Extreme genomic volatility characterises the evolution of the immunoglobulin heavy chain locus in teleost fishes

William J. Bradshaw ${ }^{1,2}$ and Dario Riccardo Valenzano ${ }^{1,2, *}$
${ }^{1}$ Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 296, 50937 Cologne, Germany
${ }^{2}$ CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
*To whom correspondence should be addressed. E-mail: dvalenzano@age.mpg.de

Abstract

The evolution of the adaptive immune system has provided vertebrates with a uniquely sophisticated immune toolkit, enabling them to mount precise immune responses against a staggeringly diverse range of antigens. Like other vertebrates, teleost fishes possess a complex and functional adaptive immune system; however, our knowledge of the complex antigen-receptor genes underlying its functionality has been restricted to a small number of experimental and agricultural species, preventing a systematic investigation of how these crucial gene loci evolve. Here, we analyse the genomic structure of the immunoglobulin heavy chain (IGH) gene loci in the cyprinodontiforms, a diverse and important group of teleosts present in many different habitats across the world. We reconstruct the complete IGH loci of the turquoise killifish (Nothobranchius furzeri) and the southern platyfish (Xiphophorus maculatus) and analyse their in vivo gene expression, revealing the presence of species-specific splice isoforms of transmembrane $I G H M$. We further characterise the $I G H$ constant regions of ten additional cyprinodontiform species, including guppy, amazon molly, mummichog and mangrove killifish. Phylogenetic analysis of these constant regions reveals multiple independent rounds of duplication and deletion of the teleost-specific antibody class $I G H Z$ in the cyprinodontiform lineage, demonstrating the extreme volatility of IGH evolution. Focusing on the cyprinodontiforms as a model taxon for comparative evolutionary immunology, this work provides novel genomic resources for studying adaptive immunity and sheds light on the evolutionary history of the adaptive immune system.

Introduction

The ancient evolutionary arms race between hosts and parasites has given rise to a wide variety of highly sophisticated offensive and defensive adaptations in different taxa ${ }^{1}$. Among the most complex and effective of these adaptations is the vertebrate adaptive immune system, in which developing B- and T-lymphocytes generate a vast diversity of novel antigen-receptor sequences through dynamic recombination of their genomic sequence ${ }^{1-3}$. By combining this enormous diversity in antigen specificities with antigen-dependent clonal expansion and long-term immune memory ${ }^{4,5}$, vertebrates can progressively improve their protection against recurrent immune challenges while also coping effectively with rapidly-evolving pathogenic threats ${ }^{6}$, dramatically improving their ability to survive and thrive in a complex immune environment.

The immunoglobulin heavy chain $(I G H)$ is one of the most important antigen-receptor genes in the adaptive immune system, determining both the effector function and the majority of the antigen-specificity of the antibodies produced by each $\mathrm{B}-\mathrm{cell}{ }^{7,8}$. The native structure of the $I G H$ gene locus has a profound effect on adaptive immunity in a species, determining the range of gene segment choices available for the VDJ recombination process giving rise to novel antigen-receptor sequences ${ }^{2}$, the possible antibody classes (or isotypes) available, and the relationship between VDJ recombination and isotype choice ${ }^{9}$. Understanding the structure of this locus is therefore essential for understanding adaptive-immune function in any given vertebrate species, while comparing loci between species can provide important insight into the adaptive immune system's complex evolutionary history ${ }^{9}$.

The teleost fishes are the largest and most diverse group of vertebrates, with nearly 30,000 species comprising almost half of extant vertebrate diversity ${ }^{10}$. Previous work has characterised the $I G H$ locus structure in a number of teleost species, including zebrafish ${ }^{11}$, medaka ${ }^{12}$, three-spined stickleback ${ }^{13,14}$, rainbow trout ${ }^{15}$, fugu ${ }^{16}$, and Atlantic salmon ${ }^{17}$. These characterisations have revealed remarkable diversity in the size, structure and functionality of teleost $I G H \operatorname{loci}^{9}{ }^{9}$. However, the number of loci characterised is very small compared to the total evolutionary diversity of teleost fish, and is mainly confined to major aquaculture species and established research models ${ }^{9,18}$, with characterised species typically quite distantly related to one another within the teleost clade ${ }^{19}$. This relatively sparse sampling of teleost $I G H$ loci has prevented higher-resolution analysis of locus structural evolution across groups of closely related species.

Here, we present the first characterisations of IGH loci in the Cyprinodontiformes, a large order of teleosts with representatives in diverse habitats and ecological niches across the world. Complete characterisations were performed on the loci of the turquoise killifish (Nothobranchius furzeri) and southern platyfish (Xiphophorus maculatus), two important model organisms for ecological and evolutionary research ${ }^{20-23}$, while the loci of ten further species (Fig. 1 and Table S2) underwent partial characterisation with a focus on their constant regions. Comparison of these loci revealed dramatic and unexpected differences in $I G H$ locus structure and function, including surprising differences in isotype availability and exon usage among different cyprinodontiform species. Phylogenetic analysis showed that the specialised mucosal antibody isotype IGHZ has undergone repeated duplication and convergent loss in the course of cyprinodontiform evolution, indicating an unexpected degree of volatility in the evolution of mucosal adaptive immunity. Taken together, this work significantly extends our knowledge of constant-region diversity in teleost fish, and establishes the cyprinodontiforms, and especially the African killifishes, as an ideal model system for comparative evolutionary immunology.

Results

The IGH loci of N. furzeri and X. maculatus are highly distinct.

In order to assemble and characterise the $I G H$ loci in N. furzeri and X. maculatus, published $I G H$ gene segments from zebrafish ${ }^{11}$, medaka ${ }^{12}$ and stickleback ${ }^{13,14}$ were aligned to the most recent genome assemblies of N. furzeri and X. maculatus (Table S2) using BLAST ${ }^{24,25}$. In X. maculatus, a single promising region was identified on chromosome 16, while in the N. furzeri genome a single region on chromosome 6 and a number of unaligned scaffold sequences were identified as potentially containing parts of the locus. In order to determine which of the candidate scaffolds were genuine parts of the N. furzeri $I G H$ locus and integrate them into a continuous locus sequence, bacterial artificial chromosome (BAC) clones from the killifish genomic BAC library ${ }^{21}$ were identified on the basis of alignment of their end sequences to promising genome scaffolds, sequenced on an Illumini MiSeq machine and assembled using SPAdes ${ }^{26}$ and SSPACE ${ }^{27}$, with final refinements made using end-to-end PCR and Sanger sequencing ${ }^{28}$. The resulting BAC inserts were integrated with the identified genome

Figure 1: Cladogram of species included in the IGH locus analysis. Boldface type indicates species for which new, complete $I G H$ locus assemblies were generated for this study; other species were either previouslycharacterised reference species (G. aculeatus, O. latipes) or underwent constant-region characterisation only (all other species). Labelled vertical bars designate; higher taxa of interest.
scaffolds (Fig. S3) to produce a single, contiguous locus sequence, on which IGH gene segments were identified through more stringent alignment to sequences from reference species (Methods).

The IGH locus in Nothobranchius furzeri occupies roughly 306 kb on chromosome 16 (NFZ v2.0, accession TBD), while that of Xiphophorus maculatus occupies roughly 293 kb on chromosome 16 (scaffold NC_036458.1, Genbank accession GCA_002775205.2). While similar in size, the two loci differ markedly in organisation and content: while the N. furzeri locus comprises two distinct subloci on opposite strands (IGH1 and IGH2, Fig. 2a), that of X. maculatus forms a single long configuration without any additional subloci (Fig. 2b). The two subloci of the N. furzeri locus exhibit a very high degree of synteny with one another in the JH and constant regions, while the VH and DH regions are more divergent, with what appear to be repeated deletion events in the VH/DH regions of IGH2 (Fig. 2c).

Three constant-region isotypes have been observed in previously-published teleost loci: IGHM and IGHD, which are universal in teleosts and homologous to the isotypes of the same names in mammals, and IGHZ (also known as $I G H T$), which is teleost-specific and absent in a minority of previously published loci ${ }^{9,18}$. X. maculatus IGH, N. furzeri IGH1 and N. furzeri IGH2 all contain intact and highly similar IGHM and IGHD constant regions, with a six-exon $\mathrm{C}_{\mu} 1-\mathrm{C}_{\mu} 2-\mathrm{C}_{\mu} 3-\mathrm{C}_{\mu} 4$-TM1-TM2 configuration for IGHM and a twelve-exon $\mathrm{C}_{\delta} 1-\left(\mathrm{C}_{\delta} 2-\mathrm{C}_{\delta} 3-\mathrm{C}_{\delta} 4\right)_{2}-\mathrm{C}_{\delta} 5-\mathrm{C}_{\delta} 6-\mathrm{C}_{\delta} 7-\mathrm{TM} 1-\mathrm{TM} 2$ configuration for $I G H D$ (Fig. 2a and 2b). Such expansion of IGHD through tandem duplications of the $\mathrm{C}_{\delta} 2-\mathrm{C}_{\delta} 3-\mathrm{C}_{\delta} 4$ exons is common in teleosts and has also been observed in zebrafish, channel catfish and Atlantic salmon ${ }^{9}$. Secretory forms of IGHD have previously been observed in a minority of teleost loci, produced via either a specialised secretory exon ${ }^{29}$ or a post- $\mathrm{C}_{\boldsymbol{\delta}} 7$ secretory tail 30; however, neither of these configurations could be found in either N. furzeri or X. maculatus, and it may be the case that $I G H D$ is expressed solely in transmembrane form in these species.

Previous work in rainbow trout has shown that, while IGHM is primarily responsible for the serum response to antigenic stimulus, the mucosal response in at least some teleost species is primarily mediated by $I G H Z^{31,32}$, suggesting that this isoform has a specialised mucosal role analogous to IGHA in mammals. Unlike IGHM and $I G H D, I G H Z$ is completely absent from both subloci of the N. furzeri IGH locus. In contrast, the X. maculatus $I G H$ locus contains two distinct $I G H Z$ constant regions: IGHZ1 and IGHZ2. IGHZ2, like most IGHZ constant regions in characterised teleost loci ${ }^{9}$, is located downstream of the VH region and upstream of the larger DH and JH regions preceding IGHM; in contrast, and much more unusually, IGHZ1 is located at the far 5 ' end of the X. maculatus locus (Fig. 2b). Despite sharing a common six-exon $\mathrm{C}_{\zeta} 1-\mathrm{C}_{\zeta} 2-\mathrm{C}_{\zeta} 3-\mathrm{C}_{\zeta} 4-\mathrm{TM} 1-\mathrm{TM} 2$ configuration (Fig. 2b), these two paralogous constant regions are highly distinct, with an average of only 48.0% amino-acid sequence identity between corresponding C_{ζ} exons (Fig. 2d), indicating a relatively ancient origin; in contrast, corresponding C_{μ} and C_{δ} exons in the two N. furzeri IGH subloci exhibit an average of 100% and 98.6% amino-acid sequence identity across subloci respectively (Fig. 2d), suggesting a much more recent duplication event.

In terms of the variable regions of the $I G H$ gene, the most striking difference between the two loci is in the total number of VH regions: 125 in X. maculatus compared to only 24 in N. furzeri. In contrast, the number of DH and JH regions are similar between the two species, with 14 DH and 17 JH segments in N. furzeri and 14 DH and 15 JH in X . maculatus. In X . maculatus, only a single VH, DH and JH segment are present upstream of IGHZ1, suggesting only a single V/D/J combination is available to antibodies of this isotype; most other segments are present in six $\mathrm{V}_{n} \mathrm{D}_{1-3} \mathrm{~J}_{1}$ blocks between IGHZ1 and IGHZ2, with larger blocks of DH and JH segments between $I G H Z 2$ and $I G H M$. This (V-D-J) $)_{n}$-C block structure, which is also observed in N. furzeri $I G H 1$, is in some ways intermediate between the classic translocon configuration seen in most teleost IGH loci and the multi-cluster configuration observed in sharks ${ }^{18,33}$.

N. furzeri and X. maculatus express distinct forms of transmembrane IGHM.

The six-exon genomic structure of the IGHM constant region is highly conserved across the jawed vertebrates, with similar configurations observed in mammals, teleost fishes and elasmobranchs ${ }^{9,18}$. In all these groups, the choice between secretory and transmembrane IGHM is made via alternative splicing following transcription, with the secretory form consistently adopting a four-exon $\mathrm{C}_{\mu} 1-\mathrm{C}_{\mu} 2-\mathrm{C}_{\mu} 3-\mathrm{C}_{\mu} 4$ configuration. Transmembrane $I G H M$, in contrast, differs in configuration between taxa ${ }^{9}$: in mammals, a cryptic splice site within $\mathrm{C}_{\mu} 4$ is used to connect the transmembrane exons, while in teleosts the canonical splice site at the end of $\mathrm{C}_{\mu} 3$ is typically used, excising $\mathrm{C}_{\mu} 4$. Unusually, however, the primary configuration of IGHM-TM in medaka (Oryzias latipes) has been found to differ from that of other teleosts, with $\mathrm{C}_{\mu} 2$ spliced directly to TM1 and excising $\mathrm{C}_{\mu} 3$ and $\mathrm{C}_{\mu} 4^{9,12}$ (Fig. 3a). Given this surprising diversity, we decided to investigate which splice isoforms are expressed in N. furzeri and X. maculatus.

