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 2 

Abstract 10 

Temporal variations in microbial metacommunity structure and assembly processes in 11 

response to shifts in environmental conditions are poorly understood. Hence, we conducted a 12 

temporal field study by sampling rock pools in four-day intervals during a 5-week period that 13 

included strong changes in environmental conditions due to intensive rain. We characterized 14 

bacterial and microeukaryote communities by 16S and 18S rRNA gene sequencing, 15 

respectively. Using a suite of null-model approaches to assess dynamics in community 16 

assembly, we found that strong changes in environmental conditions induced small but 17 

significant temporal changes in assembly processes and triggered different responses in 18 

bacterial and microeukaryotic metacommunities, promoting distinct selection processes. 19 

Incidence-based approaches showed that the assemblies of both communities were mainly 20 

governed by stochastic processes. In contrast, abundance-based methods indicated the 21 

dominance of historical contingency and unmeasured factors in case of bacteria and 22 

microeukaryotes, respectively, which we distinguished from dispersal-related processes using 23 

additional tests. Taken together, our study highlights that community assembly processes are 24 

not static, and the relative importance of different assembly processes can vary under different 25 

conditions and between different microbial groups.   26 
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 3 

Introduction 27 

 28 

Different assembly processes such as environmental selection, dispersal and/or 29 

stochastic processes can simultaneously influence community composition [1]. The relative 30 

importance of the different processes is highly context–dependent and dynamic and may 31 

therefore vary in importance over time [2–5] as a consequence of processes such as ecological 32 

succession [4, 6], seasonality [3, 5, 7] or changes in connectivity between sites [8, 9]. Despite 33 

the increased recognition that community assembly processes are not static, the majority of 34 

studies is based on snapshot sampling which cannot adequately capture their dynamics [7]. 35 

Besides contemporary changes in environmental conditions and dispersal processes 36 

[10], past environmental conditions and dispersal events (i.e., historical contingency) may 37 

also influence the temporal dynamics of assembly processes [11–13]. For instance, changes in 38 

the variation in environmental heterogeneity could affect the relative importance of species-39 

sorting or selection processes [8], while changes in dispersal rates could affect the 40 

possibilities for mass effects [14] or the extent of dispersal limitation [15]. Further, the 41 

importance of historical contingency may also depend on the environmental context. For 42 

example, priority effects – the impact of particular species on community development due to 43 

prior arrival at a site – may be affected by environmental disturbances that initiate 44 

colonization events that intensify the importance of the phenomenon [11]. Several studies 45 

detected a trajectory from stochastic to deterministic assembly processes in time following a 46 

disturbance [16, 17], which might reflect effects of initially strong, but transient priority 47 

effects that diminish over time as more species arrive and establish in the post-disturbance 48 

community. Finally, the probability of priority effects may also increase when productivity is 49 

high [18], because the growth of early colonizers is promoted [11].  50 
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Only a few studies have directly compared assembly mechanisms between different 51 

groups of microorganisms such as bacteria and microeukaryotes. Based on the differences in 52 

e.g., cell sizes, generation times and life history traits, differences in assembly processes are 53 

expected between these two groups [19–21]. For instance, it has been suggested that marine 54 

protist communities are governed by species-sorting to a greater extent than are marine 55 

bacterial communities [22, 23], while on the contrary, other studies indicated the opposite 56 

[21]. Microeukaryotes have been suggested to be mainly shaped by stochastic mechanisms 57 

(i.e. drift) [21, 24] and to be more subject to the effect of dispersal than bacteria [25]. Hence, 58 

there are to date conflicting results on how assembly processes differ and persist through time 59 

in bacterial and microeukaryotic communities.  60 

The statistical ‘toolbox’ that is currently used to gain insights into the importance of 61 

different community assembly processes consists of several complementary approaches that 62 

all have their own strengths and limitations. Recently, null model approaches that 63 

quantitatively compare assembly processes have been increasingly used [26, 27]. For 64 

example, the elements of metacommunity structure (EMS) method allows to distinguish 65 

randomly assembled communities from those assembled by species-sorting processes [28, 66 

