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Summary 

During development, progenitors follow defined temporal schedules for differentiation, to form           

organs and body plans with precise sizes and proportions. Across diverse contexts, these             

developmental schedules are encoded by autonomous timekeeping mechanisms in single cells.           

These autonomous timers not only operate robustly over many cell generations, but can also              

operate at different speeds in different species, enabling proportional scaling of temporal            

schedules and population sizes. By combining mathematical modeling with live-cell          

measurements, we elucidate the mechanism of a polycomb-based epigenetic timer, that delays            

activation of the T-cell commitment regulator Bcl11b to facilitate progenitor expansion. This            

mechanism generates activation delays that are independent of cell cycle duration, and are             

tunably controlled by transcription factors and epigenetic modifiers. When incorporated into           

regulatory gene networks, this epigenetic timer enables progenitors to set scalable temporal            

schedules for flexible size control. These findings illuminate how evolution may set and adjust              

developmental speed in multicellular organisms. 
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INTRODUCTION 

 

How are sizes and proportions of organs and body plans set during multicellular development,              

and how can they be adjusted through evolutionary changes? The developmental mechanisms            

controlling size and form must not only facilitate flexible adjustment of individual multicellular             

assemblies, but must also enable proportionally scaled changes in the sizes of different             

assemblies, to flexibly vary total organism size. For over a century, it has been recognized that                

the timing of developmental events in the vertebrate embryo is a central determinant of size and                

form (De Beer, 1940; Gould, 1977; Haeckel, 1866; Huxley, 1942) . Because progenitors            

continually grow and divide during development, the timing at which they differentiate            

determines their degree of expansion and their final population size; consequently, changes in             

developmental timing can engender variation in size or form. Changes in the timing of              

individual lineage specification events can give rise to innovations in shape or form (Alberch et               

al., 1979; Gould, 1977; Huxley, 1932) , whereas changes to the overall speed of development can               

lead to proportionally scaled changes in organ and organism sizes  (Bonner, 1965; Calder, 1984) . 

  

As embryonic development is not coupled to an external clock, the temporal schedules for              

lineage specification must be controlled by mechanisms intrinsic to the embryo itself (Ebisuya             

and Briscoe, 2018) . These developmental schedules are generally the product of complex            

processes unfolding in space and time in embryo; however, across diverse contexts, there is              

growing evidence that these schedules may largely be set by autonomous timekeeping            

mechanisms operating in single progenitors (Figure 1A) (Burton et al., 1999; Gao et al., 1997;               
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Heinzel et al., 2017; Otani et al., 2016; Rosello-Diez et al., 2014; Saiz-Lopez et al., 2015) . For                 

example, during cerebral cortex development, neural progenitors follow a defined temporal           

schedule to generate different cortical neurons, where they generate inner layer neurons before             

outer layer neurons. Strikingly, this schedule is recapitulated in progenitors cultured in vitro in              

the presence of constant inductive signals, even in the absence of an intact three-dimensional              

tissue environment (Eiraku et al., 2008; Gaspard et al., 2008) . Furthermore, while the order of               

differentiation remains the same in progenitors from different species, the temporal schedule            

itself is expanded or contracted in an autonomous manner, with total durations ranging from one               

week in mouse progenitors, to months in human progenitors (van den Ameele et al., 2014; Barry                

et al., 2017; Espuny-Camacho et al., 2013; Otani et al., 2016) . Such scalability in temporal               

schedules over long timescales enables progenitors to vary output numbers of different cell types              

while keeping their proportions constant, and may thus underlie the variability in organ and body               

plan sizes across evolution (Figure 1). 

  

Conserved networks of regulatory genes control cell type specification during development, and            

ultimately dictate when or whether progenitor cells turn on lineage-specifying genes in response             

to signals (Alon, 2007; Briscoe and Small, 2015; Davidson, 2010; Georgescu et al., 2008;              

Medina et al., 2005) . However, it is unknown how developmental gene networks can generate              

cell-autonomous time schedules that are robust, yet scalable by evolution (Figure 1B).            

Specifically, there are two major issues: First, it is unclear how the developmental gene              

networks can robustly operate over timescales spanning many cell generations. In gene networks             

built from classical biophysical models of gene regulation (Ackers et al., 1982; Alon, 2007;              
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Bintu et al., 2005; Bolouri and Davidson, 2002) , network dynamics are determined by the              

mRNA and protein half-lives, which are constrained by cell division and dilution; consequently,             

it is difficult to robustly generate gene activation delays with timescales longer than one cell               

generation (Levine and Elowitz, 2014) . Secondly, it is unclear how temporal schedules set by              

developmental gene networks can be coordinately expanded or contracted by evolutionary           

variation. Changes in the timing of individual developmental events can occur through            

cis -regulatory element mutations at individual regulatory gene loci, as is indeed observed            

(Frankel et al., 2011; Gérard et al., 1997; Khan et al., 2011; Simeonov et al., 2017; Walters et al.,                   

1995; Weintraub, 1988) ; however, it is unclear how coordinated, scaled changes in activation             

timing could within an entire regulatory network, particularly between related species where            

network components are highly conserved. 

 

Epigenetic mechanisms, involving the polycomb repressive system and its cognate histone           

H3K27 trimethylation (H3K27me3) mark, are important for differentiation in all multicellular           

eukaryotes (Aloia et al., 2013; Xiao and Wagner, 2015) , and may play central roles in               

developmental timing control. H3K27me3 modifications are broadly found at lineage-specifying          

gene loci in stem and progenitor cells (Boyer et al., 2006; Lee et al., 2006) , and are removed in                   

response to signals to enable regulatory gene activation and differentiation. While cells            

differentiate with a time delay after sensing developmental signals, H3K27me3 loss is often             

assumed to rapidly follow the binding of transcription factors (Kaneko et al., 2014; Rank et al.,                

2002; Riising et al., 2014) , whose slow accumulation is thought to set the pace for downstream                
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gene activation. However, other studies have found that the process of H3K27me3 removal may              

itself be slow (Berry et al., 2017; Kaikkonen et al., 2013; Mayran et al., 2018) , and may generate                  

long time delays prior to gene activation and cell differentiation (Angel et al., 2011; Bintu et al.,                 

2016) , even when upstream transcription factors are fully present. An ability to generate delays,              

together with broad action at many gene loci, could enable H3K27me3 and polycomb regulators              

to act coordinately at many loci in regulatory gene networks to control developmental speed and               

population size expansion. However, the dynamics and biophysical mechanisms by which these            

factors control regulatory gene activation remain unclear, because it has been difficult to resolve              

these processes in living cells. 

 

To gain insights into these questions, we investigate an epigenetic mechanism controlling the             

activation timing of Bcl11b , a T-cell lineage commitment regulator that turns on with an              

extended delay to enable early progenitor expansion (Figure 2A). After entering the thymus,             

hematopoietic progenitor cells turn on Bcl11b to commit to the T-cell lineage (Hosokawa et al.,               

2018; Ikawa et al., 2010; Li et al., 2010a, 2010b) . Bcl11b activation requires Notch signals in                 

the thymus, along with multiple transcription factors that are up-regulated by Notch signaling             

(García-Ojeda et al., 2013; Germar et al., 2011; Li et al., 2010b; Weber et al., 2011) . However,                 

while all these factors are induced shortly after thymic entry, Bcl11b activation and T-cell lineage               

commitment occurs only ~5-10 days later, during which cells expand by approximately a             

thousand-fold (Manesso et al., 2013; Porritt et al., 2003) . To determine whether this time delay               
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may be the result of epigenetic mechanisms acting on individual Bcl11b loci, we generated a               

reporter mouse, where two Bcl11b loci were tagged with distinguishable fluorescent protein            

expression reporters (Ng et al., 2018) . By separately following the activation dynamics of two              

Bcl11b loci in single progenitors from these mice, we found evidence that a slow, stochastic               

epigenetic event, occurring on the Bcl11b locus, generates a multi-day time delay in Bcl11b              

activation and T-cell commitment (Figure 2A). This finding shows that epigenetic mechanisms            

can act in cis to generate time delays in gene activation and fate commitment, and establishes a                 

unique model for studying these mechanisms in single, living cells. 

 

In this study, we first elucidate the mechanism of the epigenetic timer controlling Bcl11b              

activation. To do so, we combine quantitative, single-cell measurements in this dual-reporter            

system with analysis of candidate biophysical mechanisms using mathematical modeling. Next,           

by modeling developmental gene networks built from these epigenetic timers, we propose a             

solution for how temporal schedules for development can be scaled to vary size while              

maintaining proportions. We find that this epigenetic timing mechanism involves delayed,           

all-or-none removal of a repressive H3K27me3 domain from the gene locus, and can set delays                

that are robust over many cell generations, yet are tunable by activities of histone-modifying              

enzymes. The delays set by this epigenetic timer are unaffected by changes in cell cycle               

duration, enabling independent control of proliferation and developmental timing in developing           

progenitors. When incorporated as a building block of developmental gene networks, this            
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epigenetic timer enables progenitors to set schedules for differentiation that are flexibly            

expandible or compressible in time, by tuning of the strength of epigenetic repression. These              

findings establish a biophysical basis for understanding dynamic gene activation control by            

epigenetic mechanisms, and reveal insights into how developmental speed and organism size are             

controlled in development and evolution. 

 

 

RESULTS 

The dual-allelic Bcl11b reporter system provides a unique, powerful tool to resolve epigenetic             

mechanisms controlling gene activation timing in living cells. To study the cis -epigenetic event             

controlling Bcl11b activation timing in isolation from other trans- events, we can analyze Bcl11b              

locus activation dynamics in progenitors that already have one Bcl11b allele active, and therefore              

must contain all trans -factors necessary for expression (Figure 2B). Using fluorescence-activated           

cell sorting, we purified monoallelic expressing Bcl11b DN2 progenitors from dual-allelic           

reporter mice (YFP + RFP - or YFP - RFP + ), and analyzed activation of the silent allele by co-culture              

with OP9-DL1 cells, an in vitro system that recapitulates all early transitions in T-cell              

development. In agreement with previous work (Ng et al., 2018) , the inactive Bcl11b allele              

turned on in an all-or-none manner, with slow onset timing over the course of five days (Figure                 

2C-D). Furthermore, activation kinetics were similar for both YFP and RFP alleles (k = 0.025               

+/- 0.005 hrs -1 for YFP allele and k = 0.034 +/- 0.009 hrs -1 for RFP allele), and were well                   

described by a single exponential curve, consistent with activation being controlled by a single              

stochastic event occurring with equal likelihood at the two   loci, with a timescale of days. 
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Developmental timing control by H3K27me3 mark removal  

Polycomb associated histone modification H3K27me3 is highly enriched at silent Bcl11b loci in             

hematopoietic stem and progenitor cells but not in committed T-cells, where Bcl11b is expressed              

(Zhang et al., 2012) ; thus, its removal could underlie the cis- epigenetic event controlling Bcl11b              

activation timing. To test this possibility, we first determined whether H3K27me3 marks are             

removed from the Bcl11b locus at the same time it turns on. To pinpoint when H3K27me3 loss                 

occurs relative to locus activation, we measured H3K27me3 levels in three populations having             

different numbers of active Bcl11b alleles: hematopoietic progenitor cells from bone marrow,            

which have both Bcl11b alleles inactive; monoallelic Bcl11b expressing DN2 progenitors, which            

have one active and one inactive Bcl11b allele; and biallelic Bcl11b expressing DN2 progenitors,              

which have both Bcl11b alleles active. We employed CUT&RUN, a novel nuclease-based            

method for mapping DNA-protein complexes that can be combined with spike-in controls to             

provide quantitative readouts of H3K27me3 genomic abundance comparable across samples          

(Skene et al., 2018) . If H3K27me3 marks are removed concurrently with Bcl11b activation, but              

not any sooner or later, we would expect H3K27me3 levels in monoallelic DN2 progenitors to               

fall to approximately half of the initial levels found in HSPCs and to approximately zero in                

biallelic DN2 progenitors. Indeed, H3K27me3 levels at the Bcl11b locus decreased across these             

populations in a manner consistent these predictions. In bone marrow progenitors, where both             

Bcl11b alleles are inactive, there was an abundance of H3K27me3 across 5’ end of Bcl11b               

(Figure 3A, yellow shaded region). These broad H3K27me3 peaks were roughly halved in             

monoallelic Bcl11b expressing cells, and were almost completely absent in Bcl11b biallelic cells             
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(Figure 3A, 0.5 and 0.1 for monoallelic and biallelic Bcl11b expressing progenitors,            

respectively). Thus, H3K27me3 repressive mark removal from the Bcl11b locus occurs           

concurrently with gene activation.  

 

H3K27me3 mark loss may control the timing of Bcl11b activation; alternatively, it may simply              

be a consequence of gene activation, due to clearance of methylated nucleosomes by active              

transcription (Hosogane et al., 2016; Kraushaar et al., 2013) . To determine whether H3K27me3             

loss plays a causal role in controlling Bcl11b activation timing, we purified monoallelic Bcl11b              

expressing DN2 progenitors, co-cultured them on OP9-DL1 cells for three days with small             

molecule inhibitors targeting H3K27me3-modifying enzymes, and analyzed the resultant effects          

on activation of the silent Bcl11b locus (Figure 3B). These inhibitors, which target either the               

PRC2 methyltransferase subunit Ezh2 (UNC1999, 2.5 μM) or the H3K27 demethylases           

Kdm6a/b (GSK-J4, 2.5 μM), resulted in a ~40% increase and ~60% decrease, respectively, in              

H3K27me3 abundance at the Bcl11b promoter of Bcl11b monoallelic cells (Figure 3C),            

indicating that they indeed modulate H3K27me3 levels at inactive  Bcl11b  loci. 

 

In the absence of any inhibitors, the majority of progenitors activated the silent Bcl11b allele               

after three days, leaving about ~30% remaining inactive, as expected (Figure 3D-E). Kdm6             

demethylase inhibition increased the fraction of progenitors with remaining inactive Bcl11b           

alleles (Figure 3D, 3E, from 30% to 36% YFP inactive; p = 0.007). Impeded Bcl11b activation                

reflects a specific consequence of Kdm6a/b inhibition, as similar effects were observed with             

IOX-1, another inhibitor of Kdm6a/b, but not with Daminozide, a broad demethylase inhibitor             
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that does not target Kdm6a/b (Figure S1A). Conversely, Ezh2 inhibition decreased the fraction             

of progenitors with remaining inactive alleles (Figure 3E from 30% to 20% RFP inactive; p =                

0.001 ; 30% to 21%YFP inactive; p = 0.007). Similar effects were observed using structurally               

unrelated Ezh2 inhibitors GSK-126 and GSK-343 (Figure S1A) as well as small hairpin RNAs to               

knock down the expression of Eed, another essential PRC2 subunit (Figure 3D, S1B). We note               

that all the H3K27me3 perturbations tested had no effect on Bcl11b expression levels after              

activation (Fig. 3D), consistent with a specific role for this modification system in the control of                

gene activation timing. Taken together, these results indicate that H3K27me3 removal from the             

Bcl11b locus plays a causal role in controlling Bcl11b activation timing, and further show that the                

time constant for this activation event is tunably set by the balance between PRC2 and Kdm6a/b                

demethylase activities at the gene locus. 

 

A mathematical model of epigenetic timer function 

In a number of systems, loss of H3K27me3 occurs through passive dilution of these repressive               

marks with DNA replication (Coleman and Struhl, 2017; Sun et al., 2014) , a mechanism that               

could potentially account for the long activation delays spanning many cell generations observed             

(Ng et al., 2018; Fig. 1). However, the involvement of both PRC2 and Kdm6a/b demethylases in                

setting the timing for Bcl11b activation, as observed (Fig. 3), argues against such a passive               

H3K27me3 dilution mechanism, and instead suggests an active mechanism, whereby the           

activities of opposing H3K27me3-modifying enzymes at the Bcl11b locus set the timing of             

H3K27me3 elimination and gene activation. However, it is unclear what kinds of biophysical             

mechanisms may underlie the timing control at the  Bcl11b  locus. 
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Any mechanism to explain the Bcl11b epigenetic timer must account for its observed emergent              

properties, namely: 1) its ability to robustly set time delays that span multiple cell generations; 2)                

its stochastic nature; and 3) its tunability by histone modifying enzyme activities. To identify              

mechanisms that could potentially account for these properties, we analyzed a series of candidate              

biophysical mechanisms using mathematical modeling. H3K27me3 can bind PRC2 at an           

allosteric site to stimulate its methyltransferase activity (Margueron et al., 2009) , a cooperative             

mechanism that is thought to maintain repressive H3K27me3 marks across cell division.            

Therefore, we first considered a simple model, where individual nucleosomes in a            

one-dimensional array undergo H3K27me3 methylation catalyzed by the presence of nearby           

methylated nucleosomes, demethylation, as well as H3K27me3 loss due to random nucleosome            

segregation during DNA replication (Figure 4A; see Mathematical Appendix) (Coleman and           

Struhl, 2017) . Similar models have been shown to support multi-stable histone modification            

states that are heritable across cell division (Dodd et al., 2007; Zhang et al., 2014) . In agreement,                 

we found that single loci could switch from a H3K27 methylated, repressed state to a               

demethylated state with stochastic delays spanning multiple cell divisions (Figure 4B).           

