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Abstract 

Poor math fluency, or timed calculation (TC) performance, is a characteristic of dyscalculia, a 

common cause of poor educational and occupational outcomes. Here, we examined neural 

substrates of dysfunctional math fluency and potential compensatory mechanisms. We 

performed functional MRI scans of participants with divergent performance on an 

event-related TC paradigm (poor TC, <0.5 accuracy, n=34; vs. controls, accuracy>0.8, n=34).  

Individuals with poor TC had decreased intraparietal sulcus (IPS) engagement, and decreased 

IPS-striatal and IPS-prefrontal effective connectivity. We next examined an independent 

well-performing sample (TC accuracy>0.8, n=100), stratified according to relatively low- 

versus high-IPS activation during TC. Relatively reduced IPS engagement, or patterns of 

IPS-related effective connectivity similar to those with poor TC, appeared to be compensated 

for by increased engagement of effective connectivity involving fusiform gyrus, angular 

gyrus, inferior frontal gyrus and striatum. Neural connectivity involving high-level visual 

processing in fusiform gyrus and related ventral cortical networks may be relevant in 

compensatory function ameliorating aspects of dyscalculia and mathematical difficulty. 
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Introduction 

Mathematical ability plays an important part of everyday life, impacting one’s 

education, decision-making, employment, and wellbeing (Banks et al., 2011; Brooks and Pui, 

2010; Gerardi et al., 2013; Gross, 2009; Parsons and Bynner, 2005; Reyna et al., 2009). 

Dyscalculia is characterized by difficulty with arithmetic and has an estimated population 

prevalence of 5-7% (Shalev, 2007; Shalev and Gross-Tsur, 2001). Understanding brain 

function associated with this manner of dysfunction, and identifying neural networks engaged 

in behavioral compensation may be valuable in strategies to mitigate this cognitive disability.  

Multiple aspects of number processing, including arithmetic calculations, engage the 

intraparietal sulcus (IPS) (Ansari, 2007; Ansari et al., 2006; Cantlon et al., 2006; Cohen 

Kadosh et al., 2007; Dehaene et al., 2003; Eger et al., 2003; Gobell et al., 2006; Pinel et al., 

2004; Venkatraman et al., 2005), and this region is implicated in numerical deficits and 

dyscalculia (Butterworth, 1999; Butterworth and Kovas, 2013; Landerl et al., 2004). The 

DSM-V categorizes dyscalculia as mathematical impairment under specific learning disorder. 

Mathematical learning disability (MLD) is a related classification of poor mathematical skill 

comprising deficits in numerical cognition, working memory, visuospatial processing, and 

attention (Kaufmann and von Aster, 2012; Rubinsten and Henik, 2009). Features of MLD are 

present in genetic disorders affecting cognition and IPS development, such as Turner 

syndrome, Williams syndrome, and the 22q11.2 hemi-deletion syndrome (Barnea-Goraly et 

al., 2005; Carvalho et al., 2014; De Smedt et al., 2009; Molko et al., 2003; O'Hearn and Luna, 

2009; Quintero et al., 2014; Simon et al., 2008).  

Math fluency (MF), or performance in timed calculation (TC) tasks focusing on 

rapid quantity and numerical manipulation, is fundamental to mathematical ability. MF is an 
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independent building block upon which more complex mathematical problem-solving 

involving individualized step-by-step strategies may proceed (Petrill et al., 2012; Wang et al., 

2016). MF also involves aspects of innate number sense and working memory, which 

contributes to variation in math ability, as distinct from untimed math performance (Fuchs et 

al., 2010; Galeano Weber et al., 2016; Hart et al., 2010; Mazzocco et al., 2008; Stoianov, 

2014). A study of twins has suggested that untimed mathematics performance is more closely 

influenced by the childhood learning environment, while timed performance is more strongly 

influenced by genetic factors (Hart et al., 2009). MF engages number sense, or intrinsic 

magnitude representations mapping in the IPS (Nieder, 2016). The IPS may also limit the 

number of items that can be retained in working memory, affecting precision and variability 

of MF performance (Galeano Weber et al., 2016; McLean and Hitch, 1999). 