29]. The incidence-based (Raup-Crick) beta-diversity (βRC)  [30] has been used to differentiate 67 

between deterministic and stochastic assembly processes [18, 31]. In addition, based on the 68 

assumption that phylogenetic relatedness is indicative of shared environmental response traits 69 

[32], null model approaches have been extended to integrate phylogenetic information [33]. 70 

Specifically, Stegen et al. [15, 27] have combined null model approaches based on 71 

phylogenetic and abundance-based (Raup-Crick) beta-diversity (βRCbray) measures to 72 

quantitatively estimate the relative importance of processes such as selection, drift, dispersal 73 

limitation and mass effects. Furthermore, this quantitative process estimate (QPE) method 74 
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also differentiates between heterogenous/variable (i.e., beta-diversity enhancing) and 75 

homogeneous (i.e., beta-diversity diminishing) selection processes. 76 

We carried out an extensive field study of bacterial and microeukaryotic communities 77 

in rock pools, which are particularly variable habitats both in space and time. The above-78 

mentioned statistical approaches were applied to assess the temporal changes in community 79 

assembly processes. We hypothesized that temporal changes in the importance of different 80 

assembly processes should occur in dependence on changes in environmental conditions and, 81 

further, that these changes differ between bacterial and microeukaryotic communities.  82 

 83 

Material and methods 84 

 85 

Sampling procedure 86 

Samples were taken from 20 neighboring rock pools – referred to as a 87 

‘metacommunity’ – located along the Baltic Sea coast on the island of Gräsö, Sweden 88 

(60°29'54.0" N, 18°25'48.9" E) (Supplemental Fig. S1). The rock pools were sampled ten 89 

times, starting on 14 August 2015 and ending on 19 September 2015 in four-day intervals 90 

(Fig. S2). Four of the pools dried out at certain occasions during the sampling period. 91 

Intensive rain (starting August 31) occured in the middle of the study period and separated a 92 

cooler wet period (air temperature (°C): 13.98±1.35, precipitation (mm): 3.97±6.94, wind 93 

speed (m/s): 6.7±2.91) from an extended dry period (air temperature (°C): 17.71±0.98, 94 

precipitation (mm): 0.09±0.36, wind speed (m/s): 5.6±1.61) prior to the rain (Fig. S2).   95 

Numerous abiotic and biotic variables were measured at each sampling occasion. 96 

Specifically, conductivity and temperature were measured using a WTW Conductometer 97 

(Cond 3210 SET 2 incl. TetraCon 325-3 measuring cell, Germany). Morphological 98 

parameters such as maximum length, width and depth were recorded for each pool. 99 
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Zooplankton samples were collected by filtering 2 l of water through a net (250 μm) and fixed 100 

with 70% ethanol for subsequent analysis. Five litres of water were collected in sterile plastic 101 

bottles and transported back to the laboratory where the samples were further processed. For 102 

quantification of bacterial abundance, samples were preserved with sterile-filtered 103 

formaldehyde at a final concentration of 2% and stored at 4 °C, while for bacterial and 104 

eukaryotic community analyses, pre-filtered (250 μm) water samples (100–500 ml) were 105 

collected by vacuum filtration onto 0.2 μm 47 mm membrane filters (Supor-200, Pall 106 

Corporation, Port Washington, NY, USA), and then, stored at –80 °C until further processing 107 

(see below). 108 

 109 

Sample analysis 110 

Nutrient concentrations, such as total phosphorus (TP) and total nitrogen (TN) were 111 

measured spectrophotometrically (Perkin Elmer, Lambda 40, UV/VIS Spectrometer, 112 

Massachusetts, USA) and by catalytic thermal decomposition method (Shimadzu TNM-L, 113 

Kyoto, Japan), respectively according to standard procedures. Water colour was determined 114 

by measuring the absorbance of GF/C-filtered (Whatman® Glass microfiber filter, Sigma-115 

Aldrich, USA) water at 436 nm. Chlorophyll-a was measured [34] as an estimator of the 116 

biomass of primary producers. Bacterial abundance was determined by flow cytometry as in 117 

