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ABSTRACT 31	
Alternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3’-UTR 32	
length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in 33	
cancer and promotes tumorigenesis through altered expression of oncogenes and tumor 34	
suppressors. Pan-cancer analyses have revealed common APA events across the tumor 35	
landscape; however, little is known about tumor type-specific alterations that may uncover novel 36	
events and vulnerabilities. Here we integrate RNA-sequencing data from the Genotype-Tissue 37	
Expression (GTEx) project and The Cancer Genome Atlas (TCGA) to comprehensively analyze 38	
APA events in 148 pancreatic ductal adenocarcinomas (PDAs). We report widespread, 39	
recurrent and functionally relevant 3’-UTR alterations associated with gene expression changes 40	
of known and newly identified PDA growth-promoting genes and experimentally validate the 41	
effects of these APA events on expression. We find enrichment for APA events in genes 42	
associated with known PDA pathways, loss of tumor-suppressive miRNA binding sites, and 43	
increased heterogeneity in 3’-UTR forms of metabolic genes. Survival analyses reveal a subset 44	
of 3'-UTR alterations that independently characterize a poor prognostic cohort among PDA 45	
patients. Finally, we identify and validate the casein kinase CK1α as an APA-regulated 46	
therapeutic target in PDA. Knockdown or pharmacological inhibition of CK1α attenuates PDA 47	
cell proliferation and clonogenic growth. Our single-cancer analysis reveals APA as an 48	
underappreciated driver of pro-tumorigenic gene expression in PDA via the loss of miRNA 49	
regulation. 50	
 51	
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INTRODUCTION 64	
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer with a 5-year survival rate of 9%1. 65	
Extensive sequencing studies have uncovered recurrently mutated genes (KRAS, TP53, 66	
SMAD4, CDKN2A) and dysregulated pathways (axon guidance, cell adhesion, small GTPase 67	
signaling, protein metabolism) driving disease initiation and progression2–4. Gene expression 68	
profiles from hundreds of patient samples have allowed the identification of several PDA 69	
subtypes, with implications for treatment response and patient outcome5–10. Gene expression 70	
can be dysregulated in cancer through a variety of mechanisms, including genomic 71	
amplification/deletion, epigenetic modification and noncoding mutations in 72	
promoters/enhancers11–15. For example, recurrent noncoding mutations in PDA are enriched in 73	
promoters of cancer-associated genes and pathways16. However, our understanding of the 74	
mechanisms driving dysregulated gene expression in cancer remains incomplete. Determining 75	
the regulatory mechanisms driving dysregulated gene expression is critical to understanding 76	
disease pathogenesis. One such regulatory mechanism that has recently gained recognition as 77	
a critical driver of gene expression is alternative polyadenylation (APA). 78	
 79	
APA is a post-transcriptional process that generates distinct mRNA isoforms of the same gene 80	
as a mechanism to modulate gene expression. This includes transcripts that have identical 81	
coding sequences but vary only in their 3'-UTR length17–19. Changes in 3’-UTR length can 82	
modulate mRNA stability, function or subcellular localization through disruption of miRNA or 83	
RNA-binding protein regulation18,20,21. APA is driven by a large complex of polyadenylation 84	
factors that recognize a series of highly conserved sequences within the 3’-UTR on the newly 85	
synthesized pre-mRNA before cleavage and addition of the poly(A) tail18,22,23. As most 86	
transcripts contain multiple polyadenylation sites (PAS), the choice of where to cleave is a 87	
critical determinant of 3’-UTR length. In humans, a majority of genes (51-79%) express 88	
alternative 3’-UTRs, demonstrating the widespread nature of this process24. Indeed, APA has 89	
important roles in muscle stem cell function, cell proliferation, chromatin signaling, pluripotent 90	
cell fate, cellular senescence and other physiological processes25–29. Recently, dysregulation of 91	
APA has gained recognition as a driver of tumorigenesis28,30–33. APA factor expression is altered 92	
in a variety of cancer types and promotes tumorigenesis by regulating the expression of 93	
oncogenes (via loss of miRNA regulation) and tumor suppressors (via disruption of competing-94	
endogenous RNA crosstalk)32–36. The relevance of APA in cancer was established with the 95	
discovery of a systemic increase in the usage of a proximal PAS leading to consistently 96	
shortened 3’-UTRs of oncogenes such as Insulin-like growth factor 2 mRNA-binding protein 1 97	
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(IMP1), Ras-Related C3 Botulinum Toxin Substrate 1  (RAC1) and Cyclin D230,33. Functional 98	
studies of the genes comprising the APA machinery have highlighted their relevance to tumor 99	
growth; for example, in glioblastoma, overexpression of the APA factor NUDT21 (a repressor of 100	
proximal 3’-UTR PAS usage) reduces tumor cell proliferation and inhibits tumor growth in vivo32. 101	
Subsequently, a number of pan-cancer analyses have utilized standard RNA-sequencing (RNA-102	
seq) data to identify 3’-UTR shortening and lengthening events across cancer types37–41. While 103	
these analyses have uncovered recurrent APA events across multiple tumor types, they also 104	
detected tumor type-specific events42. Additionally, differential 3’-UTR processing has been 105	
shown to drive tissue-specific gene expression43. However, there has been no in-depth single 106	
cancer analysis with a sufficiently large patient cohort to unravel disease-specific APA 107	
alterations. Furthermore, none of the pan-cancer studies have included PDA due to a lack of 108	
matched normal controls and therefore, the landscape of APA in PDA remains completely 109	
uncharacterized.  110	
 111	
To determine the relevance of APA in PDA, we performed a comprehensive analysis of the 112	
changes in PAS usage using RNA-seq data from 148 PDA tumors from The Cancer Genome 113	
Atlas TCGA-PAAD (Pancreatic Adenocarcinoma) study and 184 normal pancreata from the 114	
Genotype-Tissue Expression (GTEx) project44,45. We performed a systems level analysis to 115	
identify trends in APA, impacts on gene expression, and effects of miRNA regulation. We 116	
discovered widespread 3’-UTR shortening events in PDA, including a subset of 68 genes 117	
shortened in >90% of patients. These 3’-UTR shortened genes did not overlap with commonly 118	
mutated PDA genes, but were enriched in PDA pathways. Furthermore, we found preferential 119	
loss of known tumor suppressive miRNA binding sites within the shortened 3’-UTRs, suggesting 120	
that APA may be acted upon by selection during tumor progression. Importantly, we identify a 121	
subset of 20 genes that detect a poor outcome cohort in PDA patients, highlighting the 122	
prognostic power of APA. Experimental validation revealed APA as a novel mechanism of 123	
regulation for known PDA growth-promoting genes. Furthermore, using computational, 124	
pharmacological and genetic approaches, we identified the casein kinase CK1α as a new 125	
therapeutic target in PDA. Our in-depth analysis reveals APA as a recurrent, widespread 126	
mechanism underlying oncogenic gene expression changes through loss of tumor suppressive 127	
miRNA regulation in pancreatic cancer. 128	
	 	129	
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RESULTS 130	
To analyze differences in APA profiles between tumor and normal samples, we selected 148 131	
patients out of the total 178 PDA patients with aligned RNA-seq data from the TCGA-PAAD 132	
study. We excluded 30 patients in the cohort that did not have histologically observable PDA 133	
tumors4. Due to the paucity of RNA-seq data from matched normal tissues within the TCGA-134	
PAAD study, we procured raw RNA-seq reads from 184 normal pancreata from the GTEx 135	
project. The library preparation and sequencing platform were identical for the TCGA-PAAD 136	
study and GTEx pancreata data45,4, thereby minimizing potential batch effects. Several previous 137	

studies have successfully compared TCGA and GTEx gene expression data, noting minimal 138	
batch effects when processed in an identical manner46–48. Therefore, these datasets were 139	
processed identically and analyzed for differences in APA in our downstream analyses (Supp. 140	
Fig. 1). To allow a rigorous comparison between GTEx normal pancreas and TCGA-PAAD 141	
tumor samples, we aligned raw reads from the GTEx RNA-seq data as per the TCGA pipeline. 142	
We processed the tumor and normal aligned files to generate coverage files that were used as 143	
an input for the DaPars (Dynamic Analysis of Alternative Polyadenylation from RNA-Seq) 144	
algorithm41. DaPars is a regression-based algorithm that performs de-novo identification of APA 145	
events between two conditions using standard RNA-seq data32,33,41. DaPars generates a mean 146	
PDUI score (Percentage Distal Usage Index) for each gene, quantifying the extent of usage of 147	
the distal PAS across each group. Genes favoring distal PAS usage (long 3'-UTRs) have PDUI 148	
scores near 1, while genes favoring proximal PAS usage (short 3'-UTRs) have PDUI scores 149	
near 0. A change in the mean PDUI score between tumor and normal samples for each gene 150	
(ΔPDUI) is then calculated and used to indicate tumor-associated 3’-UTR shortening (ΔPDUI < 151	