While the IPS is fundamental to MF, less is known about the neural connectivity 

networks implicated in IPS engagement, or about the network functions potentially 

compensating for reduced IPS engagement. Functional magnetic resonance imaging (fMRI) 

suggests that the IPS, the angular gyrus (AG), dorsolateral prefrontal cortex (DLPFC), 

fusiform gyrus (FFG) and inferior frontal gyrus (IFG) are engaged in MF and calculation 

tasks (Arsalidou and Taylor, 2011; Dehaene et al., 2004). However, effective connectivity 

across these nodes and varying patterns of neural engagement	cross individuals are less well 

characterized. Variations in IPS-related neural activation and effective connectivity patterns 

could inform us about potential compensatory pathways that could mitigate behavioral and 

neural dysfunction in IPS and MF. Thus, we sought to examine behavioral dysfunction and 

potential compensatory neural functions across these multiple brain regions as they relate to 
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MF. Specifically, in experiment one, we identified brain network connectivity associated with 

poor MF. In experiment two, we explored an independent sample of individuals with high 

MF across varying activity of the IPS, with the goal of examining potential networks that 

may compensate for reduced engagement of IPS traditionally implicated in MF. Apart from 

activity at IPS, we also examined connectivity patterns compensating for IPS-related 

connectivity deficits associated with poor MF.  

 

Methods  

Participants  

All participants (N=168) were healthy subjects enrolled as part of the Clinical Brain 

Disorders Branch Sibling Study (Egan et al., 2001). All participants were between 18 and 45 

years of age and right-handed. They were interviewed by a research psychiatrist using the 

Structured Clinical Interview for DSM-IV to determine the presence of any psychiatric 

illnesses, and they completed a neurological examination and a battery of neuropsychological 

tests. Exclusion criteria included an IQ <70, a history of prolonged substance abuse or 

significant medical problems, and any abnormalities found by EEG or MRI. All participants 

gave written consent before participation and were reimbursed for their time. The study was 

approved by the NIMH Institutional Review Board. 

 

Cognitive paradigm 

Blood oxygen level-dependent functional MRI data were acquired from subjects as 

they performed number-related tasks after a brief training period (~10 min). The 
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event-related paradigm was described in detail in a previous study (Tan et al., 2007). Briefly, 

subjects performed simple arithmetic and number size comparisons on two single digit 

integers during a session of 8 min (Figure 1). Specifically, they performed an arithmetic 

subtraction of 2 or 3 from one of two integers presented, and were subsequently prompted to 

identify with a left or right button press the larger result, or in an equal number of randomly 

spaced trials, the smaller result. These timed calculation task events (16 total) included 

performing arithmetic (computation and size judgment, CJ, 8 trials), or doing this after first 

encoding two digits in working memory (encoding, followed by the same computation, and 

size judgment, E_CJ, 8 trials, Figure 1).	An equal number of control tasks which did not 

engage arithmetic were also administered, i.e. comparing the relative size of two integers 

with a similar working memory maintenance load after encoding (16 trials), and a simple 

motor task where subjects followed instructions to press the left or right button. A jittered 

fixation interval of 3-4 s followed each trial in the event-related design. All events were 

presented in random order, counter-balanced for number size differences on the left or right 

side of the screen, and for number of left or right button presses.  

Imaging Parameters 

T2*-weighted echo planar imaging (EPI) images with BOLD contrast were obtained 

with a 3T MRI scanner (GEs, Milwaukee, WI) using a standard GE head coil (64 x 64 x 24 

matrix with 3.75 x 3.75 x 6.0 mm spatial resolution, repetition time (TR) =2000 ms, echo 

time (TE) =28 ms, flip angle=90°, field of view (FOV) =24 x 24 cm) while participants 

performed the cognitive task. The first four scans were discarded to allow for signal 

saturation.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2019. ; https://doi.org/10.1101/752089doi: bioRxiv preprint 

https://doi.org/10.1101/752089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

fMRI Processing and Analyses 

The functional imaging data were preprocessed and analyzed using the general linear 

model for event-related designs in statistical parametric mapping (SPM8, Wellcome Trust 

Centre for Neuroimaging, London, United Kingdom). The functional images were corrected 

for differences in acquisition time between slices for each whole-brain volume and realigned 

to correct for head movement. Six movement parameters (translation: x, y, z and rotation: 

roll, pitch, yaw) were included in the statistical model as covariates of no interest. The 

functional images were normalized to a standard EPI MNI template and then spatially 

smoothed using an isotropic Gaussian kernel of 8 mm full-width half-maximum. 