To investigate the exon configuration of expressed IGH mRNA in N. furzeri and X. maculatus, published RNA-sequencing reads from both species (Table S3) were mapped to their respective $I G H$ loci using STAR ${ }^{34}$. Surprisingly, the results revealed that the two species utilised different exon configurations for transmembrane IGHM: in X. maculatus, the standard teleost five-exon configuration was used (Fig. 3c), while N. furzeri utilised the unusual four-exon configuration seen in medaka (Fig. 3b), demonstrating that both configurations persist within the cyprinodontiform lineage.

In contrast to IGHM, both N. furzeri and X. maculatus shared a common configuration of transmembrane $I G H D$, with all twelve exons expressed in series. As in other teleosts ${ }^{9}$, expressed $I G H D$ in both species began with a chimeric $\mathrm{C}_{\mu} 1$ exon from the upstream IGHM constant region (Fig. S1). In X. maculatus, meanwhile, both $I G H Z 1$ and $I G H Z 2$ expressed a six-exon transmembrane isoform, while $I G H Z 1$ was also found to give
a Nothobranchius furzeri IGH

b Xiphophorus maculatus IGH

c

Figure 2: IGH locus structure in Nothobranchius furzeri and Xiphophorus maculatus. a, Arrangement of $\mathrm{VH}, \mathrm{DH}, \mathrm{JH}$ and constant regions on the N. furzeri IGH locus, indicating the two subloci IGH1 and IGH2 and the detailed exon composition of the $I G H 1$ constant regions. b, VH, DH, JH and constant regions on the X. maculatus $I G H$ locus, indicating the detailed exon composition of each constant region. cy, Synteny dot plot of sequential best matches between N. furzeri IGH1 and IGH2 sequences, with gene-segment regions in each sublocus indicated by coloured rectangles along each axis. d, Boxplots of percentage amino-acid sequence identity between corresponding C_{μ} and C_{δ} exons in N. furzeri IGH1 vs IGH2 subloci (left) or between corresponding C_{ζ} exons in X. maculatus IGHZ1 vs IGHZ2 constant regions (right).

$C_{\mu} 1 \quad C_{\mu} 2 \quad C_{\mu} 3 \quad C_{\mu} 4$

c Xiphophorus maculatus IGHM $\longmapsto 2 \mathrm{~kb}$

Figure 3: RNA-sequencing data reveals distinct transmembrane isoforms of IGHM in X. maculatus and \boldsymbol{N}. furzeri. a, Schematic of $I G H M$ splice isoforms in different vertebrate taxa ${ }^{9}$. b-c, Read coverage histograms and Sashimi plots of alignment and splicing behaviour of RNA-sequencing reads aligned to the IGHM constant regions of \mathbf{a}, X. maculatus and \mathbf{b}, N. furzeri, showing the alternative splicing of transmembrane (blue) and secreted (red) isoforms in both species and the difference in exon usage in IGHM-TM between species.
rise to a four-exon secreted isoform comprising $\mathrm{C}_{\zeta} 1$ to $\mathrm{C}_{\zeta} 4$ and a run-on secretory tail; while a tail sequence was also found following $\mathrm{C}_{\zeta} 4$ in $I G H Z 2$, no expression of a distinct secretory isoform was detectable in the RNA-sequencing data for this constant region (Fig. S2).

IGHZ has undergone repeated duplication and loss in the Cyprinidontiformes.

Medaka (Oryzias latipes) is the closest relative of either N. furzeri or X. maculatus whose IGH locus has previously been characterised, and one of the few teleost species previously known to lack the teleost-specific isoform $I G H Z Z^{9,12,18}$. Despite this close relationship, the presence of multiple intact $I G H Z$ constant regions in X. maculatus strongly implies that the absence of this isotype in medaka and N. furzeri is the result of two independent deletion events, suggesting that isotype-loss events in teleost $I G H$ may be relatively frequent. To investigate this hypothesis in more detail, we identified and characterised IGH constant-region sequences in the genomes of ten further cyprinodontiform species (Fig. 1 and Table S2), as well as a new and improved medaka genome assembly (Genbank accession GCA_002234675.1), and investigated the constant-region isoforms present in each species.

The analysed species showed a high degree of variety in locus structure, with dramatic variation in the number and arrangement of constant-region sequences (Fig. 4 and Tables S 22 to S 24). Of the thirteen species investigated, all had at least one tandem pair of IGHM and IGHD constant regions, while eight possessed at least one complete IGHZ constant region (Fig. 4). Of the exceptions, Austrofundulus limnaeus was found to exhibit an orphaned, pseudogenised IGHZ-TM1 exon but no C_{ζ} exons in the current genome assembly, while no IGHZ exons at all were found in the genomes of O. latipes, N. furzeri, Aphyosemion australe, or Nothobranchius orthonotus. Assuming that $I G H Z$, once deleted, cannot be restored to the $I G H$ locus in a lineage, a simple
visualisation on a species tree (Fig. 5a) confirms that that medaka and N. furzeri represent two distinct IGHZ deletion events; A. limnaeus appears to represent another independent deletion event, for a total of at least three $I G H Z$ deletions within the clade containing the cyprinodontiforms and medaka.

In addition to being lost repeatedly, $I G H Z$ also demonstrates a relatively high level of multiplicity within the cyprinodontiforms, with a geometric mean of 1.93 IGHZ constant regions per IGHZ-bearing locus (a $1.62: 1$ ratio relative to $I G H M$ or $I G H D$). This multiplicity suggests a more complex evolutionary history than can be captured by a simple presence/absence metric. Concordantly, phylogenetic analysis with PRANK ${ }^{35}$ and RAxML ${ }^{36}$ (Fig. 5b, alignment length $1733 \mathrm{bp}, 35 \%$ gaps/missing characters) reveals three distinct monophyletic clades (or subclasses) of IGHZ constant regions in the Cyprinidontiformes, IGHZA to C, each of which is present in multiple different species and appears to have been present in the common ancestor of the eight IGHZ-bearing species analysed. The only locus whose IGHZ could not be assigned to one of these subclasses, that of Pachypanchax playfairii, appears to have undergone a fusion event, with P. playfairii $\mathrm{C}_{\zeta} 1$ and $\mathrm{C}_{\zeta} 2$ aligning strongly to $I G H Z B$ exons from other species while P. playfairii $\mathrm{C}_{\zeta} 3$ and $\mathrm{C}_{\zeta} 4$ show more ambiguous alignment behaviour favouring IGHZA or IGHZC (Fig. 6).

In summary, in addition to the still-universal primitive antibody classes IGHM and IGHD, the cyprinodontiforms ancestrally possessed at least three subclasses of $I G H Z$, which subsequently evolved in parallel across the clade. Each of these subclasses has been lost in multiple cyprinodontiform species, with different species showing distinct patterns of retention and loss, and in at least one lineage - that of Pachypanchax playfairii - two different IGHZ lineages appear to have fused to produce a chimeric isotype. All three subclasses are missing from a subset of species in the Nothobranchiidae (including Nothobranchius furzeri), and also appear to have been independently lost in Austrofundulus limnaeus, further demonstrating the remarkable volatility of the $I G H$ locus across evolutionary time.

Discussion

The immunoglobulin heavy chain locus is notable for its size and complexity, as well as for the central role it plays in vertebrate adaptive immunity and survival. Previous research in teleost fishes has revealed a remarkable degree of diversity in the length, organisation, and isotype composition of different IGH loci ${ }^{9}, 18$, with important but understudied implications for antibody diversity and immune functionality among teleost species.

In this study, we presented the first detailed characterisations of $I G H$ loci from the Cyprinodontiformes, a widespread order of teleost fishes that include many important model systems in evolutionary biology and ecology. Two such species, the turquoise killifish Nothobranchius furzeri and the southern platyfish Xiphophorus maculatus, underwent complete assembly and characterisation of their IGH loci, while ten other cyprinodontiform species received partial characterisations focused on their constant regions. These additional species were selected on the basis of their relatedness to N. furzeri and X. maculatus and their prevalence in the research literature, and included a number of prominent ecological model organisms (including guppy ${ }^{37}$, mummichog ${ }^{38}$ and mangrove rivulus ${ }^{39}$), yielding a dataset with significant relevance to researchers studying the role of infection and immunity in teleost ecology.

The IGH loci of X. maculatus and N. furzeri exhibited radically different locus organisations, with dramatic differences in VDJ number, locus organisation and isotype availability. These results are consistent with previous findings of highly-diverse teleost loci and support a process of rapid locus evolution in the cyprinodontiforms. Characterisation of the constant regions of additional cyprinodontiform species confirmed this finding, with several groups of closely-related species (e.g. Nothobranchius furzeri, Nothobranchius orthonotus and Callopanchax toddi) showing highly divergent locus structures and constant-region availability (Fig. 4).

Figure 4: Constant-region organisation in the Atherinomorpha. Schematic of newly-characterised IGH constant regions in the genomes of thirteen species from the Atherinomorpha (Cyprinodontiformes + medaka). Scaffold orientation is given by the black arrows; constant regions are oriented left-to-right unless otherwise specified (red arrows). Scaffold names are displayed beneath each scaffold on the right-hand side. Links between regions on different scaffolds indicate that exons from what appears to be the same constant region are distributed across multiple scaffolds in the order indicated; the order of unlinked scaffolds is arbitrary. The isotype of each region is given by its colour; IGHZ regions are further annotated with their subclass (Fig. 5b). Clearly pseudogenised constant regions are indicated by Ψ. Isotype length, scaffold length, and scaffold position are not to scale. Variable regions and lone, isolated constant-region exons are not shown. The cladogram to the left indicates evolutionary relationships between species (Fig. 1).

b

Figure 5: IGHZ has undergone repeated duplication and loss in the Cyprinodontiformes. a, Cladogram of species from Fig. 1, with three-spined stickleback (Gasterosteus aculeatus) as the outgroup, coloured according to known IGHZ status. Large coloured points indicate inferred state-change events. b, Phylogram of concatenated $\mathrm{C}_{\zeta} 1-4$ nucleotide sequences from $n I G H Z$-bearing Cyprinodontiform species, with $\mathrm{C}_{\mu} 1-4$ sequences from two species as outgroup (in orange). Nodes with less than 65% bootstrap support are collapsed into polytomies, while major monophyletic subclasses are annotated on the right.

It is interesting to speculate on the origins of this extremely rapid diversification in gene structure. Very little is known about the relationship between environmental context and immune locus structure; it is possible that part of the variety in $I G H$ gene locus structure in the Cyprinodontiformes represents divergent adaptations to different immune environments. Alternatively, this diversification may be primarily the result of unusually high rates of stochastic, non-adaptive changes in gene structure in germline $I G H$, or to relaxation of selective constraints on locus structure. Finally, at least some of the difference between locus structures in different species is likely to be attributable to differences in assembly quality; for example, the characterisation of medaka constant regions presented here contains many fewer unusual or incomplete constant regions than that presented in the published medaka IGH locus ${ }^{12}$, primarily due to the increased quality of the more recent medaka genome assemblies. Issues with assembly quality could also account for the apparent complexity of the Nothobranchius orthonotus locus, as the genome of this species was assembled from a wild-caught individual with a high degree of heterozygosity ${ }^{40}$.

The teleost-specific isotype $I G H Z$ is widespread among teleost species, and appears to play a specialised role in mucosal immunity ${ }^{31,32}$. Before the publication of this work, only two teleost species (medaka and channel catfish) were known or thought to lack the $I G H Z$ antibody isotype in their IGH loci, suggesting that the loss of $I G H Z$ may be a relatively rare event. However, in addition to confirming the absence of $I G H Z$ in medaka, the work presented here has identified four new teleost species (Nothobranchius furzeri, Nothobranchius orthonotus, Aphyosemion australe and Austrofundulus limnaeus) that appear to lack IGHZ constant regions in their IGH loci, representing two distinct and previously unknown loss events independent from that affecting the closely-related medaka. This finding, which triples the number of known teleost species without $I G H Z$ and doubles the number of known loss events, is even more striking when combined with the discovery that the cyprinidontiform common ancestor likely had no fewer than three distinct $I G H Z$ constant regions (Fig. 5b), all

Figure 6: Pachypanchax playfairii IGHZ is composed of exons from multiple ancestral subclasses. Boxplots of Needleman-Wunsch alignment scores between the amino-acid sequences of Pachypanchax playfairii C_{ζ} exons and those of equivalent exons from seven other IGHZ-bearing cyprinodontiform species, demonstrating the differing affinity of different P. playfairii exons for each of the three $I G H Z$ subclasses. Less negative scores indicate a stronger alignment. Pairwise p-values were computed using nonparametric Mann-Whitney U tests $(*: 0.01<p \leq 0.05 ; * *: 0.001<p \leq 0.01)$.
of which would have to be lost on the way to any IGHZ-free lineage. Taken together, these observations suggest that the presence/absence of $I G H Z$ in the wider teleost clade may be much more volatile than suggested by previously available locus data, and raises the possibility that, given sufficiently high-density analysis of other teleost lineages, a surprisingly high frequency of $I G H Z$-lacking species may also be found elsewhere.

