1 Using null models to compare bacterial and microeukaryotic metacommunity assembly

2 under shifting environmental conditions

- 3
- 4 Running title: Metacommunities under shifting environment
- 5

6 Máté Vass*, Anna J. Székely, Eva S. Lindström, Silke Langenheder

- 7 Department of Ecology and Genetics/Limnology, Uppsala University, Sweden
- 8 *corresponding author's e-mail address: mate.vass@ebc.uu.se
- 9

10 Abstract

11	Temporal variations in microbial metacommunity structure and assembly processes in
12	response to shifts in environmental conditions are poorly understood. Hence, we conducted a
13	temporal field study by sampling rock pools in four-day intervals during a 5-week period that
14	included strong changes in environmental conditions due to intensive rain. We characterized
15	bacterial and microeukaryote communities by 16S and 18S rRNA gene sequencing,
16	respectively. Using a suite of null-model approaches to assess dynamics in community
17	assembly, we found that strong changes in environmental conditions induced small but
18	significant temporal changes in assembly processes and triggered different responses in
19	bacterial and microeukaryotic metacommunities, promoting distinct selection processes.
20	Incidence-based approaches showed that the assemblies of both communities were mainly
21	governed by stochastic processes. In contrast, abundance-based methods indicated the
22	dominance of historical contingency and unmeasured factors in case of bacteria and
23	microeukaryotes, respectively, which we distinguished from dispersal-related processes using
24	additional tests. Taken together, our study highlights that community assembly processes are
25	not static, and the relative importance of different assembly processes can vary under different
26	conditions and between different microbial groups.

27 Introduction

28

29	Different assembly processes such as environmental selection, dispersal and/or
30	stochastic processes can simultaneously influence community composition [1]. The relative
31	importance of the different processes is highly context-dependent and dynamic and may
32	therefore vary in importance over time [2-5] as a consequence of processes such as ecological
33	succession [4, 6], seasonality [3, 5, 7] or changes in connectivity between sites [8, 9]. Despite
34	the increased recognition that community assembly processes are not static, the majority of
35	studies is based on snapshot sampling which cannot adequately capture their dynamics [7].
36	Besides contemporary changes in environmental conditions and dispersal processes
37	[10], past environmental conditions and dispersal events (i.e., historical contingency) may
38	also influence the temporal dynamics of assembly processes [11-13]. For instance, changes in
39	the variation in environmental heterogeneity could affect the relative importance of species-
40	sorting or selection processes [8], while changes in dispersal rates could affect the
41	possibilities for mass effects [14] or the extent of dispersal limitation [15]. Further, the
42	importance of historical contingency may also depend on the environmental context. For
43	example, priority effects - the impact of particular species on community development due to
44	prior arrival at a site – may be affected by environmental disturbances that initiate
45	colonization events that intensify the importance of the phenomenon [11]. Several studies
46	detected a trajectory from stochastic to deterministic assembly processes in time following a
47	disturbance [16, 17], which might reflect effects of initially strong, but transient priority
48	effects that diminish over time as more species arrive and establish in the post-disturbance
49	community. Finally, the probability of priority effects may also increase when productivity is
50	high [18], because the growth of early colonizers is promoted [11].

51	Only a few studies have directly compared assembly mechanisms between different
52	groups of microorganisms such as bacteria and microeukaryotes. Based on the differences in
53	e.g., cell sizes, generation times and life history traits, differences in assembly processes are
54	expected between these two groups [19-21]. For instance, it has been suggested that marine
55	protist communities are governed by species-sorting to a greater extent than are marine
56	bacterial communities [22, 23], while on the contrary, other studies indicated the opposite
57	[21]. Microeukaryotes have been suggested to be mainly shaped by stochastic mechanisms
58	(i.e. drift) [21, 24] and to be more subject to the effect of dispersal than bacteria [25]. Hence,
59	there are to date conflicting results on how assembly processes differ and persist through time
60	in bacterial and microeukaryotic communities.
61	The statistical 'toolbox' that is currently used to gain insights into the importance of
62	different community assembly processes consists of several complementary approaches that
63	all have their own strengths and limitations. Recently, null model approaches that
64	quantitatively compare assembly processes have been increasingly used [26, 27]. For
65	example, the elements of metacommunity structure (EMS) method allows to distinguish
66	randomly assembled communities from those assembled by species-sorting processes [28,
67	29]. The incidence-based (Raup-Crick) beta-diversity (β_{RC}) [30] has been used to differentiate
68	between deterministic and stochastic assembly processes [18, 31]. In addition, based on the
69	assumption that phylogenetic relatedness is indicative of shared environmental response traits
70	[32], null model approaches have been extended to integrate phylogenetic information [33].
71	Specifically, Stegen et al. [15, 27] have combined null model approaches based on
72	phylogenetic and abundance-based (Raup-Crick) beta-diversity (β_{RCbray}) measures to
73	quantitatively estimate the relative importance of processes such as selection, drift, dispersal
74	limitation and mass effects. Furthermore, this quantitative process estimate (QPE) method

75	also differentiates between heterogenous/variable (i.e., beta-diversity enhancing) and
76	homogeneous (i.e., beta-diversity diminishing) selection processes.
77	We carried out an extensive field study of bacterial and microeukaryotic communities
78	in rock pools, which are particularly variable habitats both in space and time. The above-
79	mentioned statistical approaches were applied to assess the temporal changes in community
80	assembly processes. We hypothesized that temporal changes in the importance of different
81	assembly processes should occur in dependence on changes in environmental conditions and,
82	further, that these changes differ between bacterial and microeukaryotic communities.
83	
84	Material and methods
85	
86	Sampling procedure
87	Samples were taken from 20 neighboring rock pools – referred to as a
88	'metacommunity' – located along the Baltic Sea coast on the island of Gräsö, Sweden
89	(60°29'54.0" N, 18°25'48.9" E) (Supplemental Fig. S1). The rock pools were sampled ten
90	times, starting on 14 August 2015 and ending on 19 September 2015 in four-day intervals
91	(Fig. S2). Four of the pools dried out at certain occasions during the sampling period.
92	Intensive rain (starting August 31) occured in the middle of the study period and separated a
93	cooler wet period (air temperature (°C): 13.98±1.35, precipitation (mm): 3.97±6.94, wind
94	speed (m/s): 6.7±2.91) from an extended dry period (air temperature (°C): 17.71±0.98,
95	precipitation (mm): 0.09±0.36, wind speed (m/s): 5.6±1.61) prior to the rain (Fig. S2).
96	Numerous abiotic and biotic variables were measured at each sampling occasion.
97	Specifically, conductivity and temperature were measured using a WTW Conductometer
98	(Cond 3210 SET 2 incl. TetraCon 325-3 measuring cell, Germany). Morphological
99	parameters such as maximum length, width and depth were recorded for each pool.