Székely et al. [35] with the modification of using 2.27 μM of SYTO 13 fluorescent nucleic 118 

acid stain (Invitrogen, Eugene, Oregon, USA). 119 

For both bacterial and micro-eukaryotic community composition analyses, DNA 120 

extraction was performed from the membrane filters (PowerSoil DNA Isolation Kit, MoBio 121 

Laboratories Inc., Carlsbad, CA, USA). Bacterial 16S rRNA and eukaryotic 18S rRNA genes 122 

were amplified with bacterial (341F and 805R; [36]) and eukaryotic (574*f and 1132r; [37]) 123 

primer constructs, respectively. A full step-by-step protocol for the detailed two-step PCR 124 
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protocol has been deposited in the protocols.io repository 125 

(dx.doi.org/10.17504/protocols.io.468gzhw). Amplicons were sequenced at the SciLifeLab 126 

SNP&SEQ Technology Platform (host by Uppsala University) using Illumina MiSeq v3 127 

sequencing chemistry. The raw sequencing data are available at the European Nucleotide 128 

Archive under accession number PRJEB30954. A detailed report of the data processing is 129 

provided in the supplementary material. The taxonomic composition of both datasets is 130 

visualized in Supplemental Figure S3 and S4. 131 

 132 

Statistical analysis 133 

All statistical analyses (see Fig. 1 for an overview) and visualizations were conducted 134 

in R version 3.3.2 [38].  135 

 136 

Shifts in environmental conditions structuring communities 137 

We excluded the four rock pools that occasionally dried out from all analyses. Then, 138 

we accounted for collinearity among standardized environmental variables by omitting highly 139 

collinear variables (Pearson |r| > 0.7) based on Dormann et al. [39]. To select the variables 140 

most strongly associated with the variance of the observed communities, we applied 141 

redundancy analysis (RDA) on the Hellinger-transformed sequence data with forward 142 

selection (based on 999 permutations; variables retained at p < 0.05), separately for bacteria 143 

and microeukaryotes (Fig. 1A) (see Results section for details). Differences in means and 144 

variances in selected variables between the dry and wet periods were tested using Kruskal-145 

Wallis test and Levene’s test, respectively. Additionally, to assess the separation between the 146 

two periods, permutational multivariate analysis of variance (PERMANOVA) with 999 147 

permutations was performed using the function ‘adonis’, further, the multivariate 148 
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homogeneity of group dispersions (PERMDISP) was tested using the function ‘betadisper’ in 149 

the package ‘vegan’ [40]. 150 

 151 

Elements of metacommunity structure (EMS) 152 

Elements of metacommunity structure (EMS) were assessed for each time point 153 

following the frameworks developed by Leibold & Mikkelson [28] and Presley et al. [29] 154 

(Fig. 1B). EMS enables to identify metacommunity properties that emerge in a site-by-species 155 

incidence matrix that is compared with null model expectations obtained through 156 

randomization [41]. Random matrices were produced by the ‘r1’ method (fixed-proportional 157 

null model). For this, the matrices (OTU table from 16S and 18S rRNA gene sequences, 158 

separately) were ordinated according to the primary axis via reciprocal averaging and then 159 

hierarchically analysed using three tests (coherence, turnover and boundary clumping) (for 160 

more details, see supplementary material). The package ‘metacom’ [41] was used to detect 161 

any pattern of metacommunity structure related to an idealized scenario (‘metacommunity 162 

type’). Following the suggested hierarchical framework of EMS, we specifically focused on 163 

the outcome of coherence tests (the number of embedded absences in the ordinated matrix and 164 

comparing the empirical value to a null distribution) in the subsequent statistical analyses 165 

since the majority of metacommunities were associated with checkerboard and random 166 

metacommunity types. Differences in the coherence (z-values) between the two periods (wet 167 

and dry) were tested using a Kruskal-Wallis test. 168 

  169 

Incidence-based beta-diversity (βRC) 170 

The incidence-based (Raup-Crick) dissimilarity indices (βRC) were calculated to test 171 

whether community were stochastically or deterministically assembled (Fig. 1C). For this, we 172 

used the ‘raup_crick’ function provided by Chase et al. [31]. When βRC is not significantly 173 
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 9 

different from 0, the community is considered to be stochastically assembled. βRC values close 174 

to −1 indicate that communities are deterministically assembled and more similar to each 175 

other than expected by chance, whereas βRC values close to +1 indicate that deterministic 176 

processes favor dissimilar communities. The averaged dissimilarities for each time point and 177 

for each dataset (bacteria and microeukaryotes) were calculated separately. Differences in βRC 178 

between the two periods (wet and dry) were tested using a Kruskal-Wallis test. 179 