The absence of $I G H Z$ from so many species in this analysis naturally raises the important question of how the mucosal adaptive immune system in these species differs from that of their IGHZ-bearing relatives: how, and to what extent, can the primitive isotype IGHM compensate for the loss of a specialised mucosal antibody class? This question is especially interesting in the case of IGHZ-lacking species with close IGHZ-bearing relatives (e.g. Nothobranchius furzeri and Callopanchax toddi, or Austrofundulus limnaeus and Kryptolebias marmoratus); if it is the case that mucosal immune responses differ systematically between these species, such that IGHM takes up some or all of the roles normally played by IGHZ, then uncovering the mechanisms by which this shift is regulated could reveal important new insights into decision-making and control of humoral adaptive immunity. Similarly, characterising the different functional roles and responses of different IGHZ subclasses in cyprinodontiform fishes could yield important information about how these species interact with different aspects of their immune environment.

Another important difference between N. furzeri and X. maculatus, whose evolution is more difficult to investigate using genomic data, is the exon-usage behaviour of expressed IGHM. In X. maculatus, transmembrane IGHM adopts the same configuration as that seen in most teleosts: a five-exon isoform in which the end of $\mathrm{C}_{\mu} 3$ is spliced to the start of TM1 and $\mathrm{C}_{\mu} 4$ is excised. Conversely, in N. furzeri IGHM-TM adopts the same four-exon configuration observed in medaka, in which $\mathrm{C}_{\mu} 3$ is also excluded. Given that X. maculatus adopts the primitive configuration, the recurrence of the same unusual configuration in both medaka and turquoise killifish is surprising, and indicates that both configurations are present in the Cyprinodontiformes; more information about the evolutionary history of this divergence in splicing behaviour, along with data on the functional consequences of including or excluding $\mathrm{C}_{\mu} 3$ from the transmembrane protein structure of IGHM, could yield important new insights into antibody evolution and functionality in teleost fishes.

One of the most important advances in immunology in recent years has been the explosion of quantitative, high-throughput approaches for investigating the composition, diversity and functionality of the antibody repertoire ${ }^{41-43}$. As a direct result of the research presented here, twelve previously-uncharacterised teleost species now have databases of IGH constant-region sequences available, enabling these immunoglobulin-sequencing
approaches to be applied in the cyprinodontiforms for the first time. Combining antibody-repertoire data with other information gathered from wild fishes could yield important new insights into the role of the adaptive immune system in the lives and evolution of wild vertebrates. In addition, the possibility of sequencing the repertoires of several related species adds an exciting comparative dimension previously missing in immunerepertoire studies, opening up the possibility of simultaneously comparing the response of different closelyrelated species to a common immunogenic stimulus. This comparative element would be especially interesting in the context of investigating the repertoire responses of closely related species with different IGHZ genotypes, as well as for comparing the functional roles of different $I G H Z$ subclasses across species.

In combination with the genomic and functional findings discussed above, such large-scale comparative repertoire studies provide a novel opportunity for comparative evolutionary immunology in the Cyprinodontiformes, with the potential to greatly expand our knowledge of the interaction between ecological conditions and the evolution of the adaptive immune system in teleost fishes.

Methods

Assembling the Nothobranchius furzeri IGH locus.

To identify promising candidate sequences from which to assemble the N. furzeri IGH locus sequence, VH, JH and CH sequences from three reference species with published $I G H$ loci (zebrafish ${ }^{11}$, medaka ${ }^{12}$ and threespined stickleback ${ }^{13,14}$) were aligned to the most recent assembly of the N. furzeri genome ${ }^{44}$ (NFZ v 2.0 , Accession TBD) using BLAST ${ }^{24,25}$. Scaffolds containing promising alignments to at least two distinct types of IGH gene segment, or which covered at least 1% of the total length of the scaffold, were retained as potentially containing parts of the $I G H$ locus.

In order to determine which of these candidate scaffolds contained parts of the IGH locus and integrate them into a single sequence, clones from the killifish genomic BAC library ${ }^{21}$ were identified on the basis of alignment of their end sequences to promising genome scaffolds. These BAC clones were provided to us by the FLI in Jena and isolated and sequenced as described in the next section.

Following sequencing, demultiplexed and adapter-trimmed MiSeq reads were processed with Trimmotatic ${ }^{45}$ to trim low quality sequence and Bowtie 2^{46} to remove contaminating E. coli sequences, then corrected with QuorUM ${ }^{47}$ or BayesHammer ${ }^{26,48}$ and assembled with SPAdes ${ }^{26}$. Following assembly, any E. coli scaffolds resulting from residual contaminating reads were identified by aligning scaffolds to the E. coli genome using BLASTN ${ }^{24,25}$, and scaffolds containing significant matches were discarded. The remaining scaffolds were then scaffolded using SSPACE ${ }^{27}$ using jumping libraries from the killifish genome project ${ }^{20,21,44}$.

In order to guarantee the reliability of the assembled scaffolds, the assemblies produced with BayesHammerand QuorUM-corrected reads were compared, and scaffolds were broken into segments whose contiguity was agreed on between both assemblies. To integrate these fragments into a contiguous insert assembly, points of agreement between BAC assemblies from the same genomic region (e.g. two scaffolds from one assembly aligning concordantly to one scaffold from another) and between BAC assemblies and genome scaffolds, were used to combine scaffolds where possible. Any still-unconnected scaffolds were assembled together through pairwise end-to-end PCR using Kapa HiFi HotStart ReadyMix PCR Kit according to the manufacturer's instructions, followed by Sanger sequencing ${ }^{28}$ (Eurofins). PCR primers for end-to-end PCR were designed using Primer3 ${ }^{49}$.

Following BAC insert assembly, assembled inserts were screened for IGH locus segments in the same manner described for genome scaffolds above. Passing BAC inserts were aligned to the candidate genome scaffolds and chromosome sequence with BLASTN and integrated manually (Fig. S3), giving priority in the
event of a sequence conflict to (i) any sequence containing a gene segment missing from the other, and (ii) the genome scaffold sequence if neither sequence contained such a segment. BACs and scaffolds which could not be integrated into the locus sequence in this way were discarded as orphons.

BAC isolation and sequencing.

All BAC clones that were sequenced for this research were provided by the FLI in Jena as plate or stab cultures of transformed E. coli, which were replated and stored at $4^{\circ} \mathrm{C}$. Prior to isolation, the clones of interest were cultured overnight in at least 100 ml LB medium. The resulting liquid cultures were transferred to 50 ml conical tubes and centrifuged ($10-25 \mathrm{~min}, 4^{\circ} \mathrm{C}, 3500 \mathrm{~g}$) to pellet the cells. The supernatant was carefully discarded and the cells were resuspended in 18 ml QIAGEN buffer P1.

After resuspension, the cultures underwent alkaline lysis to release the BAC DNA and precipitate genomic DNA and cellular debris. 18 ml QIAGEN buffer P2 was added to each tube, which was then mixed gently but thoroughly by inversion and incubated at room temperature for 5 min .18 ml ice-chilled QIAGEN neutralisation buffer P3 was added to precipitate genomic DNA and cellular debris, and each tube was mixed gently but thoroughly by inversion and incubated on ice for 15 min . The tubes were then centrifuged $\left(20-30 \mathrm{~min}, 4^{\circ} \mathrm{C}\right.$, 12000 g) to pellet cellular debris and the supernatant was transferred to new conical tubes. This process was repeated at least two more times, until no more debris was visible in any tube; this repeated pelleting was necessary to minimise contamination in each sample, as the normal column- or paper-based filtering steps used during alkaline lysis resulted in the loss of the BAC DNA.

Following alkaline lysis, the DNA in each sample underwent isopropanol precipitation: 0.6 volumes of room-temperature isopropanol were added to the clean supernatant in each tube, followed by 0.1 volumes of 3 mol sodium acetate solution. Each tube was mixed well by inversion, incubated for $10-15 \mathrm{~min}$ at room temperature, then centrifuged ($30 \mathrm{~min}, 4^{\circ} \mathrm{C}, 12000 \mathrm{~g}$) to pellet the DNA. The supernatant was discarded and the resulting DNA smear was "resuspended" in $1 \mathrm{ml} 100 \%$ ethanol and transferred to a 1.5 ml tube, which was re-centrifuged ($5 \mathrm{~min}, 4^{\circ} \mathrm{C}$, top speed) to obtain a concentrated pellet. Finally, the pelleted samples were resuspended in QIAGEN buffer EB and purified of proteins and RNA using standard phenol-chloroform extraction and ethanol precipitation techniques.

The resuspended BAC isolates were sent to the Cologne Center for Genomics, where they underwent Illumina Nextera XT library preparation and were sequenced on an Illumina MiSeq sequencing machine (MiSeq Reagent Kit v3, 2×300 bp reads).

Identifying locus scaffolds in other species.

Candidate IGH locus sequences in other species (Table S2) were identified in the same manner as for N. furzeri, by aligning VH, JH and CH sequences from reference species to available genome sequences with BLAST. In the case of X. maculatus the reference species used were zebrafish, stickleback, medaka and N. furzeri, while for all other species the gene segments from the X. maculatus locus were also used. Additional sequence refinement with BAC inserts was not necessary in these species: in the case of X. maculatus only a single sequence region (on chromosome 16) was identified, while in the other species a complete locus characterisation (requiring a single contiguous sequence) was not performed.

Characterising constant-region sequences and expression.

Constant-region sequences on candidate locus scaffolds (or, in the case of N. furzeri and X. maculatus, on complete locus sequences) were identified by mapping CH sequences from reference species to candidate sequences
using BLAST. Following alignment of reference sequences, overlapping alignments to reference segments of the same isotype and exon number were collapsed together, keeping track of the number of collapsed alignments and the best E-values and bitscores obtained for each alignment group. Alignment groups with a very poor maximum E-value (>0.001) were discarded, as were groups overlapping with a much better alignment to a different isotype or exon type, where "much better" was here defined as a bitscore difference of at least 16.5. Where conflicting alignments to different isotypes or exon types co-occurred without a sufficiently large difference in bitscore, both alignment groups were retained for manual resolution of exon identity.

Following resolution of conflicts, alignment groups underwent a second filtering step of increased stringency, requiring a minimum E-value of 10^{-8} and at least two aligned reference exons over all reference species to be retained. Each surviving alignment group was then converted to a sequence range, extended by 10 bp at each end to account for truncated alignments failing to cover the ends of the exon, and used to extract the corresponding exon sequence into FASTA format. These sequences then underwent manual curation to resolve conflicting exon identities, assign exon names and perform initial end refinement based on putative splice junctions (Tables S4 and S11).

In order to validate intron/exon boundaries and investigate splicing behaviour among IGH constant-region exons in N. furzeri and X. maculatus, published RNA-sequencing data (Table S3) were aligned to the annotated locus using STAR 34. In both cases, reads files from multiple individuals were concatenated and aligned together, and the $I G H$ locus was masked using RepeatMasker ${ }^{50}$ (using the built-in zebrafish repeat parameters) prior to mapping. Mapped reads spanning predicted exons of more than 10 kb were excluded from the alignment, as were read pairs mapping more than 10 kb apart. Following alignment, the resulting SAM files were processed into sorted, indexed BAM files using SAMtools ${ }^{51}$ and visualised with Integrated Genomics Viewer ($\mathrm{IGV}^{52,53}$) to determine intron/exon boundaries of predicted exons, as well as the major splice isoforms present in each dataset. Read-coverage and Sashimi plots (Fig. 3, S1 and S2) were generated from the alignment data using Gviz ${ }^{54}$.

For species other than N. furzeri or X. maculatus, intron/exon boundaries were predicted manually based on BLASTN and BLASTP alignments to closely-related species and the presence of conserved splice-site motifs (AG at the 5 ' end of the intron, GT at the 3^{\prime} end 55). In cases where no 3 ' splice site was expected to be present (e.g. for CM4 or TM2 exons), the nucleotide exon sequence was terminated at the first canonical polyadenylation site (AATAAA if present, otherwise one of ATTAAA, AGTAAA or TATAAA ${ }^{56}$), while the amino-acid sequence was terminated at the first stop codon. In many cases, it was not possible to locate a TM2 exon due to its very short conserved coding sequence (typically only 2 to 4 amino-acid residues ${ }^{11,13}$).

Characterising variable-region sequences.