However, in our simulations, averaged activation timing was extremely sensitive to H3K27me3            

methylation levels in the silent state, with sensitivity coefficients far exceeding those derived             

from experimental data (Figure 3C, 3E; methylation only model s ~14 vs. experimental value s ~                

0.3-0.6), such that minor changes (~10%) causing drastic timing changes (~300 fold) (Figure             

4C). This extreme sensitivity was ubiquitous across different parameter regimes (data not shown)             

and was also found in other studies (Dodd et al., 2007; Zhang et al., 2014) , indicating that it                  

represents a general feature of such switching models. By analyzing this system using a              
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transition state theory framework (see Mathematical Appendix and Figure S10A), we found that             

switching times scale exponentially with methylation or demethylation rates, thus explaining the            

observed extreme sensitivity. Thus, models that consider histone modification dynamics alone           

are inconsistent with the tunable control of activation by H3K27me3-modifying enzymes           

observed experimentally (Figure 3D, E). 

 

H3K27me3 marks repress gene expression by promoting the association of nucleosomes to form             

condensed, polymerase-inaccessible assemblies. For instance, H3K27me3 recruits Polycomb        

Repressive Complex (PRC1), which can self-interact to form compacted, phase-separated          

chromatin domains (Plys et al., 2018; Tatavosian et al., 2018) . Therefore, we considered a              

second model, where H3K27me3 levels do not determine gene synthesis rates per se , but              

influence chromatin compaction dynamics to modulate promoter accessibility and gene          

transcription (Figure 4D). In this methylation-compaction (MC) model, nucleosomes adopt          

methylated and demethylated states, as before; in addition, they can also bind or dissociate from               

a compacted assembly, with methylated nucleosomes binding with stronger affinity compared to            

demethylated nucleosomes. We do not explicitly model the spatial conformation of the            

compacted assembly; instead we adopt a chemical kinetics framework, approximating the           

assembly to be sphere with a minimum nucleus size, following established approaches to             

describe self-assembly of polymeric assemblies (Howard, 2001; Mitchison, 1992) (see          

Mathematical Appendix for details).  
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From simulations, we found that the system maintained a steady compacted, methylated state for              

multiple cell divisions before transitioning to uncompacted, demethylated state (Figure 4E). As            

with the methylation-only model, the timing of this all-or-none switch is well described by a               

first-order stochastic process, with a fixed probability of activation at each individual gene locus              

at a given time (Figure 4F). However, in contrast with the methylation-only model, changing the               

methylation level by varying rates of methylation or demethylation resulted in a much more              

graded change in gene activation timing (Figure 4C; sensitivity coefficient = ~0.6), even though              

it caused marked changes in H3K27me3 levels prior to activation (Figure 4G, H), in concordance               

with experimental observations (Figure 3D). This tunability was robust over different parameter            

ranges (Figure 4C, top right), different degrees of assembly disruption after DNA replication             

(Figure S2), and different degrees of cooperativity for H3K27me3 methylation (Figure S3).            

From a transition state theory analysis (see Mathematical Appendix and Figure S10B-C), we             

found that tunability arises only when interaction affinities between methylated and           

unmethylated nucleosomes are comparable, such that changes in methylation rates result in small             

changes in the height of the energy barrier to activation. Consistent with this idea, H3K27               

demethylated nucleosomes still undergo PRC1-mediated compaction, and also aggregate through          

a variety of other PRC1-independent mechanisms (Larson et al., 2017; Strom et al., 2017) .              

Together, these modeling results clarify how polycomb modifications can give rise to slow,             

tunable activation delays. First, methylation dynamics need to couple to a separate cooperative             

process, such as chromatin compaction. Second, compaction itself must be partially independent            

from methylation so that even when histone marks are depleted at the gene locus, gene               

repression and the compacted assembly can still be maintained via other           
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H3K27me3-independent mechanisms (Francis et al., 2004; Larson et al., 2017; Strome et al.,             

2014) . 

Transcription factor control of epigenetic timer function 

While the stochastic time constants for Bcl11b activation are modulated by histone-modifying            

enzyme activities (Figures 3-4), our earlier work has shown that they can also be tunably               

controlled by two transcription factors Gata3 and TCF-1, via a far distal enhancer downstream of               

the Bcl11b gene locus (Kueh et al., 2016; Ng et al., 2018) . Here, we determine whether the                 

methylation compaction model described above can also explain tunable timing control by            

transcription factors in addition to chromatin-modifying enzymes. To do so, we develop an             

extended version of this model, where a transcription factor binds to the nucleosomal lattice, and               

destabilizes either the methylation or the compaction states of N nucleosomes within its local              

vicinity. Such destabilization could involve a number of candidate mechanisms: for instance,            

disruption of methylation could occur by direct recruitment of Kdm6a/b demethylases (Estarás et             

al., 2012; Seenundun et al., 2010; Williams et al., 2014) , or through PRC2 eviction by               

chromatin-remodeling enzymes (Kadoch et al., 2017) ; on the other hand, disruption of            

compaction could involve activation of gene or lncRNA transcription (Rinn et al., 2007; Tu et               

al., 2017) , or recruitment of factors that disrupt interactions between nucleosomes (Kraushaar et             

al., 2013; Talbert and Henikoff, 2017; Zhou et al., 2016) .  

 

From simulations, we found that localized disruption of a small number of nucleosomes by              

transcription factor binding was sufficient to enhance the rate of locus activation. Upon             
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inhibiting compaction at a single nucleosome, there was a ~2-fold reduction in the average              

waiting time to H3K27me3 loss and gene activation (Figure S4A). This time decreased further              

upon inhibition of compaction at additional nucleosomes. Disrupting H3K27me3 methylation at           

nucleosomes had a more graded effect, with perturbation of ~10-15 nucleosomes needed for a              

~2-fold reduction in the timing of H3K27me3 loss (Figure S4B). We note that this magnitude               

perturbation is consistent with observed length scales for histone modification clearance around            

the vicinity of transcription factor binding, as measured by next generation sequencing (Hass et              

al., 2015; Heinz et al., 2010) . Importantly, incorporation of transcription factors into this model              

did not affect its key dynamic properties, including its stochastic, all-or-none nature, and its              

ability to operate over timescales spanning multiple cell generations. Taken together, these            

results show that the methylation compaction model accounts for the tunability of the Bcl11b              

epigenetic timer by both transcription factors and epigenetic-modifying enzymes. 

 

Division independence in epigenetic timing control 

How can we distinguish between the methylation compaction model, as developed above, and             

passive models, where H3K27me3 marks dilute out passively as a result of DNA replication? As               

methylation and compaction dynamics are rapid compared to cell division in the            

methylation-compaction model, epigenetic states at the Bcl11b locus recover rapidly after DNA            

replication (Figure 4E, S2B-C); this fast recovery, together with the invariance of chromosomal             

domain size with respect to cell division, could render activation timing independent of cell              

division speed. In contrast, in a passive dilution model, H3K27me3 loss would require DNA              

16 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752170doi: bioRxiv preprint 

https://doi.org/10.1101/752170
http://creativecommons.org/licenses/by/4.0/


8/7/2019 Full Manuscript (Cell Systems) - Google Docs

https://docs.google.com/document/d/1JTl1-WwuNiFK0G1OeHEJ09pigYMpgoAOPVAhsx3r1t4/edit 17/49

 

310

315

320

325

replication; thus, activation timing would be expected to decrease with faster cell division. To              

test these predicted behaviors in our models, we varied cell cycle speed in the              

methylation-compaction model, and measured resultant effects on activation timing. We found           

that gene activation timing remains largely constant, at ~80 hr, for cell cycle durations ranging               

from 10-30 hours (Figure 5A right; Figure 5B). This independence between activation timing             

and cell cycle duration held when we adjusted the model such that DNA replication led to partial                 

disruption of the compacted nucleosomal assembly (Figure S2). In contrast, when H3K27me3 is             

removed due to passive dilution by DNA replication, activation timing increases with longer cell              

cycle duration (Figure 5A left, Figure 5B), thus implementing a cell cycle counting mechanism              

for control of activation. This dependency between activation timing and cell cycle speed             

remained when H3K27me3 methylation and demethylation rates were non-zero, but slower or            

comparable to rates of cell division, such that DNA replication remained a significant factor in               

controlling Bcl11b activation (Figure S5). These simulation results provide a testable prediction            

to distinguish between the methylation-compaction model and passive dilution-based models for           

epigenetic timing control. 

 

To test if the epigenetic timer controlling Bcl11b activation also operates independently of cell              

division, as predicted for the methylation compaction model, we altered cell division speed in              

DN2 progenitors by transducing them with the proto-oncogene cMyc, and then used quantitative             

live-cell imaging to measure resultant effects on Bcl11b activation. As expected, cMyc            

transduction increased the rate of cell division by almost two-fold compared to empty vector              

controls (from 0.0361 hr -1 to 0.0635 hr -1 , see Figure 5C, E, left, Figure S7, Table 1 and                 
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Quantitative and Statistical Analysis). However, despite accelerating cell division, cMyc          

transduction did not change Bcl11b activation timing, with control and accelerated progenitors            

activating the silent Bcl11b allele with indistinguishable dynamics (Figure 5D), and the same             

time constant, as obtained by single exponential fitting (~136 hrs) (Figure 5E, right). Taken              

together, these results show that Bcl11b activation is unaffected cell division, consistent with a              

methylation-compaction mechanism for epigenetic timing control. 

 

Temporal scalability in networks of epigenetic timers 

We have described an epigenetic timing mechanism, involving all-or-none loss of a repressive             

H3K27me3 domain at a regulatory gene locus, that robustly generates delays in gene activation              

that can span multiple generations. These timing delays can be tunably controlled by both              

transcription factors and epigenetic-modifying enzymes. As H3K27me3 domains broadly cover          

lineage-specific gene loci in stem cells, the same epigenetic timing mechanism we have             

described could generate activation delays at other nodes in developmental gene networks;            

furthermore, because the polycomb repressive complexes and H3K27 demethylases have broad           

genome specificity, they could concurrently alter activation timing at multiple network nodes;            

thus, changes in their activity could lead to coordinated, scaled changes in the temporal              

schedules set by these networks, as is observed across different mammalian species  (Figure 1). 

 

To test this concept that epigenetic timers, when incorporated into regulatory gene networks,             

enable scalable control of network dynamics and developmental schedules, we modeled a            
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hypothetical network, where an inductive signal activates a linear cascade of regulatory genes,             

each of which specifies a distinct differentiated cell type (Figure 6A, B, F; see Mathematical               

Appendix). Each gene in this cascade is activated by an epigenetic timer regulated by both an                

upstream regulator, and an epigenetic factor acting concurrently on all genes (Figure 6B). This              

gene network operates in single dividing progenitors, and as each regulatory gene in this cascade               

turns on, it causes the progenitor to generate the differentiated cell type specified by the activated                

regulator, as well as an additional copy of itself (Figure 6A). The generation of differentiated               

cells continues until activation of the last regulatory gene, which causes cells to terminate              

division and cell expansion. This asymmetric division scheme, together with the linear            

regulatory cascade for cell type selection, approximates the differentiation strategy in a number             

of neuronal systems (Kohwi and Doe, 2013; Rossi et al., 2017) . As a comparison, we also                

analyzed a regulatory network with nodes controlled by classical gene regulation functions            

(Ackers et al., 1982; Bintu et al., 2005; Estrada et al., 2016) , where upstream regulators activate                

a downstream target when their levels reach a certain threshold (Figure 6F, see Mathematical              

Appendix). 

 

By performing stochastic simulations of epigenetic timer network in single, dividing progenitors            

within cohorts, we found that this network could generate lineage specification schedules that             

could be scalably tuned by epigenetic-modifying enzymes. For a chosen set of parameters,             

individual progenitors turned on regulatory genes in succession upon signal exposure, with            

cell-to-cell variability in the timing of activation (Figure 6C, top), as expected from the              
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stochastic nature of the epigenetic timer. Despite the cell-to-cell variability, the different            

activated progenitor populations within an entire cohort arose over time in a highly reproducible              

manner (Figure 6C, bottom), giving rise to a defined schedule for lineage specification, as well               

as defined numbers and proportions of differentiated cells (Figure 6D). As expected, the             

coefficient of variation in the numbers of different cells produced per cohort decreased steadily              

with increasing cohort size, indicating that this system can give rise to precise output population               

sizes with sufficient initial progenitor numbers (Figure 6E). Notably, this differentiation           

schedule was unaffected by changes in cell division rate (Figure S9A-C), indicating that the              

developmental network as a whole is able to operate independently from cell division. When we               

increased the strength of epigenetic repression by increasing the delay parameter ( d E ), the order              

of gene activation and the time duration between activation events remained the same; however,              

the entire differentiation schedule dilated in time (Figure 6C, bottom), allowing these progenitors             

to generate markedly increased numbers of different output cells, while maintaining relative            

proportions constant (Figure 6D).  

 

In contrast, a network composed of classical gene regulatory nodes could not generate             

temporally scalable schedules. For a chosen set of parameters, this network could generate an              

ordered sequence for gene activation and lineage specification (Figure 6G, slower vs faster , and              

Figure S9D-F); however, when we attempted to vary activation times and population sizes by              

adjusting a common threshold for gene activation ( d T ), the dynamics of the network first showed               
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little change, then diverged abruptly, failing to undergo the full activation sequence above a              

critical value (Figure 6H) This failure to fully activate caused progenitors to stall at an               

intermediate state, leading to disproportionate generation of early cell types and an absence of              

later cell types. Consistent with these observations, prior theoretical analysis had shown that             

count-up timers built from classical networks do not easily maintain tunable delays over multiple              

generations, but instead trigger activation events in a ‘now-or-never’ manner (Levine and            

Elowitz, 2014) . Together, these results indicate that regulatory networks composed of epigenetic            

timers, but not those composed of classical gene regulatory nodes, can generate temporal             

schedules for differentiation that are robust, yet tunable over extended timescales. 

 

DISCUSSION 

To generate organs and body plans with precise sizes and proportions, developing progenitors             

must follow defined temporal schedules for cell-type specification. In a range of developmental             

systems, these temporal schedules are upheld by cell-autonomous timers that can set and flexibly              

adjust developmental speeds over multiple cell generations. Here, we elucidate the mechanism            

of an epigenetic timer controlling the activation of Bcl11b , a master regulator of T-cell lineage               

commitment. This epigenetic timer involves the delayed, all-or-none removal of repressive           

H3K27me3 modifications from the Bcl11b locus, a switching event whose timing can be tunably              

controlled by the activities of opposing H3K27 methylation and demethylation enzymes. By            

analyzing candidate biophysical models, we find that tunable timing control arises when H3K27             

methylation dynamics does not directly mediate switching, but modulates a separate physical            
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cooperative process that can be explained by chromatin compaction. In contrast to prior models              

of polycomb-mediated timing control (Coleman and Struhl, 2017; Sun et al., 2014) , activation             

delays set by this mechanism are unaffected by changes in cell cycle duration, a prediction we                

verify experimentally. Finally, using mathematical modeling, we find that this epigenetic timer,            

when incorporated into regulatory nodes of a developmental gene network, enables progenitors            

to adjust the speed at which they proceed through temporal schedules for lineage specification,              

and thereby enable them to flexibly change their output progeny numbers, while maintaining             

their relative proportions (Figure 6D). These results provide a solution to the long-standing             

question of how time is set and adjusted in developmental systems, and implicate epigenetic              

regulators as master controllers of developmental speed and organism size. 

 

From analysis of candidate biophysical mechanisms, we conclude that epigenetic-modifying          

enzymes can tunably control activation delays only when they modulate a separate cooperative             

process that gates activation itself (Figure 3, 4). In standard models of epigenetic switching              

(Dodd et al., 2007; Zhang et al., 2014) , where activation is safeguarded purely by histone               

methylation/demethylation dynamics, activation time constants are extremely sensitive to small          

changes in epigenetic-modifying enzyme activity (Figure 4A-C, left); these models cannot           

explain how activation times can be robustly set and tunably controlled over long timescales, as               

observed (Figure 3D). It is well established that H3K27me3 modifications repress gene            

expression by promoting chromatin compaction; furthermore, emerging evidence indicates that          

they do so by recruiting protein complexes that self-associate to form phase-separated            

condensates (Plys et al., 2018; Tatavosian et al., 2018) , a physical process that can generate the                
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cooperativity needed for all-or-none transitions in the methylation-compaction model (Figure          

4E). Importantly, for activation times to be tunable in this model, nucleosomes must retain some               

self-interaction affinity in their demethylated states, such that methylation promotes but is not             

strictly necessary for nucleosomal association. This prediction is consistent with observations           

that nucleosomes can associate through a variety of H3K27me-independent mechanisms,          

involving either H3K27me3-independent binding of PRC1 to nucleosomes (Francis et al., 2004) ,            

or the self-association of other nucleosome-binding proteins (Larson et al., 2017; Strom et al.,              

2017) . We note that this concept – that modification states of proteins modulate their interaction               

affinities – is well established in the study of cytoskeletal polymer dynamics (Howard, 2001;             

Mitchison, 1992; Phillips et al., 2012) , but could provide a fresh perspective on understanding              

the relationship between chromatin modification states and genome structure. Further testing of            

the methylation-compaction model will require measurements of interaction affinities of          

nucleosomes in different chemical modification states, as well as identification of the molecular             

players that mediate these interactions. It will also require direct interrogation of the relationship              

between these modification states and higher order chromatin structure at individual gene loci,             

work that will be aided by new methods to simultaneously visualize histone modification states              

and chromatin folding at single gene loci in single cells  (Kundu et al., 2017; Xu et al., 2018) .  