100	Zooplankton samples were collected by filtering 2 l of water through a net (250 μ m) and fixed
101	with 70% ethanol for subsequent analysis. Five litres of water were collected in sterile plastic
102	bottles and transported back to the laboratory where the samples were further processed. For
103	quantification of bacterial abundance, samples were preserved with sterile-filtered
104	formaldehyde at a final concentration of 2% and stored at 4 °C, while for bacterial and
105	eukaryotic community analyses, pre-filtered (250 μ m) water samples (100–500 ml) were
106	collected by vacuum filtration onto 0.2 μ m 47 mm membrane filters (Supor-200, Pall
107	Corporation, Port Washington, NY, USA), and then, stored at -80 °C until further processing
108	(see below).
109	
110	Sample analysis
111	Nutrient concentrations, such as total phosphorus (TP) and total nitrogen (TN) were
112	measured spectrophotometrically (Perkin Elmer, Lambda 40, UV/VIS Spectrometer,
113	Massachusetts, USA) and by catalytic thermal decomposition method (Shimadzu TNM-L,
114	Kyoto, Japan), respectively according to standard procedures. Water colour was determined
115	by measuring the absorbance of GF/C-filtered (Whatman® Glass microfiber filter, Sigma-
116	Aldrich, USA) water at 436 nm. Chlorophyll-a was measured [34] as an estimator of the
117	biomass of primary producers. Bacterial abundance was determined by flow cytometry as in
118	Székely et al. [35] with the modification of using 2.27 μ M of SYTO 13 fluorescent nucleic
119	acid stain (Invitrogen, Eugene, Oregon, USA).
120	For both bacterial and micro-eukaryotic community composition analyses, DNA
121	extraction was performed from the membrane filters (PowerSoil DNA Isolation Kit, MoBio
122	Laboratories Inc., Carlsbad, CA, USA). Bacterial 16S rRNA and eukaryotic 18S rRNA genes
123	were amplified with bacterial (341F and 805R; [36]) and eukaryotic (574*f and 1132r; [37])

124 primer constructs, respectively. A full step-by-step protocol for the detailed two-step PCR

- 125 protocol has been deposited in the protocols.io repository
- 126 (dx.doi.org/10.17504/protocols.io.468gzhw). Amplicons were sequenced at the SciLifeLab
- 127 SNP&SEQ Technology Platform (host by Uppsala University) using Illumina MiSeq v3
- sequencing chemistry. The raw sequencing data are available at the European Nucleotide
- 129 Archive under accession number PRJEB30954. A detailed report of the data processing is
- 130 provided in the supplementary material. The taxonomic composition of both datasets is
- 131 visualized in Supplemental Figure S3 and S4.
- 132

- All statistical analyses (see Fig. 1 for an overview) and visualizations were conductedin R version 3.3.2 [38].
- 136
- 137 Shifts in environmental conditions structuring communities

138 We excluded the four rock pools that occasionally dried out from all analyses. Then,

139 we accounted for collinearity among standardized environmental variables by omitting highly

140 collinear variables (Pearson |r| > 0.7) based on Dormann et al. [39]. To select the variables

141 most strongly associated with the variance of the observed communities, we applied

- 142 redundancy analysis (RDA) on the Hellinger-transformed sequence data with forward
- 143 selection (based on 999 permutations; variables retained at p < 0.05), separately for bacteria
- 144 and microeukaryotes (Fig. 1A) (see Results section for details). Differences in means and
- 145 variances in selected variables between the dry and wet periods were tested using Kruskal-
- 146 Wallis test and Levene's test, respectively. Additionally, to assess the separation between the
- 147 two periods, permutational multivariate analysis of variance (PERMANOVA) with 999
- 148 permutations was performed using the function 'adonis', further, the multivariate

¹³³ Statistical analysis

homogeneity of group dispersions (PERMDISP) was tested using the function 'betadisper' inthe package 'vegan' [40].

151

152 Elements of metacommunity structure (EMS)

153 Elements of metacommunity structure (EMS) were assessed for each time point

154 following the frameworks developed by Leibold & Mikkelson [28] and Presley et al. [29]

155 (Fig. 1B). EMS enables to identify metacommunity properties that emerge in a site-by-species

156 incidence matrix that is compared with null model expectations obtained through

randomization [41]. Random matrices were produced by the 'r1' method (fixed-proportional

null model). For this, the matrices (OTU table from 16S and 18S rRNA gene sequences,

separately) were ordinated according to the primary axis via reciprocal averaging and then

160 hierarchically analysed using three tests (coherence, turnover and boundary clumping) (for

161 more details, see supplementary material). The package 'metacom' [41] was used to detect

162 any pattern of metacommunity structure related to an idealized scenario ('metacommunity

163 type'). Following the suggested hierarchical framework of EMS, we specifically focused on

164 the outcome of coherence tests (the number of embedded absences in the ordinated matrix and

165 comparing the empirical value to a null distribution) in the subsequent statistical analyses

since the majority of metacommunities were associated with checkerboard and random

167 metacommunity types. Differences in the coherence (z-values) between the two periods (wet

and dry) were tested using a Kruskal-Wallis test.

169

170 Incidence-based beta-diversity (β_{RC})

171 The incidence-based (Raup-Crick) dissimilarity indices (β_{RC}) were calculated to test 172 whether community were stochastically or deterministically assembled (Fig. 1C). For this, we

173 used the 'raup_crick' function provided by Chase et al. [31]. When β_{RC} is not significantly

174	different from 0, the community is considered to be stochastically assembled. β_{RC} values close
175	to -1 indicate that communities are deterministically assembled and more similar to each
176	other than expected by chance, whereas β_{RC} values close to +1 indicate that deterministic
177	processes favor dissimilar communities. The averaged dissimilarities for each time point and
178	for each dataset (bacteria and microeukaryotes) were calculated separately. Differences in β_{RC}
179	between the two periods (wet and dry) were tested using a Kruskal-Wallis test.
180	
181	Quantitative process estimates (QPE)
182	To quantify the relative importance of potential species sorting, dispersal limitation,
183	drift and mass effects (we refer to this as 'quantiative process estimates - QPE' throughout
184	the manuscript), we followed the two-step framework developed by Stegen et al. [27] (Fig.
185	1D). This approach requires that phylogenetic distances (PD) among taxa reflect differences
186	in the ecological niches they inhabit, thus, carry a phylogenetic signal. The presence of
187	phylogenetic signals was tested using Mantel correlograms, as described in Stegen et al. [27].
188	We found that niche differences caused by most of the environmental variables that structured
189	communities according to the RDA results (see above) could induce turnover in phylogenetic
190	community composition (Fig. S5, S6) and thereby fulfill the prerequisite of this framework.
191	To perform QPE based on pairwise comparisons, firstly, we determined to what extent
192	the observed β MNTD (β -mean-nearest-taxon-distance) deviated from the mean of the null
193	distribution and evaluated significance using the β -Nearest Taxon Index (β NTI; difference

194 between observed β MNTD and the mean of the null distribution in units of SDs). If the

195 observed β MNTD value is significantly greater (β NTI > 2) or less (β NTI < -2) than the null

196 expectation, the community is assembled by variable or homogeneous selection, respectively.