A random-effects, event-related statistical analysis was performed at two levels. In the 

first level, the onsets and durations of each trial for each task condition were convolved with 

a canonical hemodynamic response function and modeled using a general linear model on an 

individual subject basis. The realignment parameters were included as additional regressors 

of no interest. Data were high-pass filtered at 1/128 Hz. 

Random-effects analyses at the second (group) level in Experiments 1 and 2 (see below) 

were then conducted based on statistical parameter maps from each individual participant to 

allow population-level inference. Group level contrasts were thresholded at voxel-level 

p<0.001 and extent threshold to meet p<0.05 for cluster-level family-wise correction for 

multiple comparisons, unless otherwise stated. 

 We used Dynamic Causal Modeling, DCM (Friston et al., 2003) as implemented in 

SPM12 (DCM10) to examine how cortical and subcortical brain regions interacted during 

TC-related tasks in Experiments 1 and 2. Time series during TC were extracted from each of 
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6 regions-of-interest (ROI) in the IPS, AG, FFG, IFG, DLPFC and Str for each individual at a 

peak within 10mm of the group-level activation peak (at p<0.05 whole brain FWE corrected) 

and with p<0.05 at the individual subject level, as before (Kaplan C.M. et al., 2016). Specific 

ROI definitions are from Experiment 1 and detailed in the Results below. Deterministic DCM 

models comprising all possible pairings of these six ROIs (Nicholson et al., 2017) then 

enabled the estimation of the strength and direction of regional interactions to elucidate how 

regional neural activity and their interactions are influenced by cognitive inputs during TC, as 

well as how these neuronal effects are biophysically linked to form 

blood-oxygen-level-dependent signals (Friston et al., 2003). The resulting pairwise nodal 

connectivities describe how the cortical and subcortical brain regions interacted during TC 

tasks in Experiments 1 and 2. For each pair of regions, we constructed all 7 possible models 

of directed connectivity in one or both directions, with nodal inputs at one or both node pairs, 

which were then fitted to the observed data (Friston et al., 2011). Bayesian model averaging 

(BMA) was used to generate weighted task-related connectivity averages in each direction, 

for each pair of nodes, based on the posterior likelihood model fit (Penny et al., 2004; 

Stephan et al., 2007). Using these BMA results, we then examined task-related modulation of 

regional connectivity across participants, and group differences in Experiments 1 and 2. 

Permutation tests randomizing group labels over 1,000 iterations were performed across 

groups to detect differences in task-related effective connectivity without assumptions about 

probability distributions and to control for multiple comparisons (Nichols and Holmes, 2002).  
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Results: 

Experiment One: 

Demographic and Behavioral Results: 

Experiment 1 aimed to examine the neural correlates underlying TC in a comparison 

between otherwise healthy individuals with and without behavioral deficits in TC. This was 

examined in a cognitive paradigm in fMRI, where subjects performed simple arithmetic and 

number size comparisons on single digit integers (Tan et al., 2007) (Figure 1). We defined 

math fluency deficit (MFD, n=34, 17 males) as those individuals who performed less 

accurately on TC tasks, but not working memory maintenance (accuracy: TC < 0.5, working 

memory maintenance ≥ 0.8). The control (CON) group (n = 34, 17 males) were participants 

who performed well in both tasks (working memory maintenance and TC accuracy ≥ 0.8, 

mean accuracy = 0.92). Both groups were similar for age, gender, and years of education. 

There were group differences in IQ (Wechsler Adult Intelligence Scale, WAIS) stemming 

from the arithmetic component of WAIS, providing additional evidence of math dysfunction 

in MFD vs CON individuals (Table 1). 

While MFD participants were, by definition, less accurate at arithmetic tasks, the 

CON and MFD groups did not differ in the accuracy of working memory maintenance and 

motor control tasks (Table 1). However, MFD participants were slower at all number-related 

tasks, though not for the motor response task.  

fMRI Results 

One-sample t-test activation during TC of each CON and MFD group are in 

Supplementary Tables 1 and 2. During TC, CON participants showed stronger activation than 
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MFD in the right IPS (48 -44 50, T=5.01, kE=128, voxel-wise p<0.001 and 

cluster-family-wise error, FWE corrected p<0.05, Figure 2a; other regions differentially 

engaged are in Supplementary Table 3). There were no regions where MFD participants had 

relatively increased activation. 