 

Our gene network modeling leads us to propose that epigenetic-modifying factors act as master              

controllers of developmental speed and organism size (Figure 6D-E), a prediction that is             

supported by evidence from a range of systems. Because of their broad sequence selectivity,              

epigenetic modifying factors can act concomitantly on multiple nodes in developmental gene            

23 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752170doi: bioRxiv preprint 

https://doi.org/10.1101/752170
http://creativecommons.org/licenses/by/4.0/


8/7/2019 Full Manuscript (Cell Systems) - Google Docs

https://docs.google.com/document/d/1JTl1-WwuNiFK0G1OeHEJ09pigYMpgoAOPVAhsx3r1t4/edit 24/49

 

450

455

460

465

470

networks (Boyer et al., 2006; Lee et al., 2006) ; consequently, the developmental schedules set by               

these networks could then be uniformly scaled by simply varying the activity of a single               

chromatin regulator acting globally on all network nodes. Consistent with this idea, disruptions             

in polycomb complex activity have been shown to accelerate differentiation across multiple cell             

lineages in different contexts (Akiyama et al., 2016; Endoh et al., 2017; Ezhkova et al., 2009;                

Fujimura et al., 2018; Jacobsen et al., 2017; Zhang et al., 2015) . In particular, deletion of the                 

PRC2 methyltransferase Ezh2 accelerates the temporal schedule for cerebral corticogenesis,          

leading to reduced cortical tissue size while preserving the temporal order of neuronal subtype              

differentiation (Pereira et al., 2010) . Over evolution, such changes could have occurred through             

non-coding mutations affecting the expression levels of polycomb components; however,          

because several components of the polycomb repressive complexes, PRC1 and PRC2, have            

undergone extensive expansion during vertebrate evolution (Sowpati et al., 2015) , it is also             

possible that mutations altering their protein function could have occurred to enable evolutionary             

timing and size variation. While H3K27me3 modifications modulate activation timing in our            

system, the methylation compaction model predicts that it must act with other epigenetic             

regulators for tunable timing control (Figure 4). This model prediction leads us to suggest that               

multiple epigenetic systems ultimately work together to dictate the pace of development. The             

repressive mark H3K9me3 also regulates lineage specification (Nicetto et al., 2019) , and may             

co-exist with H3K27me3 to establish repression at developmental genes (Boros et al., 2014; de la               

Cruz et al., 2007; Yamamoto et al., 2004) . Another intriguing candidate epigenetic regulatory             

factor is HMGA2, a chromatin-binding protein with established roles in control of body size and               

growth in vertebrates (Chung et al., 2018; Lamichhaney et al., 2016 ). HMGA proteins bind              
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broadly to the genome to modulate chromatin architecture (Ozturk et al., 2014) , and could              

operate broadly on many loci to control developmental speed. 

 

The ability of this epigenetic timer to operate independently from cell division may represent a               

general property of developmental timing mechanisms (Burton et al., 1999; Gao et al., 1997;              

Heinzel et al., 2017) , and may enable versatile control of organism size and form during               

evolution. It has long been recognized that cell proliferation rates and developmental timing can              

vary independently between related species to generate morphological diversity (Alberch et al.,            

1979) . Size and shape changes can occur when timing of individual developmental events vary              

amid a constant backdrop of cell proliferation; indeed, there are clear examples where mutations              

affecting cis -regulatory elements alter regulatory gene activation timing to drive morphological           

variation (Frankel et al., 2011; Gérard et al., 1997) . Conversely, morphological changes can also              

occur when proliferation rates vary amid a fixed temporal schedule for development (Trumpp et              

al., 2001) . To understand how evolutionary changes generate morphological innovation in           

different contexts, it will be important in future studies to separately consider the impact of these                

changes on timing and growth during development. Hematopoiesis has long served as a             

convenient paradigm for studying this process. As the total number of hematopoietic stem cells              

appears to be roughly constant among mammals with vastly different sizes and blood production              

requirements (Gordon, 2002) , progenitors must expand to different degrees during differentiation           

to generate species-specific blood cell numbers. This may be accomplished by evolutionary            

changes in cell-autonomous timing mechanisms that allow for more or less progenitor cell             

expansion prior to stochastic differentiation events. Consistent with this idea, Bcl11b activation            
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and T-cell lineage commitment takes roughly twice as long in human hematopoietic progenitors             

when compared to those of mice under identical in vitro culturing conditions (Dai and Wang,               

2009; La Motte-Mohs, 2005) . 

 

The need for cell-autonomous timing control is perhaps greatest in developmental systems            

having cells that are either spatially distributed, or interact weakly in space; thus, it is perhaps not                 

surprising that the clearest examples for such control have thus far been found in brain and blood                 

development. However, it is likely that autonomous timing control is also central in systems              

where spatial patterning controls lineage specification. While patterning mechanisms can scale           

cell lineage proportions according to the dimensions of a spatial domain (Ben-Zvi et al., 2011;               

Inomata, 2017; Rogers and Schier, 2011) , they do not control the total domain size itself, which                

must instead be specified by different mechanisms (Averbukh et al., 2014; Fried and Iber, 2014) .               

Moreover, from the standpoint of an organism, sizes of individual domains must be set              

proportionally across the entire body plan. Such proportional size scaling would be hard to              

achieve through coordination between different domains, but could be readily achieved through            

the autonomous temporal control, as we have described. For instance, cell-autonomous timers            

also control limb length (Saiz-Lopez et al., 2015) , and may likewise be temporally scaled across               

different species to generate variations in length (Harrison, 1924) . In general, future studies in              

developmental biology will benefit from closer consideration of the impact of autonomous            

temporal control on growth and form in multicellular organisms. 
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Methods 

Mouse Generation. Bcl11b RFP/YFP mice were generated as described before (Ng et al., 2018) .            

Briefly, Bcl11b YFP/YFP mice were generated by inserting an IRES-H2B-mCitrine-neo cassette into           

the 3’ UTR of Bcl11b and Bcl11b RFP/RFP mice were generated by inserting an             

IRES-H2B-mCherrry-neo cassette into the same location. Dual allelic Bcl11b RFP/YFP mice with           

identical Bcl11b alleles except for fluorescent protein reporters were generated by breeding            

Bcl11b RFP/RFP mice to Bcl11b YFP/YFP mice. Bone marrow derived from F1 Bcl11b RFP/YFP mice were             

used for all in vitro T cell development assays. All Animals were bred and maintained at the                 

University of Washington. All animal protocols were reviewed and approved by the Institute             

Animal Care and Use Committee at the University of Washington (Protocol No: 4397-01).  

 

Cell purification. To isolate hematopoietic stem and progenitor cells (HSPCs) for in vitro             

differentiation or CUT&RUN experiments, bone marrow cells were harvested from femurs and            

tibias of 2 to 4 month-old Bcl11b RFP/YFP mice. CD117 MicroBeads (Miltenyi Biotec) were used to               

enrich for HPSCs which were frozen in 90% FBS and 10% DMSO at 10 6 cells/mL. For                

CUT&RUN experiments, HPSCs were further purified by staining with anti-CD117          

APC-eFluor780 (ThermoFisher Scientific) and with biotinylated antibodies against a panel of           

bone marrow lineage markers (CD19, CD11b, CD11c, NK.1.1, Ter119, CD3ε, Gr-1 and B220             

(BioLegend)). Cells were then washed with HBH (Hank Balanced Salt Solution (HBSS) with             

0.1% bovine serum albumin (BSA) and 10mM HEPES) and stained with           

streptavidin-PerCP/Cy5.5 (BioLegend). 
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In vitro Differentiation of T cell Progenitors. To generate double-negative (DN) T cells in              

vitro , thawed CD117 + cells were cultured on OP9-DL1 stromal cell monolayers as described             

before using standard culture medium [80% αMEM (Gibco), 20% Fetal Bovine Serum            

(Sigma-Aldrich), Pen-Strep-Glutamine (Gibco)], grown at 37 o C in 5% CO2 conditions]. All in            

vitro T cell generation cultures were supplemented with 5ng/mL Flt3-L and 5 ng/mL IL-7              

(Peprotech), and were sorted after 6 or 7 total days of culture before transducing with retroviral                

vectors or treating with small molecule inhibitors. DN2 cells were re-cultured in the same              

conditions following all cell sorting experiments. 

Flow Cytometry and Cell Sorting . Fluorescence activated cell sorting was used to isolate DN2              

cells of interest with the following protocol. Bone marrow derived cell cultures were scraped and               

incubated in 2.4G2 Fc blocking solution and stained with anti-CD25 APC-eFluor 780 (Clone             

PC61.5, eBioscience) and with biotinylated antibodies against a panel of lineage markers (CD19,             

CD11b, CD11c, NK.1.1, Ter119, CD3ε, Gr-1 and B220 (BioLegend)). Stained cells were washed             

with HBH (Hank Balanced Salt Solution (HBSS) with 0.1% bovine serum albumin (BSA) and              

10mM HEPES and stained with streptavidin-PerCP/Cy5.5 (BioLegend). Stained cells were          

washed, resuspended in HBH, and filtered through a 40-um nylon mesh for sorting with a BD                

FACS Aria III (BD Biosciences) with assistance from the University of Washington Pathology             

Flow Cytometry Core Facility. A benchtop MacsQuant VYB flow cytometer (Miltenyi Biotec)            

and a benchtop Attune Nxt Flow Cytometer (ThermoFisher Scientific) were used to analyze time              

course and perturbation experiments and acquired data were analyzed with FlowJo software            

(Tree Star).  
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Retroviral construct and transduction. Overexpression of cMyc in DN2 cells was achieved            

using cMyc H2B-mCerulean MSCV retroviral vector which was described previously (Kueh et           

al., 2016) . Retroviral mir30-based constructs (a gift from J. Zuber) were used as a backbone for                

delivering short hairpin RNA (shRNA) (Fellmann et al., 2013) . pBAD-mTagBFP2 (a gift from V.             

Verkhusha, Addgene plasmid #34632) was used to substitute mTagBFP2 for the existing GFP             

using PCR cloning with the restriction enzymes NcoI and SalI. The RetroE-shEed retroviral             

construct was generated by PCR cloning as previously described (Fellmann et al., 2013) with the              

following PCR template:  

TGCTGTTGACAGTGAGCG AAGGCATTATAAGAATAATTAA TAGTGAAGCCACAGA

TGTA TTAATTATTCTTATAATGCCTC TGCCTACTGCCTCGGA.  

Retroviral particles were generated using the Phoenix-Eco packaging cell line as           

previously described (Kueh et al., 2016) . Viral supernatants were collected at 2 and 3 days after               

transfection and immediately frozen at -80 o C. To infect bone marrow derived T cell progenitors,              

33 μg/mL retronectin (Clontech) and 2.67 μg/mL of DL1-extracellular domain fused to human             

IgG1 Fc protein (a gift from I. Bernstein) were added in a volume of 250 μL per well in 24-well                    

tissue culture plates (Costar, Corning) and incubated overnight. Viral supernatants were added            

the next day into coated wells and centrifuged at 2000 rcf for 2 hours at 32 o C. Bone marrow                  

derived derived T cell progenitors used for viral transduction were cultured for 6-7 days              

according to conditions described above, disaggregated, filtered through a 40-μm nylon mesh,            

and 10 6 cells were transferred onto each retronectin/DL1-coated virus-bound well supplemented           

with 5 ng/mL SCF (Peprotech), 5 ng/mL Flt3-L, and 5 ng/mL IL-7.  
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CUT&RUN H3K27me3 profiling. CUT&RUN experiments were carried out as previously          

described 28 with the following modifications: 1-2.5x10 5 cells were isolated by FACS as described             

in sections above, bound to Concanavalin A coated magnetic beads (Bangs Laboratories), and             

permeabilized with 0.025% (wt/vol) digitonin. Permeabilized cells were incubated overnight at           

4 o C with 5ug of anti-H3K27me3 (Active Motif 39156) and then washed before incubating with              

protein A-MNase fusion protein (a gift from S. Henikoff) for 15 minutes at room temperature.               

After washing, cells were incubated in CaCl 2 to induce MNase cleavage activity for 30 minutes               

at 0 o C. The reaction was stopped with 2XSTOP buffer (200 mM NaCl, 20 mM EDTA, 4 mM                 

EGTA, 50 mg/mL RNase A and 40 mg/mL glycogen) with 2pg of yeast spike-in DNA per                

sample. Histone-DNA complexes were isolated from insoluble nuclear chromatin by          

centrifugation and DNA was extracted with a NucleoSpin PCR Clean-up kit (Macherey-Nagel).            

For CUT&RUN quantitative PCR, human Kasumi-1 cell line (ATCC CRL-2724™) were added            

before binding the cells to Concanavalin A beads for internal standard instead of yeast spike-in               

DNA.  

CUT&RUN Library Preparation and Sequencing. Library preparation from CUT&RUN         

products was completed with KAPA Hyper Prep Kit (KAPA Biosystems) following standard            

protocol with PCR amplification settings adjusted so that annealing and extension steps are             

combined into one step at 60 o C for 10s. Library products were size selected to be within 200 -                  

300 bp range using AMPure beads (Agencourt). Libraries were sequenced using an Illumina             

MiSeq system with paired-end 25 bp sequencing read length and TruSeq primer standard for              

approximately 5 millions reads per sample.   
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CUT&RUN sequencing analysis. Paired-end sequencing reads were aligned separately to          

mouse (NCBI37/mm9) and yeast (SacCer_Apr2011/sacCer3) genomes using Bowtie2        

(Langmead and Salzberg, 2012) with the following setting: --local --very-sensitive-local          

--no-unal --no-mixed --no-discordant -I 10 -X 700 as suggested for mapping CUT&RUN            

sequencing data (Skene et al., 2018) . The alignment setting was designed to specifically search              

with high stringency for only appropriately paired reads with the proper orientation. The             

resulting alignments were converted to BAM files with SAMtools (Li et al., 2009) and then               

converted to BED files with BEDTools. Reads were sorted and filtered to remove random              

chromosomes. BEDTools genomecov was used to generate histograms for the mapped reads            

using a scaling factor that is the product of the number of spiked-in yeast reads and the number                  

of input cells. The resulting bedGraph files were visualized using the UCSC Genome Browser              

(Davis et al., 2018; Kent et al.) . 

CUT&RUN qPCR. Extracted DNA from CUT&RUN samples was size selected with Ampure            

XP magnetic beads (Beckman Coulter) to remove fragments >800bp. Primers were designed to             

detect the the mouse Bcl11b promoter (F - TCCACCTACCAGACCCCGAA, R -           

CTTCTTCAAAGTGCTTGGCCTC) and the human PAX5 promoter (F -        

CCAGGATGTGCTGCTGTCCCAG, R - CTCCCTGGTGCTGTGCACTGA). PowerUp SYBR      

Green Master Mix (ThermoFisher Scientific) and CFX96 Real-Time PCR Detection System           

(Bio-Rad) were used for quantitative PCR. Since Kasumi-1 cells were used as internal standard,              

relative enrichment of H3K27me3 at Bcl11b was quantified by the ΔΔCq method using the              

human PAX5 promoter for normalization to account for differences in efficiency and sample loss              

during processing. 
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Cell Preparation for Time-lapse Imaging. T cell progenitors underwent in vitro differentiation            

protocol as described above. Cells were then harvested and infected with either a MSCV empty               

vector or cMyc overexpression vector harboring an IRES-H2B-mCerulean reporter cassette.          

16-24 hours later CFP-positive cells were purified by FACS and seeded onto PDMS micromesh              

(250 μm hole diameter, Microsurface) mounted on top of 24-well glass bottom plate (MatTeck).              

To prepare the stromal-free differentiation system, the top face of PDMS micromesh was first              

blocked by incubating in solution of 130 μg/ml BSA while mounted on top of a 24-well plate                 

overnight at 4 o C. This step prevents subsequent binding of retronectin to the side of the meshm,                

allowing the cells to climb out of the microwells. Blocked micromesh was then transferred to a                

clean 24-well glass bottom plate. The well and mesh constructs were incubated in a solution of                

10 μg/ml retronection and 3 μg/ml DL-1 overnight at 4 o C. The well was then washed with PBS,                 

and culture media [80% αMEM (Gibco), 20% Fetal Bovine Serum (Sigma-Aldrich),           

Pen-Strep-Glutamine (Gibco), 5 ng/ml IL-7 (Clonetech), 5 ng/ml Flt-3 (Clonetech), 50 ng/ml            

mSCF (Clonetech), 50 μM beta-mercapto ethanol (Sigma) grown at 37 o C in 5% CO2 conditions]              

was added, and sorted cells were introduced at a concentration of 5-10 cells per microwell. 

 

Quantitative and Statistical Analysis 

Modeling simulations 

All models were simulated using Gillespie algorithm provided in the Tellurium package in             

Python 2.7 (Choi et al., 2018) . Plotting of simulation results were done in MATLAB. A detailed               

description of the models can be found in the mathematical appendix. 
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Image analysis of time-lapse movies 

Image segmentation 

Segmentation of progenitor cells were performed in MATLAB (Mathworks, Natick, MA) using            

custom scripts previously (Kueh et al., 2016; Ng et al., 2018) . The segmentation algorithm was              

performed on CFP fluorescent signal as all transduced cells carried a H2B-CFP reporter cassette.              