 180 

Quantitative process estimates (QPE) 181 

To quantify the relative importance of potential species sorting, dispersal limitation, 182 

drift and mass effects (we refer to this as ‘quantiative process estimates – QPE’ throughout 183 

the manuscript), we followed the two-step framework developed by Stegen et al. [27] (Fig. 184 

1D). This approach requires that phylogenetic distances (PD) among taxa reflect differences 185 

in the ecological niches they inhabit, thus, carry a phylogenetic signal. The presence of 186 

phylogenetic signals was tested using Mantel correlograms, as described in Stegen et al. [27]. 187 

We found that niche differences caused by most of the environmental variables that structured 188 

communities according to the RDA results (see above) could induce turnover in phylogenetic 189 

community composition (Fig. S5, S6) and thereby fulfill the prerequisite of this framework. 190 

To perform QPE based on pairwise comparisons, firstly, we determined to what extent 191 

the observed βMNTD (β-mean-nearest-taxon-distance) deviated from the mean of the null 192 

distribution and evaluated significance using the β-Nearest Taxon Index (βNTI; difference 193 

between observed βMNTD and the mean of the null distribution in units of SDs). If the 194 

observed βMNTD value is significantly greater (βNTI > 2) or less (βNTI < −2) than the null 195 

expectation, the community is assembled by variable or homogeneous selection, respectively. 196 

If there is no significant deviation from the null expectation, the observed differences in 197 

phylogenetic community composition should be the result of dispersal limitation, 198 
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homogenizing dispersal (mass effect) or random drift. To estimate the relative importance of 199 

these processes, in the second step, the abundance-based (Raup-Crick) beta-diversity was 200 

calculated using pairwise Bray-Curtis dissimilarity (βRCbray) [27]. Based on the calculated 201 

βRCbray, we can assume that communities that were not selected in the first step, thus not 202 

assembled by selection, were structured by (i) dispersal limitation coupled with drift if βRCbray 203 

> +0.95, (ii) homogenizing dispersal if βRCbray < −0.95, or (iii) random processes acting alone 204 

(drift) if βRCbray falls in between −0.95 and +0.95 (Fig. 1D). The first fraction, βRCbray > +0.95, 205 

may either indicate ‘true’ effects of dispersal limitation and/or history contingency that both 206 

result in more dissimilar communities than expected by chance. Hence, throughout the 207 

manuscript we use the term ‘dispersal limitation or historical contingency’ for this fraction. 208 

Differences in the QPE between the two periods (wet and dry) were tested using Kruskal-209 

Wallis test. 210 

To further assess whether ‘true’ dispersal limitation might have occurred, Mantel 211 

correlations between bacterial and microeukaryotic community dissimilarities (βRCbray) and 212 

geographic distances (Euclidean distances of geographical coordinates) were done using 213 

Pearson correlation and 999 permutations (Fig. 1E). By this, we could confirm any potential 214 

dispersal limitation and reject historical contingency if there is significant correlation between 215 

βRCbray and spatial distance. Further, Mantel correlation analyses between βRCbray and 216 

environmental dissimilarities (Euclidean distances) were done to test if community 217 

dissimilarities were possibly due to selection by environmental factors that lack a 218 

phylogenetic signal (‘phylogenetically non-conserved selection’) and was therefore not 219 

detected in the first step but instead was retained in the second step of the QPE analysis. To 220 

determine if significant geographic distance effects were confounded by effects of spatially 221 

autocorrelated environmental variation and vice versa, partial Mantel tests were used with the 222 
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respective third matrix as covariate for time points where both correlations with geographic 223 

and environmental distances were significant.  224 

  225 

 226 

Results 227 

 228 

Temporal variation in relevant environmental variables 229 

RDA with forward selection showed that conductivity (F = 11.37, p = 0.005), water 230 

temperature (F = 2.99, p = 0.005), nutrients (TP: F = 4.71, p = 0.005 and TN: F = 2.04, p = 231 