Effective Connectivity Results 

 Using Dynamic Causal Modeling (DCM) in SPM12, we examined how effective 

connectivity differed between MFD and CON groups. Regions of interest (ROIs) were 

modeled pair-wise in DCM (Nicholson et al., 2017) (see Methods), and were defined as 

follows. The IPS peak (48 -44 50, above) that was differentially engaged across MFD vs 

CON was defined as one ROI. Our goal was to examine how connectivity between this IPS 

ROI and other ROIs from the literature that have functional and structural connections with 

each other (Hearne et al., 2015; Horwitz et al., 1998; Jung et al., 2017; Uddin et al., 2010), 

and are engaged in numerical cognition and TC (Arsalidou and Taylor, 2011; Dehaene et al., 

2004), may differ across MFD and CON groups. The other ROIs included the angular gyrus 

(AG, 34 -60 30), fusiform gyrus (FFG, 34 -80 -6), inferior frontal gyrus (IFG, 36 24 4), 

dorsolateral prefrontal cortex (DLPFC, 46 30 26) and striatum (Str, 18 10 0). All these 

subsequent ROIs were defined from the highest peaks in the MFD and CON groups in the 

Pickatlas defined regions (Maldjian et al., 2003) that were robustly activated (p<0.05 whole 

brain family-wise error corrected for multiple comparisons) in each MFD and CON group 

(Supplementary Tables 1 and 2), and were not differentially engaged between MFD and 

CON. The same ROIs were also used in Experiment 2 (below), which comprised an 

independent sample of healthy subjects without deficits in TC.  
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In Experiment 1, bidirectional effective connectivity from Bayesian Model 

Averaging across all 7 possible models in each pair of nodes over the 6 regions-of-interest 

(IPS, AG, FFG, IFG, DLPFC and Str) were mostly significant in one-sample t-tests in each of 

the CON and MFD groups (Supplementary Tables 6 and 7). However, the MFD group had 

relatively reduced connectivity between IPS and Str (IPS-to-Str: permutation p=0.03, 

Str-to-IPS: permutation p=1.89E-03), and between DLPFC and Str (DLPFC-to-Str: 

permutation p=9.66E-03, Str-to-DLPFC: permutation p<0.001) (Figure 3a, Figure 4a). In 

MFD, Str connectivity was also decreased to IFG (permutation p<0.01) and FFG 

(permutation p=5.28E-03), and there was decreased connectivity to DLPFC from AG 

(permutation p<0.04) and from IPS (permutation p=0.04). Significant decreases in effective 

connectivity in MFD also included IFG-to-IPS (permutation p=6.42E-03), and 

DLPFC-to-IFG (permutation p=3.85E-03). There was relatively increased DLPFC-to-AG 

(permutation p<0.02) connectivity in MFD. We then explored how some of these changes 

may be compensated for in Experiment 2, positing that increased engagement of pathways 

bypassing decreased IPS activation and connectivity may be compensatory if subjects 

maintained high performance despite reduced IPS-related engagement. 

 

Experiment 2 

Behavioral Results 

Experiment 2 examined the neural correlates of IPS deficits and potential 

compensatory function during TC in an independent group of healthy individuals who had no 

behavioral deficits in TC (n = 100, 45 males; accuracy ≥ 0.8 for TC). We first divided the 
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subjects into two equal subgroups of relatively high and low IPS ROI activity (above mean 

activation, n=50, 26 males; below mean activation, n=50, 19 males). The groups engaging 

relatively high (N=50) and low IPS activation (N=50) did not otherwise differ in age, 

education, IQ, or TC accuracy and response time (Table 2). 

fMRI Results 

Both groups, combined, robustly engaged IPS, AG, FFG, Str, IFG and DLPFC 

during TC (Supplementary Table 4). There was, by definition, significantly stronger IPS 

activation in the high-IPS group at TC (48 -42 48, T=8.28, kE=616, p<0.05 cluster FWE 

corrected). Relative to the high-IPS group, the equally performing low-IPS group, however, 

also showed stronger engagement of the AG (40 -58 28, T=3.52, kE=48), FFG (32 -84 -2, 

T=3.44, kE=45), and IFG (36 10 -10, T=3.21, kE>100) (Figure 2b). Both groups had similarly 

robust activation at the DLPFC (46 30 26, T>18, kE>100) and Str (14 6 0, T>13, kE>50). 

Differences across groups in other brain regions are detailed in Supplementary Table 5. 