Briefly, images undergo (1) correction by subtraction of uneven background signal stemming            

from the bottom of the glass plate or the side of the PDMS microwells (2) gaussian blur followed                  

by pixel value saturation to fix uneven signal intensity within the nucleus of the cell and (3)                 

Laplacian edge detection algorithm to identify the nucleus boundary. Noncell objects were            

excluded via size and shape limit exclusions, and segmentation parameters were chosen such that              

number of non-cell objects are <1% of the total segmented cells. 

Identification of live and dead cell population 

While imaging cMyc or empty vector (EV) transduced cells, we noticed that live and dead cells                

possess different CFP nuclear signals. Particularly, live cell nuclei have CFP fluorescence            

constituting a round, smooth oval shape while dead cell nuclei CFP tend to be more granular,                

containing distinctively small but very bright puncta. To provide unbiased recognition of live and              

dead cell, individual segmented cell’s CFP image patch underwent Laplacian mask filer to             

delineate the ‘smoothness’ of the signal and then threshold-cutoff to identify regions with high              

CFP signal. Resulting features such as object’s areas, perimeter, log(CFP), and puncta numbers             

are recoded for each cell object. Approximately 100 individual cell image patches (10% of each               

data set) was then manually annotated as ‘live’ or ‘dead’ by trained scientist. The results were                
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then linked to the above feature matrix. Decision tree supervised machine learning algorithm             

implemented by fitctree function in MATLAB was then used to generate a model based on the                

annotated live/dead classification and matrix features of the training images (Fig. S6). Finally,             

built-in MATLAB model evaluation functions resubLoss and crossval were used to validate that             

mis-assignment error is below 15% for all data sets. Such approach offers an objective,              

automated method to distinguish between live and dead populations. All scripts for this             

procedure are available upon request. 

  

Bcl11b activation rate fitting 

To measure Bcl11b activation rate, experimentally, Bcl11b RFP+ cells were cultured on stromal             

cell-free, DL1-coated system (Varnum-Finney et al., 2003) , and activation of Bcl11b YFP allele            

was monitored in time-lapsed imaging. This stromal-free system enables a greater fold            

enhancement of cell division rate by cMyc transduction and better resolution for imaging as well               

as recapitulating Bcl11b activation and T cell lineage commitment, but supports a lower baseline              

rate of proliferation in unmodified cells compared to the OP9-DL1 system. 

For quantitative measurement of this activation rate, first, the YFP and RFP signal intensity of               

segmented cells were calculated. Then each cell object underwent live/dead classification           

prediction by trained model as described in the previous section. Only cells that are classified as 

‘live’ were selected, and their YFP RFP fluorescence 2D histogram is fitted to a two-component               

mixed 2D Gaussian model to obtain the fraction of YFP OFF and ON cells in the population at a                   

given time. All the following procedures were implemented in MATLAB. Specifically: 
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To calculate fluorescent value of the Bcl11b YFP and Bcl11b RFP signals, pixel intensity of an                

annulus surrounding the segmented cell were calculated and subtracted from the raw signal             

intensity of the cell interior. This is to eliminate autofluorescence from the bottom of the glass                

plate as well as the PDMS microwells’ edge. 

To obtain the time evolution of Bcl11b biallelic population fractions from initial Bcl11b             

YFP-RFP+ population, cells were first filtered based on their ‘live/dead’ category, and only             

‘live’ cells were included in further calculation. We used a modified version of least-squares fit               

of a two-component mixed 2D Gaussian function described by (Ng et al., 2018) to fit the 2D                 

histogram of Bcl11b YFP and Bcl11b RFP fluorescence levels. Specifically, let y and r be the                

intensity of Bcl11b YFP and Bcl11b RFP fluorescence, respectively, the overall fit, , is            (r, )F y   

given by: 

 

Each 2D gaussian  is given by:f  

 

Here, =1,2 correspond to the red mono-allelic and biallelic populations, since all starting cells i              

are red mono-allelic, we excluded the other two populations (non-expressing and yellow            

mono-allelic). is the volume under the gaussian curve when integrated over r and y and is the Ni                  

36 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752170doi: bioRxiv preprint 

https://doi.org/10.1101/752170
http://creativecommons.org/licenses/by/4.0/


8/7/2019 Full Manuscript (Cell Systems) - Google Docs

https://docs.google.com/document/d/1JTl1-WwuNiFK0G1OeHEJ09pigYMpgoAOPVAhsx3r1t4/edit 37/49

 

710

715

720

approximation for the number of cells in each population in Bcl11b RFP mono-allelic and              

biallelic states. 

To fit our data to , we followed a two-step process described previously (Ng et al., 2018) :     (r, )F y             

(1) We fitted Bcl11b YFP/RFP 2D histogram at early time point (0 < t < 20) to to obtain                 (r, )f  1 y   

the means, standard deviations, and correlation coefficients ( ) of the Bcl11b       , , , ,μ 
r,1 σ 

r,1 μ 
y,1 σ 

y,1 p
 
1     

RFP mono-allelic population. At this time point, all cells have inactive Bcl11b YFP allele. (2)               

Next, we fitted the 2D histograms of Bcl11b YFP/RFP levels at successive time bins of 20 hours,                 

fixing the parameter of the first Gaussian , and enabling the parameters for the second       (r, )f  1 y          

Gaussian , to vary within bounds observed in the fluorescent distributions of Bcl11b (r, )f  2 y             

biallelic populations. After fitting, the fraction of biallelic cell at a given time window centered               

on time t is given by: 

 

The confident bounds for is given by:f (t)2
obs  

   

 

Afterward, the resulting fraction of biallelic cells as a function of time window centered at time t                 

from the mixed Gaussian fit was then fitted to the probability density function of a first order                 

process: 
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Where is the activation rate of Bcl11b from RFP-monoallelic to biallelic state. We chose this               

function for activation rate fitting since our histone dynamics simulations suggested Bcl11b            

activation can be estimated as a first order stochastic process (see Fig. 4-5). For this function,                

fitting was done using MATLAB fit function, and 95% confidence interval for the fit was               

recorded. 

Population dynamics model and fitting 

We built a mathematical model to describe the population dynamics of progenitor cells             

transfected with empty vector (EV) and cMyc. From initial inspection of time-lapse movies (Fig.              

5C), progenitors transduced with cMyc appear to expand more quickly than control progenitors,             

as expected. Faster expansion of cMyc-transduced cells could be due to faster cell cycling or               

slower cell death. To disentangle these two effects, we quantified numbers of both live and dead                

cells over time (Fig. S7) and fit these data to population dynamics models to obtain division and                 

death rates: 

In general, the model includes a population of live cell ( X ) with a birthrate k b and a death rate k d                    

to generate the dead cell population ( Y ). This population in turn has a clearance rate δ denoting                 

the process in which CFP level degrades and the dead cells become undetected. 
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Live population at a given time  T  can be described as a simple first order process: 

 

Where  and is the initial number of live cells at the start of imaging. On the  k  K =    
b k 

d Xo  

other hand, we adopt a stepwise approach to model the dead cell population: 

 

Here is initial number of live cells at the start of imaging and is an exponential decayY o (τ )P  

function describing the fraction of CFP-positive dead population remaining after a period time 

from its first appearance. Since dead cell’s fluorescent signal is dim, segmentation of these cells 

tends to ‘fickle’ before completely disappear. In this model, whenever a cell starts to die, its 

probability of being detected decreases as per function and the number of dead cells at a(T ),P  

given time T is the sum of all the still-detected dead cells generated since the start of imaging up 

until T. This discrete approach allows us to fit cell death data to a relatively simpler function 

compared to a more sophisticated two-component system of ODE model without sacrificing the 

complexity of dead cell detection phenomenon. 
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We determined  empirically for EV and cMyc population separately by manually following(τ )P  

30 different dead cells and record the time period in which it was detected and undetected until 

complete disappearance. Then we plotted how many dead cells out of 30 were detected after a 

given time  has elapsed. An exponential function decay function was used to fit this ‘fraction 

detected’ curve and to estimate value for clearance rate (Fig. S7B): 

 

Here,  is the probability of a given dead cell to be detected under the CFP fluorescent(τ )P  

channel after period of time  since its initial death.   is the clearance rate of this process.δ  

To fit imaging data to equation (6). We classified segmented cell object as live or dead using 

trained machine learning model as described in ‘Image analysis of time-lapse movies ’   section. 

Number of live cells as a function of time was fitted to equation (6) using MATLAB  fit  function 

to estimate , and 95% confidence interval for the fit was recorded. 

To fit imaging data to equation (7), we performed fine scanning of candidate values from thekd,i  

set . For each , a predicted curve0, .0005, .001, .0015, .., .0495, .05}KD = { 0 0 0 . 0 0 kd,i (T )Y p,i  

was generated based on equation (7) where with  being the time point at  t , , , ..T =   1 t2 t3 . ti  

which experimental measurement took place. is then compared to the experimentally(T )Y p,i  

observed dead cell number using sum square error method:(T )Y exp  
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The best fit value is chosen to be the value whose is the smallest.kd kd,i ssei  

In order to calculate the confidence bound of the fit, we utilized nonlinear regression method by 

first calculating the residue of the model’s predicted values :(t )Y p i  

 

Then we calculate to the Jacobian of the model function to estimate the covariance at each time 

point and is given by: 

 

These inputs were used to estimate 95% confidence interval using MATLAB ‘Nonlinear 

regression parameter confidence intervals’ function  nlparci . 

Summary of results from fitting of data to activation rate and population models are tabulated in 

Table 1. 
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Figure 1. Temporal scalability in development. (A) In different developmental systems, dividing 
progenitors maintain cell-autonomous schedules for lineage specification.  These temporal sched-
ules can be compressed or extended in time for proportional scaling of organ and organism size. (B) 
Developmental schedules are executed by conserved developmental gene networks; however, it 
remains unlear what molecular processes allow gene networks to set autonomous, temporally-scal-
able schedules over develompental timescales.
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analysis of epigenetic timing step. (C-D) DN2 monoallelic progenitors were purified by cell sorting, 
cultured on OP9-DL1 with 5 ng/mL IL-7 and Flt3L, and analyzed by flow cytometry. Mean values and 
95% confidence intervals are plotted for n = 3 different batches of bone marrow. Curves represent fits 
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Figure 3:  Bcl11b activation timing is tunably controlled by removal of repressive H3K27 
trimethylation. (A) H3K27me3 distributions were profiled by CUT&RUN in Lin- bone marrow 
progenitors (HSPCs), as well as sorted DN2 mono-allellic and bi-allelic cells.  Genome brows-
er tracks show H3K27me3 densities at Bcl11b, as well as at Ebf1, a B-cell regulator that is 
repressed in these cells.  Relative densities in shaded areas are shown.  H3K27ac levels in 
thymocytes, obtained from a previous study (Davis et al., 2018; Accession: ENCSR000CCH), 
are shown.  Data are representative of two independent replicates (C) DN2 monoallelic 
progenitors treated with the indicated inhibitors were sorted for H3K27me3 CUT&RUN qPCR 
at the Bcl11b promoter. Mean values are presented with n = 3 experimental replicates (*p < 
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Figure  4:  A methylation-compaction mechanism enables robust, tunable epigenetic timing control.  Two 
candidate biophysical mechanisms for the epigenetic timer were analyzed using mathematical modeling, a methyl-
ation-only mechanism (A-C), and a methylation-compaction mechanism (D-H).  (A) Methylation only model, along 
with (B) fraction H3K27me3 nucleosomes over time from a stochastic simulation, with inset showing H3K27me3 
loss and recovery after DNA replication.  (C) Sensitivity analysis of the methylation-only model (gray) and methyla-
tion-compaction model (red), showing H3K27me3 time traces for indicated parameters in the methylation model 
(left), mean activation time versus averaged H3K27me3 levels (top right), and averaged sensitivity coefficient
s = dln(y)/dln(x) for the relationship between these two variables, both in models and experiments (blue, green, 
calculated from Fig. 3C,E).    (D) The methylation-compaction model, along with (E) time traces of the fraction of 
H3K27me3-marked nucleosomes (top left), and the fraction of nucleosomes in a compacted assembly (bottom 
left).  Inset (top right) shows H3K27me3 recovery after cell division.  (F) Histogram shows distribution of activation 
times, along with fit to the exponential function y = e-kt with k = 0.012 hr-1. H3K27me3 time traces (top) (G) and bar 
charts (H) show impact of simulated PRC2 or Kdm6 inhibition on initial H3K27me3 levels and mean activation 
times.  Results represent average of 200 simulations.
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Figure 5. The Bcl11b epigenetic timer operates independently of cell-division, as 
predicted from the methylation-compaction model. (A) H3K27me3 time traces for a 
passive model, where H3K27me3 marks are diluted with each cell division (left), and the meth-
ylation-compaction model for gene activation (right).  In the passive model, gene activation 
occurs after the total levels of repressive marks fall below a threshold.  (B) Simulated average 
switching time as a function of cell cycle length.  (C-E) Bcl11bYFP-/RFP+ DN2 progenitors trans-
duced with either empty vector (EV) or cMyc CFP-expressing retrovirus were  sorted, cultured 
on DL1-coated plates, and subject to continuous timelapse imaging.  (C) Timelapse images 
show brightfield (BF, gray) and YFP (yellow) fluorescence of progenitors. White boundaries 
show automated cell segmentation. Numbers show elapsed time in hours, and scale bar = 5 
μm. (D) Fraction of YFP+ cells over time. (E) Mean and standard deviation of cell division and 
switching rates (n = 3 independent experiments, *p < 0.025, n.s. not significant, one-tailed t 
test). Each data point is measured from one independent imaging experiment. 
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Figure 6.  Developmental gene networks composed of epigenetic timers generate scalable 
temporal schedules for flexible population size control.  Two  gene regulatory network cascades 
were compared using mathematical modeling, one built from epigenetic timers (B-E), and another built 
from classical gene regulation functions (F-H) (See Mathematical Appendix for model description).  Both 
regulatory networks control a common differentiation scheme (A), where progenitors that have activated 
a given lineage-specifying gene generate a corresponding differentiated progeny through asymmetric 
cell division (Rossi et al., 2017).  (B) In the epigenetic timer network, where every lineage-specifying 
gene in the cascade is regulated by an epigenetic timing factor, whose activity is set by a common delay 
parameter dE.  In the classical network (F), there is a common threshold for transcription factor activa-
tion, set by the delay parameter dT. (C,G, top) Stochastic simulations of the respective networks for two 
individual cells (solid and dashed lines) with faster (dE = 25 or dT = 150) and slower (dE = 66.66 or dT  =  
200)  delays. Gray shaded area indicates the threshold regulator concentration required for differentiat-
ed cell production (C,G, bottom). Mean fraction of cells at each stage of the gene network with faster 
and slower delays. Shaded regions indicate standard deviation from 20 simulations of 200 progenitors. 
Fraction of cells that have turned on the last gene in the cascade is not shown. (D and H) Mean numbers 
of different cell types generated in the two networks, plotted as a function of the delay parameter.  
Proportional scaling of output cell numbers arises in the epigenetic timing network (D), but not in the 
classical network (H).  (E) Coefficient of variation for total numbers of differentiated cells produced, 
plotted as a function of initial progenitor number. 

transcriptional
activity dT

101

number of progenitors

4

0

8

1
0

2
3x102 x102

re
gu

la
to

r
(c

op
ie

s/
ce

ll 
vo

l)
pr

og
en

ito
rs

(fr
ac

tio
n)

time (hours)time (hours)

0 400 800 0 400 800

faster slower faster slower
C G

0

10

20

30

40

0 20 40 12010060 80 0 50 100 150 200
0

10

20

30

40

0 400 8000 400 800 1200
0

0.5

1

0 400 800 1200

0 400 800 0 400 800

0 100 200 300

0

0.5

1

0 100 200 300

cell #1
cell #2

n = 20 simulations
(200 cells each)

re
gu

la
to

r
(c

op
ie

s/
ce

ll 
vo

l)

delay parameter (dE) delay parameter (dT)

ce
lls

/p
ro

ge
ni

to
r (

m
ea

n)D H

X0 X1 X2 X3

E

B

A

F

dTdTdT
to

ta
l c

el
ls

 (C
V

)

ce
lls

/p
ro

ge
ni

to
r (

m
ea

n)

pr
og

en
ito

rs
(fr

ac
tio

n)

regulator levels

dE

102

10-1

100

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752170doi: bioRxiv preprint 

https://doi.org/10.1101/752170
http://creativecommons.org/licenses/by/4.0/


0

0.5

1

EV shEed

40

80

101 10 2

40

80

101 10 2

40

80

40

80

Ezh2 inhibitors

initial
state

101 10 2

101 10 2

Bcl11b-YFP

Bcl11b-RFP

40

80

40

80

40

80

40

80

GSK-126 GSK-343
DMSO DMSO

shEed #2 shEed #3
EV #2 EV #3

10 2 10 4 10 2 10 4

10 2 10 410 2 10 4

17%
25%

18%
25%

25%
32%

24%
31%

shEed replicates

101 10 2101 10 2

40

80

40

80

10 2 100 10 2100

IOX-1
DMSO

Daminozide
DMSO

32%
25%

24%
25%

Broad demethylase inhibitor
(including Kdm6a/b)

Kdm2/7 inhibitor
(not Kdm6a/b)