0.005), depth (F = 1.62, p = 0.03) and Daphnia abundance (F = 1.62, p = 0.015) correlated 232 

significantly with the variation in bacterial community composition. For microeukaryotes, the 233 

same variables and copepod abundance were significant (conductivity: F = 8.34, p = 0.005; 234 

water temperature: F = 4.05, p = 0.005; TN: F = 2.84, p = 0.005; TP: F = 1.99, p = 0.005; 235 

depth: F = 2.68, p = 0.005; Daphnia abundance: F = 1.87, p = 0.015; copepod abundance: F = 236 

2.04, p = 0.005).  237 

The temporal fluctuations of the selected variables followed similar patterns during 238 

the sampling period (Fig. 2). Specifically, we found that there was a clear separation point in 239 

the middle of the study period (31 August, between two sampling occasions on 30 August and 240 

3 September; dashed line in Fig. 2) from when on environmental conditions became more 241 

homogenous, i.e., the variance across the rock pools decreased (except in the case of depths 242 

and conductivity, although the latter one was marginally insignificant) (Table S1). These 243 

differences supported our separation of the study period and corresponding datasets into two 244 

periods, a dry and wet period (Figs 2 and S2). Consequently, the pools had higher mean water 245 

temperature, conductivity, zooplankton abundance, and nutrient concentrations, lower mean 246 

pool depth and more spatially heterogeneous conditions (high variance across pools) in the 247 
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dry compared to the wet period (Fig. 2, Table S1). This separation was further supported by 248 

PERMANOVA and PERMDISP analyses, which showed that the environmental conditions 249 

(F = 31.07, p = 0.001; Fig. S7) and their variances (F = 79.58, p < 0.001) clearly differed 250 

between the two periods. There were also significant differences in the composition of the 251 

bacterial and microeukaryotic communities of the dry and wet period but no difference in 252 

their homogeneity (beta-dispersion) (Figs S8, S9). Meanwhile, at the level of individual pools 253 

significant differences in community composition (PERMANOVA) were detected in some of 254 

the pools (7 out of 16) for bacteria and for most pools (15 out of 16) in the case of 255 

microeukaryotes (Table S2) without any difference in their beta-dispersion (PERMDISP, 256 

Table S3). 257 

 258 

Elements of metacommunity structure (EMS) 259 

In general, the observed z-value of coherence did not show wide variation across the 260 

bacterial and microeukaryotic datasets, which were shaped by random processes at the 261 

majority of the time points in both cases. Checkerboard pattern emerged at one occasion and 262 

two occasions for the bacterial and microeukaryotic metacommunities, respectively, while a 263 

nested, clumped species loss pattern was detected once during the wet period in bacteria (Fig. 264 

3, Table S4). Microeukaryotic metacommunities were also mainly characterized by random 265 

patterns, except for two occasions when checkerboard patterns occurred (Fig. 3). There was 266 

no significant change of coherence (z-values) over time in any of the observed datasets 267 

(bacteria: χdry vs. wet = 0.884, p = 0.347; microeukaryotes: χdry vs. wet = 3.153, p = 0.076), 268 

however, there were trends towards slightly higher coherence (z-values) in the wet period 269 

compared to the dry period, especially in the microeukaryote communities. 270 

 271 

Incidence-based beta-diversity (βRC) 272 
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Across the 16 rock pools the average βRC varied within a narrow range, not deviating 273 

strongly from the null expectations (0.066–0.227 and −0.221–0.197 in bacterial and 274 

microeukaryotic communities, respectively), which indicates stochastic assembly. For 275 

bacteria, there was no clear pattern or trend in βRC associated with the shift in the 276 

environmental conditions (χdry vs. wet = 0.273, p = 0.602) (Fig. 4). For microeukaryotes the βRC 277 

values decreased at the beginning of the wet-period, but thereafter they increased rapidly (Fig. 278 

4), although they remained within the ‘stochastic’ range (−0.95 < βRC < +0.95) (χdry vs. wet = 279 