0) or lengthening (ΔPDUI > 0) events.  152	
 153	
Integrative analysis of GTEx and TCGA-PAAD RNA-seq data identifies 3’-UTR shortening 154	
events associated with PDA. 155	
To determine the extent of APA-mediated 3’-UTR shortening and lengthening in PDA, we 156	
compared the PDUI scores for each gene between the tumor and normal samples (Fig. 1A,B). 157	
While the majority of genes do not undergo changes in APA, PDA patients are characterized by 158	
a greater number of significant 3’-UTR shortening events (red dots, n=271) as compared to 159	
significant lengthening events (blue dots, n=191) (Fig. 1B). A higher number of 3’-UTR 160	
shortening events compared to lengthening events in PDA is consistent with patterns observed 161	
in multiple pan-cancer analyses30,41,49. The tumor-associated shortening and lengthening events 162	

were predominantly 100-300bp and 200-300bp in length, respectively (Fig. 1C). Amongst the 163	
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genes found to have significantly shortened 3’-UTR lengths were many known PDA growth-164	
promoting genes, including PAF1 (Polymerase Associated Factor 1), FLNA (Filamin-A), ENO1 165	
(α Enolase), RALGDS (Ral guanine nucleotide dissociation stimulator), TRIP10 (Thyroid 166	
Hormone Receptor Interactor 10) and ALDOA (Aldolase A). ALDOA and PAF1 have recently 167	
been described as oncogenes in PDA50–53, while ENO1, RALGDS, TRIP10 and FLNA are 168	
known to mediate pancreatic cancer cell proliferation, survival and migration54–59. We did not 169	
detect 3’-UTR alterations in recurrently mutated PDA genes, reflecting the predominant role of 170	
APA in regulating gene expression rather than gene function. We visualized the 3’-UTR profiles 171	
of these genes between TCGA and GTEx samples to confirm 3’-UTR shortening (see FLNA, 172	
PAF1 as examples, Fig. 1D).  173	
 174	
PDA samples are often characterized by substantial stromal contamination5; therefore, we 175	
sought to determine if significant APA events were present in the stroma or the tumor 176	
epithelium. First, we analyzed PDUI changes in a subset of 69 high purity TCGA-PAAD tumor 177	
samples4 (>33% tumor content). 89% of gene hits from our original analysis showed up as 178	
significant hits in the high purity dataset, suggesting that the majority of the detected APA 179	
changes were not attributable to stromal contamination (Supp. Fig. 2A,B). We further addressed 180	
this concern by visualizing the 3’-UTR profile of our candidate genes in an independent dataset 181	
containing RNA-seq information from 65 matched human PDA samples with micro-dissected 182	
tumor epithelia and stroma5,60. As an example, Fig. 1E shows the differential 3’-UTR shortening 183	
of FLNA and PAF1 in patient tumor epithelium (tumor cells) as compared to the matched 184	
stroma. 185	
 186	
We validated the presence of alternative 3’-UTR forms for several APA-regulated candidate 187	
genes by 3'-RACE (rapid amplification of 3' ends) in 2 human pancreatic cancer cell lines (Suit2, 188	
MiaPaCa2) and 3 primary patient samples (Fig. 1F,G). These genes included the previously 189	
described PDA growth-promoting genes, as well as the spermine/spermidine acetyltransferase 190	
SAT1, and PP2A subunit B isoform δ (PPP2R2D). SAT1 modulates cell migration and 191	
resistance in multiple tumor types, while PPP2R2D is a component of the tumor suppressive 192	
phosphatase PP2A61–66. With the exception of PPP2R2D, which displayed significant 3’-UTR 193	
lengthening and downregulation in tumors, all of the validated genes were significantly 194	
shortened and overexpressed in the TCGA-PAAD dataset. We detected 3’-UTR short and long 195	
forms via 3’-RACE. The short 3’-UTR form for each shortened gene predominated over the long 196	
form (Fig. 1F,G). ENO1 showed a single 3’-UTR form suggesting that this is the predominant 197	
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form in cancer cells. In contrast, PPP2R2D showed an increased proportion of the 3’-UTR long 198	
form in PDA cell lines and patient samples as compared to the short form, suggesting greater 199	
use of the distal PAS for this putative tumor suppressive gene. For every candidate, we 200	
successfully identified PAS sites within its 3’-UTR sequence that matched the expected position 201	
of proximal and distal PAS in the detected 3’-RACE forms (Supp. Fig. 2C). Therefore, a large-202	
scale comparison of 3’-UTR alterations can identify tumor epithelium-specific changes from the 203	
TCGA and GTEx datasets, and these 3’-UTR forms can be detected in cell models and patient 204	
samples. 205	
 206	
3’-UTR changes are widespread among PDA patients and enriched in PDA pathways.  207	
To visualize the landscape of APA across PDA, we clustered patients (columns) based on 208	
change in PDUI score (tumor - normal mean; ΔPDUI) for 3’-UTR altered genes (rows) (Fig. 2A). 209	
This analysis uncovered a subset of genes (n=68) that showed 3’-UTR shortening (red) in >90% 210	
of patients, highlighting the widespread nature of APA across PDA. A smaller subset of 3'-UTRs 211	
(n=26, bottom heatmap) was recurrently lengthened (blue) in the tumor cohort. Hierarchical 212	
clustering identified multiple patient subgroups characterized by 3’-UTR alterations of specific 213	
gene sets (Subgroups 1-5). Notably, Subgroup 5 was enriched in shortened 3’-UTRs and 214	
contained relatively few lengthening events. In contrast, Subgroup 1 displayed fewer 3’-UTR 215	
shortening events and was enriched in 3'-UTR lengthening. Subgroups 2-4 were characterized 216	
by shortening events in specific subsets of genes. APA-based clustering therefore revealed 217	
distinct patient subgroups. These subgroups did not correlate with the mutational status of 218	
recurrently mutated PDA genes (KRAS, CDKN2A, SMAD4, TP53), nor did they associate with 219	
previously described PDA subtypes.  220	
 221	
Pathway analysis of the significantly altered genes revealed enrichment for mRNA 3’ end 222	
processing and splicing, as well as smooth muscle contraction and platelet activation. Similar 223	
pathways have been found by pan-cancer APA analyses, concordant with the presence of 224	
recurrent APA events across multiple cancer types41,43. However, we observed further 225	
enrichments in PDA-associated pathways, including protein metabolism, signaling by receptor 226	
tyrosine kinases, signaling by RHO GTPases, JAK-STAT signaling and cell-extracellular matrix 227	
interactions (Fig. 2B). Therefore, APA alterations may regulate the activity of PDA-promoting 228	
pathways.  229	
 230	
3’-UTR shortening identifies a poor prognostic cohort in PDA patients.  231	
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Next, we asked whether APA events added additional prognostic information to PDA patient 232	
outcomes above the usual demographic and clinical factors: age, race, sex, stage, grade and 233	
surgical outcome. We selected genes with significant 3’-UTR alterations and univariate 234	
prognostic value, defining prognostic classes based on multivariate clustering (Fig. 3A).  This 235	
segregated patients into three cohorts based on their 3’-UTR patterns (long=blue; short=red). 236	
Cohort A was predominantly associated with proximal PAS usage of genes from Groups 2 and 237	
3, while cohort C was associated with distal PAS usage of the same genes. For Group 1 genes, 238	
distal PAS usage was predominant in cohort A while proximal PAS usage was predominant in 239	
cohort C. Neither patient cohort correlated with any of the known PDA tumor subtypes. 240	
Importantly, cohorts A and C displayed significant differences in overall survival, with patients in 241	
cohort C living significantly longer than those in cohort A (p=0.02) (Fig. 3B). Therefore, patterns 242	
of APA can be used as an independent prognostic indicator in PDA. 243	
 244	
Heterogeneity of proximal PAS usage of metabolic genes in PDA patients.  245	
Processes generating genetic and epigenetic heterogeneity can drive tumor evolution67–69. We 246	
hypothesized that APA could represent such a process, creating a diverse set of 3'-UTR forms 247	
and allowing cancer cells to select for those that promote their survival and propagation. To 248	
examine this heterogeneity, we compared the extent of proximal PAS usage across patients in 249	
any given gene between tumor and normal samples. ALDOA is shown as an example gene that 250	
exhibited a tight distribution of proximal PAS usage across normal as well as patient tumors 251	
(Fig. 4A). The left shift of the tumor sample mean score represents the expected shortening of 252	
the ALDOA 3'-UTR. However, for FLNA, while the normal samples had a tight distribution, PDA 253	
patients showed greater heterogeneity in proximal PAS usage (Fig. 4B). An analysis of 254	
heterogeneity in proximal PAS usage for all genes revealed that while the majority of genes did 255	
not show a significant change between normal and tumor conditions, 68 genes showed greater 256	
heterogeneity in tumor (orange) samples and only 9 genes showed greater heterogeneity in 257	