Variable-region gene segments in the N. furzeri and X. maculatus were identified and characterised using different methods depending on segment type. For VH and JH segments, segments from reference species were used to construct a multiple-sequence alignment with PRANK ${ }^{35}$, which was then used by NHMMER ${ }^{57}$ to perform a Hidden-Markov-Model-based search for matching sequences in the locus. The resulting sequence candidates were extended on either end to account for boundary errors, then refined manually. In the case of VH sequences, 3' ends were identified by the start of the RSS heptamer sequence (consensus CACAGTG ${ }^{58}$), if present, while 5' ends and FR/CDR boundaries were identified using IMGT/DomainGapAlign ${ }^{59}$ with the default settings; where necessary, IMGT/DomainGapAlign was also used to IMGT-gap the VH segments in accordance with the IMGT unique numbering ${ }^{60}$. For JH segments, 5^{\prime} ends were identified using the RSS heptamer sequence, while the 3 ' end was identified using the conserved splice-junction motif GTA.

Following extraction and manual curation, VH segments were grouped into families based on their pairwise
sequence identity. In order to assign segments to families, the nucleotide sequence of each VH segment in a locus was aligned to every other segment using Needleman-Wunsch global alignment ${ }^{61}$ as implemented in the Biostrings R package ${ }^{62}$, and the resulting matrix of pairwise sequence identities was used to perform singlelinkage hierarchical clustering on the VH segments. The resulting dendrogram was cut at 80% sequence identity to obtain VH families (Fig. S4 to S6). These families were then numbered based on the order of the first-occurring VH segment from that family in the first IGH sublocus in which the family is represented, and each VH segment was named based on its parent sublocus, its family, and its order among elements of that family in that sublocus (Table S5 and Tables S12 to S16). JH segments, meanwhile, were named based on their order within their parent sublocus and, in X. maculatus, on whether they were upstream of IGHZ or IGHM constant regions (Tables S9 and S20).

Unlike VH and JH gene segments, DH segments are too short and unstructured to be found effectively using an HMM-based search strategy. Instead, DH segments in assembled loci were located using their distinctive pattern of flanking recombination signal sequences in opposite sense ${ }^{3}$. Potential matches to this pattern were searched for using EMBOSS FUZZNUC ${ }^{63}$, with a high mismatch tolerance (up to 8 mismatches across the whole pattern) to account for deviations from the conserved sequence in either or both of the RSSs. Promising candidate sequences from this search were oriented based on the orientation of flanking VH or JH sequences on the same scaffold, then underwent a second, more stringent filtering step in which sequences lacking the most conserved positions in each RSS (in particular, the initial CA motif in the heptamer sequence ${ }^{58}$) were discarded. Finally, the identified DH candidates were checked manually, candidates without good RSS sequences were discarded, and flanking RSS sequences were trimmed to obtain the DH segment sequences themselves. As with the JH segments, these were numbered based on their order within their parent sublocus and, in the case of X. maculatus, on whether they were upstream of $I G H Z$ or $I G H M$ constant regions (Tables S6 and S18).

Phylogenetic inference.

Cladograms of teleost species (Fig. 1 and 5a) were constructed using phylogenetic information from Cui et al. ${ }^{40}$ (for African killifishes) and Hughes et al. ${ }^{19}$ (for other species) and visualised using the ggtree R package ${ }^{64}$.

To construct a phylogram of $I G H Z$ sequences (Fig. 5b), the nucleotide sequences of $\mathrm{C}_{\zeta} 1-4$ exons from each IGHZ constant region in Tables S22 to S24 were concatenated together into a single sequence per constant region and aligned to one another using PRANK ${ }^{35}$. The resulting multiple-sequence alignment was then used to perform maximum-likelihood phylogenetic inference with RAxML ${ }^{36}$, using the SSE3-enabled parallelised version of the software, the standard GTR-Gamma nucleotide substitution model, and built-in rapid bootstrapping with 1000 bootstrap replicates; during tree inference, the third codon position was partitioned into a separate model. The bootstrap-annotated RAxML_bipartitions file was inspected and rooted manually in Figtree ${ }^{65}$ and again visualised using ggtree; during tree visualisation, nodes with bootstrap support of less than 65% were collapsed into polytomies.

Inter- and intralocus sequence comparison.

Synteny between subloci in the N. furzeri locus (Fig. 2c) was analysed using the standard synteny pipeline from the DECIPHER R package ${ }^{66}$, which searches for chains of exact k-mer matches within two sequences.

Comparison between constant-region exons, either within the same locus (Fig. 2d) or between loci (Fig. 6) were performed using Needleman-Wunsch exhaustive global alignments ${ }^{61}$, as implemented in the Biostrings R package ${ }^{62}$, using the default scoring parameters from that package.

Acknowledgements

We would like to thank Kathrin Reichwald for providing the BAC clones used in this study; Mario Ventura and Nicola Lorusso for early help and support with BAC isolation; Bérénice Benayoun, Anton Korobeynikov, Jorge Boucas, Franziska Metge and Bernd Wozny for help and advice with the BAC sequence assembly process; and David Willemsen and Rongfeng Cui for critically reading and reviewing the manuscript. This work was funded by the Max Planck Institute for Biology of Ageing, the Cologne Graduate School of Ageing Research, the Max Planck Society and the DFG Collaborative Research Center 1310.

References

1. Jack, R. S. in Pathogen-Host Interactions: Antigenic Variation V. Somatic Adaptations (eds Hsu, E. \& Du Pasquier, L.) 1-20 (Springer, 2015).
2. David Jung, Cosmas Giallourakis, Raul Mostoslavsky \& Frederick W. Alt. Mechanism and Control of V(d)j Recombination at the Immunoglobulin Heavy Chain Locus. Annual Review of Immunology 24, 541-570 (2006).
3. Schatz, D. G. \& Swanson, P. C. V(D)J Recombination: Mechanisms of Initiation. Annual Review of Genetics 45, 167-202 (2011).
4. Kurosaki, T., Kometani, K. \& Ise, W. Memory B cells. Nature Reviews Immunology 15, 149-159 (2015).
5. Magor, B. G. Antibody Affinity Maturation in Fishes-Our Current Understanding. Biology 4, 512-524 (2015).
6. Mayer, A., Balasubramanian, V., Walczak, A. M. \& Mora, T. How a well-adapting immune system remembers. arXiv, 1806.05753 (2018).
7. Schroeder, H. W. \& Cavacini, L. Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology 125, S41-S52 (2010).
8. Mix, E., Goertsches, R. \& Zett, U. K. Immunoglobulins-Basic considerations. Journal of Neurology 253, v9-v17 (2006).
9. Fillatreau, S. et al. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Frontiers in Immunology 4, 28 (2013).
10. Ravi, V. \& Venkatesh, B. The divergent genomes of teleosts. Annual Review of Animal Biosciences 6, 47-68 (2018).
11. Danilova, N., Bussmann, J., Jekosch, K. \& Steiner, L. A. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nature Immunology 6, 295-302 (2005).
12. Magadán-Mompó, S., Sánchez-Espinel, C. \& Gambón-Deza, F. Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evolutionary Biology 11, 165 (2011).
13. Bao, Y. et al. The immunoglobulin gene loci in the teleost Gasterosteus aculeatus. Fish \& Shellfish Immunology 28, 40-48 (2010).
14. Gambón-Deza, F., Sánchez-Espinel, C. \& Magadán-Mompó, S. Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes. Developmental \& Comparative Immunology 34, 114-122 (2010).
15. Hansen, J. D., Landis, E. D. \& Phillips, R. B. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. PNAS 102, 6919-6924 (2005).
16. Savan, R. et al. Discovery of a new class of immunoglobulin heavy chain from fugu. European Journal of Immunology 35, 3320-3331 (2005).
17. Yasuike, M. et al. Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 11, 486 (2010).
18. Bengtén, E. \& Wilson, M. in Pathogen-Host Interactions: Antigenic Variation V. Somatic Adaptations (eds Hsu, E. \& Du Pasquier, L.) 193-234 (Springer, 2015).
19. Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115, 6249-6254 (2018).
20. Valenzano, D. R. et al. The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell 163, 1539-1554 (2015).
21. Reichwald, K. et al. Insights into Sex Chromosome Evolution and Aging from the Genome of a ShortLived Fish. Cell 163, 1527-1538 (2015).
22. Cellerino, A., Valenzano, D. R. \& Reichard, M. From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biological Reviews 91, 511-533 (2016).
23. Schartl, M. et al. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nature Genetics 45, 567-572 (2013).
24. Altschul, S. F. et al. Basic local alignment search tool. Journal of Molecular Biology 215, 403-410 (1990).
25. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389-3402 (1997).
26. Bankevich, A. et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology 19, 455-477 (2012).
27. Boetzer, M. et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578-579 (2011).
28. Sanger, F., Nicklen, S. \& Coulson, A. R. DNA sequencing with chain-terminating inhibitors. PNAS 74, 5463-5467 (1977).
29. Bengtén, E. et al. Structure of the catfish IGH locus: analysis of the region including the single functional IGHM gene. Immunogenetics 58, 831-844 (2006).
30. Ramirez-Gomez, F. et al. Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory IgD Is Produced through a Novel Splicing Mechanism. The Journal of Immunology 188, 1341-1349 (2012).
31. Zhang, Y.-A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nature Immunology 11, 827-835 (2010).
32. Xu, Z. et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. PNAS 110, 13097-13102 (2013).
33. Mashoof, S. \& Criscitiello, M. F. Fish Immunoglobulins. Biology 5, 45 (2016).
34. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
35. Löytynoja, A. in Multiple Sequence Alignment Methods (ed Russell, D. J.) 155-170 (Humana Press, 2014).
36. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313 (2014).
37. Magurran, A. E. Evolutionary ecology: the Trinidadian guppy (Oxford University Press, Oxford, 2005).
38. Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305-1308 (2016).
39. Taylor, D. S. Twenty-four years in the mud: what have we learned about the natural history and ecology of the mangrove rivulus, Kryptolebias marmoratus? Integrative and Comparative Biology 52, 724-736 (2012).
40. Cui, R. et al. Relaxed selection limits lifespan by increasing mutation load. Cell 178, 1-15 (2019).
41. Weinstein, J. A., Jiang, N., White, R. A. \& Quake, S. R. High-Throughput Sequencing of the Zebrafish Antibody Repertoire. Science 324, 807-810 (2009).
42. Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nature Biotechnology 32, 158-168 (2014).
43. Jiang, N. et al. Determinism and stochasticity during maturation of the zebrafish antibody repertoire. PNAS 108, 5348-5353 (2011).
44. Willemsen, D., Cui, R., Reichard, M. \& Valenzano, D. R. Genomics and population genetics in turquoise killifish reveal demography as driver for lifespan evolution (In preparation).
45. Bolger, A. M., Lohse, M. \& Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014).
46. Langmead, B. \& Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357-359 (2012)
47. Marçais, G., Yorke, J. A. \& Zimin, A. QuorUM: An Error Corrector for Illumina Reads. PLOS One 10, e0130821 (2015).
48. Nikolenko, S. I., Korobeynikov, A. I. \& Alekseyev, M. A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14, S7 (2013).
49. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Research 40, e115 (2012).
50. Smith, A., Hubley, R. \& Green, P. RepeatMasker Open-4.0. URL: https://www . repeatmasker . org (2018)
51. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
52. Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology 29, 24-26 (2011).
53. Thorvaldsdóttir, H., Robinson, J. T. \& Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14, 178-192 (2013).
54. Hahne, F. \& Ivanek, R. in Statistical Genomics: Methods and Protocols (eds Mathé, E. \& Davis, S.) 335351 (Springer, 2016).
55. Shapiro, M. B. \& Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Research 15, 7155-7174 (1987).
56. Ulitsky, I. et al. Extensive alternative polyadenylation during zebrafish development. Genome Research 22, 2054-2066 (2012).
57. Wheeler, T. J. \& Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487-2489 (2013).
58. Hesse, J. E., Lieber, M. R., Mizuuchi, K. \& Gellert, M. V(D)J recombination: a functional definition of the joining signals. Genes \& Development 3, 1053-1061 (1989).
59. Ehrenmann, F. \& Lefranc, M.-P. IMGT/DomainGapAlign: IMGT Standardized Analysis of Amino Acid Sequences of Variable, Constant, and Groove Domains (IG, TR, MH, IgSF, MhSF). Cold Spring Harbor Protocols 2011, 737-749 (2011).
60. Lefranc, M.-P. et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Developmental \& Comparative Immunology 27, 55-77 (2003).
61. Needleman, S. B. \& Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443-453 (1970).
62. Pagès, H., Aboyoun, P., Gentleman, R. \& DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package. URL: https://bioconductor . org / packages / release / bioc / html / biostrings.html (2019).
63. Rice, P., Longden, I. \& Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16, 276-277 (2000).
64. Yu, G., Lam, T. T.-Y., Zhu, H. \& Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Molecular Biology and Evolution 35, 3041-3043 (2018).
65. Rambaut, A. FigTree version 1.4. URL: https://tree.bio.ed.ac.uk/software/figtree/ (2018)
66. Wright, E. S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. The R Journal 8, 352-359 (2016).
67. Smith, P. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6, e27014 (2017).
68. Pathogen-Host Interactions: Antigenic Variation V. Somatic Adaptations (eds Hsu, E. \& Du Pasquier, L.) (Springer, 2015).

