATTATGGTTTTTGACTACTGGGGGGGGGGGGGGGGAGCCACAGTCACTGTTAGTCCAG	YGFDYWGDGTTVTVSP	198236	51	+
IGHJZ06	222417	ATGCTTTTTGACGTCTGGGGTAAAGGAACCACAGTTACTGTTGTTGTACCAG	AFDVWGKGTTVTVVP	222464	48	+
IGHJZ07	254130	ATGTTTTTGACTACTGGGGTAAAGGGACTGATGTCACAGTATCTCCAG	VFDYWGKGTDVTVSP	254177	48	+
IGHJM01	276014	ACGGCTACTTCGACTACTGGGGGGAAAGGAACACACAGGTCACAGTGACTTCTG	GYFDYWGKGTQVTVTS	276064	51	+
IGHJM02	276284	CCACTACTTTGACTACTGGGGAAAAGGAACCACGGTTACCGTCACTTCAG	HYFDYWGKGTTVTVTS	276333	50	+
IGHJM03	276654	ACAATGCTTTTTGACTACTGGGGGAAAAGGAACTACGGTAACAGTAACATCAG	NAFDYWGKGTTVTVTS	276704	51	+
IGHJM04	276999	ACTACGCTTTTGACTACTGGGGGAAAAGGAACAATGGTCACTGTCACTTCAG	YAFDYWGKGTMVTVTS	277049	51	+
IGHJM05	277322	ACAACTGGGCTTTTTGACTACTGGGGGGGGGGGGGGGGG	NWAFDYWGAGTMVTVTS	277375	54	+
IGHJM06	277672	CTACGGTGCTTTTTGACTACTGGGGTAAAGGGACTACAGTCACCGTCACTTCAG	YGAFDYWGKGTTVTVTS	277724	53	+
IGHJM07	278150	CTACGATGCTTTTTGACTATTTGGGGGGAAAGGAACAACAGTCACCGTCATCACTTCAG	YDAFDYWGKGTTVTVITS	278205	56	+
IGHJM08	278606	TTACTACTACGCTTTTTGACTATTGGGGGAAAAGGGGACAATGGTCACCTCACTTCAG	YYYAFDYWGKGTMVTVTS	278661	56	+

sus
loc
GH
s IC
аtu.
cula
ma
X
f JH segments in the X. macula
in.
nts
me
seg
f JH s
of J
le e
ordinate table of
ate
din
-Ore
Ĉ
:0
S2
ble
Tab

	LIBIC CCN	INONAMET	spacer Length	Heptamer	KSS End	KSS Length
[GHJZ01	2662	TGTTTTTGT	23	CACTGTG	2652	39
IGHJZ02	120651	TGTTTTTGT	23	CACTGTG	120638	39
IGHJZ03	130388	TGTTTTTGT	23	CACCGTG	130375	39
[GHJZ04	158416	GGTTTTTGT	23	CACTGTG	158407	39
IGHJZ05	198198	GGTTTTTGT	23	CACTGTG	198185	39
IGHJZ06	222426	TGTTTTTGT	23	CACTGTG	222416	39
IGHJZ07	254139	GGTTTTTGT	23	CACTGTG	254129	39
IGHJM01	276026	TGTATTTGT	23	CACTGTG	276013	39
IGHJM02	276295	TATTTTGC	23	CACCGTG	276283	39
IGHJM03	276666	TGTTTTTGT	23	TACTGTG	276653	39
IGHJM04	277011	TGTTTTAGT	23	TACTGTG	276998	39
IGHJM05	277338	GGTTTTTGT	22	TACTGTG	277321	38
IGHJM06	277687	GCTTTTTAT	22	CACTGTG	277671	38
IGHJM07	278168	CCTTTTTAC	22	CACTGTG	278149	38
IGHJM08	278624	GCTTTTTAA	22	CACTGTG	278605	38