197 If there is no significant deviation from the null expectation, the observed differences in

198 phylogenetic community composition should be the result of dispersal limitation,

199	homogenizing dispersal (mass effect) or random drift. To estimate the relative importance of
200	these processes, in the second step, the abundance-based (Raup-Crick) beta-diversity was
201	calculated using pairwise Bray-Curtis dissimilarity (β_{RCbray}) [27]. Based on the calculated
202	β_{RCbray} , we can assume that communities that were not selected in the first step, thus not
203	assembled by selection, were structured by (i) dispersal limitation coupled with drift if β_{RCbray}
204	> +0.95, (ii) homogenizing dispersal if $\beta_{RCbray} < -0.95$, or (iii) random processes acting alone
205	(drift) if β_{RCbray} falls in between -0.95 and +0.95 (Fig. 1D). The first fraction, $\beta_{RCbray} > +0.95$,
206	may either indicate 'true' effects of dispersal limitation and/or history contingency that both
207	result in more dissimilar communities than expected by chance. Hence, throughout the
208	manuscript we use the term 'dispersal limitation or historical contingency' for this fraction.
209	Differences in the QPE between the two periods (wet and dry) were tested using Kruskal-
210	Wallis test.
211	To further assess whether 'true' dispersal limitation might have occurred, Mantel
211 212	To further assess whether 'true' dispersal limitation might have occurred, Mantel correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and
212	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and
212 213	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using
212213214	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential
212213214215	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential dispersal limitation and reject historical contingency if there is significant correlation between
 212 213 214 215 216 	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential dispersal limitation and reject historical contingency if there is significant correlation between β_{RCbray} and spatial distance. Further, Mantel correlation analyses between β_{RCbray} and
 212 213 214 215 216 217 	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential dispersal limitation and reject historical contingency if there is significant correlation between β_{RCbray} and spatial distance. Further, Mantel correlation analyses between β_{RCbray} and environmental dissimilarities (Euclidean distances) were done to test if community
 212 213 214 215 216 217 218 	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential dispersal limitation and reject historical contingency if there is significant correlation between β_{RCbray} and spatial distance. Further, Mantel correlation analyses between β_{RCbray} and environmental dissimilarities (Euclidean distances) were done to test if community dissimilarities were possibly due to selection by environmental factors that lack a
 212 213 214 215 216 217 218 219 	correlations between bacterial and microeukaryotic community dissimilarities (β_{RCbray}) and geographic distances (Euclidean distances of geographical coordinates) were done using Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential dispersal limitation and reject historical contingency if there is significant correlation between β_{RCbray} and spatial distance. Further, Mantel correlation analyses between β_{RCbray} and environmental dissimilarities (Euclidean distances) were done to test if community dissimilarities were possibly due to selection by environmental factors that lack a phylogenetic signal ('phylogenetically non-conserved selection') and was therefore not

223 respective third matrix as covariate for time points where both correlations with geographic

and environmental distances were significant.

225

- 226
- 227 **Results**
- 228

229 Temporal variation in relevant environmental variables

231 temperature (F = 2.99, p = 0.005), nutrients (TP: F = 4.71, p = 0.005 and TN: F = 2.04, p =

232 0.005), depth (F = 1.62, p = 0.03) and Daphnia abundance (F = 1.62, p = 0.015) correlated

significantly with the variation in bacterial community composition. For microeukaryotes, the

same variables and copepod abundance were significant (conductivity: F = 8.34, p = 0.005;

235 water temperature: F = 4.05, p = 0.005; TN: F = 2.84, p = 0.005; TP: F = 1.99, p = 0.005;

depth: F = 2.68, p = 0.005; Daphnia abundance: F = 1.87, p = 0.015; copepod abundance: F =

237 2.04, p = 0.005).

238 The temporal fluctuations of the selected variables followed similar patterns during 239 the sampling period (Fig. 2). Specifically, we found that there was a clear separation point in 240 the middle of the study period (31 August, between two sampling occasions on 30 August and 241 3 September; dashed line in Fig. 2) from when on environmental conditions became more 242 homogenous, i.e., the variance across the rock pools decreased (except in the case of depths 243 and conductivity, although the latter one was marginally insignificant) (Table S1). These 244 differences supported our separation of the study period and corresponding datasets into two 245 periods, a dry and wet period (Figs 2 and S2). Consequently, the pools had higher mean water 246 temperature, conductivity, zooplankton abundance, and nutrient concentrations, lower mean 247 pool depth and more spatially heterogeneous conditions (high variance across pools) in the

248	dry compared to the wet period (Fig. 2, Table S1). This separation was further supported by
249	PERMANOVA and PERMDISP analyses, which showed that the environmental conditions
250	(F = 31.07, $p = 0.001$; Fig. S7) and their variances (F = 79.58, $p < 0.001$) clearly differed
251	between the two periods. There were also significant differences in the composition of the
252	bacterial and microeukaryotic communities of the dry and wet period but no difference in
253	their homogeneity (beta-dispersion) (Figs S8, S9). Meanwhile, at the level of individual pools
254	significant differences in community composition (PERMANOVA) were detected in some of
255	the pools (7 out of 16) for bacteria and for most pools (15 out of 16) in the case of
256	microeukaryotes (Table S2) without any difference in their beta-dispersion (PERMDISP,
257	Table S3).

258

259 Elements of metacommunity structure (EMS)

260 In general, the observed z-value of coherence did not show wide variation across the 261 bacterial and microeukaryotic datasets, which were shaped by random processes at the 262 majority of the time points in both cases. Checkerboard pattern emerged at one occasion and 263 two occasions for the bacterial and microeukaryotic metacommunities, respectively, while a 264 nested, clumped species loss pattern was detected once during the wet period in bacteria (Fig. 265 3, Table S4). Microeukaryotic metacommunities were also mainly characterized by random 266 patterns, except for two occasions when checkerboard patterns occurred (Fig. 3). There was 267 no significant change of coherence (z-values) over time in any of the observed datasets 268 (bacteria: $\chi_{dry vs. wet} = 0.884$, p = 0.347; microeukaryotes: $\chi_{dry vs. wet} = 3.153$, p = 0.076), 269 however, there were trends towards slightly higher coherence (z-values) in the wet period 270 compared to the dry period, especially in the microeukaryote communities. 271

272 Incidence-based beta-diversity (β_{RC})

273	Across the 16 rock pools the average β_{RC} varied within a narrow range, not deviating
274	strongly from the null expectations (0.066–0.227 and –0.221–0.197 in bacterial and
275	microeukaryotic communities, respectively), which indicates stochastic assembly. For
276	bacteria, there was no clear pattern or trend in β_{RC} associated with the shift in the
277	environmental conditions ($\chi_{dry vs. wet} = 0.273$, $p = 0.602$) (Fig. 4). For microeukaryotes the β_{RC}
278	values decreased at the beginning of the wet-period, but thereafter they increased rapidly (Fig.
279	4), although they remained within the 'stochastic' range ($-0.95 < \beta_{RC} < +0.95$) ($\chi_{dry vs. wet} =$
280	0.535, p = 0.465).
281	

282 Quantitative process estimates (QPE)

283 The quantitative process estimates showed temporal variation over the study period 284 with some differences between the two organism groups (Fig. 5). For bacteria, dispersal 285 limitation or historical contingency was the dominant assembly processes (60.95–80.83% of 286 all pairwise comparisons) followed by homogeneous selection processes (4.17-27.62%), 287 random processes (drift, 4.76-15.38%), variable selection (0-12.5%) and homogenizing 288 dispersal (0-1.67%). The relative proportion of homogeneous selection increased in the wet 289 period ($\chi_{dry vs. wet} = 5.34$, p = 0.021), while that of variable selection decreased compared to 290 the dry period, although this decline was not significant ($\chi_{dry vs. wet} = 1.32$, p = 0.251). There 291 were no significant changes detected between the two periods in the case of dispersal 292 limitation or historical contingency ($\chi_{dry vs. wet} = 1.10, p = 0.293$), drift ($\chi_{dry vs. wet} = 0.01, p = 0.01$) 293 0.916) and homogenizing dispersal ($\chi_{dry vs. wet} = 0.05$, p = 0.828). For microeukaryotic 294 metacommunities, dispersal limitation or historical contingency was also the dominating 295 assembly process at all time points (56.19-85.83%). The second and third most dominant 296 assembly processes were drift (5.00-22.86%) and variable selection (1.67-18.1%), 297 respectively, whereas the proportions of homogeneous selection (0-2.86%) and

homogenizing dispersal (0–2.56%) were negligible. The proportion of dispersal limitation or historical contingency decreased ($\chi_{dry vs. wet} = 5.77, p = 0.016$) while variable selection increased during the wet period after the first rainfall ($\chi_{dry vs. wet} = 4.81, p = 0.028$), whereas the slight increase of drift during the wet-period was not significant ($\chi_{dry vs. wet} = 2.81, p =$ 0.094). The importance of homogenizing dispersal differed between the two periods ($\chi_{dry vs. wet}$ = 4.51, p = 0.034), while opposite to the bacterial metacommunities, homogeneous selection did not change significantly ($\chi_{dry vs. wet} = 0.41, p = 0.522$) (Fig. 5).