normal (purple) samples (Fig. 4C). This heterogeneity was not due to intrinsic differences 258	
between the TCGA and GTEx datasets because none of the 215 housekeeping genes in the 259	
dataset showed heterogeneity in the extent of proximal PAS usage70,71. The subset of 68 genes 260	
was enriched in metabolic genes, specifically amino acid transporters and purine metabolism. A 261	
wide range of heterogeneity of proximal PAS usage in PDA patients suggests a possible role of 262	
PAS usage plasticity in promoting cancer cell survival and progression. 263	
 264	
APA drives altered protein expression in PDA.  265	
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To determine whether the identified APA events drive altered gene expression in PDA, we 266	
computed differential gene expression between normal (GTEx) and tumor (TCGA-PAAD) 267	
tissues. This allowed association studies between specific APA events and changes in gene 268	
expression. Among 3’-UTR shortened genes, 76 were significantly upregulated, while 50 genes 269	
were significantly downregulated in tumors (Fig. 5A,B). The pattern of 3'-UTR shortening 270	
preferentially associated with increased gene expression is consistent with pan-cancer APA 271	
analyses and conforms to the expectation that 3’-UTR shortened genes can escape miRNA 272	
regulation leading to increased gene expression30,72,73. In contrast, 3’-UTR lengthened genes 273	
showed a similar number of significantly upregulated (n=42) and significantly downregulated 274	
(n=41) genes, consistent with pan-cancer analyses, and most likely reflective of positive and 275	
negative regulation by RNA-binding proteins29,74,75. 276	
 277	
To experimentally validate the relationship between APA and protein expression, we performed 278	
luciferase reporter assays in MiaPaCa2 cells, comparing protein expression driven by short and 279	
long 3'-UTRs (Fig. 5C). We focused on the candidate oncogenes and tumor suppressors 280	
validated by 3’-RACE and that showed significant association between 3'-UTR changes and 281	
gene expression in tumors. These candidates included ALDOA, FLNA, PAF1, TRIP10, ENO1, 282	
SAT1 (shortened and upregulated in tumors) and PPP2R2D (lengthened and downregulated in 283	
tumors). We also included RALGDS which is shortened but does not show altered expression in 284	
tumors. We cloned the short and long 3’-UTRs of each gene (estimated via 3’-RACE) 285	
downstream of a Renilla luciferase reporter and measured luminescence as a readout of protein 286	
expression (Fig. 5C). To ensure that the long 3’-UTR form for each reporter gene remained 287	
intact (i.e., did not undergo APA-mediated shortening upon transfection into cells), we mutated 288	
their functional proximal PAS. For all genes tested except ENO1 and RALGDS, the short 3’-289	
UTR form showed significantly increased luminescence compared to the long 3’-UTR form (Fig. 290	
5D). As predicted, the 3’-UTR short and long forms of RALGDS showed similar expression. In 291	
contrast to our expectations, the short form of ENO1 showed decreased protein expression 292	
suggesting that 3’-UTR shortening is not the sole mechanism regulating protein abundance of 293	
ENO1 in PDA. These results also reinforce the observation that shorter 3’-UTRs do not always 294	
increase protein expression30. Overall, the above results suggest that APA-mediated 3'-UTR 295	
alterations can regulate the protein expression of growth-promoting genes in PDA cells.  296	
 297	
We next sought to determine the mechanism underlying the 3’-UTR-mediated gene regulation 298	
of the PDA oncogene ALDOA. Given that miRNAs primarily destabilize their target mRNA and 299	
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that ALDOA undergoes 3’-UTR shortening and upregulation, we searched the ALDOA 3’-UTR 300	
for putative miRNA binding sites that would be lost upon PDA-associated shortening (Fig. 5E). 301	
We identified the tumor suppressive miRNA miR-122a within this lost region; miR-122a is highly 302	
expressed in PDA cell lines76,77. Mutation of the miR-122a site within the long 3’-UTR of ALDOA 303	
significantly restored protein expression (Fig. 5F). Therefore, altered APA can regulate 304	
oncogene expression in PDA through modulation of available regulatory miRNA binding sites. 305	
 306	
APA-mediated loss of tumor suppressive miRNA binding sites is associated with poor 307	
patient outcome. 308	
To assess global patterns of APA-mediated miRNA binding site loss we searched for highly 309	
conserved miRNA binding sites (conserved across human, mouse, rat, dog and chicken) within 310	
the lost 3'-UTRs of all shortened genes. This analysis revealed that 42% of genes lost at least 311	
one highly conserved miRNA binding site (Fig. 6A), suggesting that alteration of the miRNA 312	
binding site repertoire is an important mode of APA-mediated regulation. Next, we sought to 313	
determine if any miRNA families were preferentially lost in shortened 3’-UTRs of PDA patients. 314	
We computed an index for repression for each miRNA family as a function of the miRNA site 315	
context scores (obtained from TargetScan) and the abundance of the 3’-UTR form containing 316	
that site. This index was then compared between PDA patients and normal controls to yield a Z-317	
score. A lower Z-score for a miRNA family reflects preferential loss of its binding sites due to 3’-318	
UTR shortening. Interestingly, 6 of the top 8 identified miRNAs have been implicated as tumor 319	
suppressors in PDA, including miR-329 and miR-133a78–82 (Fig. 6B). These results suggest that 320	
APA regulates oncogenic gene expression through preferential loss of tumor suppressive 321	
miRNA binding sites and may therefore confer a selective advantage to the cell. 322	
 323	
Next, we determined whether loss of specific miRNA sites associated with 3’-UTR alterations is 324	
associated with patient outcome. We quantified loss of highly conserved miRNA binding sites 325	
for each patient as a function of the extent of proximal PAS usage in all genes that lost those 326	
miRNA sites (see Methods). Clustering in the miRNA feature space revealed 3 patient groups 327	
(Fig. 6C) with significant differences in overall survival (p=0.012 between Clusters 1 and 3; Fig. 328	
6D). The miRNAs most significantly associated with the patient clusters included miR-133a, 329	
miR-124, miR-421, miR-143 and miR-505. Binding sites for each miRNA were preferentially lost 330	
from Cluster 1 as compared with Cluster 3, suggesting that loss of these regulatory sites 331	
correlates with poor survival of PDA patients (Fig. 6E). Indeed, miR-133a, miR-124 and miR-332	
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143 are known tumor suppressors in PDA, again supporting the role of APA in selective loss of 333	
tumor suppressive miRNA binding sites80,83–89.  334	
 335	
The APA-regulated gene CSNK1A1 is required for proliferation and clonogenic growth of 336	
PDA cells.  337	
Our data showed APA-mediated regulatory changes in genes known to promote PDA 338	
pathogenesis. We hypothesized that our altered gene list may also contain growth-promoting 339	
genes not previously implicated in PDA biology, and therefore new therapeutic targets. We 340	
focused on the subset of druggable genes that were significantly shortened and upregulated in 341	
PDA. Finally, we overlaid this list with results from a genome-wide CRISPR screen, identifying 342	
genes essential for PDA cell proliferation90. This analysis identified CSNK1A1, the gene 343	
encoding the serine/threonine kinase casein kinase 1α (CK1α). CK1α regulates the Wnt/β-344	
catenin signaling pathway and has dual functions in cell cycle progression and cell division91–93. 345	
CK1α is known to influence tumor progression; however, its role as a tumor suppressor or 346	
oncogene is tumor type-dependent91,93–95 and CK1α has no known roles in PDA. CSNK1A1 has 347	
very low gene expression in normal pancreas but is overexpressed in PDA96. We found that 348	
CSNK1A1 shows significantly higher expression in the PDA epithelium as compared to 349	
precursor lesions (premalignant pancreatic intraepithelial neoplasia (PanIN) (Fig. 7A) and 350	
intraductal papillary mucinous neoplasia (IPMN)). We found no significant difference in 351	
CSNK1A1 expression in the stroma between PDA and precursor lesions. We then determined 352	
whether differential CK1α activity mediates progression from precursor lesions to PDA. As a first 353	
step, we assembled a context-specific gene regulatory network from 242 micro-dissected 354	
epithelial gene expression profiles using the Algorithm for Reconstruction of Accurate Cellular 355	
Networks (ARACNe)97,98. The input list of regulatory proteins for ARACNe contained DNA 356	
binding domain containing proteins as well as signaling proteins (including CK1α) and therefore, 357	
was not restricted to transcription factors alone. We then employed MARINa (MAster Regulator 358	
INference algorithm) to determine the activity of CK1α between precursor lesions and PDA 359	