Effective Connectivity Results 

All pairwise effective connectivities between the 6 IPS, AG, FFG, Str, IFG and 

DLPFC ROIs, defined from Experiment 1, and applied to the independent sample here in 

Experiment 2, significantly differed from zero in the combined high and low IPS groups 

(Supplementary Table 8). Across low-IPS vs. high-IPS groups, there were relatively 

increased ‘compensatory’ excitatory effective connectivities in the low vs high-IPS group for 

AG-Str (AG-to-Str: permutation p=0.01, Str-to-AG: permutation p=0.03) and FFG-IFG 

(FFG-to-IFG: permutation p=3.93E-03, IFG-to-FFG: permutation p=0.02) (Figure 3b, Figure 

4b). We also found relatively increased excitatory effective connectivity in the low-IPS group 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2019. ; https://doi.org/10.1101/752089doi: bioRxiv preprint 

https://doi.org/10.1101/752089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

relative to the high-IPS group from DLPFC-to-FFG (permutation p=3.70E-03), and 

IFG-to-AG (permutation p=5.26E-03). There was no decreased connectivity between the IPS 

and DLPFC, Str and IFG in the low vs high IPS group. Thus, it would appear that despite 

reduced engagement of IPS, maintained performance in TC was associated with a network of 

increased ‘compensatory’ connectivity at AG, FFG, IFG, Str and DLPFC, and maintained 

effective connectivity to and from IPS.  

We next examined connectivity across the poorly performing MFD group vs. the 

‘compensated’ low IPS activation group, to further define connectivity bypassing IPS that 

could be relevant in behavioral compensation (Figure 3c, 4c). Connectivity was significantly 

increased in the low-IPS group relative to MFD at DLPFC-FFG (DLPFC-to-FFG: 

permutation p=0.04, FFG-to-DLPFC: permutation p=0.04), DLPFC-IFG (DLPFC-to-IFG: 

permutation p=2.90E-03, IFG-to-DLPFC: permutation p=0.03), DLPFC-Str (DLPFC-to-Str: 

permutation p=0.01, Str-to-DLPFC: permutation p<0.001), FFG-Str (FFG-to-Str: permutation 

p=1.01E-03, Str-to-FFG: permutation p=0.04). Connectivity increases in the low-IPS group 

also included that of IFG from FFG (permutation p=0.04) and from IPS (permutation 

p=0.02), IFG-to-AG (permutation p=6.43E-03), and Str-to-IPS (permutation p=0.02). On the 

other hand, while connectivity between IPS and DLPFC was reduced in MFD vs. CON (Exp 

1), they were not different in MFD vs. low IP group (Figure 3d, magenta connections). 

Compensated subjects with reduced IPS activation thus appeared to have increased 

engagement of ventral cortical networks in processing TC, which overlapped in comparisons 

between low IPS vs high IPS groups, and between low IPS vs MFD groups (Figure 3d).  
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We then examined a different selection of compensated subjects based on IPS 

connectivity instead of IPS activation. Specifically, we examined those with reduced dorsal 

corticostriatal connectivity patterns in IPS, DLPFC, and Str, similar to that occurring in MFD 

(Exp 1). We examined how reduced connectivity in these dorsal IPS-related networks, well 

known to be important for TC (Arsalidou and Taylor, 2011; Dehaene et al., 2004) may be 

bypassed in maintaining performance. Here, we created a support-vector regression model 

differentiating MFD from CON using DCM connectivity in DLPFC, IPS and Str from subject 

data in Experiment 1. We then applied this model to the high-performing subjects in 

Experiment 2, to identify a subgroup of 46 subjects that had similar reductions in 

connectivity patterns in these brain regions, but ostensibly with compensated behavior. In this 

subgroup of higher performing individuals, there were, indeed, no significant differences in 

the IPS-to-DLPFC and IPS-to-Str connectivities with that in MFD. However, relative to 

MFD, there remained a network of putatively increased compensatory connectivity from FFA 

to Str, from Str to DLPFC, and from DLPFC to IFG in the compensated group of high 

performing individuals (p<0.05 permutation test, Figure 4d).  
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Discussion 

We examined independent samples of otherwise healthy individuals with differing 

timed calculation performance that suggest individual variation in apparent re-balancing of 

neural connectivity to maintain TC performance. In Experiment 1, CON participants engaged 

the right IPS more strongly than those who performed TC poorly, consistent with the known 

importance of the IPS in numerical processing (Arsalidou and Taylor, 2011; Cohen Kadosh 

and Walsh, 2009; Dehaene et al., 2003; Eger et al., 2003; Pinel et al., 2004; Venkatraman et 

al., 2005). Across an extended network of brain regions previously implicated in numerical 

cognition and TC (Arsalidou and Taylor, 2011; Dehaene et al., 2004), MFD was associated 

with reduced effective connectivity from IPS to DLPFC and to Str, as well as reduced 

effective connectivity across cortical regions in the DLPFC, FFG, IFG, IPS and striatum 

(Figure 3a). 