Supplementary figures

a Xiphophorus maculatus IGHD \qquad

Figure S1: Read coverage and Sashimi plots showing alignment and splicing behaviour of RNA sequencing reads aligned to the IGHD constant regions of \mathbf{a}, Xiphophorus maculatus and \mathbf{b}, Nothobranchius furzeri, showing the chimeric splicing of $\mathrm{C}_{\mu} 1$ to the start of the IGHD constant region in both species.
a Xiphophorus maculatus IGHZ1

Figure S2: Read coverage and Sashimi plots showing alignment and splicing behaviour of RNA sequencing reads aligned to the (a) IGHZ1 and (b) IGHZ2 constant regions of Xiphophorus maculatus, showing the alternative splicing of secreted (grey) and transmembrane (grey+blue) isoforms in both cases. Note the apparent expression of a post-splice-site secretory tail after $\mathrm{C}_{\zeta} 4$ in IGHZ1 but not IGHZ2.

Chromosome co-ordinate

Figure S3: Assembling the Nothobranchius furzeri IGH locus: Schematic of genome scaffolds and BAC inserts contributing to the Nothobranchius furzeri IGH locus sequence, with their corresponding place within the locus sequence (bottom axis). Internal gaps with dotted lines indicate regions on chromosome 16 with no corresponding locus sequence, as a result of intercalation of BAC or scaffold sequences.

B

Figure S4: VH families in the Nothobranchius furzeri IGH locus: (A) Dendrogram of sequence similarity of VH segments in the Nothobranchius furzeri IGH locus, arranged by single-linkage clustering on nucleotide sequence identity. The red line indicates the 80% cutoff point for family assignment. (B) Heatmap of family relationships among Nothobranchius furzeri VH segments, with shaded squares indicating families and red dots indicating pairwise nucleotide sequence identity of at least 80%. In both subfigures, VH families containing multiple segments are uniquely coloured, single-segment families are in grey, and segments from the IGH2 sublocus are displayed in boldface.

Figure S5: Dendrogram of VH families in the Xiphophorus maculatus IGH locus: Dendrogram of sequence similarity of VH segments in the Xiphophorus maculatus locus, arranged by single-linkage clustering on nucleotide sequence identity. The red line indicates the 80% cutoff point for family assignment, while branch colour indicates family membership: VH families containing multiple segments are uniquely coloured, while single-segment families are in grey.

Figure S6: Heatmap of VH families in the Xiphophorus maculatus IGH locus: Heatmap of family relationships among Xiphophorus maculatus VH segments, with coloured shading indicating families and red dots indicating pairwise nucleotide sequence identity of at least 80%. VH families containing multiple segments are uniquely coloured, while single-segment families are in grey.

Figure S7: Recombination signal sequences in Nothobranchius furzeri IGH: (A) Sequence composition of conserved heptamer sequences across all Nothobranchius furzeri heavy-chain RSSs; (B) length distribution of unconserved spacer sequences in Nothobranchius furzeri heavy-chain RSSs; (C) sequence composition of conserved heptamer sequences across all Nothobranchius furzeri heavy-chain RSSs.

Figure S8: Nothobranchius furzeri recombination signal sequences by segment type: Sequence composition of conserved heptamer (A,C,E) and nonamer (B,D,F) sequences from Nothobranchius furzeri heavy-chain RSSs associated with VH (A,B), DH (C,D) or JH (E,F) gene segments.

Figure S9: Recombination signal sequences in the Xiphophorus maculatus IGH locus: (A) Sequence composition of conserved heptamer sequences across all Xiphophorus maculatus heavy-chain RSSs; (B) length distribution of unconserved spacer sequences in Xiphophorus maculatus heavy-chain RSSs; (C) sequence composition of conserved heptamer sequences across all Xiphophorus maculatus heavy-chain RSSs.

Figure S10: Xiphophorus maculatus recombination signal sequences by segment type: Sequence composition of conserved heptamer (A,C,E) and nonamer (B,D,F) sequences from X. maculatus heavy-chain RSSs associated with VH (A,B), DH (C,D) or JH (E,F) gene segments.

Supplementary tables

Table S1: Versions of software and R packages used in computational analyses

Program	Version
ape	5.2
Basemount	0.15 .96 .2154
Biostrings	2.50 .1
BLAST	2.7 .1
Bowtie 2	2.2 .6
BSgenome	1.50 .0
DECIPHER	2.10 .0
EMBOSS (FUZZNUC)	6.6 .0
FigTree	1.4 .2
HMMER	3.2
GenomicRanges	1.34 .0
ggtree	1.14 .4
ggseqlogo	0.1
Gviz	1.27 .6
IGV	2.3 .68
IMGT/DomainGapAlign	4.9 .2
PRANK	v.170427
Primer3	2.3 .6
QuorUM	1.0 .0
R	3.5 .2
RAxML	8.2 .12
RepeatMasker	4.0 .6
SAMtools	1.9
sed	4.2 .2
seqtk	1.3
Snakemake	5.3 .0
SPAdes	3.6 .1
SSPACE	3.0
STAR	$2.5 .2 b$
tidytree	0.2 .0
tidyverse	1.2 .1
Trimmomatic	0.32

Genus	Species	Common Name	GenBank Assembly Accession
Nothobranchius	furzeri	Turquoise killifish	NA $^{\mathrm{a}}$
Xiphophorus	maculatus	Southern platyfish	GCA_002775205.2
Austrofundulus	limnaeus	-	GCA_001266775.1
Fundulus	heteroclitus	Mummichog	GCA_0000826765.1
Poecilia	formosa	Amazon molly	GCA_000485575.1
Poecilia	reticulata	Guppy	GCA_000633615.1
Cyprinodon	variegatus	Sheepshead minnow	GCA_000732505.1
Kryptolebias	marmoratus	Mangrove rivulus	GCA_001649575.1
Aphyosemion	australe	Lyretail panchax	GCA_006937985.1
Callopanchax	toddi	-	GCA_006937965.1
Pachypanchax	playfairii	Golden panchax	GCA_006937955.1
Nothobranchius	orthonotus	Spotted killifish	GCA_006942095.1
Oryzias	latipes	Medaka	GCA_002234675.1

${ }^{\text {a }}$ Willemsen et al. ${ }^{44}$
Table S2: Genome assemblies used to identify IGH locus sequences in cyprinodontiform fishes

Table S3: RNA-sequencing datasets used for IGH locus characterisation

Species	N. furzeri	X. maculatus
Tissues	Gut	Various ${ }^{\text {a }}$
BioProject Accession	PRJNA379208	PRJNA420092
SRA Run Accessions	SRR5344350 SRR5344343 SRR5344344 SRR5344345 SRR5344346 SRR5344347 SRR5344348 SRR5344349 SRR5344350	SRR6327069 SRR6327070 SRR6327071 SRR6327072 SRR6327073 SRR6327074 SRR6327075 SRR6327076 SRR6327077 SRR6327078 SRR6327079 SRR6327080 SRR6327081 SRR6327082 SRR6327083 SRR6327084 SRR6327085 SRR6327086 SRR6327087 SRR6327088 SRR6327089 SRR6327090 SRR6327091 SRR6327092 SRR6327093 SRR6327094
Source	67	Citation not given in PioProject

[^0]Table S4: Co-ordinate table of constant-region exons in the N. furzeri IGH locus

Name	Isotype	Start	End	Length	Strand
IGH1M-1	M	130848	131144	297	+
IGH1M-2	M	131971	132312	342	+
IGH1M-3	M	132394	132705	312	+
IGH1M-4	M	132816	133288	473	+
IGH1M-TM1	M	134262	134413	152	+
IGH1M-TM2	M	138431	138819	389	+
IGH1D-1	D	139381	139689	309	+
IGH1D-2A	D	139774	140064	291	+
IGH1D-3A	D	140178	140489	312	+
IGH1D-4A	D	140572	140853	282	+
IGH1D-2B	D	145613	145909	297	+
IGH1D-3B	D	146000	146311	312	+
IGH1D-4B	D	146398	146676	279	+
IGH1D-5	D	146795	147124	330	+
IGH1D-6	D	147210	147527	318	+
IGH1D-7	D	147598	147885	288	+
IGH1D-TM1	D	148016	148164	149	+
IGH1D-TM2	D	148323	148504	182	+
IGH2D-TM2	D	187624	187803	180	-
IGH2D-TM1	D	187963	188111	149	-
IGH2D-7	D	188658	188945	288	-
IGH2D-6	D	189016	189333	318	-
IGH2D-5	D	189419	189748	330	-
IGH2D-4B	D	189867	190145	279	-
IGH2D-3B	D	190232	190543	312	-
IGH2D-2B	D	190636	190932	297	-
IGH2D-4A	D	195644	195925	282	-
IGH2D-3A	D	196008	196319	312	-
IGH2D-2A	D	196433	196723	291	-
IGH2D-1	D	196808	197116	309	-
IGH2M-TM2	M	198315	198506	192	-
IGH2M-TM1	M	199834	199985	152	-
IGH2M-4	M	200953	201425	473	-
IGH2M-3	M	201536	201847	312	-
IGH2M-2	M	201929	202270	342	-
IGH2M-1	M	203549	203845	297	-

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGH1V1-01	1252	1540	289	$+$	1541	CACAGTG	22	ACAAAAACC	1578	38	
IGH1V1-02	3365	3656	292	$+$	3657	CACAGTG	22	ACAAAAACC	3694	38	
IGH1V2-01	5907	6201	295	$+$	6202	CACAGAA	15	ACAAAAACT	6232	31	
IGH1V1-03	13690	13964	275	+	13965	CACAGTG	22	ACAAAAACC	14002	38	
IGH1V3-01	14862	15162	301	+	15163	CACAGTG	23	ACAAAAACC	15201	39	
IGH1V2-02	17433	17730	298	+	17731	CACAATG	23	ACAAAAACC	17769	39	
IGH1V4-01p	24566	24837	272	+	24838	CGCAGTG	22	CCACAAACC	24875	38	Nonsense mutation
IGH1V1-04	37305	37596	292	+	37597	CACAGTG	22	ACAAAAACC	37634	38	
IGH1V2-03	48845	49139	295	$+$	49140	CACAGTG	23	TCAAAAACT	49178	39	
IGH1V1-05	49909	50197	289	+	50198	CACAGTG	22	ACAAAAACC	50235	38	
IGH1V5-01	51710	51998	289	+	51999	CACAGTG	22	ACAAAAACT	52036	38	
IGH1V2-04	56322	56616	295	+	56617	CACAGTG	23	ACAAAAACC	56655	39	
IGH1V6-01	57465	57762	298	+	57763	CACAGTG	21	ACTAAATCT	57799	37	
IGH1V1-06	59678	59966	289	+	59967	CACAGTG	22	ACAAAAACC	60004	38	
IGH1V4-02p	68017	68288	272	+	68289	TGCAGTG	22	TCACAAACC	68326	38	Nonsense mutation
IGH1V2-05	69787	70084	298	+	70085	CACAGTG	23	ACAAAAACC	70123	39	
IGH1V1-07	155485	155763	279	+	155764	CACAGTG	22	TCAAAACCC	155801	38	
IGH2V2-02	282620	282914	295	-	282915	CACAGTG	23	ACAAAAACC	282953	39	
IGH2V4-01p	284404	284675	272	-	284676	TGCAGTG	22	TCACAAACC	284713	38	Nonsense mutation
IGH2V5-01	288808	289096	289	-	289097	CACAGTG	22	ACAGAAACT	289134	38	
IGH2V1-03	289977	290271	295	-	290272	CACAGTG	22	ACAAAAACC	290309	38	
IGH2V1-02	293835	294126	292	-	294127	CACAGTG	22	ACAAAAACC	294164	38	
IGH2V2-01	303780	304074	295	-	304075	CAGGGCC	24	AGCACAAAG	304114	40	
IGH2V1-01	304926	305204	279	-	305205	CACAGTG	22	TCAAAACCC	305242	38	

Table S5: Co-ordinate table of VH segments in the N. furzeri IGH locus

Table S6: Co-ordinate table of DH segments in the N. furzeri IGH locus

Name	Start	NT Sequence	End	Length	Strand
IGH1D01	25782	ATACGTACTTTCGTGGTATATAGAGA	25807	26	+
IGH1D02	76700	GATATCTGGGTGGGGG	76715	16	+
IGH1D03	77027	TGAAATGATTAC	77038	12	+
IGH1D04	77476	TCGCGTAGCGGC	77487	12	+
IGH1D05	78717	GAAACCACGGCAGC	78730	14	+
IGH1D06	79049	TTTATAGCGGCTAC	79062	14	+
IGH1D07	80417	CAGACTGGAGA	80427	11	+
IGH1D08	81362	TTCATGGCAGCCAC	81375	14	+
IGH1D09	82067	CAGACTGGAGC	82077	11	+
IGH1D10	84282	TGGGGTGGCAGC	84293	12	+
IGH2D04	263497	CAGACTGGAGA	263507	11	-
IGH2D03	270243	TTTATAGCGGCTAC	270256	14	-
IGH2D02	270878	GAAACCACGGCAGC	270891	14	-
IGH2D01	271749	GACTTTTACTAC	271760	12	-