samples as a function of expression of the CK1α regulon (inferred using ARACNe)99. If the 360	

CK1α targets are enriched for genes that are differentially expressed between precursor lesions 361	

and PDA, it indicates differential CK1α activity between the two conditions. Indeed, the positive 362	

targets of CK1α were more highly expressed in PDA epithelium, whereas the negative targets 363	

showed increased expression in precursor lesions, indicating that CK1α activity may promote 364	

the progression from precursor lesions to PDA (Fig. 7B). Importantly, CK1α differential activity 365	
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was not present in the stroma between PDA and precursor samples suggesting the specific role 366	
of CK1α in PDA epithelium. As predicted by our computational analysis, 3’-RACE showed that 367	
CSNK1A1 has an increased proportion of the short 3’-UTR form as compared to the long 3’-368	
UTR form in PDA cells (Supp. Fig. 3A).  369	
 370	
We then investigated the potential for CK1α inhibition to regulate PDA biology with the widely 371	
used small molecule inhibitor D447694,96,100. We treated the PDA cell lines MiaPaCa2 and Suit2 372	
with D4476; while MiaPaCa2 and Suit2 cells were both sensitive to D4476 treatment, Suit2 cells 373	
displayed a 10-fold lower IC50 (Fig. 7C). Both cell lines also showed dose-dependent 374	
decreases in cell proliferation (Fig. 7D, Supp. Fig. 3B) and clonogenic growth in the presence of 375	
the inhibitor (Fig. 7E,F, Supp. Fig. 3C). To provide genetic evidence for the role of CK1α in PDA 376	
cell growth, we knocked down CSNK1A1 in Suit2 and MiaPaCa2 cells with 3 short hairpin RNAs 377	
(shRNA) (Fig. 7G, Supp. Fig. 3D). In concordance with the pharmacological results, CSNK1A1 378	
knockdown decreased both cell proliferation and clonogenic growth of PDA cells (Fig. 7H-J, 379	
Supp. Figs. 3E,F), with Suit2 cells showing increased sensitivity to CK1α loss. The strongest 380	
phenotypic effects were associated with the most efficient knockdown (shRNA 3) in both cell 381	
lines. Therefore, we identify CK1α as a putative drug target in PDA and reveal the potential of 382	
cancer-specific APA analyses to identify mechanisms of altered gene expression driving cancer 383	
pathogenesis.  384	
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DISCUSSION 385	
Dysregulated gene expression is a cardinal feature of cancer101. However, how gene expression 386	
is altered in cancer and whether the processes driving this dysregulation can be targeted 387	
therapeutically are areas of active investigation. APA has recently been identified as a 388	
candidate driver of gene expression dysregulation. APA factors frequently show aberrant 389	
expression in cancer, modulate the expression of known oncogenes and tumor suppressors, 390	
and knockdown studies have highlighted their relevance to the cancer phenotype31–34,102,103. 391	
Whole-genome CRISPR and shRNA screens have also revealed the requirement for several 392	
APA factors in pancreatic cancer cell growth (www.depmap.org). Global analyses have revealed 393	
widespread 3’-UTR changes across multiple cancer types, uncovering recurrent alterations 394	
common across the cancer spectrum38–41. Recent findings suggest that while some APA events 395	
are widely shared across cancers, many are tumor type-specific42. Despite this observation, 396	
there have been few attempts to study APA in a single tumor type with sufficient power to 397	
identify tumor-specific alterations and vulnerabilities.  398	
 399	
To our knowledge, this study represents the first global, in-depth, single cancer view of APA, 400	
and the first examination of APA in PDA clinical samples. The only previous study of APA in 401	
PDA showed gemcitabine-induced 3’-UTR shortening of the transcription factor ZEB1 in the 402	
context of drug resistance104. Previous APA analyses combined multiple tumor types and used 403	
tumor-adjacent tissue as a “normal” control. However, matched tumor-adjacent normal tissues 404	
are known to represent a state that significantly differs from healthy, normal tissues and may 405	
therefore miss critical APA events48. Furthermore, there are insufficient numbers of tumor-406	
adjacent pancreatic samples within TCGA for a statistically stringent analysis. Therefore, we 407	
attempted to address these issues by using normal pancreas RNA-seq information from the 408	
GTEx project. An important limitation of comparing independently collected datasets is the 409	
inherent disparity between them. We attempted to rectify this by: a) confirming that the two 410	
datasets underwent identical library preparation methods on the same type of sequencing 411	
platform; b) following identical data processing pipelines from the raw sequencing data to 412	
generate the coverage data; c) validating our top hits in an independent micro-dissected 413	
dataset. Consistent with previous publications comparing TCGA and GTEx datasets, we 414	
observed minimal batch effects. As batch effects cannot be completely ruled out, we performed 415	
experimental validation of several candidate APA regulated genes, including PAF1 and ALDOA, 416	
highlighting the robustness of our approach and relevance of our findings to PDA biology. 417	
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Furthermore, this approach will allow the analysis of APA in other tumor types for which little 418	
tumor-adjacent material is present in TCGA. 419	
 420	
Multiple insights from our analyses are noteworthy. We find that APA events are recurrent and 421	
widespread across PDA patients. For example, 68 genes were shortened and 28 genes were 422	
lengthened in greater than 90% of the patient cohort. This supports the conjecture that APA 423	
dysregulation is a frequent event in PDA. In support of this hypothesis, we find that several APA 424	
factors are highly expressed in PDA, including CSTF2 (Supp. Fig. 4). CSTF2 has previously 425	
been implicated as a promoter of lung and bladder cancer, through the regulation of ERBB2 and 426	
RAC1 3’-UTRs, respectively33,34. We find frequent 3’-UTR alterations in several notable PDA-427	
relevant genes whose mechanisms of regulation were previously unknown, including PAF1, 428	
ALDOA and FLNA. Many of the shortened 3’-UTRs correlated with increased gene expression, 429	
providing the first collection of 3’-UTR alterations that correlate with gene expression changes in 430	
PDA. We were able to functionally validate these through luciferase reporter assays, 431	
highlighting the robustness of our analysis. Consistent with pan-cancer APA analyses, we find 432	
enrichment for pathways such as smooth muscle contraction and mRNA 3’-end 433	
processing29,41,43. However, we also find enrichment for pathways and processes implicated in 434	
PDA biology, including protein metabolism, receptor tyrosine kinase signaling and signaling by 435	
RHO GTPases. Indeed, the link between 3’-UTR alterations and cancer metabolism has been 436	
identified in previous pan-cancer APA analyses41. We also find an unexpected enrichment for 437	
loss of binding sites for tumor-suppressive miRNAs in frequently lost 3’-UTR regions. Therefore, 438	
we propose that APA is an underappreciated mechanism of gene dysregulation in PDA, driving 439	
the expression of growth-promoting genes through disruption of miRNA-mediated regulation. 440	
  441	
The extent of heterogeneity in proximal PAS usage across cancer patients has been largely 442	
overlooked in previous pan-cancer APA analyses. We found little heterogeneity in the extent of 443	
3’-UTR proximal site usage in most genes (including housekeeping genes) in both normal and 444	
PDA samples, again providing evidence for minimal batch effects. However, PDA patients 445	
showed substantial heterogeneity in the extent to which their metabolic genes used the proximal 446	
PAS. This metabolic plasticity in turn could serve as a mechanism to deal with the fluctuating 447	
metabolic demands of cancer cells.  These data support the possibility that APA may drive 448	
deregulation of cancer metabolism and tumor evolution by allowing for PAS choice plasticity of 449	
critical metabolic genes in PDA.  450	
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Several studies have demonstrated the power of APA analysis to improve expression-based 451	
prognostic markers. We report the first subset of 3’-UTR alterations that act as an independent 452	
prognostic indicator of PDA outcome. While several of the genes in this set are known 453	
regulators of tumorigenesis, including SAT1, many have not been implicated in PDA biology and 454	
may represent new mediators of cancer phenotypes. Interestingly, lost miRNA sites are 455	
enriched for tumor-suppressive miRNA families. In particular, we observed that patients who 456	
retain binding sites for a subset of 5 miRNAs survive longer than patients who lose them. This 457	
uncovers the prognostic role for a novel subset of miRNA mediators in PDA.     458	
 459	
Our in-depth analysis of APA in PDA revealed a critical role for the druggable target CK1α in 460	
PDA cell growth and survival. While CK1α has known roles in Wnt signaling and p53 activation, 461	
important mediators of PDA progression, the relevance of CK1α to PDA was previously 462	
unknown93–96. Furthermore, the mechanisms of regulation of CK1α in cancer are not well 463	
understood, although promoter methylation in melanoma has been reported105. Interestingly, 464	
two CK1α isoforms have been detected in HeLa cells, with the shorter isoform being generated 465	
from the use of an alternative PAS106. We show that CK1α exhibits increased activity in PDA 466	
samples as compared to precursors, and that pharmacological and genetic blockade of CK1α 467	
attenuates PDA cell proliferation and clonogenic growth. Therefore, our single-cancer approach 468	
can identify APA-regulated, disease-specific vulnerabilities.  469	
 470	
Our computational analysis and experimental validation have revealed unexpected mediators of 471	
PDA biology and broadened our understanding of the regulatory role of 3'-UTR sequence space 472	
in cancer. This comprehensive analysis reveals the scope of previously uncharacterized APA 473	
events in regulating functionally relevant PDA genes, improving patient prognosis and driving 474	
tumor evolution. We propose that the landscape of 3’-UTR alterations in PDA represents a 475	
novel avenue to better understand PDA progression and identify new drug targets.  476	
   477	
 478	
  479	
 480	
 481	
 482	