40

80

40

80

initial
state

A

B C

Bcl11b-YFP

Bcl11b-RFP

Supplementary Figure 1. H3K27me-modifying enzymes modulate Bcl11b activation 
timing. (A) DN2 Bcl11b-RFP monoallelic cells were sorted, recultured in the presence of 
different small molecule inhibitors and analyzed by flow cytometry 3 days later. Slowed activa-
tion rate is unique to Kdm6a/b inhibitors: IOX-1 (above) or GSK-J4 (Figure 3D). Similar accel-
erated activation rate was observed for all three Ezh2 inhibitors: GSK-126, GSK-343 (above), 
and UNC1999 (Figure 3D). (B) Two additional experimental replicates for Eed knockdown 
show similar accelerated activation rate (Figure 3D).  (C) Relative mRNA levels of Eed were 
measured by qPCR.
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not affect tunability or division-independence in the methylation compaction model. (A) 
Modified methylation compaction model where every cell division leads to 50% reduction in 
methylation state and 10% reduction in compaction state. (B-C) Model's compaction and 
methylation state as a function of time. Zoomed in first replication event. (D) Average switching 
time of the system as a function of cell cycle length. (E) Model systems' average switching 
times as a function of methylation and demethylation rate ratio. Tunability coefficient S (Δ
logY/ΔlogX) for each plot was calculated by taking the slope of the linear fit y = ax+b for the 
methylation model data set.
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methylation-only model. (A) Top - Methylation model enables gene activation via complete 
eviction of methylation marks. Bottom - Methylation compaction model with cooperative meth-
ylation rate. A nucleosome's methylation rate increases with the number of methylated nucleo-
somes in the system. (B) Average switching times as a function of methylation (β) and demeth-
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models. Tunability coefficient (ΔlogY/ΔlogX) for each plot was calculated by taking the slope 
of the linear fit y = ax+b for the methylation model data set and the last 5 data points for the 
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Supplementary Figure 4. Local disruptions in nucleosomal methylation or compaction, 
caused by transcription factor binding, generates tunable changes in activation time.  
Simulations of the methylation-compacted mechanism were performed where a fixed number 
of nucleosomes were either blocked from entering a compacted assembly (A,B), or from 
acquiring H3K27me3 marks (C).  (A) Mean activation timing of the methylation compaction 
model (MC) as a function of number of removed nucleosome from the original domain size of 
50. B) Time evolution of compaction state in one sample simulation with indicated number of 
removed nucleosome. C) Mean activation timing of the MC model as number of non-methylat-
able nucleosome increases.
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Supplementary Figure 5. Modeling of H3K27me3 passive dilution with minimal methyla-
tion and demethylation shows a significant dependence of activation time on cell cycle 
length. Fractions of methylated histone are shown for the methylation only model with cell 
division lengths set to be 10 hrs (blue) and 20 hrs (orange). Methylation and demethylation 
rates were set to 0.001 per hour (See Mathematical Analysis for more detail).
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Supplementary Figure 6. Image processing pipeline for identification of live and dead 
cells in imaging experiments. Cyan fluorescent protein (CFP) signals from transduced cells 
are used for segmentation of individual cell. Segmented populations are analyzed using imag-
ing processing tools in MATLAB, and specific features such as object area, perimeter, and 
CFP intensity are collected. Approximately 10% of the total individual cell are then manually 
labeled as live or dead and fed into classification tree machine learning algorithm to generate 
a classification model. The rest of segmented cells are classified subsequently via the trained 
model.
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Supplemental Figure 7.  Mathematical model for disentangling cell division and death rates 
in cells subject to timelapse imaging. (A) Mathematical model describing the population dynam-
ics of dual-color Bcl11b cells transfected with cMyc and empty vector (EV). The model includes a 
population of live cells (X) with a birthrate kb and a death rate kd the generate the dead cell popula-
tion (Y). This population then has a permanent clearance rate of δ, indicating the process in which 
these cells' CFP degrade, and the dead cells become undetected. (B) Experimentally determined 
decay of dead cells' detectability in time-lapsed movies. Individual dead cells were followed until 
their CFP level completely diminished to the point of undetection by the segmentation algorithm, 
and the elapsed time was recorded. Thirty different individuals cells were recorded for each cMyc 
and empty vector populations. Data was fit to an exponential decay function P(τ) = e-δτ with δ = 
0.032 per frame for cMyc and δ = 0.030 per frame for EV population. (C) Representative time evolu-
tion of cell number in live and dead cell populations in one live-imaging experiment. Dual-color 
Bcl11b DN2 progenitors were transfected with cMyc and empty vector expressing retroviral vector. 
Transfected  Bcl11b YFP-/RFP+ cells were cultured on DL1 + retronectin coated plates and activa-
tion of YFP allele was monitored. Representative live and dead population dynamics of cMyc (red) 
and empty vector (black) populations from one movie were shown on the right. Data was fitted to 
population dynamics model described in (A).
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Supplemental Figure 8. Bcl11b activation timing is independent of cell division rate in 
OP9-DL1 culture system.  Bcl11bYFP+/RFP- DN2 progenitors were transduced with a CFP-ex-
pressing empty vector (A) or cMyc (B) retrovirus, sorted and cultured on OP9-DL1 stromal 
layers with 5 ng/mL IL-7 and Flt3L. RFP allele activation was analyzed 72 hours later via flow 
cytometry.  Plots show similar Bcl11b activation percentages in EV versus cMyc-transduced 
cells.  (C) CellTrace Violet profiles of cMyc (red) and empty vector (grey) population confirm 
faster division rate of cMyc overexpressing cells.
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Supplementary Figure 9. Developmental gene networks built from epigenetic timers 
can set temporal schedules that are independent of cell division. Cascade of activated 
genes each controlled by an polycomb-based timer (“E”) with a delay parameter dE (A) or a 
classical regulation timer with a delay parameter dT (D).  (B and E, top) Stochastic simulations 
in two cells (solid and dashed lines) with faster (once every 20 hrs, left) and slower (once every 
40 hrs, right) cell cycling rates. (C and F) Activation delay, Activation delay for each gene, 
defined as the time it takes for 85% of cells to reach its “ON” state in a given population, as a 
function of cell cycle period. 

dE

cell #1
cell #2

cell #1
cell #2

epigenetic
factor

dT

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752170doi: bioRxiv preprint 

https://doi.org/10.1101/752170
http://creativecommons.org/licenses/by/4.0/


A

β = 1
β = 2
β = 3
β = 4

0 20 40 60 80 100
-6

-4

-2

0

x105

Po
te

nt
ia

l E
ne

rg
y 

(V
)

Number of methylated 
nucleosomes

ΔEa

α = 20

C

x104

β = 1
β = 2
β = 3
β = 4

α = 20, F = 0.2

0 10 20 30 40 50
-10

-6

-2

2

Po
te

nt
ia

l E
ne

rg
y 

(V
)

Number of compacted 
nucleosomes

β = 1
β = 2
β = 3
β = 4

α = 20, F = 0.85

0 10 20 30 40 50
-5

-3

-1

x105

Po
te

nt
ia

l E
ne

rg
y

(V
)

Number of compacted 
nucleosomes

B

ΔEa

ΔEa

Supplementary Figure 10. Activation energy is robust to changes in methylation rate 
when interaction affinities between methylated and demethylated nucleosomes are 
similar. (A) Potential energy landscapes of methylation model (M). (B-C) Potential energy 
landscapes of the methylation-compaction model (MC). Parameter Fdictating the compaction 
affinity reduction in demethylated nucleosome in the MC model was set to 0.85 (B) and 0.1 
(C). Activation energy barrier (Ea) is defined as the potential energy (V) height between the 
local maximum and local minimum of the potential energy landscape. Each potential curve 
was plotted with demethylation parameter = 20 hrs-1 and methylation rate parameter as 
indicated by the curve’s color (See Mathematical Appendix). 
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Live Rate (K) 95% CI Death Rate (k d  )   hrs95% CI Division Rate (k b  = K + K d ) 95% CI

Trial 1 0.031 hrs-1 ± 0.001 0.034 hrs-1 ± 0.001 ± 0.001
Trial 2 0.043 hrs-1 ± 0.001 0.013 hrs-1 ± 0.000 0.057 hrs-1 ± 0.001
Trial 3 0.035 hrs-1 ± 0.001 ± 0.001 ± 0.001

Live Rate (K) 95% CI Death Rate (k d  ) 95% CI Division Rate (k b  = K + K d ) 95% CI

Trial 1  0.017 hrs-1 ± 0.001 ± 0.001  ± 0.001
Trial 2 0.014 hrs-1 ± 0.001 0.007 hrs-1 ± 0.001  ± 0.001
Trial 3 0.024 hrs-1 ± 0.001  ± 0.001  ± 0.001

0.027 hrs-1

0.065 hrs-1

0.069 hrs-1

0.028 hrs-1

0.019 hrs-1

0.045 hrs-1

0.027 hrs-1

0.043 hrs-1

Table 1. Tabulated doubling (K) and death (kd) rates calculated from data fitting of live 
and dead populations from three independent imaging experiments. Data was fitted to 
population dynamics model described in Statistical and Quantitative Analysis section.

cMyc

EV

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752170doi: bioRxiv preprint 

https://doi.org/10.1101/752170
http://creativecommons.org/licenses/by/4.0/


MATHEMATICAL	APPENDIX	

Part	I:	Modeling	of	the	polycomb-dependent	epigenetic	timer	

	

Introduction		

To	understand	the	epigenetic	timer	controlling	the	Bcl11b	activation,	we	used	mathematical	
modeling	to	analyze	a	series	of	candidate	biophysical	mechanisms.		In	this	modeling,	we	seek	to	
explain	the	central	emergent	properties	of	the	switch,	namely	(1)	its	irreversible,	all-or-none	
nature;	(2)	its	long,	stochastic	time	delay;	(3)	the	heritability	of	its	inactive	and	active	states	over	
DNA	replication;	and	(4)	its	tunability	with	respect	to	changes	in	H3K27me3	levels	and	modifying-
enzyme	activity.		

We	consider	two	candidate	mechanisms.		In	the	methylation	only	mechanism	(Model	I),	individual	
nucleosomes	within	in	a	one-dimensional	lattice	can	be	methylated	or	unmethylated.		Gene	
expression	is	assumed	to	occur	when	the	total	fraction	of	methylated	nucleosomes	in	this	lattice	
falls	below	a	threshold	value.		In	the	coupled	methylation	compaction	mechanism	(Model	II),	
individual	nucleosomes	are	also	methylated	and	demethylated;	in	addition,	these	nucleosomes	also	
interact	to	form	a	compacted	assembly	with	rates	dependent	on	the	H3K27me3	marking.		Unlike	
Model	I,	gene	expression	does	not	depend	directly	on	H3K27me3	levels,	but	on	the	compaction	
state	of	the	nucleosome	assembly,	which	in	turn	depends	on	methylation	states	of	individual	
nucleosomes.		Both	models	explicitly	model	DNA	replication	as	a	process	involving	random	
segregation	of	modified	nucleosomes	into	daughter	strands.		From	our	analysis,	we	find	that	the	
methylation-compaction	mechanism	alone	explains	the	observed	emergent	behaviors	of	the	Bcl11b	
epigenetic	timer,	and	thus	represents	our	favored	model	for	its	underlying	mechanism.	

	

Model	I:	The	Methylation	Only	Mechanism	(M)	
	
We	adopt	a	standard	framework	for	histone	modification	dynamics	previously	shown	to	generate	
multi-stability	(Angel et al., 2011; Dodd et al., 2007).	In	this	model,	individual	nucleosomes	reside	in	
a	one-dimensional	lattice,	and	exist	in	two	states,	a	methylated	state,	corresponding	to	an	H3K27	
tri-methylated	state,	and	demethylated	state.		We	do	not	describe	multiple	demethylated	states	in	
our	model	(i.e.	mono-methylation,	di-methylation,	and	an	un-methylated	state),	though	our	
theoretical	analysis,	together	with	previous	work	(Dodd	et	al.,	2007),	indicates	that	our	main	
conclusions	hold	in	more	complex	models	with	additional	states.		As	with	previous	models,	the	
methylation	rate	of	a	given	nucleosome	depends	on	the	number	and	distance	of	methylated	
nucleosomes	in	its	vicinity,	reflecting	observations	that	PRC2	can	bind	and	be	activated	by	
H3K27me3-marked	nucleosomes	to	write	H3K27me3	on	neighboring	nucleosomes.		Demethylation	
is	taken	to	occur	at	a	first	order	rate.		In	this	model,	we	assume	there	is	no	spontaneous	methylation	
in	the	absence	of	existing	methylated	nucleosomes;	thus,	once	all	nucleosomes	are	demethylated,	
no	more	remethylation	is	possible	and	the	system	enters	an	irreversibly	activated	state.	
	
Methylation.		We	explicitly	model	mark	binding	and	cooperative	activities	of	the	PRC2	complex,	as	
well	as	the	methylation	state	of	each	individual	nucleosome.	Let	!" 	be	the	methylation	state	of	the	
ith	nucleosome.	!" = 0	denotes	the	de-methylated	state	while	!" = 1	denotes	the	methylated	state.	
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Let	'′	and	'	denote	the	transitions	between	the	methylation	state	and	demethylation	state,	
respectively.	The	model	is	set	up	as	follows:			

For	i ∈ {1, . . 	, 100}:	
'′: !"[0]	 → !"[1]	
': !"[1]	 → !"[0]	

With:	

34('6) = 	89: ∙ (1 − !") ∙ ∑ !> ∙ ?
@
ABC
D
E
F

>G" 												(1)	 	
34(') = 	H9II ∙ !"																																																								(2)	 	 	 	 	

The	parameter	L	can	be	interpreted	as	the	‘reach’	of	the	PRC2	complex	to	neighboring	nucleosomes.	
Large	value	of	L	indicates	a	long	length	scale	for	interaction	with	nearby	nucleosomes.	This	effect	is	
set	to	have	a	gaussian	shape	so	that	nucleosome	closest	to	the	anchored	PRC2	complex	has	the	
highest	methylation	rate.	Similar	distributions	of	activity	have	been	reported	for	artificially	
tethered	enzymes	(Hass et al., 2015),	as	well	as	for	histone	modifications	around	transcription	factor	
binding	sites	(Heinz et al., 2010).	Moreover,	we	assume	periodic	boundary	conditions	for	the	one-
dimensional	lattice,	though	similar	results	were	observed	with	other	non-repeating	boundary	
conditions	(not	shown).	
	
Cell	division.		To	model	the	transmission	of	histone	marks	across	cell	divisions,	we	assume	that	
methylated	nucleosomes	segregate	randomly	to	the	two	daughter	DNA	strands	upon	replication;	
thus,	each	nucleosome	position	has	a	probability	p	=	0.5	of	inheriting	a	nucleosome	that	is	
methylated.		Experimental	evidence	suggests	that	approximately	50%	of	total	global	H3K27me3	
partitioning	of	parental	marks	to	the	subsequent	generations	(Alabert et al., 2015).		

From	stochastic	simulations	of	this	model,	we	find	that	this	methylation	only	mechanism	can	
generate	a	slow,	heritable,	and	stochastic	gene	switch	(see	Results	and	Fig.	4);	however,	switching	
times	are	hypersensitive	to	mild	changes	to	methylation	and	de-methylation	rates,	and	therefore	
inconsistent	with	experimental	results.			To	understand	the	origins	of	this	hypersensitivity,	we	re-
formulate	this	model	using	a	chemical	kinetics	framework	amenable	to	analysis	using	transition	
state	theory.		By	considering	the	limit	where	K	 → 	∞,	such	that	each	H3K27me3-bound	PRC2	
methylates	all	other	un-methylated	nucleosomes	with	the	same	reaction	rate.		In	this	limit,	given	N	
as	number	of	unmethylated	nucleosome,	we	can	completely	describe	the	state	of	the	system	by	the	
number	of	methylated	nucleosomes	N’.	As	the	rates	of	adding	or	subtracting	one	methylated	
nucleosome	from	the	system	would	reduce	to	become	a	function	of	N’,	independent	of	spatial	
arrangement:	

	

where		

MN = 8O6(OP − O6)																								(3)	

MR = 	HO6																																											(4)	
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and	OPis	the	total	number	of	nucleosomes.		The	master	equation	describing	the	time	evolution	of	
this	system	is	given	by:	
	

T!U
TV

= −[MN(W) +	MR(W)] ∙ !U + MN(W − 1)!UYN + MR(W + 1)!UZN														(5)	

where	!Uis	the	probability	of	having	N’	methylated	nucleosomes.		When	the	total	number	of	
nucleosomes	is	large,	we	can	approximate	the	number	of	methylated	nucleosomes	to	be	a	
continuous	variable	\.		In	this	limit,	we	can	rewrite	the	master	equation	as	Fokker-Planck	equation:		

T!(\, V)

TV
=
T

T\
[](\)!(\)] +

1

2
∙
TR

T\R
[^(\)!(\)]																																															(6)	

where,	we	have	ignored	third	and	higher	order	terms,	and	where:	

](\) = MN(\) − MR(\)																											(7)	

^(\) = 	MN(\) + MR(\)																									(8)	

Given	the	velocity	and	diffusion	constants	for	this	system	as	a	function	of	methylated	nucleosome	
number,		the	switching	of	the	system	is	essentially	given	by	the	first-passage	time	of	the	system	to	
reach	the	absorbing	state	x	=	0.		However,	a	closed-form	solution	of	this	first-passage	time	
distribution	for	the	given	rate	functions	is	hard	to	obtain;	Nevertheless,	we	note	that	our	system	
operates	in	the	regime	where	the	timescales	of	individual	methylation	and	demethylation	reactions	
are	much	shorter	than	switching	times	for	this	system.		In	this	regime,	switching	times	are	well	
described	by	the	Kramer’s	theory	for	escape	of	a	Brownian	particle	over	a	potential	well	(Kramers,	
1940),	and	would	thus	approximately	scale	exponentially	with	the	height	of	a	potential	energy	
barrier.		We	can	obtain	the	functional	form	of	this	potential	barrier	by	relating	it	to	the	velocity	
function:	

−
bc

b\
= ](\)																																																							(9)		

From	equations	(3), (4),	and	(7),	we	can	then	integrate	the	system	to	explicitly	derive	the	potential	
function:	

c(\) = 	
8

3
\e +

H − 8OP
2

\R +f														(10)	

Where	f	is	an	arbitrary	number.	A	plot	of	c(\)	is	demonstrated	in	Fig.	S10A.	The	energy	landscape	
possesses	a	local	minimum	at	a	nonzero	value	of	\,	indicating	the	metastable	state.	The	landscape	
has	a	local	maximum	near	\	 = 	0.		State	switching	occurs	when	the	system	reaches	the	absorbing	
state	x	=	0.		Thus,	we	define	gh	as	the	height	in	c(\)	between	the	local	maxima	and	the	metastable	
state	minima.		When	we	plotted	this	potential	energy	for	different	values	of	b (Fig.	S10A),	we	found	
that	moderate	changes	in	b	led	to	significant	changes	in	potential	well	height.		As	switching	rates	
scale	roughly	exponentially	with	well	height,	we	would	expect	this	system	would	show	extreme	
sensitivity	in	switching	times	with	respect	to	changes	in	methylation	rate	changes.	