Species	Scaffold(s)	Region	Isotype	Known Exons ¹	Complete?	Pseudo-exons	Comments
Nothobranchius orthonotus	scf33878	IGHM1	Μ	1,2,3,TM1	No	I	CM4 missing (missing sequence)
Nothobranchius orthonotus	scf33878	IGHD1	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Nothobranchius orthonotus	scf34438	IGHM2	М	1,2,3,4,TM1	Yes	I	
Nothobranchius orthonotus	scf34438, scf33917	IGHD2	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Nothobranchius orthonotus	scf33917	IGHD3	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Nothobranchius orthonotus	scf33917	IGHD4	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	Ι	
Nothobranchius orthonotus	scf9255, scf26119, scf33917	IGHD5	D	3,4,2,3,4,5,6,7,TM1	No	Ι	CD1 & CD2A missing (missing se-
							quence)
Nothobranchius orthonotus	scf27951, scf33789	IGHM3	M	1,2,3,4,TM1	Yes	Ι	
Nothobranchius orthonotus	scf27951, 32033	IGHD6	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Nothobranchius orthonotus	scf32137, scf21286	IGHM4	M	1,2,3,4,TM1	Yes	Ι	
Nothobranchius furzeri	chr6 + BACs	IGH1M	Μ	1,2,3,4,TM1	Yes	Ι	
Nothobranchius furzeri	chr6 + BACs	IGHID	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Nothobranchius furzeri	chr6 + BACs	IGH2M	M	1,2,3,4,TM1	Yes	Ι	
Nothobranchius furzeri	chr6 + BACs	IGH2D	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	Ι	
Aphyosemion australe	scf373	IGHM	Μ	1,2,3,4,TM1	Yes	I	
Aphyosemion australe	scf373	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	I	
Callopanchax toddi	scf107	IGHZ1	Z	1,2,3,4,TM1	Yes	Ι	
Callopanchax toddi	scf107	IGHZ2	Z	1,2,3,4,TM1	Yes	Ι	
Callopanchax toddi	scf1209	IGHZ3	Z	1,2,3,4,TM1	Yes	I	
Callopanchax toddi	scf1209	IGHM1	Μ	1	No	I	Isolated CM1 exon
Callopanchax toddi	scf945	IGHZ4	Z	1,2,3,4,TM1	Yes	Ι	
Callopanchax toddi	scf945	IGHM2	М	1,2,3,4,TM1	Yes	I	
Callopanchax toddi	scf945	IGHD1	D	1,2,3,4,5,6,7,TM1	Yes	1,4,5	Frameshift mutations in CD1, CD4
							& CD5
Callopanchax toddi	scf265	IGHM3	М	1,2,3,4,TM1	Yes	I	
Callopanchax toddi	scf265	IGHD2	D	1,5,7,TM1	No	I	CD2-4 & CD5-6 missing (not in se-
							duence)

Table S22: IGH constant regions in cyprinidontiform fish, part 1

¹ Excluding TM2 and secretory exons.