483	
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All RNA-seq files were downloaded via NCBI dbGAP. This included 184 normal pancreas SRA 485	
files from GTEx (dbGAP accession phs000424.v8.p2) and 148 BAM files within the TCGA-486	
PAAD cohort (https://portal.gdc.cancer.gov/).  487	
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FIGURE LEGENDS 755	
Figure 1. Integrative analysis of RNA-seq data identifies 3’-UTR alterations associated 756	
with PDA. (A) A plot of PDUI score of each gene in human tumor and normal samples. Dashed 757	
lines represent 0.1 cutoffs. Blue dots represent 3’-UTR lengthened genes while red dots 758	
represent 3’-UTR shortened genes. (B) A volcano plot denoting 3’-UTR shortened (red) and 759	
lengthened (blue) gene hits (FDR<0.01) whose |ΔPDUI| > 0.1. (C) A plot showing the number of 760	
base pairs lost/gained by 3’-UTR altered genes. (D) UCSC genome browser plot depicting the 761	
3’-UTR RNA-seq density profile of two 3’-UTR shortened genes (FLNA and PAF1) to highlight 762	
the coverage differences between tumor (orange) and normal (purple) patient samples. (E) 763	
UCSC genome browser plot highlighting the 3’-UTR profile differences between FLNA and 764	
PAF1 in a micro-dissected dataset in patient tumor (red) and stroma (blue). (F) 3’-RACE of 765	
altered PDA-associated genes in MiaPaCa2 and Suit2 cells (representative images, n=3). 766	
Approximate length of the 3’-UTR form is denoted beside each band. (G) 3’-RACE of select 767	
genes in primary patient samples.  768	
 769	
Figure 2. 3’-UTR changes are widespread among PDA patients and enriched in PDA 770	
pathways. (A) The heatmap shows genes (rows) undergoing 3’-UTR shortening (red) or 771	
lengthening (blue) in each patient tumor (columns) compared to median score in normal 772	
pancreas for that gene. The profile of KRAS, CDKN2A, TP53, SMAD4 mutations as well as 773	
tumor subtype is shown in the context of distinct APA-derived patient subgroups. (B) 774	
Significantly enriched (FDR<0.05) reactome pathways associated with 3’-UTR altered genes.  775	
 776	
Figure 3. APA events identify a poor prognostic cohort in PDA patients. (A) Patients were 777	
clustered based on 3’-UTR short (red) and long forms (blue) of 3’-UTR altered genes (clustered 778	
into gene groups 1,2,3) and segregated into patient cohort A (blue), patient cohort B (black) and 779	
patient cohort C (green). (B) Kaplan-Meier survival plot for patient cohort A (blue), patient cohort 780	
B (black) and patient cohort C (green) (*p<0.05).   781	
 782	
Figure 4. PDA patients show substantial heterogeneity in the extent of proximal PAS 783	
usage of metabolic genes. (A) Example of a 3’-UTR shortened gene (ALDOA) that has a tight 784	
distribution of its proximal PAS usage in normal pancreas (purple) as well as PDA patients 785	
(orange). (B) A 3’-UTR shortened gene (FLNA) that has a tight distribution in normal pancreas 786	
(purple); however, the extent of proximal PAS usage varies greatly across PDA patients 787	
(orange). (C) Plot of variance in PDUI for all genes between tumor and normal. Purple dots 788	
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represent genes with high variance in normal samples while orange dots represent genes with 789	
high variance in tumor samples. Dashed lines represent 0.015 and –0.015 cutoffs.  790	
 791	
Figure 5. APA drives altered gene expression in PDA. (A) Log fold change in gene 792	
expression is plotted against ΔPDUI for 3’-UTR altered genes. Overexpressed genes (red dots) 793	
and underexpressed genes (blue dots) on the left represent 3’-UTR shortened hits while those 794	
to the right represent 3’-UTR lengthened hits. (B) Quantification of 3’-UTR altered genes that 795	
are overexpressed (red) or underexpressed (blue) in PDA tumors. (C) Schematic illustrating the 796	
luciferase reporter constructs. (D) Normalized fold expression change of the luciferase reporter 797	
(short 3’-UTRs / long-3'UTRs) for the selected list of 3’-UTR altered genes (n=3). The long 3’-798	
UTR expression for each gene is normalized to 1. Each whisker plot denotes the median as the 799	
center line and the minimum and maximum values as the whiskers (*p<0.05, 800	
**p<0.01,***p<0.005, ****p<0.001). (E) Schematic showing the ALDOA 3’-UTR with positions of 801	
conserved miRNA sites as well as the miRNA mutant construct used. (F) Fold expression 802	
change of miRNA mutant construct compared to the PAS mutant in luciferase assays (n=3). 803	
The PAS mutant expression is normalized to 1. 804	
 805	
Figure 6. APA-mediated loss of tumor suppressive miRNA binding sites is associated 806	
with poor patient outcome. (A) Number of genes that lose highly conserved miRNA binding 807	
sites due to 3’-UTR shortening. The percentage of genes that lose at least 1 miRNA binding site 808	
is indicated above the bracket.  (B) Highly conserved miRNA families were plotted against their 809	
Z-score, an index of the lost binding sites where a more negative Z-score indicates more 810	
significant binding site loss. (C) tSNE plot depicting TCGA patient clusters in the highly 811	
conserved miRNA feature space. (D) Kaplan-Meier survival plot for the 3 patient clusters 812	
identified in (C) (*p<0.05 for Cluster 1 to Cluster 3 comparison). (E) Heatmap depicting the 813	
association of miRNA binding site loss (miR score) with patient clusters.   814	
 815	
Figure 7. CK1α is required for cell proliferation and is a putative drug target in PDA. (A) A 816	
plot showing CSNK1A1 gene expression (in transcripts per million) in PDA (red) as compared to 817	
PanIN lesions (green) in the epithelium and stroma from micro-dissected samples (****p<0.001). 818	
(B) MARINa plot showing CK1α targets (blue: negative targets, red: positive targets) ranked by 819	
their differential gene expression from precursors (left) to PDA epithelium (right). (C) Dose-820	
response of MiaPaCa2 (purple) and Suit2 (red) cell lines to the CK1α small molecule inhibitor, 821	
D4476 (n=3). (D) Cell proliferation of Suit2 cells treated with indicated doses of D4476 (n=3, 822	
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****p<0.001). (E) Clonogenic growth assay of Suit2 cells treated with indicated drug doses. (F) 823	
Quantification shows the number of colonies in (E) (n=3, ***p<0.005, ****p<0.001). (G) A 824	
representative blot confirming CK1α knockdown in Suit2 cells with a non-targeting control 825	
shRNA (Con shRNA) or with one of three different shRNAs targeting CSNK1A1 (n=3). (H) Cell 826	
proliferation of Suit2 control and CK1α knockdown cells (n=3, ***p<0.005). (I) Clonogenic 827	
growth assay of control and CK1α knockdown cells (n=3). (J) Quantification shows the number 828	
of colonies in (I) (****p<0.001). 829	
 830	
Supplementary Figure Legends 831	
Supplementary Figure 1. Analysis flowchart. We identically processed raw RNA-seq data 832	
from the GTEx and TCGA-PAAD cohorts to analyze APA events in PDA. Predicted genes were 833	
further validated using a smaller high purity TCGA cohort and an independent micro-dissected 834	
dataset. The resulting genes were interrogated for associated APA trends, prognostic 835	
significance and gene expression changes. 836	