0.535, p = 0.465). 280 

 281 

Quantitative process estimates (QPE) 282 

The quantitative process estimates showed temporal variation over the study period 283 

with some differences between the two organism groups (Fig. 5). For bacteria, dispersal 284 

limitation or historical contingency was the dominant assembly processes (60.95–80.83% of 285 

all pairwise comparisons) followed by homogeneous selection processes (4.17–27.62%), 286 

random processes (drift, 4.76–15.38%), variable selection (0–12.5%) and homogenizing 287 

dispersal (0–1.67%). The relative proportion of homogeneous selection increased in the wet 288 

period (χdry vs. wet = 5.34, p = 0.021), while that of variable selection decreased compared to 289 

the dry period, although this decline was not significant (χdry vs. wet = 1.32, p = 0.251). There 290 

were no significant changes detected between the two periods in the case of dispersal 291 

limitation or historical contingency (χdry vs. wet = 1.10, p = 0.293), drift (χdry vs. wet = 0.01, p = 292 

0.916) and homogenizing dispersal (χdry vs. wet = 0.05, p = 0.828). For microeukaryotic 293 

metacommunities, dispersal limitation or historical contingency was also the dominating 294 

assembly process at all time points (56.19–85.83%). The second and third most dominant 295 

assembly processes were drift (5.00–22.86%) and variable selection (1.67–18.1%), 296 

respectively, whereas the proportions of homogeneous selection (0–2.86%) and 297 
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homogenizing dispersal (0–2.56%) were negligible. The proportion of dispersal limitation or 298 

historical contingency decreased (χdry vs. wet = 5.77, p = 0.016) while variable selection 299 

increased during the wet period after the first rainfall (χdry vs. wet = 4.81, p = 0.028), whereas 300 

the slight increase of drift during the wet-period was not significant (χdry vs. wet = 2.81, p = 301 

0.094). The importance of homogenizing dispersal differed between the two periods (χdry vs. wet 302 

= 4.51, p = 0.034), while opposite to the bacterial metacommunities, homogeneous selection 303 

did not change significantly (χdry vs. wet = 0.41, p = 0.522) (Fig. 5). 304 

 305 

Mantel correlations between community distance matrices (βRCbray, the fraction 306 

retrived for the second step of QPE) and geographical/environmental distance matrices were 307 

generally weak, showed no consistent pattern, and were only significant for a few time points 308 

(Fig. 6). Microeukaryotic communities showed significant correlations for geographic 309 

distance in one case and for both environmental and geographic distances in another. In the 310 

latter case the correlations were even significant when controlled for effects of covariation by 311 

environmental distance in cases of geographic distance (partial rM = 0.23, p = 0.003) or 312 

geographic distance in case of environmental distance (partial rM = 0.19, p = 0.032), 313 

respectively. Meanwhile, bacterial community compositions were significantly correlated to 314 

environmental distance only once. 315 

  316 

 317 

Discussion  318 

 319 

Environmental dependency of assembly mechanisms  320 

Intensive rain from the middle of our rock pool sampling campaign separated the 321 

study period into a distinct dry and wet period, allowing us to specifically investigate the 322 
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environmental dependency of assembly mechanisms of microbial communities over time.  323 

According to the incidence-based beta-diversity (βRC) patterns, both bacterial and 324 

microeukaryotic communities were primarily stochastically assembled throughout the study 325 

period (βRC ≈ 0) despite the observed environmental changes during the transition from the 326 

dry to the wet period. Testing the elements of metacommunity structure (EMS) provided 327 

further evidence for stochastic assembly. These results resonate the idea that microbial 328 

community assembly is unpredictable because stochastic occurrence patterns are due to rapid 329 

population dynamics [42]. However, in contrast to the results from the βRC and EMS analyses, 330 

the quantitative process estimates (QPE) framework showed that both bacterial and 331 

microeukaryotic community assemblies were dominated by dispersal limitation or historical 332 

contingency at all time points. The relative importance of dispersal limitation or historical 333 

contingency in microeukaryotes was significantly higher in the dry period compared to the 334 

wet period, while in bacterial communities it increased towards the end of dry period, but then 335 