	

Model	II:	The	Methylation	Compaction	Mechanism	(MC)	
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As	the	methylation	only	mechanism	above	does	not	fully	explain	the	tunable	characteristics	of	the	
Bcl11b	activation	timer,	we	considered	a	second	model,	where	histone	methylation	is	coupled	to	
chromatin	compaction.	Indeed,	H3K27me3	has	been	suggested	to	meditate	a	condensed,	
polymerase-inaccessible	chromatin	conformation.	For	instance,	the	polycomb	repressive	complex	1	
(PRC1),	which	binds	H3K27me3	and	is	important	for	compaction	and	gene	silencing,	oligomerizes	
through	contacts	on	its	Bmi1	or	Phc	subunits	(Eskeland et al., 2010; Gray et al., 2016; Isono et al., 
2013; Kahn et al., 2016),	and	may	also	undergo	weak,	multivalent	interactions	on	Cbx2	that	result	in	
liquid-liquid	phase	separation	and	gene	silencing	(Howard, 2001; Larson et al., 2017).		This	model	
consists	of	two	main	modules:	(1)	a	H3K27	methylation	and	demethylation	mechanism,	and	(2)	a	
chromatin	decompaction	mechanism	linked	to	H3K27me3	modifications,	that	ultimately	underlies	
gene	switching.		In	our	description	of	compaction	dynamics,	we	do	not	explicitly	model	the	spatial	
extent	of	the	compacted	assembly;	instead,	we	adopt	a	mean-field	approach	that	is	established	in	
models	of	cytoskeletal	polymer	dynamics	(Erickson and Pantaloni, 1981; Jackson and Berkowitz, 1980).		
With	this	approach,	the	numbers	of	un-methylated	and	methylated	nucleosomes	within	a	
compacted	assembly	are	given	by	C	and	C’	respectively,	along	with	those	outside	the	assembly	are	
given	by	D	and	D’	respectively.		As	a	result,	the	dynamical	system	is	described	by	four	states:	1)	
Compacted-Methylated	2)	Compacted-Demethylated	3)	Decompacted-Methylated	and	4)	
Compacted-Demethylated:	

	
Here,	C’,	C,	D’,	and	D	denote	the	number	of	nucleosomes	in	these	states,	respectively.	K1-8	denote	the	
transition	rates	between	them,	which	will	be	defined	below.		Gene	activation	is	defined	to	be	the	
system	state	where	all	nucleosomes	exist	in	a	decompacted	state.	The	two	mechanisms	are	
intertwined	so	that	methylation	states	affect	compaction	rates	and	vice	versa.			Detailed	
descriptions	of	the	rates	are	given	below:	
	

Methylation.		In	this	model,	un-methylated	nucleosomes	convert	into	a	methylated	state	with	a	first-
order	rate	constant	b.		We	assume	this	rate	constant	is	the	same	regardless	of	whether	nucleosomes	
are	inside	or	outside	the	compacted	assembly.		Methylated	nucleosomes	convert	into	a	de-
methylated	state	with	a	rate	constant	of	H if	the	nucleosome	is	outside	the	assembly	(D’),	or	a	lower	
rate	constant	of	iH,	(i < 1)	if	the	nucleosome	is	inside	the	assembly.		This	lower	rate	constant	
assumes	that	the	demethylation	reaction	is	less	efficient	on	compacted	nucleosomes,	possibly	due	
to	competition	for	demethylase	binding	by	compaction	proteins,	or	due	to	the	exclusion	of	
demethylases	through	steric	occlusion	or	phase	separation.		The	rates	describing	these	reactions	on	
the	four	nucleosomal	species	are	given	by:	
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Where:	

Mk = iH	l6																(11)	 	
Mm = 8	l																				(12)		 	
	
Mn = H	^6																		(13)	 	
Mo = 8	^6																		(14)	 	

	
H3K27	methylation	and	demethylation	rates	are	based	on	the	catalytic	activity	of	the	EZH2	subunit	
the	PRC2	complex	and	Kdm6a/b	proteins,	respectively.	Specifically,	these	rate	constants	were	
chosen	to	represent	the	conversion	between	H3K27me2	and	H3K27me3.	For	simplicity,	we	do	not	
model	the	H3K27me-binding	dependent	H3K27	methylation	activity	previously	described	
(Margueron et al., 2009),	though	we	show	below	that	explicit	modeling	of	this	cooperative	effect	
would	not	significantly	alter	the	conclusion	of	the	model.	JMJD3	and	UTX	demethylate	H3K27me3	
(Agger et al., 2007),	and	to	our	knowledge	no	cooperative	activity	of	these	complexes	have	not	been	
reported.	

	
Compaction.		We	adopt	a	mean-field	description	of	the	compacted	nucleosomal	assembly,	following	
kinetic	models	of	multi-stranded	cytoskeletal	polymer	assembly(Howard, 2001).	This	description	
assumes	that	the	nucleosome	assembly	is	a	roughly	spherical	structure	held	together	by	weak,	
multivalent	interactions	between	individual	nucleosomes,	and	can	add	or	lose	individual	
nucleosomes	at	its	surface.		Both	methylated	and	demethylated	nucleosomes	can	incorporate	into	
the	assembly;	thus	the	assembly	has	a	total	size	of:	
	

Op = l + l6																			(15)	
	
where		l	and	l′	represent	the	number	of	methylated	and	demethylated	nucleosomes	in	the	
assembly,	respectively.		Unlike	other	polymer	models	(MacPherson	et	al.,	2018;	Nuebler	et	al.,	
2018)	,	we	do	not	explicitly	model	physical	connections	between	nucleosomes	due	to	DNA;	such	
connections	would	be	expected	to	result	in	a	spatial	dependence	of	reaction	rates	within	this	
chromatin	domain;	however,	as	the	entire	domain	(100	nucleosomes)	has	a	length	scale	greater	
than	the	persistence	length	of	chromatin	(~15-20	nucleosomes,	from	(Arbona et al., 2017),	and	
would	thus	enable	free	interactions	between	non-neighboring	nucleosomes,	we	would	expect	the	
essential	properties	of	our	minimal	model	would	also	hold	in	a	more	realistic	physical	model	that	
incorporates	nucleosome	connectedness.		
	
The	addition	and	removal	of	methylated	and	demethylated	nucleosomes	from	the	assembly	is	
described	by	the	following	rate	equations:	

	
Where:	
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MN = 		
q

rs
t
u
	l6																								(16)	 		 	

MR = 		v	lP	
F
u	^6																			(17)	 	 	

	
Me =

q

rs
t
u
	l																												(18)	 	 	

Mw = x	v	lP
F
u	^																				(19)	 		 	

		 	 	 	 if	lP > 	l:	 		
	

MN =
q

rs
t
u
	l6′																										(20)			 	 	

MR = 0																																				(21)												 	 	
	
Me =

q

rs
t
u
	l																												(22)	 	 	 	

Mw = 0																																				(23)	 		 	
if	lP < 	l:	 		

	
Here,	methylated	nucleosomes	incorporate	into	the	compacted	assembly	with	a	rate	constant	v;	
however,	importantly,	demethylated	nucleosomes	can	also	incorporate	into	the	assembly	with	a	
reduced	rate	constant	xv	(where	x < 1).		The	effect	of	methylation	state	on	compaction	rate	is	
experimentally	observed	in	instances	such	as	recruitment	of	PRC1	complex	by	H3K27me3	marks	
(Kahn et al., 2016).	The	complex’s	subunits	such	as	Ring1B	and	Phc-1	have	been	shown	to	be	
important	in	chromatin	compaction	and	gene	silencing	(Eskeland et al., 2010; Francis et al., 2004; 
Isono et al., 2013).	However,	as	PRC1	recruitment	is	not	the	only	compaction	mechanism	in	vivo,	and	
because	PRC1	can	bind	to	nucleosomes	independently	of	H3K27me3	(Francis et al., 2004),	this	
model	treats	methylation	as	only	a	part,	but	not	solely	responsible	for	chromatin	condensation.		In	
choosing	rate	constants;	we	assume	that	compaction	and	decompaction	is	faster	than	histone	
methylation	and	demethylation	rates,	though	timescales	for	both	processes	are	assumed	to	be	
much	faster	than	that	for	cell	division.		Fast	compaction	kinetics	relative	of	modification	is	
supported	by	in	vitro	studies	of	H3K27me3	methylation	and	demethylation	kinetics,	as	well	as	in	
vitro	DNA	compaction	by	HP1α	and	chromatin	condensation	experiments	(Kristensen et al., 2011; 
Ladoux et al., 2000; Larson et al., 2017; Sneeringer et al., 2010).		
	

The	reaction	rates	for	nucleosome	incorporation	(loss)	scales	with	assembly	size	as	~lP	
F
u		

(~lP	
Y
t
u),	as	these	reactions	only	take	place	on	the	surface	of	the	assembly.	Assuming	a	compacted	

nucleosome	complex	is	spherical,	the	compaction	rate	would	thus	be	proportional	to	the	surface	
area.	Likewise,	the	decompaction	rate	is	also	proportional	to	the	surface	area	but	reversely	
proportional	to	the	total	number	compacted	nucleosome	in	the	complex.		
	
In	this	description,	there	is	a	critical	threshold	number	of	compacted	nucleosomes,	l: ,	below	which	
the		complex	is	thermodynamically	unstable.		The	existence	of	a	minimal	nucleus	size	is	a	
fundamental	property	of	multivalent	polymers,	whereby	addition	of	a	new	subunit	to	an	already	
formed	complex	is	thermodynamically	more	favorable	than	formation	of	the	initial	nucleus	itself	
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(Erickson and Pantaloni, 1981; Jackson and Berkowitz, 1980).		Below	this	critical	threshold	l: ,	the	
compacted	assembly	disintegrates,	and	gene	turns	on.	
	
Cell	division.		Heritability	of	histone	marks	and	chromatin	states	are	crucial	in	maintaining	gene	
expression	states	across	cellular	generations.		As	with	the	methylation	only	model	above,	we	
assume	that	methylated	nucleosomes	partition	randomly	between	two	daughter	strands	upon	
replication;	the	total	number	of	nucleated	nucleosomes	is	then	obtained	by	sampling	from	binomial	
distribution	with	p	=	0.5	and	N	equal	to	the	total	number	of	nucleosomes	at	the	point	of	DNA	
replication.		Furthermore,	we	assume	that	compacted	nucleosomes	persist	within	a	compacted	
assembly	reside	upon	passage	of	DNA	polymerase.		This	model	feature	assumes	that	new	
nucleosomes	rapidly	incorporate	into	a	compacted	assembly	after	passage	of	DNA	polymerase;	
however,	in	the	subsequent	version	of	this	model	below,	we	will	relax	this	assumption	to	allow	for	
disruption	of	compaction	state	by	DNA	polymerase	passage	(see	below).	
	
From	Monte-Carlo	simulations,	we	found	that	this	methylation	compaction	model	can	recapitulate	
all	the	essential	emergent	properties	of	the	Bcl11b	activation	switch.		Specifically,	this	model	shows	
the	following	dynamic	properties:	
	
1) Irreversible	all-or-none	switching	to	an	H3K27me3-low,	de-compacted	state.		From	simulations,	

we	found	that	the	system	adopts	a	stable	compacted	assembly	of	nucleosomes	with	higher	
H3K27me3	marking	density,	but	switches	abruptly	to	a	de-compacted	state	with	lower	
H3K72me3	levels.		As	there	is	no	re-nucleation	of	the	compacted	assembly	after	its	elimination,	
this	de-compacted	state	represents	an	absorbing,	permanently	active	expressing	state.		The	
abrupt	decrease	in	the	H3K27me3	levels	arises	because	compacted	nucleosomes	demethylate	
at	a	lower	rate;	thus,	upon	total	decompaction,	the	percent	of	methylated	nucleosomes	lowers	
to	a	new	steady	state	level.	
	

2) Noise	induced	gene	activation.	Transition	to	the	completely	decompacted	state,	or	gene	
activated	state,	occurs	via	stochastic	deviation	of	the	system	from	its	compaction	meta-stable	
state.	Activation	is	triggered	when	the	system	reaches	below	the	threshold	number	of	
compacted	nucleosomes.	
	

3) Tunable	activation	rates.		The	model	is	able	to	generate	a	gene	switch	with	slow,	tunable	
activation	rate.	Activation	delays	can	span	many	days,	and	can	be	finely	adjusted	by	modifying	
methylation	and	demethylation	rates,	and/or	changing	H3K27me3	levels	at	the	gene	locus	(Fig.	
4C,G,H),	as	experimentally	observed	(Fig.	3	).	This	ability	to	tune	activation	rates	by	changing	
H3K27me3	densities	uniquely	distinguishes	the	methylation	compaction	model	from	the	
methylation	only	model	above,	and	thus	represents	a	more	plausible	model	for	describing	the	
activation	mechanism	of	this	switch.		Why	is	this	model	uniquely	tunable?		In	this	model,	locus	
de-compaction	and	gene	activation	are	determined	by	a	dynamic	balance	between	rates	of	
nucleosome	entry	or	exit	from	a	compacted	assembly.		The	system	still	be	sensitive	to	changes	
in	these	rates;	however,	as	demethylated	nucleosomes	can	still	enter	and	exit	a	compacted	
assembly	at	a	reduced	rate,	changes	in	the	fraction	of	demethylated	nucleosomes	would	cause	a	
fine	change	in	these	entry	or	exit	rates,	and	thus	represent	a	plausible	tuning	parameter	for	
controlling	activation	timing.	
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4) Division-independent	timing	control.		When	the	cell	cycle	length	is	changed	in	this	model,	
activation	kinetics	remain	largely	unaffected,	implying	that	the	methylation-compaction	
mechanism	functions	as	a	cell	division-independent	delay	timer.		These	conclusions	hold,	as	
long	as	the	dynamic	methylation	and	compaction	mechanisms	operate	on	timescales	much	
faster	than	the	cell	cycle	length.		
	

Why	is	the	methylation	compaction	tunable?		To	answer	this	question,	we	adopt	an	approach,	
where	we	reduce	this	problem	using	the	Fokker-Planck	approximation,	as	utilized	to	analyze	the	
Methylation	only	mechanism	(Fig.	S10A).		The	full	system	with	both	methylation	and	compaction	
reactions	would	correspond	to	diffusive	motion	of	a	particle	in	a	three-dimensional	state	space	
describing	both	chemical	and	physical	states	of	nucleosomes.		However,	to	simplify	this	problem	to	
gain	intuition,	we	will	first	take	the	methylation	and	demethylation	reactions	to	be	fast	compared	to	
the	compaction	and	de-compaction	reactions,	such	that	the	system	can	be	described	a	single	
parameter	NC,	corresponding	to	the	total	number	of	compacted	nucleosomes.		At	any	given	time,	the	
number	of	methylated	and	demethylated	nucleosomes	in	the	compacted	state	is	at	quasi-steady	
state,	with	values:	

l6 =
8

8 + iH
∙ lP																				(24)	

and	

l =
iH

8 + iH
∙ lP																						(25)	

Similarly,	assuming	quasi	steady-state,	the	number	of	methylated	and	demethylated	nucleosomes	
in	the	uncompacted	state	is	given	by:	

	

^6 =
8

8 + H
∙ ^P																						(26)	

and	

^ =
H

8 + H
∙ ^P																							(27)	

Let	OP = lP + ^P .	With	this	approximation,	the	averaged	rate	of	adding	or	removing	a	nucleosome	
from	the	compacted	assembly	is	then	given	by:	

Mh{{ = MR + Mw = vlP

R
e 8

8 + H
∙ ^P + x ∙ vlP

R
e H

8 + H
∙ ^P = |

8

H
+ x} vlP

R
e ∙
OP − lP

1 +
8
H

						(28)	

M~�ÄÅÇ = MN + Me =
É

lP
N
e

	l6 +
É

lP
N
e

	l = ÉlP

R
e																																																																										(29)	
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Let	the	total	number	of	compacted	nucleosomes	lP 	be	\.	By	writing	down	the	master	equation	for	
this	system,	and	by	further	applying	the	Fokker-Planck	approximation,	as	performed	in	(5)	and	(6)	
we	then	have:	

T!(\, V)

TV
=
T

T\
[](\)!(\)] +

1

2
∙
TR

T\R
[^(\)!(\)]																																																																				(30)	

where:	

](\) = É\
R
e − |

8

H
+ x}v\

R
e ∙
OP − \

1 +
8
H

																																																																																								(31)	

^(\) = É\
R
e + |

8

H
+ x}v\

R
e ∙
OP − \

1 +
8
H

																																																																																							(33)		

As	before,	we	define	a	potential	energy	for	this	system:	

−
bc

b\
= ](\)																																			(34)	

The	analytical	solution	for	the	potential	energy	c(\)	for	the	methylation	compaction	model	is:	

c(\) =
3

5
ÑÉ −

O

1 +
8
H

|
8

H
+ x} vÖ \

k
e +

3

8
∙

1

1 +
8
H

|
8

H
+ x} v\

o
e +f																																(35)	

	

A	plot	of	c(\)	is	shown	in	Fig.	S10B-C.	We	found	that	increasing	methylation	rate	results	in	a	much	
more	attenuated	increase	in	activation	energy	gh	with	the	methylation	compaction	model.	This	
confirms	that	the	improved	switching	rate	tunability	in	the	MC	model	stems	from	the	decreased	
sensitivity	to	changes	in	activation	barrier	height	by	methylation	rate.		This	result	explains	why	this	
system	shows	significantly	more	graded	changes	in	switching	times	when	methylation	rates	are	
changed.	