 837	
Supplementary Figure 2. Gene hits in the high purity TCGA-PAAD subset. (A) Volcano plot 838	
depicting significant gene hits (FDR<0.01) whose |ΔPDUI| > 0.1 in the 69 high purity samples (> 839	
33% tumor content). (B) Venn diagram representing the overlap in significant gene hits between 840	
the DaPars analysis of 148 TCGA-PAAD samples and the 69 high purity TCGA-PAAD dataset. 841	
(C) 3’-UTR schematic and sequence of 3 example candidate genes (FLNA, PPP2R2D and 842	
PAF1). The stop codon is highlighted in blue and marks the beginning of the 3’-UTR sequence. 843	
The functional PAS sites estimated from 3’-RACE forms are highlighted in red.  844	
 845	
Supplementary Figure 3. CK1α is required for cell proliferation and is a putative drug 846	
target in PDA. (A) 3’ RACE of CSNK1A1 in Suit2 and MiaPaCa2 cells (representative images 847	
from 3 independent experiments). (B) Cell proliferation of MiaPaCa2 cells treated with indicated 848	
doses of D4476 (n=3, ****p<0.001). (C) Clonogenic growth assay of MiaPaCa2 cells treated 849	
with indicated drug doses. (D) A representative blot (n=3) confirming CK1α knockdown in 850	
MiaPaCa2 cells with a non-targeting control shRNA (Con shRNA) or one of three different 851	
shRNAs targeting CSNK1A1. (E) Cell proliferation of MiaPaCa2 control and CK1α knockdown 852	
cells (n=3, ***p<0.005). (F) Clonogenic growth assay of MiaPaCa2 control and CK1α 853	
knockdown cells (n=3).  854	
 855	
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Supplementary Figure 4. APA factor expression in PDA. Fold expression change of core 856	
APA factors between TCGA (tumor) and GTEx (normal pancreas). Dotted lines represent 1.5-857	
fold (red) and 0.66-fold (blue) cutoffs. 858	
	 	859	
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MATERIALS AND METHODS 860	
Data collection and preprocessing 861	
Our study focused on PDA tumors consistent with the histology of PDA (n=148). All RNA-seq 862	
files were downloaded via NCBI dbGAP. This included 184 normal pancreata SRA files from 863	
GTEx (dbGAP accession phs000424.v8.p2) and 148 BAM files within the TCGA-PAAD cohort 864	
(https://portal.gdc.cancer.gov/). GTEx SRA files were aligned exactly according to the TCGA 865	
RNA-seq alignment pipeline using GENCODE.v22 annotations. Bedgraph files were generated 866	
using bedtoolsv2.26 and were supplied as input to the DaPars algorithm.  867	
 868	
DaPars analysis 869	
DaPars processes bedgraph coverage files to identify differences in 3’-UTR lengths between 870	
two conditions. The output of our analysis contained putative 3’-UTR altered transcripts and was 871	
comprised of 2573 unique genes. The subset of genes that were significantly altered in their 872	
PDUI scores were calculated using Fisher’s exact test (|ΔPDUI| >0.1, FDR<0.05) between 873	
normal and PDA tumors. A similar analysis was performed with a subset of 69 high purity PDA 874	
tumor samples.  875	
 876	
Bioinformatics analyses and statistical methods 877	
Analysis of heterogeneity. The variances in proximal PAS usage across tumor samples 878	
(Var(Tumor)) as well as normal samples (Var(Normal)) were computed for each gene and the 879	
difference (Var(Normal)-Var(Tumor)) was plotted (R version 3.5.2). 880	
Heatmap analysis. A heatmap representing the extent of 3’-UTR alterations across PDA 881	
patients was generated (R version 3.4.3). For each significant gene hit (row), the median GTEx 882	
PDUI score was subtracted from the PDUI score for each TCGA PDA patient to obtain a 883	
measure of ΔPDUI (change in 3’-UTR length for that gene for each patient). Hierarchical 884	
clustering of patients (columns) segregated them into 5 distinct subgroups. Rows were similarly 885	
clustered to yield subsets of genes undergoing a higher degree of 3’-UTR shortening (red) or 886	
lengthening (blue). The mutational status of commonly altered PDA genes and PDA subtype for 887	
each TCGA patient was highlighted.  888	
Pathway analysis. PANTHER (Protein ANalysis Through Evolutionary Relationships) was used 889	
for pathway analysis107,108. The statistical overrepresentation test was used to statistically 890	
determine over or under-representation of reactome pathways in comparison to the reference 891	
list (all human genes in the PANTHER database) using Fisher’s exact test (FDR <0.05). 892	
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Survival analysis. We selected genes with significant 3’-UTR shortening for multivariate 893	
survival time model building by first computing the residuals from a multivariate proportional 894	
hazards model fit to clinical factors (age, stage, grade, surgical outcome, race and sex) and 895	
selecting only those genes with significant univariate correlation with this clinically unexplainable 896	
prognostic signal. We then used K-means clustering among selected genes to define 3 897	
prognosis groups based on the within/between sum of squares criterion. The prognostic value of 898	
this classification is described by standard Kaplan-Meier plot and the log-rank test.   899	
Differential gene expression analysis. Differential gene expression analysis between TCGA-900	
PAAD and GTEx normal pancreas samples was performed using DESeq2. Genes showing (1) 901	
Fold change > 1.5 (2) FDR<0.05 (3) log2CPM > 3 were considered differentially expressed. The 902	
association between PDUI score and gene expression was plotted in R version 3.4.3.   903	
Percentage of lost miRNA sites. Highly conserved miRNA binding sites and their genomic 904	
positions were downloaded from TargetScanHuman 7.2. This list, along with DaPars prediction 905	
of genomic coordinates of lost 3’-UTRs was used to plot the number of genes that lose at least 906	
1 highly conserved miRNA binding site.  907	
miRNA families preferentially associated with lost sites. In order to determine miRNAs 908	
associated with sites enriched in lost 3’-UTRs, miRNA target predictions and the cumulative 909	
weighted context++ scores (CWCS) were downloaded from TargetScanHuman 7.2. CWCS 910	
estimates the predicted cumulative repression for a miRNA at the site. The lost miRNA binding 911	
sites in the shortened 3’-UTRs of PDA patients were inferred from DaPars predictions. A 912	
weighted target site score was computed as the sum over all genes with shortened 3’-UTRs in 913	
tumor, with the CWCS of each target site for the miRNA multiplied by the normalized 914	
abundance of the gene’s 3’-UTR form in which the predicted target site was present. The fold-915	
change (f) of the sum of weighted target site scores in lost 3’-UTR regions for PDA tumor over 916	
normal was calculated. The labels of the miRNA target sites were permuted to assess the 917	
significance of the fold-change. 1000 such randomizations were performed and the mean (m) 918	
and standard deviation (s) of the fold changes across the randomized data sets was computed. 919	
The significance of the fold change was computed in form of the Z-score defined as (f-m)/s. A 920	
lower Z-score indicates that the loss in miRNA binding sites is higher than that expected by 921	
chance. 922	
miRNA prognostic signature. We quantified the impact of APA-based loss of miRNA binding 923	
as follows:  924	