decreased slightly during the wet-period (Fig. 5). This suggests that a lack of connectivity 336 

among pools during the dry period lead to a temporary enforcement of dispersal limitation or 337 

history contingency (see discussion below for our interpretation). Further, the environmental 338 

shift between the dry and wet period slightly promoted the influence of homogeneous 339 

selection and variable selection for bacteria and microeukaryotes, respectively, even though 340 

none of the changes in environmental conditions that occurred throughout the study period 341 

induced strong selection processes.   342 

While our study gives overall support for the dominance of stochastic and dispersal limitation 343 

or historical processes in the assembly of microbial communities, previous studies of bacterial 344 

communities in rock pools have shown that either both selection processes (i.e. species 345 

sorting) alone [43] or both environmental and spatial effects shape the communities [44]. 346 

However, it has also been shown that the importance of environmental vs. spatial effects over 347 
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time varies in response to changes in environmental conditions [5]. Here, we provide a more 348 

refined picture of temporal changes in assembly processes that occur at much shorter 349 

temporal scales compared to the previous studies. Since community assembly is dynamic our 350 

temporal study provides a more comprehensive understanding of how microbial communities 351 

respond to environmental changes on short-time scales compared to previous snapshot studies 352 

[43, 44] or a study where changes were analysed over longer time periods as well as longer 353 

sampling intervals [5]. The present study also differs from the previous ones in that a broader 354 

suit of statistical methods was applied, allowing the analysis of further assembly mechanisms 355 

than in the studies where primarily variation partitioning was used [5, 45]. 356 

 357 

Comparison of null model approaches 358 

Our results show that different null model approaches led to different conclusions 359 

about the dominant community assembly processes. Generally, the key differences among the 360 

applied three null model approaches are that EMS and βRC are developed for detecting 361 

patterns in binary presence-absence matrices based on taxonomic beta-diversity estimates 362 

only, while the QPE framework is based on quantitative, abundance-based matrices 363 

integrating phylogenetic information. One possible explanation why selection processes were 364 

only detected by the QPE but not the non-quantitative methods (EMS and βRC) could be that 365 

species sorting is to a great extent related to changes in the relative abundances of species but 366 

not the replacement of species. This highlights that abundance-based metrics might be more 367 

suited to describe microbial beta-diversity and the underlying assembly mechanisms at spatial 368 

scales similar to those studied here [46, 47].  369 

 370 

Differences between bacterial and microeukaryotic communities 371 
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Based on the results of null model approaches the hypothesis that bacteria and micro-372 

eukaryotes are assembled by different assembly processes was partly supported. More 373 

specifically, the relative importance of assembly processes, and the way they changed in 374 

response to changing environmental conditions differed for bacterial and microeukaryotic 375 

communities. More specifically, for the bacterial metacommunity, there was a slight decrease 376 

in the influence of variable selection processes in the wet period compared to the previous dry 377 

period, while the relative importance of homogeneous selection processes significantly 378 

increased, which is conform with the idea that homogenization in environmental conditions 379 

among rock pools leads to more similarly composed bacterial communities [5]. On the 380 

contrary, for microeukaryotes, homogeneous selection processes remained negligible 381 

throughout the study period period, while the relative influence of variable selection 382 

surprisingly increased in the wet period. One possible explanation might be that in the wet 383 

period the increased water depth could have generated more gradients within each pool for 384 

environmental parameters such light, which is crucial for photo- and mixotrophic 385 

microeukaryotes [48, 49], thus, promoting the establishment of distinct local microeukaryotic 386 

communities. In general, it is worth to mention that both the bacterial and the microeukaryotic 387 

dataset consisted of several distinct groups of organisms which have very different population 388 

dynamics, niche-preferences and interspecific interactions (Fig. S5, S6). This could 389 

potentially mask important selection forces that act at each taxonomic level. More 390 

specifically, when a metacommunity consists of sets of species that are more structured by 391 

environment and others that are less so, a comprehensive perspective (pooling all groups 392 

together) could result in a fuzzy, stochastic picture of assembly [50]. Hence, a separate 393 

investigation of different microeukaryotic and bacterial groups (e.g. heterotrophs vs. 394 

autotrophs) might reveal different influences of assembly mechanisms [3]. 395 

 396 
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Historical contingency vs. pure dispersal limitation 397 