Table S7: Co-ordinate table of DH 5'-RSSs in the N. furzeri IGH locus

Name	5'-RSS Start	Nonamer	Spacer Length	Heptamer	5'-RSS End	Length
IGH1D01	25754	GGTTGTTGT	12	CACTGTG	25781	28
IGH1D02	76672	AGTTTTTGA	12	CACAGTG	76699	28
IGH1D03	76999	TGTTGTTGT	12	CACAGTG	77026	28
IGH1D04	77448	AGTTTTTGT	12	CACGGTG	77475	28
IGH1D05	78688	GATGTTTTT	13	CACAGTG	78716	29
IGH1D06	79021	TGTTTTTGT	12	CGCTGTG	79048	28
IGH1D07	80389	AGTTTTGGT	12	CACAGTG	80416	28
IGH1D08	81334	TGTTTTTGT	12	CGCTGTG	81361	28
IGH1D09	82039	AGTTTTGGT	12	CACAGTG	82066	28
IGH1D10	84254	TCATTCATT	12	CACTGTG	84281	28
IGH2D04	263469	AGTTTTGGT	12	CACAGTG	263496	28
IGH2D03	270215	TGTTTTTGT	12	CGCTGTG	270242	28
IGH2D02	270850	TGTTTTTGT	12	CACAGTG	270877	28
IGH2D01	271721	AGTTTTTAT	12	CATGGTG	271748	28

Table S8: Co-ordinate table of DH 3'-RSSs in the N. furzeri IGH locus

Name	3'-RSS Start	Heptamer	Spacer Length	Nonamer	3'-RSS End	Length
IGH1D01	25808	CACAGTG	12	ACAAAAACC	25835	28
IGH1D02	76716	CACAGTG	12	ACAAAAACC	76743	28
IGH1D03	77039	CACTGTG	11	AATATAACC	77065	27
IGH1D04	77488	CACAGCG	12	ACATAAAAC	77515	28
IGH1D05	78731	CACAGCG	12	ACAAAAGCC	78758	28
IGH1D06	79063	CACTGTG	12	ACAAGATCC	79090	28
IGH1D07	80428	CACAACG	12	ACAAAAACC	80455	28
IGH1D08	81376	CACTGTG	12	ACAAAATCC	81403	28
IGH1D09	82078	CACAATG	12	ACAAAAACC	82105	28
IGH1D10	84294	CACAGTG	12	ACAAAAACC	84321	28
IGH2D04	263508	CACAACG	12	ACAAAAACC	263535	28
IGH2D03	270257	CACTGTG	12	ACAAGATCC	270284	28
IGH2D02	270892	CACAGCG	12	ACAAAAGCC	270919	28
IGH2D01	271761	CACAATG	12	ACAAAAACC	271788	28

Name	Start	NT Sequence	AA Sequence	End	Length	Strand
IGH1J01	26187	GTGCTTTAGACAACTGGGGAAAAGGAACGGAGGTTACTGTTCAACCTG	ALDNWGKGTEVTVQP	26234	48	+
IGH1J02	128176	ATGACTACTTTGACTACTGGGGAAAAGGAACAATGGTGACGGTCACATCAG	DYFDYWGKGTMVTVTS	128226	51	+
IGH1J03	128354	ACCGTGGGGTAAAGGGACAACAGTCACGGTCAAAACAG	PWGKGTTVTVKT	128391	38	+
IGH1J04	128533	ACGGTGCTCTTGACTACTGGGGTAAAGGGACCGCAGTCACTGTAACATCAG	GALDYWGKGTAVTVTS	128583	51	+
IGH1J05	128887	ACAACGCTTTTGACTACTGGGGAAAAGGAACAACGGTCACCGTCACTTCAG	NAFDYWGKGTTVTVTS	128937	51	+
IGH1J06	129346	CTACGATGCTTTTGACTACTGGGGGAAAAGGACGATGGTCACGTCACTTCAG	YDAFDYWGKRTMVTSLQ	129397	52	+
IGH1J07	129635	TTAACTGGGCTTTCGACTACTGGGGAAAAGGGACGATGGTAACGGTGACTTCAG	NWAFDYWGKGTMVTVTS	129688	54	+
IGH1J08	129965	TTACCACGCAGCTTTGGACTACTGGGGAAAAGGGACGACGGTCACCGTCACCTCAG	YHXALDYWGKGTTVTVTS	130020	56	+
IGH1J09	130612	TCTACGCTGCTTTTGACTACTGGGGTAAAGGTACAACGGTAACCGTTTCATCAG	YAAFDYWGKGTTVTVSS	130665	54	+
IGH2J08	204031	TCTACGCTGCTTTTGACTACTGGGGTAAAGGTACAACGGTAACCGTTTCATCAG	YAAFDYWGKGTTVTVSS	204084	54	-
IGH2J07	204673	TTACCACGCAGCTTTGGACTACTGGGGAAAAGGGACGACGGTCACCGTCACCTCAG	YHXALDYWGKGTTVTVTS	204728	56	-
IGH2J06	205005	ATAACTGGGCTTTCGACTACTGGGGAAAAGGGACGATGGTAACGGTGACTTCAG	NWAFDYWGKGTMVTVTS	205058	54	-
IGH2J05	205296	CTACGATGCTTTTGACTACTGGGGGAAAAGGACGATGGTCACGTCACTTCAG	YDAFDYWGKRTMVTSLQ	205347	52	-
IGH2J04	205756	ACAACGCTTTTGACTACTGGGGAAAAGGAACAACGGTCACCGTCACTTCAG	NAFDYWGKGTTVTVTS	205806	51	-
IGH2J03	206111	ATGGTGCTTTTGACTACTGGGGTAAAGGGACCGCAGTCACTGTAACATCAG	GAFDYWGKGTAVTVTS	206161	51	-
IGH2J02	206303	ACCGTGGGGTAAAGGGACAACAGTCACGGTCAAAACAG	PWGKGTTVTVKT	206340	38	-
IGH2J01	206466	ATGACTACTTTGACTACTGGGGAAAAGGAACAATGGTGACGGTCACATCAG	DYFDYWGKGTMVTVTS	206516	51	-

Table S9: Co-ordinate table of JH segments in the N. furzeri IGH locus						
Name	RSS Start	Nonamer	Spacer Length	Heptamer	RSS End	RSS Length
IGH1J01	26196	TGTTTTTGT	23	CACTGTG	26186	39
IGH1J02	128188	AGTGTTTGT	23	CACTGTG	128175	39
IGH1J03	128353	TGTTTATTT	23	CACTGTG	128353	39
IGH1J04	128545	GGTTTTTGT	23	CACTGTG	128532	39
IGH1J05	128899	GGTTTTAGT	23	TACTGTG	128886	39
IGH1J06	129360	TCTTCTTGT	22	TACTTTG	129345	38
IGH1J07	129650	AGTTTTTGT	23	TACTGTG	129634	39
IGH1J08	129983	AGTTTTAGT	22	TACTGTG	129964	38
IGH1J09	130628	CGTTTTTAT	22	CACTGTG	130611	38
IGH2J08	204047	CGTTTTTAT	22	CACTGTG	204030	38
IGH2J07	204691	AGTTTTAGT	22	TACTGTG	204672	38
IGH2J06	205020	AGTTTTTGT	23	TACTGTG	205004	39
IGH2J05	205310	TCTTCTTGT	22	TACTTTG	205295	38
IGH2J04	205768	GGTTTTAGT	23	TACTGTG	205755	39
IGH2J03	206123	GGTTTTTGT	23	CACTGTG	206110	39
IGH2J02	206302	TGTTTATTT	23	CACTGTG	206302	39
IGH2J01	206478	AGTGTTTGT	23	CACTGTG	206465	39

Table S10: Co-ordinate table of JH RSSs in the N. furzeri IGH locus

Table S11: Co-ordinate table of constant-region exons in the X. maculatus IGH locus

Name	Isotype	Start	End	Length	Strand
IGHZ1-1	Z	3380	3667	288	+
IGHZ1-2	Z	3814	4098	285	+
IGHZ1-3	Z	4195	4497	303	+
IGHZ1-4	Z	4934	5263	330	+
IGHZ1-S	Z	5264	5459	196	+
IGHZ1-TM1	Z	6345	6490	146	+
IGHZ1-TM2	Z	6645	7043	399	+
IGHZ2-1	Z	256059	256337	279	+
IGHZ2-2	Z	256453	256734	282	+
IGHZ2-3	Z	256893	257171	279	+
IGHZ2-4	Z	257319	257636	318	+
IGHZ2-S	Z	257637	257850	214	+
IGHZ2-TM1	Z	258059	258213	155	+
IGHZ2-TM2	Z	258410	258629	220	+
IGHM-1	M	279664	279960	297	+
IGHM-2	M	280880	281224	345	+
IGHM-3	M	281321	281629	309	+
IGHM-4	M	281789	282291	503	+
IGHM-TM1	M	282910	283034	125	+
IGHM-TM2	M	285028	285740	713	+
IGHD-1	D	285902	286219	318	+
IGHD-2A	D	286310	286597	288	+
IGHD-3A	D	286814	287128	315	+
IGHD-4A	D	287250	287534	285	+
IGHD-2B	D	288876	289166	291	+
IGHD-3B	D	289262	289576	315	+
IGHD-4B	D	289680	289964	285	+
IGHD-5	D	290052	290381	330	+
IGHD-6	D	290472	290789	318	+
IGHD-7	D	290865	291152	288	+
IGHD-TM1	D	291286	291434	149	+
IGHD-TM2	D	291541	291642	102	+

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV01-01	1159	1450	292	+	1451	CACAGTG	23	GTAAAAACC	1489	39	
IGHV02-01	10534	10825	292	+	10826	CACAGTG	23	ACAAAACCC	10864	39	
IGHV02-02	11961	12261	301	+	12262	CACTGTG	23	ACAAAAACT	12300	39	
IGHV02-03	13319	13616	298	+	13617	CACAGTG	23	ACACAAACT	13655	39	
IGHV03-01	15440	15734	295	+	15735	CACAGTG	22	ACAAAAACT	15772	38	
IGHV02-04	16618	16908	291	+	16909	CACAGGG	23	ACAAAAACC	16947	39	
IGHV02-05	17522	17822	301	+	17823	CACTGTG	22	ACAAAAACT	17860	38	
IGHV02-06	18881	19178	298	+	19179	CACAGTG	23	ACACAAACT	19217	39	
IGHV03-02	21000	21294	295	+	21295	CACAGTG	22	ACAAAAACT	21332	38	
IGHV02-07	22179	22467	289	+	22468	CACAGTG	23	ACAAAAACC	22506	39	
IGHV02-08p	24234	24514	281	+	24515	CACAGTG	23	ACAAAAACT	24553	39	Frameshift
IGHV04-01	25359	25659	301	+	25660	CACAGTG	23	ACAAAAACT	25698	39	
IGHV04-02	27066	27366	301	+	27367	CACAGTG	23	ACAAAAACA	27405	39	
IGHV02-09	28669	28958	290	+	28959	CACAGTG	23	ACAAAAACC	28997	39	
IGHV02-10p	30460	30741	282	+	30742	CACAATG	23	ACAAAACTC	30780	39	Frameshift
IGHV02-11	32395	32681	287	+	32682	CACAGTG	23	ACAAAAACC	32720	39	
IGHV03-03	33663	33957	295	+	33958	CACTGTG	22	ACAAAAACT	33995	38	
IGHV02-12	35012	35299	288	+	35300	CACAGTG	23	ACAAAAACC	35338	39	
IGHV03-04	36281	36575	295	+	36576	CACTGTG	22	ACAAAAACT	36613	38	
IGHV02-13	37639	37931	293	+	37932	CACAGTG	23	ACAAAAACT	37970	39	
IGHV02-14	39019	39311	293	+	39312	CACAGTG	23	ACAAAAACT	39350	39	
IGHV03-05	41008	41302	295	+	41303	CACAGTG	22	ACAAAAACT	41340	38	
IGHV02-15	42660	42952	293	+	42953	CACAGTG	23	ACAAAAACT	42991	39	
IGHV03-06	45081	45375	295	+	45376	CACAGTG	22	ACAAAAACT	45413	38	
IGHV02-16	46732	47024	293	+	47025	CACAGTG	23	ACAAAAACT	47063	39	