 Xm,i= Σg (1-PDUIi,g) x Ag,m 925	
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where Ag,m is an indicator function that the short versus long 3’-UTR of the gene g contains the 926	

binding site for miRNA m, the impact to the ith person is Xm,i. We used Sure Independence 927	

Screening (SIS) to search through all affected miRNAs and identify features that were 928	
associated with survival univariately109.  To study the multivariate effect, we reorganized cases 929	
using the euclidean distance between SIS selected features, visualized with tSNE, and defined 930	
clusters with model-based Gaussian clustering using the BIC criterion to select cluster number.  931	
Survival differences were tested across all groups by the log-rank test and were visualized by 932	
Kaplan-Meier estimate. The pattern of loss of miRNA binding sites across patient clusters were 933	
visualized for a subset of miRNAs in a heatmap.   934	
MARINa plot. The pancreatic cancer regulatory network was reverse engineered by ARACNe-935	
AP from 242 microdissected epithelial gene expression profiles which were generated from 197 936	
primary PDA, 26 low-grade PanIN and 19 low-grade IPMN lesions5,60,98. Raw counts were 937	
normalized to account for different library sizes after filtering out genes with less than one 938	
fragment per million mapped fragments in at least 20% of the samples, and the variance was 939	
stabilized by fitting the dispersion to a negative binomial distribution as implemented in the 940	
DESeq2 R package110. ARACNe was run with standard settings (using data processing 941	
inequality (DPI), with 100 bootstrap iterations using all gene symbols mapping to a set of 1856 942	
transcription factors that includes genes annotated in the Gene Ontology (GO) molecular 943	
function database as GO:0003700 (‘transcription factor activity’), GO:0004677 (‘DNA binding’), 944	
GO:0030528 (‘transcription regulator activity’) or as GO:0004677/GO: 0045449 (‘regulation of 945	
transcription’),  671 transcriptional cofactors (a manually curated list, not overlapping with the 946	
transcription factor list, built upon genes annotated as GO:0003712, ‘transcription cofactor 947	
activity’, or GO:0030528 or GO:0045449) or 3,540 signaling pathway related genes (annotated 948	
in GO Biological Process database as GO:0007165 ‘signal transduction’ and in GO cellular 949	
component database as GO:0005622, ‘intracellular’, or GO:0005886, ‘plasma membrane’) as 950	
candidate regulators111,112. Thresholds for the tolerated DPI and mutual information P value 951	
were set to 0 and 10–8, respectively. For master regulatory analysis, we tested the differential 952	
activity for CK1α between precursor lesions and PDA by applying the multi-sample version of 953	
the VIPER algorithm (msVIPER)99. msVIPER considers the distribution of negative and positive 954	
targets of CK1α in the progression gene expression signature to infer its activity.  955	
 956	
Experimental methods 957	
Cell lines, antibodies and general reagents. 958	
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MiaPaCa2 and HEK293 cells were purchased from ATCC and cultured in DMEM media (Cat# 959	
MT 10-013-CV, Corning) and 10% fetal bovine serum. Suit2 cells were obtained from Dr. David 960	
Tuveson (Cold Spring Harbor Laboratory). Cell lines were periodically verified to be 961	
mycoplasma free using the Mycoalert kit (Cat# LT07-701, Lonza). All transfections were carried 962	
out using Lipofectamine 3000 (Cat# L3000008, Thermo Fisher Scientific) as per manufacturers 963	
protocol. All primers used in this study were purchased from Integrated DNA Technologies (IDT) 964	
and PCR reactions were performed using Q5 Hot start DNA polymerase (Cat# M0493L, NEB). 965	
cDNA synthesis was carried out using Superscript II Reverse Transcriptase (Cat# 18064022, 966	
Thermo Fisher Scientific). miRNA site mutations in ALDOA 3’-UTR as well as mutations at the 967	
proximal PAS of long 3’-UTRs were introduced using NEB Builder HiFi DNA assembly (Cat# 968	
E2621S, NEB). The Renilla reporter plasmid pIS1 (Plasmid# 12179) as well as the firefly 969	
plasmid pIS0 (Plasmid# 12178) were purchased from Addgene. Luciferase assays were 970	
performed using Dual Luciferase Reporter Assay System (Cat# E1910, Promega). For 971	
CSNK1A1 drug studies, the small molecule inhibitor D4476 (Cat# 13305, Cayman Chemical) 972	
was dissolved in DMSO (Cat# S1078, Selleckchem) at a stock concentration of 20mM. For 973	
dose-response measurements and certain cell proliferation experiments, cell viability was 974	
assessed using CellTiter-Glo (Cat# G7571, Promega). 3 distinct predesigned shRNAs 975	
(sh1:Cat# V2LHS_176052, sh2:Cat# V2LHS_221905, sh3:Cat# V2LHS_263361) against 976	
CSNK1A1 were procured from a commercial shRNA library (Dharmacon) from the Roswell Park 977	
Gene Modulation core. Primary antibodies used in this study included a polyclonal antibody 978	
against CK1α (Cat# A301-991A-M, Bethyl labs)	 and a monoclonal antibody against β-actin 979	

(Cat# 3700S, Cell Signaling Technology). Secondary antibodies included horseradish 980	
peroxidase-conjugated goat anti-mouse (Cat# A4416, Sigma) and goat anti-rabbit (Cat# 45-000-981	
682, Fisher Scientific)	antibodies.	982	
 983	
Cell lysis and RNA extraction. 984	
MiaPaCa2 and Suit2 cells were grown to 100% confluence in 10cm plates. The cells were 985	
washed with 10mL PBS, and 1mL TRIzol was added to the cell culture plate. Cells were 986	
scraped, then incubated in a 1.5mL microcentrifuge tube for 5 minutes. 0.2mL of chloroform was 987	
added, mixed well and the tubes were incubated at room temperature for 2-3 minutes. The 988	
samples were centrifuged at 12000xg for 15 minutes at 4°C and the upper aqueous phase was 989	
transferred to a fresh tube. After addition and incubation with 0.5mL of isopropanol for 10 990	
minutes, the samples were again centrifuged for 10 minutes. The supernatant was removed and 991	
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the RNA pellet was washed with 75% ethanol. The pellet was dissolved in RNase-free water 992	
and the quality of RNA was assessed using a NanoDrop spectrophotometer.  993	
 994	
3’ RACE assays.  995	
cDNA was generated from 1µg RNA from MiaPaCa2 as well as Suit2 cell lines using 996	
Superscript II Reverse Transcriptase (Cat# 18064022, ThermoFisher Scientific) using the primer 997	
P: 5’- GACTCGAGTCGACATCGATTTTTTTTTTTTTTTTT-3’. To PCR amplify the 3’-UTR forms 998	
of candidate genes, a gene specific forward primer spanning the stop codon of the gene was 999	
used in conjunction with a reverse primer P’: 5’- GACTCGAGTCGACATCG-3' targeting the 1000	
adapter region introduced by primer P. The PCR mixture was run on a 1.5% agarose gel and 1001	
visualized using the Chemidoc imaging system followed by analysis with Image Lab software 1002	
(Version 6.0.0, Bio-Rad). An identical cDNA generation and PCR procedure was followed for 1003	
RNA extracted from PDA patient tumor samples. RNA from PDA patient samples were obtained 1004	
from Roswell Park Pathology Shared Resource. Approval of biospecimen use was granted by 1005	
the Roswell Park IRB.  1006	
 1007	
Constructs for reporter assays. 1008	
The long and short 3’-UTRs were PCR amplified from genomic DNA or BAC DNAs procured 1009	
from RPCI-11 human BAC library resource at Roswell Park and subcloned into the Renilla 1010	
luciferase vector pIS1 (Plasmid# 12179, Addgene) between the XbaI/EcoRV and NotI restriction 1011	
sites. The primers were designed in accordance with 3’-UTR length estimates obtained from the 1012	
3’ RACE. The following primers were used: 1013	
 1014	
PPP2R2DFwdXbaI taagcaTCTAGAagacgcgaacgtgagga 
PPP2R2DShortRevNot1 tgcttaGCGGCCGCcaataacttttctcttggatgttaa 
PPP2R2DLongRevNot1 tgcttaGCGGCCGCgaagaaccctgcataacttcattc 