305

306 Mantel correlations between community distance matrices (β_{RCbray} , the fraction

307 retrived for the second step of QPE) and geographical/environmental distance matrices were

308 generally weak, showed no consistent pattern, and were only significant for a few time points

309 (Fig. 6). Microeukaryotic communities showed significant correlations for geographic

310 distance in one case and for both environmental and geographic distances in another. In the

311 latter case the correlations were even significant when controlled for effects of covariation by

environmental distance in cases of geographic distance (partial $r_M = 0.23$, p = 0.003) or

313 geographic distance in case of environmental distance (partial $r_M = 0.19$, p = 0.032),

314 respectively. Meanwhile, bacterial community compositions were significantly correlated to

315 environmental distance only once.

- 316
- 317
- 318 **Discussion**

319

320 Environmental dependency of assembly mechanisms

321 Intensive rain from the middle of our rock pool sampling campaign separated the 322 study period into a distinct dry and wet period, allowing us to specifically investigate the

323 environmental dependency of assembly mechanisms of microbial communities over time. 324 According to the incidence-based beta-diversity (β_{RC}) patterns, both bacterial and 325 microeukaryotic communities were primarily stochastically assembled throughout the study 326 period ($\beta_{RC} \approx 0$) despite the observed environmental changes during the transition from the 327 dry to the wet period. Testing the elements of metacommunity structure (EMS) provided 328 further evidence for stochastic assembly. These results resonate the idea that microbial 329 community assembly is unpredictable because stochastic occurrence patterns are due to rapid 330 population dynamics [42]. However, in contrast to the results from the β_{RC} and EMS analyses, 331 the quantitative process estimates (QPE) framework showed that both bacterial and 332 microeukaryotic community assemblies were dominated by dispersal limitation or historical 333 contingency at all time points. The relative importance of dispersal limitation or historical 334 contingency in microeukaryotes was significantly higher in the dry period compared to the 335 wet period, while in bacterial communities it increased towards the end of dry period, but then 336 decreased slightly during the wet-period (Fig. 5). This suggests that a lack of connectivity 337 among pools during the dry period lead to a temporary enforcement of dispersal limitation or 338 history contingency (see discussion below for our interpretation). Further, the environmental 339 shift between the dry and wet period slightly promoted the influence of homogeneous 340 selection and variable selection for bacteria and microeukaryotes, respectively, even though 341 none of the changes in environmental conditions that occurred throughout the study period 342 induced strong selection processes. 343 While our study gives overall support for the dominance of stochastic and dispersal limitation 344 or historical processes in the assembly of microbial communities, previous studies of bacterial 345 communities in rock pools have shown that either both selection processes (i.e. species 346 sorting) alone [43] or both environmental and spatial effects shape the communities [44]. 347 However, it has also been shown that the importance of environmental vs. spatial effects over

348 time varies in response to changes in environmental conditions [5]. Here, we provide a more 349 refined picture of temporal changes in assembly processes that occur at much shorter 350 temporal scales compared to the previous studies. Since community assembly is dynamic our 351 temporal study provides a more comprehensive understanding of how microbial communities 352 respond to environmental changes on short-time scales compared to previous snapshot studies 353 [43, 44] or a study where changes were analysed over longer time periods as well as longer 354 sampling intervals [5]. The present study also differs from the previous ones in that a broader 355 suit of statistical methods was applied, allowing the analysis of further assembly mechanisms 356 than in the studies where primarily variation partitioning was used [5, 45]. 357

358 Comparison of null model approaches

359 Our results show that different null model approaches led to different conclusions 360 about the dominant community assembly processes. Generally, the key differences among the 361 applied three null model approaches are that EMS and β_{RC} are developed for detecting 362 patterns in binary presence-absence matrices based on taxonomic beta-diversity estimates 363 only, while the QPE framework is based on quantitative, abundance-based matrices 364 integrating phylogenetic information. One possible explanation why selection processes were 365 only detected by the QPE but not the non-quantitative methods (EMS and β_{RC}) could be that 366 species sorting is to a great extent related to changes in the relative abundances of species but 367 not the replacement of species. This highlights that abundance-based metrics might be more 368 suited to describe microbial beta-diversity and the underlying assembly mechanisms at spatial 369 scales similar to those studied here [46, 47].

370

371 Differences between bacterial and microeukaryotic communities

372 Based on the results of null model approaches the hypothesis that bacteria and micro-373 eukaryotes are assembled by different assembly processes was partly supported. More 374 specifically, the relative importance of assembly processes, and the way they changed in 375 response to changing environmental conditions differed for bacterial and microeukaryotic 376 communities. More specifically, for the bacterial metacommunity, there was a slight decrease 377 in the influence of variable selection processes in the wet period compared to the previous dry 378 period, while the relative importance of homogeneous selection processes significantly 379 increased, which is conform with the idea that homogenization in environmental conditions 380 among rock pools leads to more similarly composed bacterial communities [5]. On the 381 contrary, for microeukaryotes, homogeneous selection processes remained negligible 382 throughout the study period period, while the relative influence of variable selection 383 surprisingly increased in the wet period. One possible explanation might be that in the wet 384 period the increased water depth could have generated more gradients within each pool for 385 environmental parameters such light, which is crucial for photo- and mixotrophic 386 microeukaryotes [48, 49], thus, promoting the establishment of distinct local microeukaryotic 387 communities. In general, it is worth to mention that both the bacterial and the microeukaryotic 388 dataset consisted of several distinct groups of organisms which have very different population 389 dynamics, niche-preferences and interspecific interactions (Fig. S5, S6). This could 390 potentially mask important selection forces that act at each taxonomic level. More 391 specifically, when a metacommunity consists of sets of species that are more structured by 392 environment and others that are less so, a comprehensive perspective (pooling all groups 393 together) could result in a fuzzy, stochastic picture of assembly [50]. Hence, a separate 394 investigation of different microeukaryotic and bacterial groups (e.g. heterotrophs vs. 395 autotrophs) might reveal different influences of assembly mechanisms [3].