Table S12: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 1

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV03-07	48618	48912	295	$+$	48913	CACAGTG	22	ACAAAAACT	48950	38	
IGHV02-17	50323	50611	289	+	50612	CACAGTG	23	ACAAAAACC	50650	39	
IGHV03-08	51890	52184	295	+	52185	CACAGTG	22	ACAAAAACT	52222	38	
IGHV03-09p	53026	53274	249	+	53275						3'-truncated, no RSS
IGHV02-18	54462	54747	286	+	54748	CACAGTG	23	ACAAAAACC	54786	39	
IGHV02-19p	55729	55866	138	+	55867	CACAGTG	23	ACAAAAACC	55905	39	3'-truncated
IGHV03-10	57371	57662	292	+	57663	CACAGTG	22	ACAAAAACT	57700	38	
IGHV02-20p	58698	58986	289	+	58987	CACAGTG	23	ATAAAAACC	59025	39	Nonsense mutation
IGHV03-11	59940	60234	295	+	60235	CACAGTG	22	ACAAAAACT	60272	38	
IGHV02-21	61249	61537	289	+	61538	CACAGTG	23	ATAAAAACC	61576	39	
IGHV03-12	62491	62785	295	+	62786	CACAGTG	22	ACAAAAACT	62823	38	
IGHV02-22	63801	64089	289	+	64090	CACAGTG	23	ATAAAAACC	64128	39	
IGHV03-13	65043	65337	295	+	65338	CACAGTG	22	ACAAAAACT	65375	38	
IGHV02-23	66354	66640	287	+	66641	CACAGTG	23	ACAAAAACT	66679	39	
IGHV03-14	68452	68743	292	+	68744	CACTATG	22	ACAAAACTC	68781	38	
IGHV02-24	70101	70389	289	+	70390	CACAGTG	23	ACAAAAACC	70428	39	
IGHV03-15	72206	72501	296	+	72502	CACAGTG	22	ACAAAAACT	72539	38	
IGHV02-25	73484	73772	289	+	73773	CACAGTG	23	ACAAAAACC	73811	39	
IGHV03-16	75799	76090	292	+	76091	CACAGTG	22	ACAAAAACT	76128	38	
IGHV03-17	77773	78067	295	+	78068	CACAGTG	22	ACAAAAACT	78105	38	
IGHV02-26	79001	79289	289	+	79290	CACAGTG	23	ACAAAAACC	79328	39	
IGHV03-18	80492	80784	293	+	80785	CACAGTG	22	ACAAAAACT	80822	38	
IGHV02-27p	81799	82082	284	+	82083	CACAGTG	23	ACAAAAACC	82121	39	Frameshift
IGHV03-19	83736	84030	295	+	84031	CACAGTG	22	ACAAAAACT	84068	38	
IGHV02-28p	85093	85381	289	+	85382	CACAGGG	23	GCAAAAACC	85420	39	Nonsense mutation

Table S13: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 2

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV02-29	86225	86505	281	+	86506	CACAGTG	23	ATAAAAACC	86544	39	
IGHV03-20	87419	87713	295	+	87714	CACAGTG	22	ACAAAAACT	87751	38	
IGHV03-21	94532	94826	295	+	94827	CACAGTG	23	ACAAAAACC	94865	39	
IGHV03-22	96192	96489	298	+	96490	CACAGTG	23	ACAAAAACC	96528	39	
IGHV03-23	98068	98368	301	+	98369	CACAGTG	23	ACAAAAACC	98407	39	
IGHV03-24	99482	99779	298	+	99780	CACAGTG	23	ACAAAAACC	99818	39	
IGHV03-25	101639	101936	298	+	101937	CACAGTG	23	ACAAAAACC	101975	39	
IGHV05-01p	102818	103096	279	+	103097	CAGAAGC	0	ACAAAAACT	103112	16	Frameshift
IGHV03-26	104098	104389	292	+	104390	CACAGTG	23	ACAAAATCC	104428	39	
IGHV06-01	105551	105831	281	+	105832	CACAGTG	23	ACAAAAACC	105870	39	
IGHV03-27	107274	107571	298	+	107572	CACAGTG	23	ACAAAAACC	107610	39	
IGHV03-28	108775	109072	298	+	109073	CACAGAG	23	ACAAAAACC	109111	39	
IGHV03-29	110372	110672	301	+	110673	CACAGTG	23	ACAAAAACC	110711	39	
IGHV07-01	111565	111856	292	+	111857	CACAATG	23	ACAAAAACT	111895	39	
IGHV08-01p	113033	113330	298	+	113331	CACAGAG	23	CCAAGAACC	113369	39	Nonsense mutation
IGHV09-01	115512	115800	289	+	115801	CACAGTG	22	ACAAAAACT	115838	38	
IGHV10-01	117078	117379	302	+	117380	CACAGTG	22	ACATAAACT	117417	38	39
IGHV11-01	119462	119760	299	+	119761	CACAGTG	23	ACAAAAACT	119799	39	38
IGHV03-30	126125	126416	292	+	126417	CACAGTG	22	ACAAAAACC	126454	38	
IGHV03-31	127109	127400	292	+	127401	CACAGTG	23	GCAAAAACC	127439	39	
IGHV12-01	128489	128786	298	+	128787	CACAGTG	23	ACAAAAACC	128825	39	
IGHV02-30	135711	136000	290	+	136001	CACAGTG	22	ACAAAAACA	136038	38	
IGHV13-01	136757	137057	301	+	137058	CACAGTG	23	ACAAAAACT	137096	39	39
IGHV02-31	138344	138637	294	+	138638	CACAGTG	23	ACAAAAATC	138676	39	39
IGHV02-32	140024	140315	292	+	140316	CACTGTG	23	ACAAAAACT	140354	39	

Table S14: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 3

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV02-33	142332	142620	289	+	142621	CACAGTG	23	ACAAAAACA	142659	39	
IGHV02-34	144334	144625	292	+	144626	CACAGTG	23	ACAAAAACT	144664	39	
IGHV02-35	145740	146031	292	+	146032	CACAGTG	23	ACAAAAAAT	146070	39	
IGHV02-36	146903	147194	292	+	147195	CACAGTG	23	ACAAAAACT	147233	39	
IGHV02-37	147839	148138	300	+	148139	CACAGTG	23	ACAAAAATC	148177	39	
IGHV02-38p	150504	150797	294	+	150798	CACAATA	23	ACAAAAACC	150836	39	Nonsense mutation
IGHV02-39	152249	152537	289	+	152538	CACAGTA	23	ACAAAAACC	152576	39	
IGHV14-01	154075	154374	300	+	154375	CACAGTG	23	ACAAAAAGT	154413	39	
IGHV02-40	155433	155709	277	+	155710	CACAGTG	23	ACAAAAACC	155748	39	39
IGHV02-41	156583	156870	288	+	156871	CACAGTG	23	ACAAAAACC	156909	39	
IGHV02-42	163977	164269	293	+	164270	CACAGTG	23	ACAAAACCC	164308	39	38
IGHV03-32	165416	165708	293	+	165709	CACAGTG	22	ACAAAAACA	165746	39	39
IGHV02-43	166994	167293	300	+	167294	CACAATG	23	ACAGAAACT	167332	39	
IGHV12-02	169602	169900	299	+	169901	CACAGTG	23	ACAAAAACC	169939	39	
IGHV02-44	171452	171752	301	+	171753	CACTGTG	23	GCAAAAACT	171791	39	
IGHV02-45	173096	173384	289	+	173385	CTCAGTG	23	ACAAAAACC	173423	39	39
IGHV02-46	174714	175009	296	+	175010	CACAGTG	23	ACAAAAACT	175048	39	39
IGHV02-47	176396	176697	302	+	176698	CACAGTG	23	ACAAAAACT	176736	39	
IGHV12-03	178422	178719	298	+	178720	CACAGTG	23	ACAAAAACA	178758	39	
IGHV12-04	181245	181543	299	+	181544	CACAGTG	23	ACAAAAACC	181582	39	
IGHV02-48p	182977	183236	260	+	183237	CACAGGT	8	ACAAAAACT	183260	24	5 '-truncated
IGHV02-49p	184323	184611	289	+	184612	CACAGTG	23	ACAAAAACC	184650	39	Nonsense mutation
IGHV02-50	185946	186244	299	+	186245	CACAGTG	23	ACAAAAACT	186283	39	
IGHV02-51	187624	187925	302	+	187926	CACAGTG	23	ACAAAAACT	187964	39	
IGHV12-05	190987	191284	298	+	191285	CACAGTG	23	ACAAAAACA	191323	39	

Table S15: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 4

Name	Start	End	Length	Strand	RSS Start	Heptamer	Spacer Length	Nonamer	RSS End	RSS Length	Comment
IGHV02-52	192570	192868	299	+	192869	CACAGTG	19	CTGAAAACC	192903	35	
IGHV12-06	193608	193906	299	+	193907	CACAGTG	23	ACAAAAACA	193945	39	
IGHV02-53	195271	195572	302	+	195573	CACAGTG	23	ACAAAAACC	195611	39	
IGHV15-01	204396	204693	298	+	204694	CACAATC	23	ACAAAAACT	204732	39	
IGHV13-02	206203	206503	301	+	206504	CACAGTG	23	ACAAAAACT	206542	39	
IGHV16-01	207726	208020	295	+	208021	CACAGTG	22	ACAAAAACT	208058	38	
IGHV13-03	208477	208777	301	+	208778	CACAGTA	23	ACAAAAACT	208816	39	
IGHV03-33	209921	210215	295	+	210216	CACGGTG	22	ACGAAAACT	210253	38	
IGHV17-01	211322	211625	304	+	211626	CACAGTA	23	ACAAAAACC	211664	39	
IGHV15-02p	214600	214860	261	+	214861						3'-truncated, no RSS
IGHV18-01	215671	215962	292	+	215963	CACACTG	23	ACAAAAACC	216001	39	
IGHV19-01	217874	218174	301	+	218175	CACAGTG	23	ACAAAAACT	218213	39	
IGHV03-34	219368	219668	301	+	219669	CACAGTG	23	ACAAAAACA	219707	39	
IGHV20-01	220329	220632	304	+	220633	CACAGTG	23	ACAAAAATT	220671	39	
IGHV02-54p	228547	228838	292	+	228839	CACACTG	23	ACAACCCCC	228877	39	Nonsense mutation
IGHV02-55	229963	230267	305	+	230268	CACAGCG	23	ACAAAAAAA	230306	39	
IGHV03-35	231630	231928	299	+	231929	CACAGTG	23	ACAAAAACC	231967	39	
IGHV21-01p	233069	233230	162	+	233231						Nonsense mutation, 3'-truncated, no RSS
IGHV22-01p	234954	235102	149	+	235103	CACAGTG	23	TCAAAAACT	235141	39	5'-truncated
IGHV02-56	236029	236330	302	+	236331	CACAGTG	23	ACAAATACT	236369	39	
IGHV03-36p	238122	238413	292	+	238414	CACAATG	23	ACAGAATCC	238452	39	Nonsense mutation
IGHV11-02p	240281	240579	299	+	240580	CACAGTG	24	ACAAAAACT	240619	40	Nonsense mutation
IGHV09-02	241878	242166	289	+	242167	CACAGTG	22	ACAAAAACT	242204	38	
IGHV23-01	243867	244164	298	+	244165	CACAGTG	23	ACAAAATCC	244203	39	
IGHV02-57	245524	245813	290	+	245814	CACCATA	22	ACAAAATCC	245851	38	

Table S16: Co-ordinate table of VH segments in the X. maculatus IGH locus, part 5

Table S17: Co-ordinate table of DH segments in the X. maculatus IGH locus

Name	Start	NT Sequence	End	Length	Strand
IGHDZ01	2243	GTGGGCAGGAGGCTATGC	2260	18	+
IGHDZ02	119768	AGG	119770	3	+
IGHDZ03	128794	ACTAAAGG	128801	8	+
IGHDZ04	129907	ATCGGG	129912	6	+
IGHDZ05	158017	ATATATGGGGG	158027	11	+
IGHDZ06	197791	ATATACTGGGGTGG	197804	14	+
IGHDZ07	222022	ATGGACTGGGGGG	222034	13	+
IGHDZ08	247941	GTGATTACGGCTACGGGGC	247959	19	+
IGHDZ09	249514	TTATGGGCTGGGGAG	249528	15	+
IGHDZ10	253752	TGGGTGGGGC	253761	10	+
IGHDM01	267392	TATACAGTGGCAAC	267405	14	+
IGHDM02	268498	CAGTATAGCAAC	268509	12	+
IGHDM03	268836	TACAATGGCAAC	268847	12	+
IGHDM04	269694	TAAACAGTGGCTAC	269707	14	+