SAT1FwdXbaI 
  
taagcaTCTAGAatatgctgcacttaagaatac 
 

SAT1ShortRevNotI tgcttaTCTAGAaaatgtgatttaacacaattac 
 

SAT1LongRevNotI tgcttaTCTAGActgaccaatcaacagggacc 
 

ALDOAFwdXbaI taagcaTCTAGAgcggaggtgttcccaggctgc 
ALDOAShortRevNotI tgcttaTCTAGAccacaagacacggacggccgac 
ALDOALongRevNotI tgcttaGCGGCCGCctgttaggtgaaggggcagagcc 
TRIP10FwdXbaI taagcaTCTAGAaccctgccagagacgggaag 
TRIP10ShortRevNotI tgcttaTCTAGAgaaacgtggtgttagatacttcc 
TRIP10LongRevNotI tgcttaTCTAGAcctgggcaactgggtgagac 
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PAF1EcoRVXbaI taagcaGATATCCAGTGACTGAgtcccagggc	
PAF1ShortRevNotI tgcttaGCGGCCGCacctgggggttgcgggaggt 
PAF1LongRevNotI TGCTTAGCGGCCGCgtggccctgggaacctggct	
ENO1FwdEcoRV taagcaGATATCGAAACCCCTTGGCCAAGTAA	
ENO1ShortRevNotI TGCTTAGCGGCCGCcctgaacactaaggacagacc	
ENO1LongRevNotI TGCTTAGCGGCCGCccttctggtctgaatatggc	
RALGDSFwdXbaI taagcaTCTAGAgggcatcctcccagggtc	
RALGDS ShortRevNotI tgcttaGCGGCCGCttgcccctccccaatcag	
RALGDS LongRevNotI tgcttaGCGGCCGCctggataaccctgcaagggtcc	
FLNA FwdXbaI taagcaTCTAGAgtctggggcccgtgcca	
FLNA ShortRevNotI tgcttaGCGGCCGCcccaacaaagctacagccacgc	
FLNA LongRevNotI tgcttaGCGGCCGCcctgcctcggcctcccgaa	
 1015	
Luciferase reporter assays. 1016	
MiaPaCa2 cells were seeded at ~10000 cells per well in a 96-well white plate (Cat# 07-200-628, 1017	
Fisher Scientific). The cells were transfected the next day at ~ 60% confluency with 200ng of 1018	
Renilla luciferase reporter plasmid (pIS1 containing the 3’-UTR region of interest) and 2ng of 1019	
firefly luciferase reporter control plasmid pIS0 per well. Luciferase readings were measured 24h 1020	
post-transfection with the Dual luciferase reporter assay system (Cat# E1910, Promega) using 1021	
the Synergy H1 plate reader. The Renilla reporter reading was normalized to its corresponding 1022	
firefly reading in every well to control for transfection efficiency.  1023	
 1024	
D4476 studies.	1025	
For dose-response measurements, MiaPaCa2 and Suit2 cells were seeded at a concentration 1026	
of 2500 cells per well in a 96-well white plate. The next day, D4476 was titrated over a range of 1027	
concentrations using the Tecan D300e Digital Dispenser and cell viability was measured 96h 1028	
post drug titration using a CellTiter-Glo assay. For cell proliferation experiments, MiaPaCa2 or 1029	
Suit2 cells were seeded at a concentration of 250 cells per well in a 96-well clear plate (Cat# 1030	
130188, Thermo Fisher Scientific). DMSO control or D4476 was dispensed at varying 1031	
concentrations and imaged on the Cytation™ 5 Cell Imaging Multi-Mode Reader to image cell 1032	
count (high contrast bright field) over time. For clonogenic experiments, MiaPaCa2 or Suit2 cells 1033	
were seeded at a concentration of 250 cells per well and treated with different concentrations of 1034	
D4476. The cells were allowed to grow over a period of 8-10 days after which they were fixed 1035	
(10% methanol, 10% acetic acid) and stained with 0.5% crystal violet solution (in methanol). 1036	
The plates were rinsed with PBS (137mM NaCl, 2.7mM KCl, 6.5mM Na2HPO4, 1.5mM 1037	
KH2PO4), dried overnight and scanned. The resulting images were quantified using ImageJ 1038	
(Version 1.50i). The images were uniformly thresholded and quantified for number of particles 1039	
(colonies).  1040	
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 1041	
CSNK1A1 knockdown experiments. 1042	
Three different shRNAs against CSNK1A1 gene as well as a non-targeting control shRNA (Con 1043	
shRNA) were used to generate MiaPaCa2 or Suit2 control and CK1α knockdown cells. 1044	
Knockdown was confirmed via immunoblotting. Briefly, samples were run alongside a molecular 1045	
weight ladder (Cat# 26624, Thermo Fisher Scientific) on 10% SDS PAGE gels and then 1046	

transferred to PVDF membranes (Cat# IPVH00010, Thermo Fisher Scientific) at 100V for 1 h. 1047	
The membrane was blocked with 5% non-fat dry milk powder in PBST (PBS+ 0.1% Tween-20) 1048	
for 1h and then incubated in the same buffer containing the primary antibody overnight on a 1049	
shaker at 4°C. Polyclonal anti-CK1α (1:1000) and monoclonal β-actin (1:1000) were used to 1050	
detect CK1α and β-actin respectively. The membrane was washed 4 x 5 min in PBS-T, followed 1051	
by incubation with HRP-conjugated secondary antibodies (1:1000) for 1 h and then another 4 x 1052	
5 min washes. The blots were soaked with the ECL substrate (Cat# 32106, Thermo Fisher 1053	
Scientific) and imaged. For cell proliferation experiments, control and CK1α knockdown Suit2 1054	
cell lines were seeded at a concentration of 250 cells per well in a 96-well white plate. Cell 1055	
proliferation was measured on Day 1, 3, 5 and 7 using a CellTiter-Glo assay. The same 1056	
procedure was repeated for MiaPaCa2 cells with a seed concentration of 500 cells per well. For 1057	
clonogenic assays, MiaPaCa2 or Suit2 cells were seeded at a concentration of 500 cells per 1058	
well in a 6-well clear plate. The cells were allowed to grow over a period of 8-10 days, fixed, 1059	
stained and quantified as described previously.  1060	
 1061	
Statistical analyses. 1062	
 All findings presented were replicated in three or more independent experiments. Comparisons 1063	
between two groups were performed using unpaired t-test with Welch’s correction in Graph Pad 1064	
Prism 8. In general, p < 0.05 was considered significant, and the determined p values are 1065	
provided in the figure legends. Asterisks in graphs denote statistically significant differences as 1066	
described in figure legends. 1067	
 1068	
 1069	
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