In Experiment 2, we studied an independent sample of individuals who performed 

equally well in TC but varied in IPS activity, with the goal of exploring potential network 

variation that may compensate for reduced IPS engagement. We found that individuals with 

relatively low-IPS engagement but preserved TC performance had increased engagement of 

the DLPFC, AG, FFG, IFG, and Str. On one hand in Experiment 1, MFD was associated with 

reduced effective connectivity from IPS to DLPFC and to Str, as well as reduced Str effective 

connectivity to cortical regions in the DLPFC, FFG, IFG, and IPS (Figure 3a). On the other 

hand, in Experiment 2, subjects with maintained TC performance but relatively reduced IPS 

engagement had increased Str connectivity to DLPFC, IPS and AG (Figure 3b). A 

comparison across MFD and compensated low-IPS groups further supported the Str effect – 
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the poorly performing MFD group had decreased Str connectivity with DLPFC, FFG, and 

IPS relative to high-performing subjects with similarly low IPS engagement and/ or 

connectivity (Figure 3c, 4c). These findings may thus reflect the role Str plays in utilizing 

dopaminergic engagement to effectively gate new information during cortical processing 

needed in numerical calculations (Landau et al., 2009; O'Reilly, 2006) (Arsalidou and Taylor, 

2011; Dehaene et al., 2004) and cortical-striatal connectivity in engaging working memory 

and attentional processing integral in TC performance (Askenazi and Henik, 2010; Corbetta 

and Shulman, 2002; Frank et al., 2001; Marklund and Persson, 2012).  

Moreover, we found significantly increased effective connectivity between FFG, Str, 

DLPFC and IFG in the compensated low IPS vs. high IPS groups (Figure 3b, 4b), which also 

occurred across the low IPS vs. MFD groups (Figure 3c, 4c), and in high performing 

individuals with similar deficits in IPS-Str-DLPFC connectivity as MFD (Figure 4d). It 

appears these ventral cortical connectivity may help maintain performance despite reduced 

IPS engagement and connectivity, possibly by re-balancing some of the reduced IPS 

activation and connectivity patterns through strengthened activation and effective 

connectivity, resulting in compensated performance.  

Of the two distinct paradigmatic visual information processing streams, i.e., the 

dorsal ‘where’ and ventral ‘what’ streams (Ungerleider and Haxby, 1994), the dorsal visual 

stream includes cortical regions such as the IPS and DLPFC (Rubinsten and Henik, 2009; 

Ungerleider and Haxby, 1994). The ventral visual stream and interactions between the AG, 

FFG, and IFG has recently been suggested to be engaged during working memory numerical 

tasks, retrieval of simple arithmetic facts, and linguistic and symbolic representation of 
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numerical concepts (Rubinsten and Henik, 2009; Wilson and Dehaene, 2007). Our findings 

of increased connectivity between FFG, Str, and IFG in compensating TC performance 

suggest that there may exist interactions between these two paradigmatic networks in 

maintaining math fluency. MFD had decreased connectivity in the dorsal network (Figure 

3c), while the compensated groups appeared to have increased ventral stream connectivity, 

and interactions between these streams through the DLPFC (Figure 3d). It may be plausible 

that at least in some individuals with reduced IPS engagement and connectivity, mechanisms 

of neuroplasticity or learning could have been involved, during learning of arithmetic in 

childhood, in maintaining TC performance through differential engagement of these ventral 

cortical networks. If so, strategies to enhance the function of these networks may be useful. 