396

397 Historical contingency vs. pure dispersal limitation

398	As mentioned earlier the quantitative process estimate analysis showed that both
399	bacterial and microeukaryotic communities were primarily shaped by dispersal limitation or
400	historical contingencies. At a first glance, the dominance of dispersal limitation seems
401	surprising, given the idea that has persisted in microbiology for a long time that
402	microorganisms are to a great extent not dispersal limited. This idea has now been challenged
403	as many studies have, for instance, detected spatial distance effects for microorganism [5, 44,
404	51, 52]. Moreover, other studies using quantitative process estimates have also shown
405	considerable proportion of 'dispersal limitation or historical contingency' fraction [22, 53].
406	However, problems related to the interpretation of dispersal limitation fraction have also been
407	raised [54], because it does not purely reflect dispersal limitation but rather a number of
408	different processes, such as historial contingency and effects of phylogenetically non-
409	conserved selection processes. To more explicitly test whether pure dispersal limitation was
410	present in our study, we used Mantel correlations of abundance-based Raup-Crick beta-
411	diversity (β_{RCbray} , on the fraction retrived for the second step of QPE) vs. geographical
412	distances between pools to detect spatial distance-decay relationships [55]. However, except
413	for one case in microeukaryotes, this was not the case neither for bacteria nor for
414	microeukaryotes (Fig 7) and we do therefore not have robust support for dispersal limitation.
415	Likewise, there was also no indication that the dispersal limitation or historical contingency
416	fraction masked substantial effects of phylogenetically non-conserved selection processes
417	related to measured environmental factors as Mantel correlations between RC_{bray} and
418	environmental distance were also not significant in most cases. Therefore, it seems most
419	likely that the dispersal limitation or historical contingency fraction points to the importance
420	of the outcome of historical contingency and the effect of unmeasured factors (e.g. light) that
421	are not phylogenetically conserved. Evidence for historical contingency, such as priority

422	effects, would be a low temporal turnover in community composition at the level of
423	individual rock pools despite the drastic environmental shift that occurred during the study
424	period. In case of bacteria, most of the individual rock pools (9 out of 16) did not experience
425	significant compositional shifts between the two periods. Hence, this suggests that these nine
426	communities might have been influenced by priority effects, while the remaining pools might
427	have been influenced by unmeasured environmental factors that are phylogenetically non-
428	conserved. In contrast, microeukaryotic communities are unlikely to have experienced priority
429	effects because most (15 out of 16) of the individual pools experienced significant
430	compositional shift between the two periods (Table S2). Still, we could not explain these
431	compositional shifts by spatial or measured environmental factors using Mantel tests (Fig. 6),
432	suggesting that unmeasured environmental factors, such as light or trophic interactions are
433	more important for microeukaryotes compared to bacteria. In summary caution needs to be
434	taken when interpreting the results of quantitative process estimates and future refined
435	statistical frameworks should integrate additional analyses such as those presented here to
436	provide a more clear distinction of historical contingencies (e.g. priority effects),
437	phylogenetically non-conserved selection and pure effects of dispersal limitation.
438	
439	Conclusions
440	Our results show that historical contingency and selection processes can play a key
441	role in shaping microbial communities, but that the relative contribution of selection
442	processes varies depending on the temporal variation of environmental heterogeneity and
443	between bacteria and microeukaryotes. Furthermore, this present study highlighted that
444	incidence-based and abundance-based null model approaches lead to different conclusions
445	about the dominant community assembly process in microbial communities. Further, the
446	outcomes of the current QPE framework act merely as a guide, because the fraction expected

447	to indicate dispersal limitation may in reality depict other processes such as historical
448	contingency, phylogenetically non-conserved selection, or even other, unmeasured processes.
449	Our findings also show that temporal observations with high-resolution can provide more a
450	comprehensive understanding than snapshot studies. Taken together, we encourage future
451	studies to consider temporal variation of metacommunities and its environmental dependency,
452	regardless the microbial group of interest, as well as to consider historical contingency (e.g.
453	imprints of assembly history) as a potentially important assembly process.
454	
455	
456	Acknowledgements
457	
458	We thank Christoffer Bergvall for laboratory guidance, Christian Stolpe for laboratory
459	assistance, and David Spange for creation of the site map, furthermore, Ron Coleman, Javier
460	Vargas Calle and Jan Johansson for their help during field sampling. This study was funded
461	by the Swedish Research Council. Further financial support was received by grants to A.J.S
462	from the Swedish Research Council Formas and a Marie Curie International Outgoing
463	Fellowship within the 7th European Community Framework Programme.
464	
465	
466	Conflict of interest
467	The authors declare that they have no conflict of interest.
468	
469	
470	References
471	

472	1.	Leibold MA, Chase JM. Metacommunity ecology. 2017. Princeton University Press.
473	2.	Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly
474		processes in subsurface microbial communities. ISME J 2012; 6: 1653–1664.
475	3.	Yeh YC, Peres-Neto PR, Huang SW, Lai YC, Tu CY, Shiah FK, et al. Determinism of
476		bacterial metacommunity dynamics in the southern East China Sea varies depending on
477		hydrography. <i>Ecography (Cop)</i> 2015.
478	4.	Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that
479		mediate the balance between stochastic and deterministic processes in microbial
480		succession. Proc Natl Acad Sci 2015; 112: E1326–E1332.
481	5.	Langenheder S, Berga M, Östman Ö, Székely AJ. Temporal variation of β -diversity
482		and assembly mechanisms in a bacterial metacommunity. <i>ISME J</i> 2012; 6 : 1107–1114.
483	6.	Veach AM, Stegen JC, Brown SP, Dodds WK, Jumpponen A. Spatial and successional
484		dynamics of microbial biofilm communities in a grassland stream ecosystem. Mol Ecol
485		2016.
486	7.	Wojciechowski J, Heino J, Bini LM, Padial AA. Temporal variation in phytoplankton
487		beta diversity patterns and metacommunity structures across subtropical reservoirs.
488		Freshw Biol 2017; 62: 751–766.
489	8.	Langenheder S, Lindström ES. Factors influencing aquatic and terrestrial bacterial
490		community assembly. Environ Microbiol Rep 2019; 00.
491	9.	Viana DS, Figuerola J, Schwenk K, Manca M, Hobæk A, Mjelde M, et al. Assembly
492		mechanisms determining high species turnover in aquatic communities over regional
493		and continental scales. <i>Ecography (Cop)</i> 2016; 39 : 281–288.
494	10.	Hawkes C V, Keitt TH. Resilience vs. historical contingency in microbial responses to
495		environmental change. Ecol Lett 2015; 18: 612–625.
496	11.	Fukami T. Historical contingency in community assembly : integrating niches,

497		species pools, and priority effects. Annu Rev Ecol Evol Syst 2015; 46: 1-23.
498	12.	Vass M, Langenheder S. The legacy of the past: effects of historical processes on
499		microbial metacommunities. Aquat Microb Ecol 2017; 79: 13-19.
500	13.	Andersson MGI, Berga M, Lindström ES, Langenheder S. The spatial structure of
501		bacterial communities is influenced by historical environmental conditions. Ecology
502		2014; 95 : 1134–1140.
503	14.	Lindström ES, Östman Ö. The importance of dispersal for bacterial community
504		composition and functioning. PLoS One 2011.
505	15.	Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological
506		processes influencing microbial community assembly. Front Microbiol 2015; 6: 1–15.
507	16.	Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK. Soil pH mediates the
508		balance between stochastic and deterministic assembly of bacteria. <i>ISME J</i> 2018; 12 :
509		1072–1083.
510	17.	Zhang X, Johnston ER, Liu W, Li L, Han X. Environmental changes affect the
511		assembly of soil bacterial community primarily by mediating stochastic processes.
512		<i>Glob Chang Biol</i> 2016; 22 : 198–207.
513	18.	Chase JM. Stochastic Community Assembly Causes Higher Biodiversity in More
514		Productive Environments. Science (80-) 2010; 328: 1388–1391.
515	19.	Liu L, Yang J, Yu X, Chen G, Yu Z. Patterns in the composition of microbial
516		communities from a subtropical river: effects of environmental, spatial and temporal
517		factors. PLoS One 2013; 8: e81232.
518	20.	Zhao D, Cao X, Huang R, Zeng J, Shen F, Xu H, et al. The heterogeneity of
519		composition and assembly processes of the microbial community between different
520		nutrient loading lake zones in Taihu Lake. Appl Microbiol Biotechnol 2017; 1–11.
521	21.	Logares R, Tesson SVM, Canbäck B, Pontarp M, Hedlund K, Rengefors K.