Table S18: Co-ordinate table of DH 5'-RSSs in the X. maculatus IGH locus

Name	5'-RSS Start	Nonamer	Spacer Length	Heptamer	5'-RSS End	Length
IGHDZ01	2215	GGTTTTTGT	12	CACTGTG	2242	28
IGHDZ02	119739	TGTATTACT	13	CACAGTG	119767	29
IGHDZ03	128766	TTTACTTCT	12	CACAGTG	128793	28
IGHDZ04	129879	GGTTTTTGT	12	CACAGTG	129906	28
IGHDZ05	157989	AGTTTTTGT	12	CACAGTG	158016	28
IGHDZ06	197763	GGTTTTTGC	12	TACTGTG	197790	28
IGHDZ07	221994	GGTTTTTGT	12	CGCTGTG	222021	28
IGHDZ08	247913	TGTTTTTGT	12	ATCTGTG	247940	28
IGHDZ09	249486	AGTTTTTGT	12	TGTGGTG	249513	28
IGHDZ10	253724	AGTTTTTGT	12	TGTAGTG	253751	28
IGHDM01	267364	AGTTTTTGT	12	TACAGTG	267391	28
IGHDM02	268470	TGTTTTTGT	12	CACAGTG	268497	28
IGHDM03	268808	AGTTTTTGC	12	TACTGTG	268835	28
IGHDM04	269666	CGTTTTTGT	12	CATTGTG	269693	28

Table S19: Co-ordinate table of DH 3'-RSSs in the X. maculatus IGH locus

Name	3'-RSS Start	Heptamer	Spacer Length	Nonamer	3'-RSS End	Length
IGHDZ01	2261	CACTAAG	12	ACAAAAAGT	2288	28
IGHDZ02	119771	CAAAATG	13	ACAAAAACT	119799	29
IGHDZ03	128802	CAGAGAA	8	ACAAAAACC	128825	24
IGHDZ04	129913	CACAATG	12	TCAAAAACC	129940	28
IGHDZ05	158028	CACAGAG	12	ACAAAAACC	158055	28
IGHDZ06	197805	CACACAG	12	ACAAAAACC	197832	28
IGHDZ07	222035	CACAGAG	12	ACAAAAACC	222062	28
IGHDZ08	247960	CACAATA	12	ACAAAAACC	247987	28
IGHDZ09	249529	CACAATG	12	ACAAAAACC	249556	28
IGHDZ10	253762	CACAGTA	12	ACAAAAACC	253789	28
IGHDM01	267406	CACAGTG	12	GCAAAAACC	267433	28
IGHDM02	268510	CACAGTG	12	ACAGAAACC	268537	28
IGHDM03	268848	CACAGTG	12	ACAAAAACC	268875	28
IGHDM04	269708	CACTGTG	12	ACAAAATCA	269735	28

| Name | Start | NT Sequence | AA Sequence | End | Length | Strand |
| :--- | ---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| IGHJZ01 | 2653 | ATGCCTTAGATTACTGGGGTGAAGGGACCAGAGTCACAGTGACTTCAG | ALDYWGEGTRVTVTS | 2700 | 48 | + |
| IGHJZ02 | 120639 | ATTACGCTCTTGACTACTGGGGAGCAGGAACCAAAGTACTGTAAAGCCAG | YALDYWGAGTKVTVKP | 120689 | 51 | + |
| IGHJZ03 | 130376 | ACTACGGCTTTGATTACTGGGGAGACGGAACTGAAGTACTGTTGAACCAG | YGFDYWGDGTEVTVEP | 130426 | 51 | + |
| IGHJZ04 | 158408 | AGATTTAGACTACTGGGGTAATGGAACAACAGTCACGGTTCTACCAG | DLDYWGNGTTVTVLP | 158454 | 47 | + |
| IGHJZ05 | 198186 | ATTATGGTTTTGACTACTGGGGAGACGGAACCACAGTCACTGTTAGTCCAG | YGFDYWGDGTTVTVSP | 198236 | 51 | + |
| IGHJZ06 | 222417 | ATGCTTTTGACGTCTGGGGTAAAGGAACCACAGTTACTGTTGTACCAG | AFDVWGKGTTVTVVP | 222464 | 48 | + |
| IGHJZ07 | 254130 | ATGTTTTTGACTACTGGGGTAAAGGGACTGATGTCACAGTATCTCCAG | VFDYWGKGTDVTVSP | 254177 | 48 | + |
| IGHJM01 | 276014 | AGGGCTACTTCGACTACTGGGGGAAAGGAACACAAGTCACAGTGACTTCTG | GYFDYWGKGTQVTVTS | 276064 | 51 | + |
| IGHJM02 | 276284 | CCACTACTTTGACTACTGGGGAAAAGGAACCACGGTTACCGTCACTTCAG | HYFDYWGKGTTVTVTS | 276333 | 50 | + |
| IGHJM03 | 276654 | ACAATGCTTTTGACTACTGGGGAAAAGGAACTACGGTAACAGTAACATCAG | NAFDYWGKGTTVTVTS | 276704 | 51 | + |
| IGHJM04 | 276999 | ACTACGCTTTTGACTACTGGGGAAAAGGAACAATGGTCACTGTCACTTCAG | YAFDYWGKGTMVTVTS | 277049 | 51 | + |
| IGHJM05 | 277322 | ACAACTGGGCTTTTGACTACTGGGGAGCAGGAACCATGGTAACAGTAACATCAG | NWAFDYWGAGTMVTVTS | 277375 | 54 | + |
| IGHJM06 | 277672 | CTACGGTGCTTTTGACTACTGGGGTAAAGGGACTACAGTCACCGTCACTTCAG | YGAFDYWGKGTTVTVTS | 277724 | 533 | + |
| IGHJM07 | 278150 | CTACGATGCTTTTGACTATTGGGGGAAAGGAACAACAGTCACCGTCATCACTTCAG | YDAFDYWGKGTTVTVITS | 278205 | 56 | + |
| IGHJM08 | 278606 | TTACTACTACGCTTTTGACTATTGGGGAAAAGGGACAATGGTCACCGTCACTTCAG | YYYAFDYWGKGTMVTVTS | 278661 | 56 | + |

[^1]Table S21: Co-ordinate table of JH RSSs in the X. maculatus IGH locus

Table S22: IGH constant regions in cyprinidontiform fish, part 1

Species	Scaffold(s)	Region	Isotype	Known Exons ${ }^{1}$	Complete?	Pseudo-exons	Comments
Pachypanchax playfairii	scf547	IGHZ	Z	1,2,3,4,TM1	Yes	-	
Pachypanchax playfairii	scf125	IGHM1	M	1,2,3,4,TM1	Yes	-	
Pachypanchax playfairii	scf125	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	-	
Pachypanchax playfairii	scf547	IGHM2	M	1	No	-	Isolated CM1 exon
Austrofundulus limnaeus	NW_013954375.1	IGHZ	Z	TM1	No	TM1	Isolated TM1 exon with frameshift mutation
Austrofundulus limnaeus	NW_013952673.1	IGHM	M	1,2,3,4,TM1	Yes	-	
Austrofundulus limnaeus	NW_013952673.1, NW_013956335.1	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	-	
Kryptolebias marmoratus	NW_016094348.1	IGHZ1	Z	1,2,3,4,TM1	Yes	-	
Kryptolebias marmoratus	NW_016094348.1	IGHZ2	Z	1,4,TM1	No	-	CZ2 \& CZ3 missing (not in sequence)
Kryptolebias marmoratus	NW_016094301.1	IGHM1	M	1,2,3,4,TM1	Yes	-	
Kryptolebias marmoratus	NW_016094301.1	IGHD1	D	1,2,3,4,5,6,7,TM1	Yes	-	
Kryptolebias marmoratus	NW_016094277.1	IGHM2	M	1,2,3,4,TM1	Yes	-	
Kryptolebias marmoratus	NW_016094277.1	IGHD2	D	1,2,3,4,5,6,TM1	No	-	CD7 missing (not in sequence)
Poecilia reticulata	NC_024338.1	IGHZ1	Z	1,2,3,4	No	-	TM1 missing (missing sequence)
Poecilia reticulata	NC_024338.1	IGHZ2	Z	1,2,3,4,TM1	Yes	-	
Poecilia reticulata	NC_024338.1	IGHM	M	1,2,3,4,TM1	Yes	-	
Poecilia reticulata	NC_024338.1	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	-	
Poecilia formosa	NW_006800081.1	IGHZ1	Z	1,2,3,4,TM1	Yes	-	
Poecilia formosa	NW_006800081.1	IGHZ2	Z	1,2,3,4,TM1	Yes	-	
Poecilia formosa	NW_006800081.1	IGHZ3	Z	1,2,3,4,TM1	Yes	-	
Poecilia formosa	NW_006800081.1	IGHM	M	1,2,3,4,TM1	Yes	-	
Poecilia formosa	NW_006800081.1	IGHD	D	1,2,3,4,5,6,7,TM1	Yes	-	
Xiphophorus maculatus	NC_036458	IGHZ1	Z	1,2,3,4,TM1	Yes	-	
Xiphophorus maculatus	NC_036458	IGHZ2	Z	1,2,3,4,TM 1	Yes	-	
Xiphophorus maculatus	NC_036458	IGHM	M	1,2,3,4,TM1	Yes	-	

Table S23: IGH constant regions in cyprinidontiform fish, part 2

Species	Scaffold(s)	Region	Isotype	Known Exons ${ }^{1}$	Complete?	Pseudo-exons	Comments
Xiphophorus maculatus	NC_036458	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	-	
Fundulus heteroclitus	NW_012234561.1	IGHZ1	Z	1,2,3,4,TM1	Yes	-	
Fundulus heteroclitus	NW_012230737.1	IGHZ2	Z	4,TM1	No	-	CZ1 to CZ3 missing (missing sequence)
Fundulus heteroclitus	NW_012234542.1	IGHM	M	1,2,3,4,TM1	Yes	-	
Fundulus heteroclitus	NW_012234542.1	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	-	
Cyprinodon variegatus	NW_015154250.1, NW_015151047.1	IGHZ	Z	1,2,3,4,TM1	Yes	-	
Cyprinodon variegatus	NW_015151047.1	IGHM	M	1,2,3,4,TM1	Yes	-	
Cyprinodon variegatus	NW_015151047.1	IGHD	D	1,2,3,4,2,3,4,5,6,7,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHM1	M	1,2,3,4,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD1	D	1,2,3,4,6,7,TM1	Yes	7	Nonsense mutation in CD7
Oryzias latipes	NC_019866.2	IGHM2	M	1,2,3,4,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD2	D	1,2,3,4,6,7,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHM3	M	1,2,3,4,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD3	D	1,2,3,4,6,7,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHM4	M	1,2,3,4,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD4	D	2,7,TM1	No	-	CD1 \& CD3-6 missing (not in sequence)
Oryzias latipes	NC_019866.2	IGHM5	M	1,2,3,4,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD5	D	1,2,3,4,6,7,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHM6	M	1,2,3,4,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD6	D	1,2,3,4,6,7,TM1	Yes	-	
Oryzias latipes	NC_019866.2	IGHD7	D	1,2,3,6	No	-	CD4, CD5, CD7 and TM1 missing (not in sequence)

Table S24: IGH constant regions in cyprinidontiform fish, part 3

[^0]: ${ }^{\text {a }}$ Tissues used for X. maculatus RNA-sequencing included brain, heart, liver, gut, skin or whole fish; see BioProject entry for details.

[^1]: Table S20: Co-ordinate table of JH segments in the X. maculatus IGH locus

 | Name | RSS Start | Nonamer | Spacer Length | Heptamer | RSS End | RSS Length |
 | :--- | ---: | :--- | ---: | :--- | ---: | ---: |
 | IGHJZ01 | 2662 | TGTTTTTGT | 23 | CACTGTG | 2652 | 39 |
 | IGHJZ02 | 120651 | TGTTTTTGT | 23 | CACTGTG | 120638 | 39 |
 | IGHJZ03 | 130388 | TGTTTTTGT | 23 | CACCGTG | 130375 | 39 |
 | IGHJZ04 | 158416 | GGTTTTTGT | 23 | CACTGTG | 158407 | 39 |
 | IGHJZ05 | 198198 | GGTTTTTGT | 23 | CACTGTG | 198185 | 39 |
 | IGHJZ06 | 222426 | TGTTTTTGT | 23 | CACTGTG | 222416 | 39 |
 | IGHJZ07 | 254139 | GGTTTTTGT | 23 | CACTGTG | 254129 | 39 |
 | IGHJM01 | 276026 | TGTATTTGT | 23 | CACTGTG | 276013 | 39 |
 | IGHJM02 | 276295 | TATTTTTGC | 23 | CACCGTG | 276283 | 39 |
 | IGHJM03 | 276666 | TGTTTTTGT | 23 | TACTGTG | 276653 | 39 |
 | IGHJM04 | 277011 | TGTTTTAGT | 23 | TACTGTG | 276998 | 39 |
 | IGHJM05 | 277338 | GGTTTTTGT | 22 | TACTGTG | 277321 | 38 |
 | IGHJM06 | 277687 | GCTTTTTAT | 22 | CACTGTG | 277671 | 38 |
 | IGHJM07 | 278168 | CCTTTTTAC | 22 | CACTGTG | 278149 | 38 |
 | IGHJM08 | 278624 | GCTTTTTAA | 22 | CACTGTG | 278605 | 38 |

