
 666 

Figure 5: Meta- analysis of selected pH and oxygen responsive genes. Publicly available (by 667 

JGI) subset of 160 environmental metagenomes with pH measurements, were screened. Box 668 

plot of gene counts in acidic pH (<7), neutral (7-8), or alkaline (>8) pH for (a) NQR operon (6 669 

subunits), (b) Na- H antiporter operon (7 subunits), and (c) gyrB as control. Detailed pattern 670 

for each subunit is available in Figure S6, S7. Outliers are not displayed (1.5x 0.25-0.75 671 

quantiles). Significant differences in gene counts, by Wilcoxon rank sum test (Bonfferoni 672 

correction, P<0.05), are marked in letter report (A, B and C)�X 673 

Oxygen measurements were available for subset of 257 environmental metagenomes. In 674 

these metagenomes, the abundance of napA (d), napB (e) norBC (f) and nosZ (g) was 675 

compared to oxygen levels. (h) gyrB was used as control.  All gene counts are in proportion 676 

to rpoB gene. 677 
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 679 

Figure 6: Expressed functions associated with irrigation treatment. (a) Dot plot of Log2(fold-680 

change) SEED subsystems enriched or depleted in TWW irrigated root metatranscriptomes. 681 

Significantly (FDR p <0.05, represented by more than two gene families) enriched or 682 

depleted transcript abundance was computed using the goseq software package, with 683 

corrections for read abundance. Symbols are proportional to the sub-system relative 684 

abundance and colored based on the enrichment or depletion log10(p-value). Circles 685 

indicate TWW-enriched categories and triangles indicate TWW-depleted categories. (b) 686 

Differential metagenome enrichment (TWW/FW fold change) compared to differential 687 
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metatranscriptome expression level. Highlighted (colored) categories significantly enriched 688 

or depleted in the metatranscriptome analysis. 'ns'= 'not significant'. Symbols are 689 

proportional to the log10(p- value) enrichment in the metatranscriptome analysis. Numbers 690 

label the enriched category, as marked in (a). (c) KEGG pathway-level enrichment or 691 

depletion in TWW-irrigation root metatranscriptomes (p-value < 0.05), based on keggProfiler 692 

enrichment analysis. Significantly enriched or depleted gene clusters in TWW-irrigated roots 693 

are highlighted and colored in pink. 694 
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Figure 7: Conceptual model of hypothetical bacteria harboring physiological features (i.e., 696 

genes, pathways and modules) enriched in (a) TWW- or (b) FW-irrigated root microbiomes. 697 

White symbols indicate features that are significantly enriched at the DNA level 698 

(metagenomes), grey features are highly expressed (metatranscriptomes), and green 699 

features are significantly abundant and expressed in one treatment relative to the other. 700 

 701 
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