522		Contrasting prevalence of selection and drift in the community structuring of bacteria
523		and microbial eukaryotes. Environ Microbiol 2018; 20: 2231–2240.
524	22.	Wu W, Lu H-P, Sastri A, Yeh Y-C, Gong G-C, Chou W-C, et al. Contrasting the
525		relative importance of species sorting and dispersal limitation in shaping marine
526		bacterial versus protist communities. ISME J 2017; 1-10.
527	23.	Brislawn CJ, Graham EB, Dana K, Ihardt P, Fansler SJ, Chrisler WB, et al. Forfeiting
528		the priority effect: turnover defines biofilm community succession. ISME J 2019;
529		1865–1877.
530	24.	Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML. The role of
531		environmental and spatial processes in structuring lake communities from bacteria to
532		fish. <i>Ecology</i> 2006; 87 : 2985–91.
533	25.	De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, et al. Body
534		size and dispersal mode as key traits determining metacommunity structure of aquatic
535		organisms. Ecol Lett 2012; 15: 740–747.
536	26.	Gotelli NJ. Research frontiers in null model analysis. <i>Glob Ecol Biogeogr</i> 2001; 10:
537		337–343.
538	27.	Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al.
539		Quantifying community assembly processes and identifying features that impose them.
540		<i>ISME J</i> 2013; 7 : 2069–2079.
541	28.	Leibold MA, Mikkelson GM. Coherence, species turnover, and boundary clumping:
542		elements of meta-community structure. Oikos 2002; 97: 237-250.
543	29.	Presley SJ, Higgins CL, Willig MR. A comprehensive framework for the evaluation of
544		metacommunity structure. Oikos 2010; 119: 908–917.
545	30.	Raup DM, Crick RE. Measurement of faunal similarity in paleontology. J Paleontol
546		1979; 53 : 1213–1227.

- 547 31. Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD. Using null models to
- 548 disentangle variation in community dissimilarity from variation in α -diversity.
- 549 *Ecosphere* 2011; **2**: art24.
- 550 32. Gerhold P, Cahill JF, Winter M, Bartish I V., Prinzing A. Phylogenetic patterns are not
- 551 proxies of community assembly mechanisms (they are far better). *Funct Ecol* 2015; **29**:
- 552 600–614.
- S33. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. The merging of community
 ecology and phylogenetic biology. *Ecol Lett* 2009; 12: 693–715.
- Jespersen A-M, Christoffersen K. Measurements of chlorophyll-a from phytoplankton
 using ethanol as extraction solvent. *Arch für Hydrobiol* 1987.
- 557 35. Székely AJ, Berga M, Langenheder S. Mechanisms determining the fate of dispersed
 558 bacterial communities in new environments. *ISME J* 2013; 7: 61–71.
- 559 36. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF.
- Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic
 Sea. *ISME J* 2011; **5**: 1571–1579.
- 562 37. Hugerth LW, Muller EEL, Hu YOO, Lebrun LAM, Roume H, Lundin D, et al.
- 563 Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in
- 564 microbial consortia. *PLoS One* 2014; **9**: e95567.
- 38. R Core Team. R: A Language and Environment for Statistical Computing. *R Found Stat Comput Vienna Austria*. 2015., 0: {ISBN} 3-900051-07-0
- 567 39. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a
- review of methods to deal with it and a simulation study evaluating their performance.
- 569 *Ecography (Cop)* 2013; **36**: 27–46.
- 570 40. Oksanen J, Blanchet F, Kindt R, Legendre P, O'Hara R. Vegan: community ecology
- 571 package. *R Packag 23-3*. 2016., Available at: https://cran.r-project.org/web/packa

- 572 41. Dallas T. Metacom: An R package for the analysis of metacommunity structure.
- 573 *Ecography (Cop)* 2014; **37**: 402–405.
- 574 42. Soininen J, Korhonen JJ, Luoto M. Stochastic species distributions are driven by
- 575 organism size. *Ecology* 2013; **94**: 660–670.
- 576 43. Székely AJ, Langenheder S. The importance of species sorting differs between habitat
- 577 generalists and specialists in bacterial communities. *FEMS Microbiol Ecol* 2014; **87**:
- 578 102–112.
- 579 44. Langenheder S, Ragnarsson H. The role of environmental and spatial factors for the
- 580 composition of aquatic bacterial communities. *Ecology* 2007; **88**: 2154–2161.
- 581 45. Castillo-Escrivà A, Aguilar-Alberola JA, Mesquita-Joanes F. Spatial and
- environmental effects on a rock-pool metacommunity depend on landscape setting and
 dispersal mode. *Freshw Biol* 2017; 62: 1004–1011.
- 46. Ulrich W, Gotelli NJ. Null model analysis of species associations using abundance
 data. *Ecology* 2010; **91**: 3384–3397.
- 586 47. Tucker CM, Shoemaker LG, Davies KF, Nemergut DR, Melbourne BA.
- 587 Differentiating between niche and neutral assembly in metacommunities using null
- 588 models of β -diversity. *Oikos* 2016; **125**: 778–789.
- 48. Modenutti BE, Balseiro EG, Callieri C, Bertoni R. Light versus food supply as factors
- 590 modulating niche partitioning in two pelagic mixotrophic ciliates. *Limnol Oceanogr*591 2008.
- 592 49. Crane KW, Grover JP. Coexistence of mixotrophs, autotrophs, and heterotrophs in
 593 planktonic microbial communities. *J Theor Biol* 2010.
- 594 50. Leibold MA, Chase JM. Metacommunity Patterns in Space. *Metacommunity Ecology*.
 595 2017. Princeton Univ. Press, pp 90–130.
- 596 51. Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial

597	beta-diversity depend on spatial scale. Proc Natl Acad Sci USA 2011; 108: 7850-	-4.
-----	---	-----