It may be possible that differing cognitive strategies in the compensated low-IPS 

individuals may contribute to the varying patterns of cortical engagement we found. While 

working memory is needed to hold and manipulate numerical information, retrieval of 

arithmetic facts may also contribute to math fluency (Locuniak and Jordan, 2008). Indeed, the 

low-IPS group had significantly increased AG activation and IFG-to AG connectivity 

compared with the high-IPS and MFD groups. It has been suggested that children with poor 

math fluency rely more strongly on fact retrieval to complete arithmetic problems engaging 

AG (De Smedt et al., 2011). Thus, one possibility is that the low-IPS group used fact retrieval 

strategies for less-effortful, quicker problem solving with small numbers during the MF- 

working memory paradigm, engaging the AG (Dehaene et al., 2003; Grabner et al., 2009; 

Stanescu-Cosson et al., 2000). Not only has fact retrieval training been shown to increase 

activation in the AG, but activation in the IPS may decrease as well (Delazer et al., 2003; 
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Grabner et al., 2009). However, the timed calculation tasks in our MF paradigm comprised of 

small-number subtraction. Number sense is thought to be more reliably engaged in 

subtraction operations engaging the IPS, while addition is more dependent on language-based 

fact retrieval in the angular gyrus (De Smedt et al., 2011; Dehaene et al., 2004). We are also 

unaware of any literature suggesting roles of FFG in fact retrieval. While we cannot rule out 

that AG-associated arithmetic fact retrieval has not also occurred, we posit that it may be 

more likely a distinct compensatory mechanism involving FFG and associated ventral 

networks is also engaged in maintained math fluency performance, distinct from arithmetic 

fact retrieval. Indeed, the engagement of ventral high-level visual areas have also recently 

been found during math tasks in individuals with congenital blindness, suggesting plasticity 

in these functions (Kanjlia et al., 2019), that we posit may also occur to beyond individuals 

with visual impairment. 

In conclusion, we found that calculation difficulty is associated with well-established 

reduced IPS engagement, and a pattern of reduced Str to cortical (IPS, DLPFC, FFG, and 

IFG) effective connectivity. However, subsets of individuals with reduced IPS engagement 

and connectivity could maintain MF performance. This occurred through increased effective 

connectivity at the DLPFC, FFG, IFG, and Str. The genetic and environmental contributions 

to these variations in brain network engagement remain to be understood. Our results 

reinforce notions that a distributed network of brain regions including AG, FFG, and IFG 

process TC (Arsalidou and Taylor, 2011; Dehaene et al., 2004) and further suggests that there 

could be significant inter-individual variability and rebalancing in the engagement of these 

FFG-related ventral cortical networks in TC when IPS-related network connectivity are 
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reduced. The extent to which these individual variations could be leveraged, for example, in 

personalized remediation strategies for dyscalculia remains to be determined in future work. 
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Figures and Tables 
 
Table 1. Demographics and Behavioral Performance for CON and MFD Groups (Exp. 1).  

		 CON	 SD	 MFD	 SD	 p	

	
(n	=	34)	

	
(n	=	34)	

	  Gender	(number	of	males)	 17	
	

17	
	  Age	(years)	 32.62	 10.56	 33.62	 10.28	 0.69	

Education	(years)	 16.21	 1.92	 16.00	 2.82	 0.73	
IQ	(WAIS)	 113.1	 7.5	 104.9	 9.1	 5.96E-04	
Accuracy	

	     	 Computation	and	size	judgement	
(CJ)	 0.938	 0.070	 0.429	 0.229	 3.24E-06	

Encoding,	computation,	and	size	
judgement	(E_CJ)	 0.915	 0.070	 0.497	 0.129	 3.24E-25	

Working	memory	maintenance	 0.942	 0.074	 0.931	 0.102	 0.43	
Motor	task	(M)	 0.947	 0.197	 0.941	 0.178	 0.90	

Reaction	time	(s)	
	     	 Computation	and	size	judgement	

(CJ)	 1.834	 0.279	 1.998	 0.448	 0.07	
Encoding,	computation,	and	size	

judgement	(E_CJ)	 1.846	 0.296	 2.151	 0.296	 6.90E-05	
Working	memory	maintenance	 1.324	 0.284	 1.562	 0.312	 0.08	

Motor	task	(M)	 0.873	 0.210	 0.960	 0.237	 0.11	
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Table 2. Demographics and Behavioral Performance for Low-IPS and High-IPS Groups 
(Exp. 2). 
 