Species	Scaffold(s)	Region	Isotype	Known Exons ¹	Complete?	Pseudo-exons	Comments
Pachypanchax playfairii	scf547	IGHZ	Z	1,2,3,4,TM1	Yes	I	
Pachypanchax playfairii	scf125	IGHM1	Μ	1,2,3,4,TM1	Yes	I	
Pachypanchax playfairii	scf125	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	I	
Pachypanchax playfairii	scf547	IGHM2	Μ	1	No	I	Isolated CM1 exon
Austrofundulus limnaeus	NW_013954375.1	IGHZ	Z	TMI	No	TM1	Isolated TM1 exon with frameshift
							mutation
Austrofundulus limnaeus	NW_013952673.1	IGHM	Μ	1,2,3,4,TM1	Yes	I	
Austrofundulus limnaeus	NW_013952673.1, NW_013956335.1	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	I	
Kryptolebias marmoratus	$NW_016094348.1$	IGHZ1	Z	1,2,3,4,TM1	Yes	I	
Kryptolebias marmoratus	$NW_016094348.1$	IGHZ2	Z	1,4,TM1	No	I	CZ2 & CZ3 missing (not in se-
							quence)
Kryptolebias marmoratus	NW_016094301.1	IGHM1	M	1,2,3,4,TM1	Yes	I	
Kryptolebias marmoratus	NW_016094301.1	IGHD1	D	1,2,3,4,5,6,7,TM1	Yes	I	
Kryptolebias marmoratus	NW_016094277.1	IGHM2	М	1,2,3,4,TM1	Yes	I	
Kryptolebias marmoratus	NW_016094277.1	IGHD2	D	1,2,3,4,5,6,TM1	No	I	CD7 missing (not in sequence)
Poecilia reticulata	NC_024338.1	IGHZ1	Z	1, 2, 3, 4	No	I	TM1 missing (missing sequence)
Poecilia reticulata	NC_024338.1	IGHZ2	Z	1,2,3,4,TM1	Yes	I	
Poecilia reticulata	NC_024338.1	IGHM	Μ	1,2,3,4,TM1	Yes	I	
Poecilia reticulata	NC_024338.1	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Poecilia formosa	$NW_006800081.1$	IGHZ1	Z	1,2,3,4,TM1	Yes	I	
Poecilia formosa	$NW_006800081.1$	IGHZ2	Z	1,2,3,4,TM1	Yes	I	
Poecilia formosa	$NW_006800081.1$	IGHZ3	Z	1,2,3,4,TM1	Yes	I	
Poecilia formosa	$NW_006800081.1$	IGHM	М	1,2,3,4,TM1	Yes	I	
Poecilia formosa	NW_006800081.1	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	I	
Xiphophorus maculatus	NC_036458	IGHZ1	Z	1,2,3,4,TM1	Yes	I	
Xiphophorus maculatus	NC_036458	IGHZ2	Z	1,2,3,4,TM1	Yes	I	
Xiphophorus maculatus	NC_036458	IGHM	Μ	1,2,3,4,TM1	Yes	I	
¹ Excluding TM2 and secretory exons.	story exons.						

Table S23: IGH constant regions in cyprinidontiform fish, part 2

Species	Scaffold(s)	Region	Isotype	Known Exons ¹	Complete?	Pseudo-exons	Comments
Xiphophorus maculatus	NC_036458	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Fundulus heteroclitus	NW_012234561.1	IGHZ1	Z	1,2,3,4,TM1	Yes	I	
Fundulus heteroclitus	NW_012230737.1	IGHZ2	Z	4,TM1	No	I	CZ1 to CZ3 missing (missing se-
							quence)
Fundulus heteroclitus	NW_012234542.1	IGHM	Μ	1,2,3,4,TM1	Yes	I	
Fundulus heteroclitus	NW_012234542.1	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Cyprinodon variegatus	NW_015154250.1, NW_015151047.1	IGHZ	Z	1,2,3,4,TM1	Yes	I	
Cyprinodon variegatus	NW_015151047.1	IGHM	Μ	1,2,3,4,TM1	Yes	I	
Cyprinodon variegatus	NW_015151047.1	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHM1	Μ	1,2,3,4,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD1	D	1,2,3,4,6,7,TM1	Yes	7	Nonsense mutation in CD7
Oryzias latipes	NC_019866.2	IGHM2	Μ	1,2,3,4,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD2	D	1,2,3,4,6,7,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHM3	Μ	1,2,3,4,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD3	D	1,2,3,4,6,7,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHM4	Μ	1,2,3,4,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD4	D	2,7,TM1	No	I	CD1 & CD3-6 missing (not in se-
							quence)
Oryzias latipes	NC_019866.2	IGHM5	Μ	1,2,3,4,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD5	D	1,2,3,4,6,7,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHM6	Μ	1,2,3,4,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD6	D	1,2,3,4,6,7,TM1	Yes	I	
Oryzias latipes	NC_019866.2	IGHD7	D	1, 2, 3, 6	No	I	CD4, CD5, CD7 and TM1 missing
							(not in sequence)
¹ Excluding TM2 and secretory exons.	retory exons.						

Table S24: IGH constant regions in cyprinidontiform fish, part 3

598