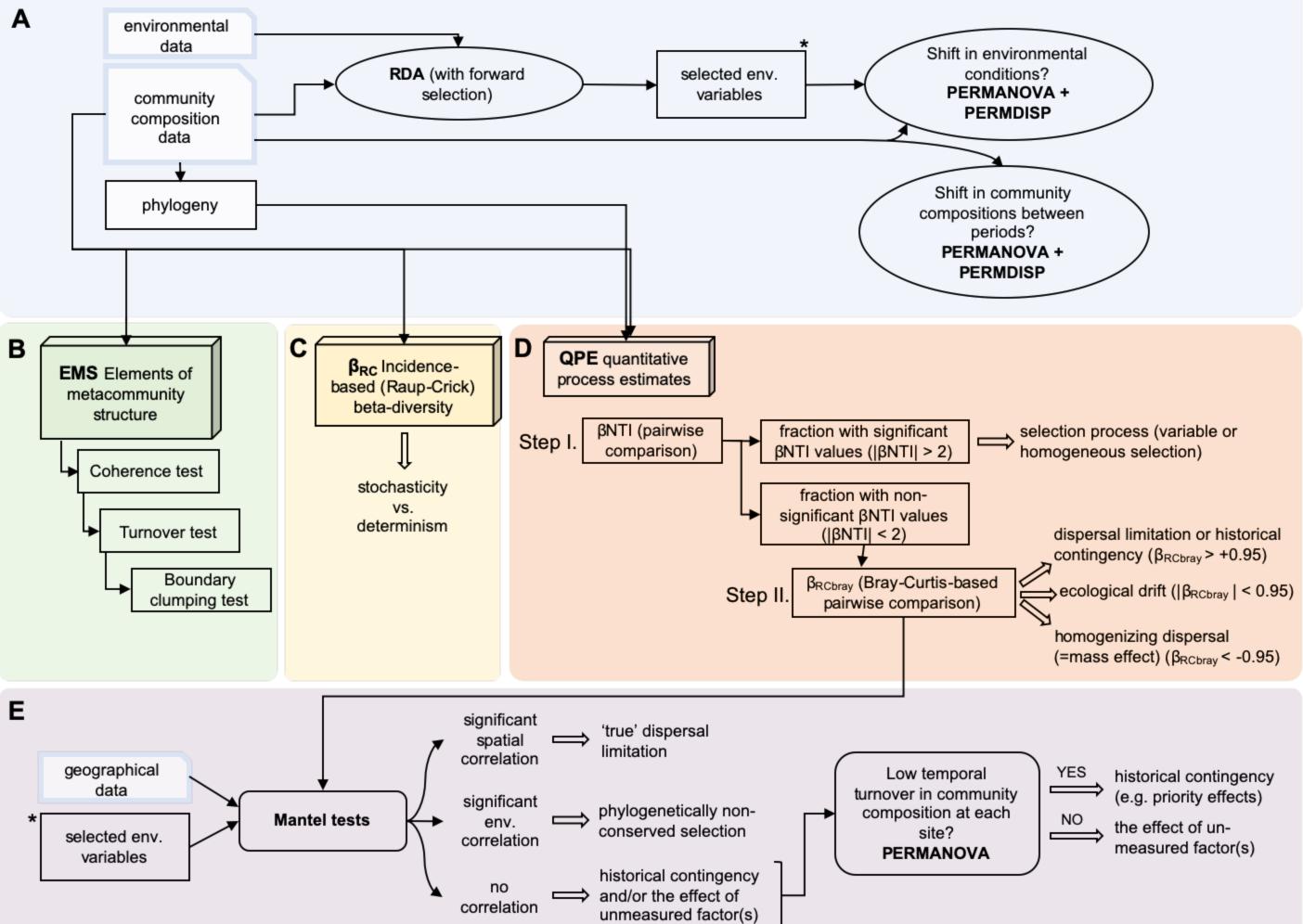
- 598 52. van der Gast CJ. Microbial biogeography: The end of the ubiquitous dispersal
- 599 hypothesis? *Environ Microbiol* 2015; **17**: 544–546.
- 600 53. Langenheder S, Wang J, Karjalainen SM, Laamanen TM, Tolonen KT, Vilmi A, et al.
- 601 Bacterial metacommunity organization in a highly connected aquatic system. *FEMS*
- 602 *Microbiol Ecol* 2017; **93**: 1–9.
- 603 54. Zhou J, Ning D. Stochastic Community Assembly: Does It Matter in Microbial
- 604 Ecology? *Microbiol Mol Biol Rev* 2017; **81**: 1–32.
- 605 55. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al.
- 606 Microbial biogeography: putting microorganisms on the map. *Nat Rev Microbiol* 2006;
- **6**07 **4**: 102–112.
- 608
- 609

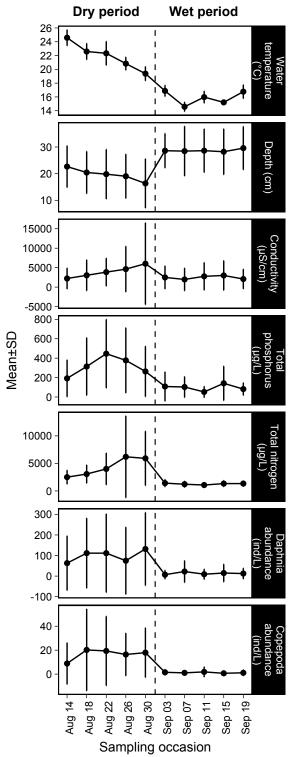
610	Figure 1. Flow chart of the statistical analyses performed in this study. (A) Redundancy
611	analysis with forward selection was performed to select the most important environmental
612	variables that explain variation in the community matrices. Then, we compared the variance
613	and homogeneity of environmental and community distances between the dry and wet period
614	using PERMANOVA and PERMDISP, respectively. (B-C-D) Three null-model approaches
615	were applied. (B) EMS identifies metacommunity properties emerging in site-by-OTUs
616	incidence matrix [28, 29]. (C) Incidence-based (Raup-Crick) beta-diversity (β_{RC}) tests
617	stochasticity and determinism using a metric provided by Chase et al. [31]. (D) QPE
618	quantifies assembly processes involving phylogeny and abundance-based (Raup-Crick) beta-
619	diversity (β_{RCbray}) following the framework of Stegen et al. [27]. (E) We performed (partial)
620	Mantel tests as a complement to the QPE between β_{RCbray} and geographical and environmental
621	distance matrices in order make a clear distinction of historical contingencies (e.g. priority
622	effects) and/or unmeasured factors, phylogenetically non-conserved selection and pure effects
623	of dispersal limitation. Then, we distinguished historical contingency and the effects of
624	unmeasured factors by assessing temporal change of community composition at the level of
625	individual rock pool using PERMANOVA.
626	
627	Figure 2. Temporal dynamics of the mean values and standard deviations of environmental
628	variables that significantly affected either the composition of bacterial or the microeukaryotic

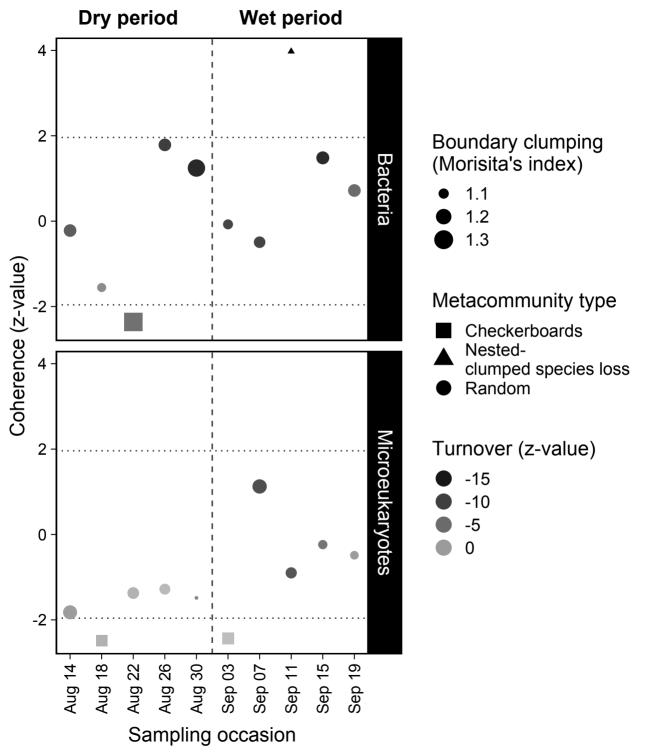
629 communities (based on RDA) during the study period. The dashed line indicates rain that630 separated the study period into a dry and wet period.