		 Low-IPS	 SD	 High-IPS	 SD	 p	

	
(n	=	50)	

	
(n	=	50)	

	  Gender	(number	of	males)	 19	
	

26	
	  Age	(years)	 28.86	 9.46	 28.24	 6.94	 0.71	

Education	(years)	 16.69	 2.64	 16.00	 2.82	 0.89	
IQ	(WAIS)	 110.8	 9.4	 109.6	 10.4	 0.57	
Accuracy	

	     	 Computation	and	size	
judgement	(CJ)	 0.928	 0.086	 0.896	 0.152	 0.20	

Encoding,	computation,	and	
size	judgement	(E_CJ)	 0.896	 0.075	 0.924	 0.074	 0.06	

Working	memory	maintenance	 0.967	 0.132	 0.987	 0.112	 0.42	
Motor	task	(M)	 0.978	 0.142	 0.972	 0.081	 0.80	

Reaction	time	(s)	
	     	 Computation	and	size	

judgement	(CJ)	 1.840	 0.237	 1.882	 0.220	 0.35	
Encoding,	computation,	and	

size	judgement	(E_CJ)	 1.811	 0.278	 1.888	 0.259	 0.15	
Working	memory	maintenance	 1.421	 0.226	 1.462	 0.112	 0.68	

Motor	task	(M)	 0.822	 0.163	 0.886	 0.136	 0.04	
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Figure 1.  
Math fluency-working memory (MF-WM) paradigm. In an event-related design with 
different trial types presented in pseudo-randomized order, subjects perform one of two math 
fluency (timed calculation) trials with response required within 3s. They performed 
arithmetic (subtraction of 2 or 3) from one of two single digits presented and indicated which 
of the resulting pair was larger (or smaller) as instructed (compute and numeric size 
judgement trials, CJ), or did the same after encoding (E) the two single digits in working 
memory. Control trials included pressing the left or right button as indicated (motor trials, 
M), and simple number size judgement (without arithmetic) after encoding of two single 
digits in working memory (working memory maintenance, not shown).    
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Figure 2. Task-related activation contrasts (a) During the math fluency-working memory 
paradigm task (CJ, ECJ), in Experiment 1, the CON group (N=34) engaged the right IPS [48 
-44 50] more strongly compared to the MFD group (N=34), p<0.05 cluster-FWE corrected. 
(b) In Experiment 2, MF-WM paradigm task contrast engaged increased activation in 
‘compensated’ low-IPS (N=50) compared to high-IPS (N=50), at fusiform gyrus, inferior 
frontal gyrus (and not shown, angular gyrus and putamen, p<0.05 whole brain 
FWE-corrected).  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2019. ; https://doi.org/10.1101/752089doi: bioRxiv preprint 

https://doi.org/10.1101/752089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Figure 3: DCM connectivity contrasts during MF. (a) Exp. 1: Network model of Bayesian 
model averaging values of effective connectivity in MFD (N=34) relative to CON (N=34) 
group. Blue = effective connectivity increase (MFD>CON); red = decrease (MFD<CON). 
Notably, MFD had decreased effective connectivity in DLPFC input (3 connections) and Str 
output (4 connections). (b) Exp. 2: Network model of significant increases in Bayesian model 
averaging values of effective connectivity in ‘compensated’ low-IPS (N=50) relative to 
high-IPS group (N=50). No significant differences occurred in IPS connectivity. Blue = 
significant effective connectivity increase (low-IPS>high-IPS). (c) Differences in node input 
effective connectivity for MFD (N=34) relative to ‘compensated’ low-IPS (N=50). Red = 
significant effective connectivity decrease (MFD<low-IPS). (d) Overlap in decreases between 
MFD relative to CON (Figure 3a), and MFD relative to compensated low-IPS comparison 
(Figure 3c). Magenta: MFD < CON only; orange: MFD < low-IPS only; dark red: MFD < 
CON and MFD < low-IPS. See Supplementary Tables 6-8. 
 
 
 
 
 
 
 

(a)	

(b)	

(c)	

(d)	
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Figure 4: Effective connectivity across groups. (a) Significantly different effective 
connectivity (labeled as ‘from’ region A ‘to’ B) across CON (N=34) and MFD (N=34, Exp 
1), (b) across ‘compensated’ high-IPS (N=50) and low-IPS (N=50) groups (Exp 2), and (c) 
across ‘compensated’ low-IPS (N=50) and MFD (N=34) groups. (d) Significantly different 
effective connectivity across controls matched using support vector regression (Matched 
CON N=46) to MFD (N=34) for DLPFC, Str and IPS connectivity vs. MFD. Permutation 
p-values *p<0.05, **p<0.005, ***p<0.001.  
 
 
 
  

(a)	

(b)	

(c)	

(d)	 **	
*	

*	
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