This	tunability	of	switching	times	with	respect	to	histone	methylation	depends	on	the	relative	
association	strengths	of	demethylated	and	methylated	nucleosomes	for	each	other	in	forming	a	
compacted	assembly.		In	our	initial	simulations,	demethylated	nucleosomes	show	only	a	moderate	
decrease	in	affinity	for	other	compacted	nucleosomes	relative	to	methylated	nucleosome	(F	=	0.85).		
However,	when	the	binding	strength	of	a	demethylated	nucleosome	is	much	weaker	than	that	of	a	
methylated	nucleosome	(F	=	0.2),	we	find	changes	in	potential	well	heights	become	more	
significant,	indicating	that	the	system	loses	its	tunability	with	respect	to	methylation	changes	(see	
Fig.	S10B-C).	This	prediction,	that	demethylated	nucleosomes	maintain	comparable	strengths	of	
self-association	for	compacted	assembly	formation,	agrees	well	with	evidence	that	unmethylated	
nucleosomes	aggregate	through	a	variety	of	H3K27me-independent	mechanisms	(Larson	et	al.,	
2017;	Strom	et	al.,	2017).	

	

Model	II.1:		The	Methylation	Compaction	Mechanism,	with	Compaction	Disrupted	by	Division	
(Fig.	S2)	
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This	version	of	the	model	includes	modified	cellular	division	process	in	which	upon	replication,	
50%	of	methylated	nucleosomes	become	demethylated	and	10%	of	compacted	nucleosomes	
become	uncompacted.	This	exit	of	nucleosomes	from	a	compacted	assembly	due	to	DNA	replication	
reflects	the	possibility	that	as	the	DNA	replication	machinery	enters	the	compacted	nucleosomal	
structure,	it	creates	decompaction	‘defects’	in	the	condensed	locus	because	nucleosomes	near	the	
replication	forks	are	replaced.	However,	we	reason	that	such	defect	would	have	a	small	effect	to	the	
overall	stability	of	the	structure	because,	at	any	given	time,	the	site	of	replication	would	only	take	
up	a	small	region	of	the	entire	compacted	domain.	

In	order	to	simulate	both	changes	in	methylation	and	compaction	at	the	point	of	DNA	replication,	
we	must	describe	probabilistically	how	each	of	the	four	nucleosomal	species	are	affected:	1)	The	
Compacted-Methylated	species	(C’);	2)	the	Compacted-Demethylated	species	(C);	3)	the	
Decompacted-Methylated	species	(D’);	and	4)	the	Compacted-Demethylated	species	(D).	Since	
methylation	state	is	reduced	by	50%,	approximately	half	of	Decompacted-Methylated	species	is	
transferred	to	Decompacted-Demethylated	pool.	Similarly,	on	average,	10%	of	the	Compacted-
Demethylated	species	are	transferred	to	Decompacted-Demethylated	pool	due	to	DNA	replication.	
Compacted-Methylated	species	have	50%	chance	to	demethylate	and	10%	chance	to	decompact.	
Assuming	these	are	two	independent	processes,	this	species	has	5%	chance	to	convert	into	
Decompacted-Demethylated	or	Decompacted-Methylated	and	45%	chance	to	become	Compacted-
Demethylated.	These	observations	are	implemented	as	follows:	

Let	vector	Ü = [áN, áR, áe, … , áU]	be	the	result	from	sampling	a	multinomial	distribution	with	
probabilities	âN, âR, âe, … , âU,	where	âN + âR + âe +⋯+ âU = 1.		Let	á"(O|âN, âR, âe, … , âU)	be	the	
åçé	element	of	Ü	and	O	be	the	sample	size.	Let	è6, è, b6, b	be	the	number	of	compacted-methylated,	
compacted-unmethylated,	decompacted-methylated,	and	decompacted-unmethylated	nucleosomes,	
respectively	immediately	preceding	the	cellular	division	event.	Partitioning	of	each	species	occurs	
as	follows:	

	
l6 = áw(è6|0.45,0.05,0.05,0.45)																																																																														(36)	
	
^6 = áN(b6|0.5,0.5) + áR(è6|0.45,0.05,0.05,0.45)																																														(37)	
	
l = áR(è|0.1,0.9) + áN(è6|0.45,0.05,0.05,0.45)																																																		(38)	
	
^ = b + áR(b6|0.5,0.5) + áN(è|0.1,0.9) + áe(è6|0.45,0.05,0.05,0.45)									(39)	

	
From	stochastic	simulations	(Fig.	S2),	we	find	that	this	modified	methylation	compaction	model	
shows	similar	dynamic	characteristics	compared	to	the	original	methylation	compaction	model	
(Model	II):		it	shows	stochastic,	all-or-none	switching	between	inactive	and	active	states;	has	an	
activation	delay	that	can	be	tuned	by	changing	H3K27me	levels	and	enzyme	activity;	and	shows	
division-independence	in	its	activation	time	delay.		Thus,	we	conclude	that	the	essential	features	of	
this	model	hold,	even	upon	mild	disruption	of	the	inactive,	compacted	assembly	by	passage	of	DNA	
polymerase.	

	
	
Model	II.2:	The	Methylation	Compaction	Mechanism	with	Cooperative	Methylation	(Fig.	S3)	
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PRC2	is	known	to	be	allosterically	activated	by	H3K27me3	binding	via	its	EED	subunit	(Margueron 
et al., 2009).	Here,	we	consider	this	cooperative	property	of	PRC2	by	specifying	that	methylation	
rate	increases	with	the	total	number	of	methylated	nucleosomes	in	the	model	system.	This	
assumption	is	likely	valid	when	the	number	of	nucleosomes	in	the	condensed	structure	is	small,	
and	all	the	nucleosomes	are	more	or	less	in	close	proximity	with	each	other.	To	simulate	this,	we	
modified	the	methylation	rates	êm	and	êo	so	that	their	magnitude	has	a	spontaneous	term	ë	and	the	
cooperative	term	8	that	is	proportional	to	the	total	number	of	methylated	species	in	the	simulation:	
	

	 	
	
	

Mm
∗ = [ë + 	8(l6 + ^6)]l																	(40)	

	
Mo

∗ = [ë + 	8(l6 + ^6)]^																	(41)		
	

From	stochastic	simulations	(Fig.	S3),	we	find	that	this	system	is	also	capable	of	generating	long,	
stochastic	delays	in	all-or-none	switching	in	locus	compaction	state,	and	that	switching	times	can	be	
finely	tuned	by	changing	H3K27me3	levels,	as	with	our	simpler	methylation	compaction	model	
(Model	II).			We	conclude	that	incorporation	of	a	cooperative	H3K27me3	methylation	rate	in	our	
methylation	compaction	model	does	not	alter	its	main	conclusions.	

	

Model	II.3:	The	Methylation	Compaction	Mechanism	with	Permanently	Demethylated	
Nucleosomes	(Fig.	S4)	
	
To	simulate	the	potential	effect	of	transcription	factors	on	the	activation	timing	in	the	methylation	
compaction	model.	We	first	consider	a	scenario	where	the	transcription	factors	disable	a	small	
fraction	of	nucleosomes	in	the	assembly	from	compacting	or	methylating,	effectively	removing	
them	from	the	system.	Our	simulations	(Fig.	S4A,B)	suggests	that	activation	timing	is	faster	with	
increasing	number	of	removed	nucleosome	(Nr	).	Therefore,	timing	modulation	can	be	achieved	this	
way	although	activation	time	is	mildly	sensitive	to	changes	in	Nr.	
	
We	then	consider	an	alternative	mechanism	where	the	transcription	factors	act	on	the	system	by	
binding	to	a	small	number	of	nucleosomes	and	preventing	it	from	being	methylated	but	still	
allowing	compaction.	To	formulate	this	effect,	we	define	a	sub	population	of	nucleosomes	in	the	
system	that	can	undergo	compaction	lÅ	and	decompaction	^Å	but	cannot	be	methylated:	

	

	
	

Where:	
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Mì =
É

lP
N
e

	lÅ																																												(42)	

MNî = x	v	lP
R
e	^Å																																			(43)	

	
																																																															if	lP > 	l:	
	

Mì =
É

lP
N
e

	lÅ																																											(44)	

MNî = 0																																																				(45)	
	
																																																															if	lP < 	l:	
	
lP = lÅ + l + l6																																		(46)	
OP = O + OÄ																																									(47)	 and	
OÄ = lÅ + ^Å				(48)				

	

Simulations	of	this	system	(Fig.	S4C)	reveals	that	activation	timing	is	faster	with	increasing	number	
of	permanently	demethylated	nucleosomes.	Additionally,	the	changes	in	timing	is	not	as	drastic	as	
completely	removing	nucleosome	from	the	system	altogether.	These	results	present	potential	
mechanisms	through	which	transcription	factors	could	be	employed	to	manipulate	activation	
timing	in	polycomb	regulated	gene	loci.		
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Part	II:	Modeling	a	regulatory	gene	circuit	composed	of	epigenetic	timers	

Introduction	

During	development,	progenitors	maintain	autonomous	temporal	schedules	for	differentiation	to	
ensure	proper	cell	expansion.		These	temporal	schedules	are	precisely	specified	within	an	organism	
but	can	be	scaled	across	species	to	vary	organism	sizes	while	maintaining	basic	tissue	proportions.		
Here,	we	ask	whether	regulatory	gene	circuits	built	from	individual	timed	epigenetic	switches	can	
implement	temporal	schedules	for	differentiation	that	are	robustly	defined,	yet	flexibly	scalable,	
such	the	expression	timing	between	each	node	can	be	modulated	over	a	large	dynamic	range.		We	
consider	a	simple	regulatory	circuit	consisting	of	a	series	of	genes	activating	in	sequence,	where	
each	gene	is	turned	on	by	an	epigenetic	timer,	and	in	turn	activates	an	epigenetic	timer	of	a	
downstream	gene.	As	a	performance	comparison,	we	also	consider	a	second	gene	network,	where	
genes	also	activate	each	other	in	sequence,	but	do	so	through	classical	gene	regulation	functions,	
where	transcription	rates	are	functions	of	the	levels	of	upstream	regulator	(Estrada	et	al.,	2016;	
Phillips,	2015).	We	model	these	networks	at	the	single-cell	level,	performing	Monte-Carlo	
simulations	of	network	dynamics	in	single	cells,	were	we	explicitly	model	cell	division.		To	analyze	
variability	in	the	dynamics	of	these	networks,	both	in	single	cells	and	in	cohorts	of	developing	cells,	
we	perform	this	analysis	over	multiple	cohorts	of	developing	cell	populations.		

	

Model	I:	Regulatory	network	of	epigenetic	timer	

In	our	model,	each	cell	contains	a	simple	sequential	gene	network,	where	an	initiating	factor	ïî	
initiates	the	sequential	activation	of	a	series	of	genes	ïN, ïR, ïe,	and	ïw.		In	this	cascade,	an	
upstream	transcription	factor	ï"YN	activates	a	epigenetic	timer	for	a	single	promoter	3" 	(å	 =
	1, … , 4),	which	sets	the	activation	time	for	synthesis	of	its	product	ï" .			.		The	control	of	activation	
follows	this	scheme:	

	

For	simplicity,	we	assume	that	each	cell	has	one	copy	of	each	gene,	such	that	3" 	is	a	random	variable	
with	two	possible	states	(0	and	1).		However,	we	expect	our	main	conclusions	to	hold	when	
multiple	gene	copies	are	present.		ï" 	is	then	a	random	variable	that	represents	the	copy	number	of	
the	product	of	gene	i	in	the	cell.			

Take	M" 	to	be	the	rate	constant	for	activation	of	promoter	i.		We	take	M" 	to	be	hyperbolic	function	of	
the	concentration	of	upstream	regulatory	factor,	such	that:	

M" =
ê ∙

ï"YN
c(V)

ï"YN
c(V) + êç

																											(49)	

where		K	denotes	the	maximal	rate	of	promoter	activation,	êç	is	the	concentration	of	transcription	
factor	required	for	half-maximal	promoter	activation	rate,	and	c(V)	is	the	volume	of	the	cell,	which	
varies	as	a	function	of	the	cell	cycle.		Biologically,	ï" 	could	promote	activation	through	a	variety	of	
possible	mechanisms,	including	recruitment	of	H3K27me3	demethylases,	inhibition	of	PRC2	
methyltransferase	activity,	or	any	other	mechanisms	that	would	lead	to	a	local	disruption	of	
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H3K72me3	distributions	in	the	vicinity	of	transcription	factor	binding.		In	accordance	with	the	
observed	properties	of	the	Bcl11b	epigenetic	timer,	we	take	the	maximal	activation	rate	to	be	less	
than	that	of	cell	division,	and	also	take	this	rate	to	be	independent	of	the	rate	of	cell	division	itself,	
which	we	independently	modulate	below.		

In	addition	to	being	modulated	by	specific	transcription	factors,	H3K27me3	levels	at	gene	loci	–	
and,	by	extension,	gene	activation	rates	–	can	also	be	tuned	by	global	activities	of	H3K27me3-
modifying	enzymes.		Specifically,	cells	with	lower	H3K27me3	methylation	activity	will	have	gene	
loci	with	a	higher	maximal	activation	rate,	due	to	low	basal	repressive	mark	level.		We	do	not	
explicitly	model	levels	of	H3K27	modifying	enzyme	in	the	cell,	but	model	effects	of	their	change	
through	a	coordinated	change	in	the	maximal	rate	of	gene	activation	ê.		We	take	the	value	of	ê	to	
be	the	same	for	all	genes	in	the	network,	and	assume	that	changes	in	H3K27	modifying	enzyme	
activity	will	have	a	coordinated	effect	on	all	loci.		We	define	a	delay	parameter,	bñ ,	as	follows:	

bñ =
1

ê
																										(50)	

The	synthesis	and	degradation	of	transcription	factors	å = 1…4	occur	with	first	order	kinetics,	with	
reactions	and	rates	given	by:	

ï"
óCòCBt
ô⎯⎯⎯õ ï" + 1													(51)															

ï"
qCúC
ô⎯õ ï" − 1																	(52)	

For	the	first	equation,	it	can	be	seen	that	synthesis	occurs	only	when	the	promoter	is	active.		For	
simplicity,	we	set	transcription	rate	H" 	and	degradation	rate	É" 	to	be	the	same	for	all	species,	and	we	
assume	these	rates	remain	fixed	throughout	cell	cycle.		

During	cell	division,	ï" 	is	binomially	partitioned	with	a	probability	of	50%	between	two	daughter	
cells	upon	cell	division,	and	also	inactive	and	active	states	of	their	promoters	are	stably	inherited,	
consistent	with	heritable	nature	of	the	Bcl11b	allelic	expression	states	observed.		We	also	assume	
that	the	level	of	the	starting	signaling	molecule	ïî	remains	constant,	though	we	note	that	persistent	
signals	are	not	required	to	maintain	the	states	of	the	transcription	factors	after	activation.	

Finally,	we	adopt	a	discrete	modeling	approach	to	simulate	each	cell	cycle	separately.	Taking		n	=	
1…O	to	be	the	total	number	of	cell	cycles,	ù	to	be	the	total	number	of	simulated	timesteps	within	
one	cycle,	and	û	to	be	the	total	simulation	time,	we	calculate	c(û)	is	as	follows:	

Simulation	time	û = (W + V)∆V													(∆V ≪ 0)	
For	W = 1,2,3, … ,O:	

c(V) =
V − 1

ù
+ 1																			(V = 1,2,3, … , ù + 1)														(53)	

	

such	that	the	cell	cycle	length	is	ù∆V.		Note	that	c	increases	linearly	between	1	and	2	at	every	cell	
cycle,	and	that	the	maximum	and	minimum	cell	volumes	are	not	affected	how	the	speed	of	cell	
division.	