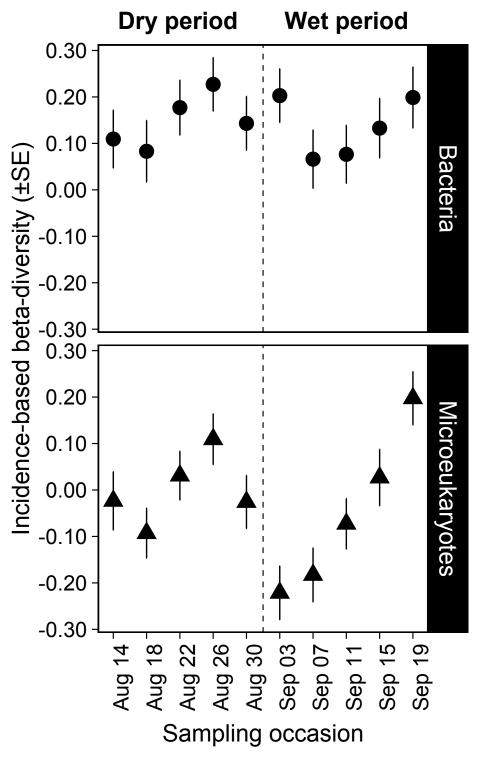
631

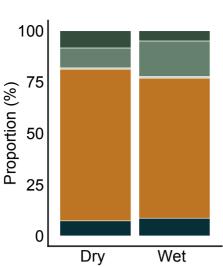
632 **Figure 3.** Temporal variation of metacommunity types of the bacterial and microeukaryotic

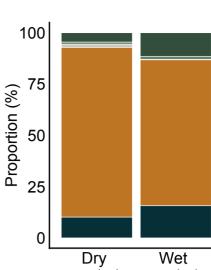

datasets. Within the dotted lines ($-1.96 < \text{coherence } z \cdot value < 1.96$) metacommunities are

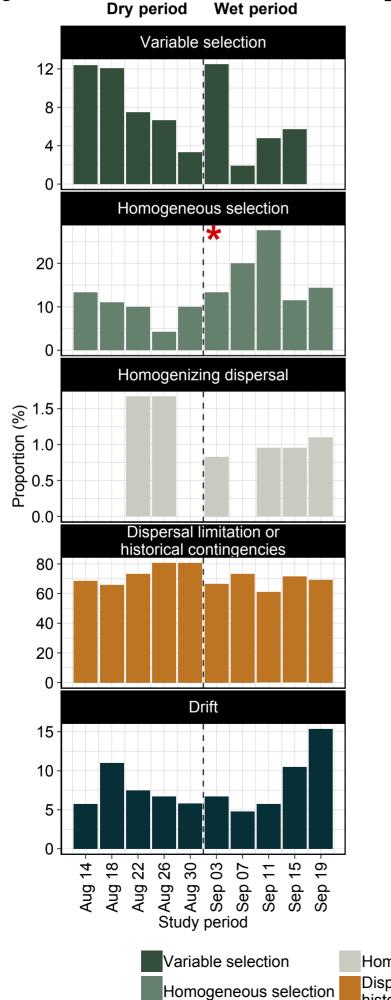

634 randomly structured. Positive significant values (coherence z-value > 1.96) indicate that

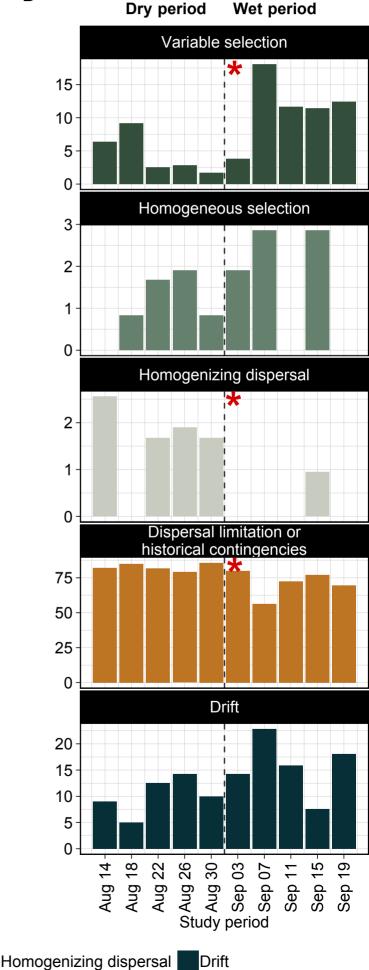

635	species' distribution occur in response to environmental variation. Significantly negative
636	coherence (coherence z-value < -1.96) indicates checkerboard distribution. The greyscale
637	represents species turnover (z-value; number of observed replacements compared to a null
638	distribution) where positive values indicate species replacements in response to environmental
639	variation and negative values nested species distributions caused by species losses. The size
640	of the symbols denotes the Morisita's index (boundary clumping) which shows the degree of
641	spatial distribution of species in a metacommunity where lower numbers indicate over-
642	dispersed boundaries and higher numbers clumped boundaries. Vertical dashed lines refer to
643	the division between the dry and wet period.
644	
645	Figure 4. Variation of incidence-based (Raup-Crick) beta-diversity (β_{RC}) for bacteria and
646	microeukaryotic communities during the study period. Dashed line refers to the division
647	between dry and wet period.
648	
649	Figure 5. Overall (A, B) and temporal (C, D) dynamics of the relative importance of different
650	community assembly processes expressed as the proportion of community pairs assembled
651	either by species-sorting (variable or homogeneous selection), dispersal limitation or
652	historical contingency, homogenizing dispersal or drift for bacteria (A, C) and
653	microeukaryotic (B, D) communities. Note that the scales are not equal on the C and D facet
654	plot. The dashed lines refer to the division between the dry and wet period, and red asterisks
655	indicate significant differences between them (Kruskal-Wallis test, significance at $p < 0.05$
656	level).
657	
658	Figure 6. Mantel (Pearson) correlations between bacterial and microeukaryotic community
659	dissimilarities (abundance-based Raup-Crick beta-diversity – β_{RCbray}) and (A) environmental

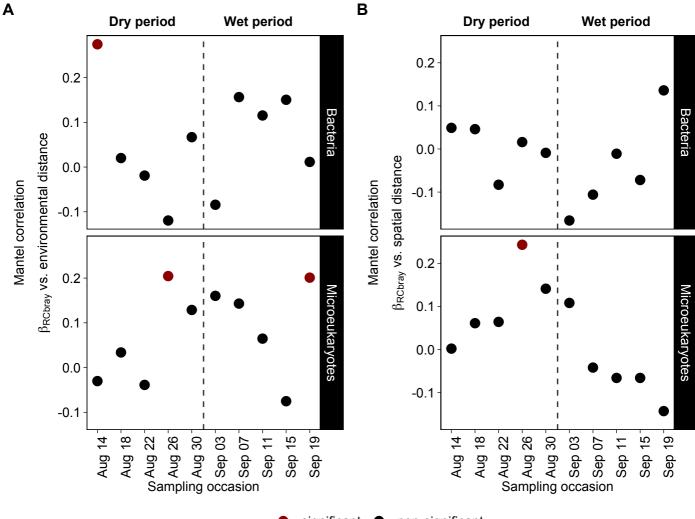

- and (B) geographic distances (Euclidean distances) for each sampling occasion. The dashed
- 661 lines refer to the division between dry and wet period.






Α


С


bioRxiv preprint on s://doi.operiod/01/752303; this version posted September 11, 2019. The privod the hold of privod preprint (which we not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-by 4.0 International license.

В

Dispersal limitation or historical contingencies