From	stochastic	simulations,	we	found	that	this	network	can	give	rise	to	a	defined	temporal	
schedule	for	differentiation	within	cohorts	of	developing	cells,	with	a	timescale	exceeding	that	of	
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cell	division	(every	20	hours).	Furthermore,	this	schedule	can	be	concurrently	lengthened	or	
shortened	by	changing	the	global	delay	parameter	(Fig.	6B-C).		Interestingly,	the	timing	of	gene	
activation,	defined	as	the	time	it	takes	for	concentration	of	ï" 	to	reach	a	given	threshold	level,	is	
independent	of	the	rate	of	cell	division	(Fig.	S9A-C).	These	results	indicate	that	polycomb-mediated	
epigenetic	timers	can	be	utilized	to	generate	scalable	temporal	delays	in	the	differentiation	
schedules	of	progenitor	cells.	

	

Model	II:	Classical	gene	regulation	network	

The	timing	of	gene	expression	can	also	be	set	in	gene	networks	through	use	of	classical	gene	
regulation	functions,	where	the	rate	of	transcription	is	a	function	of	the	levels	of	upstream	
transcription	factor.	Here,	we	tested	whether	such	classical	regulatory	gene	networks	are	similarly	
capable	of	generating	scalable	differentiation	schedules.	We	simulated	a	series	of	genes	
sequentially	connected	to	each	other,	where	each	preceding	gene	acts	as	a	transcriptional	activator	
for	the	next	gene:		

	

We	reasoned	that	if	interaction	between	transcription	factor	activator	and	the	promoter	is	weak,	it	
will	take	longer	for	the	upstream	species	to	accumulate	to	a	sufficient	threshold	level	to	activate	of	
the	downstream	species.	The	rate	of	transcription	of	gene	ï" 	is	given	by:	

Mïå	→ïå+1 =
Hå′ ∙ 	 @

ïå−1
c(V)E

°

	

@
ïå−1
c(V)E

°

+ bù
°
																														(54)	

Here,	H"′	is	the	maximum	transcription	rate	achieved	by	the	transcription	activator,	and	bP 	is	the	
dissociation	constant	of	the	activator	to	the	promoter.	We	set	H"′	to	be	the	same	for	all	species.	We	
modeled	the	activation	as	a	Hill	Function	with	high	cooperativity	°	to	create	a	sharp	threshold	for	
switching.	With	this	setup,	gene	expression	of	downstream	species	does	not	begin	until	the	
concentration	of	the	activator	reaches	bP ,	such	that	that	increasing	this	parameter	would	ultimately	
lead	to	lengthening	of	activation	delay.	Cell	volume	and	species’	copy	number	dynamics	as	a	
function	of	cell	cycle	remain	the	same	as	in	Model	I.	However,	we	assume	that	ï" 	is	a	stable	proteins	
that	only	becomes	removed	through	cell-cycle	mediated	dilution.		This	stability	is	required	for	
generating	differentiation	schedules	with	timescales	that	exceed	that	of	the	cell	division	time.			

Stochastic	simulation	of	this	model	revealed	that	multi-generational	delay	in	gene	expression	can	
be	achieved	with	this	gene	network	architecture	(Fig.	6F,	G).	However,	this	delay	is	non-scalable	as	
increasing	bP 	pass	the	steady	state	concentration	of	the	upstream	gene	species	will	eventually	
result	in	a	failure	to	activate	downstream	genes	(Fig.	6G).	As	a	result,	activation	delays	set	by	this	
this	network	cannot	be	tuned	beyond	a	limited	range.		Additionally,	since	protein	degradation	is	
tied	to	cell	cycle	division,	both	timing	of	and	amplitude	of	gene	expression	are	under	influence	of	
cycling	time	(Fig.	S8D-F).	Particularly,	gene	expression	amplitude	increases	with	lengthening	cell	
cycle;	this	in	turn	speeds	up	activation	of	downstream	species	due	increase	in	signaling	molecules.	
In	conclusion,	networks	built	using	classical	gene	regulation	functions	can	set	schedules	over	short	
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timescales;	it	does	not	operate	well	over	long	timescales,	and	cannot	be	scaled	in	time	through	
adjustment	of	a	global	transcriptional	parameter.	

In	summary,	we	find	that	gene	regulatory	networks	built	from	individual	polycomb-mediated	
epigenetic	timers	can	generate	robust	temporal	schedules	for	differentiation	that	are	tunable	
through	the	control	of	a	single	parameter,	namely,	the	strength	of	epigenetic	repression.	This	
network	uncouples	timing	from	both	cellular	division	and	expression	magnitude.	In	contrast,	gene	
regulatory	networks	built	using	classical	gene	regulation	functions	cannot	generate	schedules	over	
long	times,	and	do	not	facilitate	scaling	of	these	schedules	independently	from	cell	division.		

	
Model	for	progenitor	differentiation	dynamics	

To	understand	whether	the	epigenetic	timer	cascade	can	give	rise	to	proportional	changes	in	the	
total	number	of	output	cells	of	different	types,	we	integrated	the	gene	regulatory	network	models	
above	with	a	differentiation	scheme,	where	progenitors	generate	different	cell	types	in	a	
progressive	manner	through	asymmetric	cell	division.		This	scheme	follows	the	general	model	
described	for	temporal	neuronal	specification	in	flies	and	mammals	(Rossi	et	al.,	2017).	

At	every	cell	division,	a	single	progenitor	divides	to	give	rise	to	a	copy	of	itself	and	a	terminally	
differentiated	cell.		The	differentiated	cell	type	is	specified	by	the	regulatory	gene	that	has	most	
recently	activated	and	reached	a	threshold	(Figure	6A).	The	timing	to	reach	threshold	for	each	gene	
species	is	extracted	from	gene	network	simulations	described	in	the	previous	sections	(Model	I	and	
Model	II).	Let	ùúC 	be	the	time	at	which	gene	species	ï" 	reaches	a	threshold,	V¢ 	be	the	time	of	M

çécell	
division	event,	and	l" 	be	the	total	number	of	differentiated	cell	type	å.	The	algorithm	for	such	an	
asymmetrical	differentiation	scheme	is	as	follows:	

For k = 1, 2, 3, …, n: 

     If ùúC < V¢ < 	ùúC£t:            (i =0,1,2,3) 
               l" ← l" + 1 

This	process	of	asymmetric	division	continues	until	 the	progenitor	 turns	on	ïw,	which	causes	 the	
progenitors	to	stop	dividing	and	the	simulation	to	terminate.	From	our	simulations,	we	found	that	
timing	delays	generated	by	networks	of	epigenetic	timer	give	rise	scalable	population	size	of	each	
differentiated	 cell	 type	 over	 a	 wide	 range	 of	 delay	 parameters	 (bñ) 	(Fig.	 6D).	 Furthermore,	 the	
coefficient	of	variation	in	the	numbers	of	different	cells	produced	per	cohort	decreased	steadily	with	
increasing	cohort	size,	indicating	that	this	system	can	precisely	specify	the	proportions	of	output	cells	
with	 sufficient	 initial	 progenitor	 numbers	 (Fig.	 6F).	 On	 the	 other	 hand,	 the	 classical	 regulation	
network	lead	to	severely	disproportionate	expansion	of	early	cells	in	the	cascade	upon	increase	in	
the	 timing	delay	parameter	 (bP)	(Fig.	6H).	 	This	 selective	expansion	occurred	as	 later	 regulatory	
genes	failed	to	activate,	causing	the	arrest	of	earlier	progenitors	in	a	proliferative	state.		In	summary,	
regulatory	 networks	 built	 from	 epigenetic	 timers	 are	 uniquely	 suited	 for	 scaling	 of	 temporal	
schedules	and	population	sizes	through	adjustment	timing	control	parameters.	
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Parameter	List	

a. Pure	Methylation	Model	(Figure	4B-C)	

	
b. Compaction	Methylation	Model	(Figure	4C,E)	

	
c. Pure	Dilution	and	Noise	vs	induced	Decompaction	Models	(Figure	5	A-B)	

	
	

d. Polycomb-based	timer	model	and	classical	regulation	timer	model	(Figure	6)	

	
	

Parameters Description Value Comments/references
βON cooperative methylation rate constant 1 hrs-1 Sneeringer et al., 2010

[16 , 17 , 17.5] for parameter scan
Kristensen et al., 2011

L reach of anchored methylating enzyme to neighboring nucleosome 15 Hass et al., 2015
N number of simulated nucleosomes 100
cell division length cell division length 20 hrs

Pure Methylation Model

αOFF demethylation rate constant 16.5 hrs-1

Parameters Description Value Comments/references
[0.2 , 0.4 , 0.8 , 1.6 , 3.2 , 6.4] for parameter scan in figure 4C

Sneeringer et al., 2010 

α demethylation rate constant 8 hrs
-1 Kristensen et al., 2011

f fraction of de-methylation rate when nucleosome is in compacted state 0

λ compaction rate constant 310 hrs
-1 Larson et al., 2017; Ladoux et al., 2000

δ decompaction rate constant 5300 hrs
-1 Larson et al., 2017; Ladoux et al., 2000

F fraction of compaction rate when nucleosome is in demethylated stated 0.85

N Number of simulated nucleosomes 50

CN nucleation threshold for compacted nucleosomal complex 5

cell division length cell division length 20 hrs

Compaction Methylation Model

β methylation rate constant 1 hrs
-1

Parameters Description Value Comments/references
βON cooperative methylation rate constant 0

αOFF demethylation rate constant 0

L reach of anchored methylating enzyme to neighboring nucleosome 0

N number of simulated nucleosomes 100

cell division length cell division length 20 hrs [10 , 15 , 20 , 25 , 30 , 35] for cycle scan in Figure 5B

Parameters Description Value Comments/references
β methylation rate constant 1 hrs

-1
Sneeringer et al., 2010 

α demethylation rate constant 8 hrs
-1

Kristensen et al., 2011

f fraction of de-methylation rate when nucleosome is in compacted state 0

λ compaction rate constant 310 hrs
-1

δ decompaction rate constant 5300 hrs
-1

F fraction of compaction rate when nucleosome is in demethylated stated 0.85

N Number of simulated nucleosomes 50

CN nucleation threshold for compacted nucleosomal complex 5

cell division length cell division length 20 hrs [10 , 15 , 20 , 25 , 30 , 35] for cycle scan in Figure 5B

Pure Dilution Model

Compaction Methylation Model

Parameters Description Value Comments/references
dE global epigenetic switching rate delay 25 and 66.66 hrs [100, 66.67, 50, 40, 33.33, 28.57, 25, 22.22, 20] for parameter scan

kt dissociation constant of polycomb transcription factor 400 copies / cell volume

α transcriptional rate 1000 copies hrs
-1

Schwanhäusser, B. et al., 2011

δ degradation rate 1 copies hrs
-1

Schwanhäusser, B. et al., 2011

cell division length cell division length 20 hrs

Parameters Description Value Comments/references
dT dissociation constant of transcription factor 150 and 200 copies / cell volume [20, 40, 60, 80, 100, 120, 140, 160, 175] for parameter scan

α' transcription rate constant 10 copies hrs
-1

Schwanhäusser, B. et al., 2011

η Hill coefficient 50

cell division length cell division length 20 hrs

Polycomb-based timer model

Classical regulation timer model
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e. Compaction	Methylation	Model	with	Compaction	State	Affected	by	Cell	Division	
(Supplementary	Figure	2)	

	
f. Compaction	with	Cooperative	Methylation	Model	(Supplementary	Figure	3)	

	
g. Effects	of	Transcription	Factors	on	Methylation	Compaction	Model’s	Activation	Timing	

(Supplemental	Figure	4)	

	

Parameters Description Value Comments/references
[0.2 , 0.4 , 0.8 , 1.6 , 3.2 , 6.4] for parameter scan in Supplemental Figure 2E

Sneeringer et al., 2010
α demethylation rate constant 8 hrs-1 Kristensen et al., 2011
f fraction of de-methylation rate when nucleosome is in compacted state 0

λ compaction rate constant 310 hrs-1 Larson et al., 2017; Ladoux et al., 2000
δ decompaction rate constant 5300 hrs-1 Larson et al., 2017; Ladoux et al., 2000
F fraction of compaction rate when nucleosome is in demethylated stated 0.85
N Number of simulated nucleosomes 50
CN nucleation threshold for compacted nucleosomal complex 5
cell division length cell division length 20 hrs [10 , 20 , 25 , 30 , 35] for parameter scan in Supplemental Figure 2D

Compaction Methylation Model with Compaction State Affected by Cell Division

β methylation rate constant 1 hrs-1

Parameters Description Value Comments/references
β cooperative methylation rate constant 0.02 hrs

-1

μ spontaneous rate constant [0.05 , 0.1 , 0.2 , 0.4] hrs
-1 

α demethylation rate constant 8 hrs
-1 Kristensen et al., 2011

f fraction of de-methylation rate when nucleosome is in compacted state 0

λ compaction rate constant 310 hrs
-1 Larson et al., 2017; Ladoux et al., 2000

δ decompaction rate constant 5300 hrs
-1 Larson et al., 2017; Ladoux et al., 2000

F fraction of compaction rate when nucleosome is in demethylated stated 0.85

N number of simulated nucleosomes 50

CN nucleation threshold for compacted nucleosomal complex 5

cell division length cell division length 20 hrs

Parameters Description Value Comments
βON cooperative methylation rate constant 1 hrs

-1 Sneeringer et al., 2010

αOFF demethylation rate constant [16 , 17 , 17.5] hrs
-1 for parameter scan, Kristensen et al., 2011

L reach of anchored methylating enzyme to neighboring nucleosome 15 Hass et al., 2015

N number of simulated nucleosomes 100

cell division length cell division length 20 hrs

Pure Methylation Model

Compaction Cooperative Methylation Model

Parameters Description Value Comments/references

Sneeringer et al., 2010 

α demethylation rate constant 8 hrs-1 Kristensen et al., 2011

f fraction of de-methylation rate when nucleosome is in compacted state 0

λ compaction rate constant 310 hrs-1 Larson et al., 2017; Ladoux et al., 2000

δ decompaction rate constant 5300 hrs-1 Larson et al., 2017; Ladoux et al., 2000

F fraction of compaction rate when nucleosome is in demethylated stated 0.85
N Number of simulated nucleosomes 50 [50 , 49, 48, 47, 46, 45] for nucleosome removal scan

CN nucleation threshold for compacted nucleosomal complex 5

cell division length cell division length 20 hrs

Parameters Description Value Comments/references

Sneeringer et al., 2010 

α demethylation rate constant 8 hrs-1 Kristensen et al., 2011

f fraction of de-methylation rate when nucleosome is in compacted state 0

λ compaction rate constant 310 hrs-1 Larson et al., 2017; Ladoux et al., 2000

δ decompaction rate constant 5300 hrs-1 Larson et al., 2017; Ladoux et al., 2000

F fraction of compaction rate when nucleosome is in demethylated stated 0.85

NT Total number of simulated nucleosomes 50

Nm Number of permanently demethylated nucleosome 0 - 20 [0 , 5, 10, 15, 20] for nucleosome removal scan

CN nucleation threshold for compacted nucleosomal complex 5

cell division length cell division length 20 hrs

β methylation rate constant 1 hrs-1

Compaction Methylation Model

β methylation rate constant 1 hrs-1

Compaction Methylation Model With Permanently demethylated Nucleosomes
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h. Pure	Dilution	Model	with	Minimal	Methylation	and	Demethylation	Rates	(Supplementary	
Figure	5)	

	
	
	

i. Cell	cycle	dependency	of	Polycomb-based	timer	model	and	Classical	regulation	timer	
model	(Supplementary	Figure	9)	

	
	

g.				Potential	energy	landscapes	analysis	for	pure	methylation	model	and	methylation			
compaction	model	(Supplementary	Figure	10)	

	 	 	

Parameters Description Value Comments/references
βON cooperative methylation rate constant 0.001 hrs-1
αOFF demethylation rate constant 0.001 hrs-1
L reach of anchored methylating enzyme to neighboring nucleosome 15 Hass et al., 2015
N number of simulated nucleosomes 100
cell division length cell division length 10 and 20 hrs

Dilution Model With Minimal Enzymatic Activities

Parameters Description Value Comments/references
dE global epigenetic switching rate delay 50 hrs
kt dissociation constant of polycomb transcription factor 400 copies / cell volume
α transcriptional rate 1000 copies hrs-1 Schwanhäusser, B. et al., 2011
δ degradation rate 1 copies hrs-1 Schwanhäusser, B. et al., 2011
cell division length cell division length 20 and 40 hrs [10, 15, 20, 25, 30, 35, 40, 45, 50, 55] for cycle scan

Parameters Description Value Comments/references
k' dissociation constant of transcription factor 150 copies / cell volume
α' transcription rate constant 10 copies hrs-1 Schwanhäusser, B. et al., 2011
η Hill coefficient 50
cell division length cell division length 20 and 40 hrs [20, 25, 30, 35, 40, 45, 50, 55] for cycle scan

Polycomb-based timer model

classical regulation timer model

Parameters Description Value
β cooperative methylation rate constant 1-4 hrs-1

α demethylation rate constant 20 hrs-1

N number of simulated nucleosomes 100
W arbitrary constant 100

Parameters Description Value
β methylation rate constant 1-4 hrs-1

α demethylation rate constant 20 hrs-1

λ compaction rate constant 31 hrs-1

δ decompaction rate constant 530 hrs-1

F fraction of compaction rate when nucleosome is in demethylated stated 0.85
N Number of simulated nucleosomes 50

Pure Dilution Model

Compaction Methylation Model
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