As mentioned earlier the quantitative process estimate analysis showed that both 398 

bacterial and microeukaryotic communities were primarily shaped by dispersal limitation or 399 

historical contingencies. At a first glance, the dominance of dispersal limitation seems 400 

surprising, given the idea that has persisted in microbiology for a long time that 401 

microorganisms are to a great extent not dispersal limited. This idea has now been challenged 402 

as many studies have, for instance, detected spatial distance effects for microorganism [5, 44, 403 

51, 52]. Moreover, other studies using quantitative process estimates have also shown 404 

considerable proportion of ‘dispersal limitation or historical contingency’ fraction [22, 53]. 405 

However, problems related to the interpretation of dispersal limitation fraction have also been 406 

raised [54], because it does not purely reflect dispersal limitation but rather a number of 407 

different processes, such as historial contingency and effects of phylogenetically non-408 

conserved selection processes. To more explicitly test whether pure dispersal limitation was 409 

present in our study, we used Mantel correlations of abundance-based Raup-Crick beta-410 

diversity (βRCbray, on the fraction retrived for the second step of QPE) vs. geographical 411 

distances between pools to detect spatial distance-decay relationships [55]. However, except 412 

for one case in microeukaryotes, this was not the case neither for bacteria nor for 413 

microeukaryotes (Fig 7) and we do therefore not have robust support for dispersal limitation. 414 

Likewise, there was also no indication that the dispersal limitation or historical contingency 415 

fraction masked substantial effects of phylogenetically non-conserved selection processes 416 

related to measured environmental factors as Mantel correlations between RCbray and 417 

environmental distance were also not significant in most cases. Therefore, it seems most 418 

likely that the dispersal limitation or historical contingency fraction points to the importance 419 

of the outcome of historical contingency and the effect of unmeasured factors (e.g. light) that 420 

are not phylogenetically conserved. Evidence for historical contingency, such as priority 421 
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effects, would be a low temporal turnover in community composition at the level of 422 

individual rock pools despite the drastic environmental shift that occurred during the study 423 

period. In case of bacteria, most of the individual rock pools (9 out of 16) did not experience 424 

significant compositional shifts between the two periods. Hence, this suggests that these nine 425 

communities might have been influenced by priority effects, while the remaining pools might 426 

have been influenced by unmeasured environmental factors that are phylogenetically non-427 

conserved. In contrast, microeukaryotic communities are unlikely to have experienced priority 428 

effects because most (15 out of 16) of the individual pools experienced significant 429 

compositional shift between the two periods (Table S2). Still, we could not explain these 430 

compositional shifts by spatial or measured environmental factors using Mantel tests (Fig. 6), 431 

suggesting that unmeasured environmental factors, such as light or trophic interactions are 432 

more important for microeukaryotes compared to bacteria. In summary caution needs to be 433 

taken when interpreting the results of quantitative process estimates and future refined 434 

statistical frameworks should integrate additional analyses such as those presented here to 435 

provide a more clear distinction of historical contingencies (e.g. priority effects), 436 

phylogenetically non-conserved selection and pure effects of dispersal limitation. 437 

 438 

Conclusions 439 

Our results show that historical contingency and selection processes can play a key 440 

role in shaping microbial communities, but that the relative contribution of selection 441 

processes varies depending on the temporal variation of environmental heterogeneity and 442 

between bacteria and microeukaryotes. Furthermore, this present study highlighted that 443 

incidence-based and abundance-based null model approaches lead to different conclusions 444 

about the dominant community assembly process in microbial communities. Further, the 445 

outcomes of the current QPE framework act merely as a guide, because the fraction expected 446 
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to indicate dispersal limitation may in reality depict other processes such as historical 447 

contingency, phylogenetically non-conserved selection, or even other, unmeasured processes. 448 

Our findings also show that temporal observations with high-resolution can provide more a 449 

comprehensive understanding than snapshot studies. Taken together, we encourage future 450 

studies to consider temporal variation of metacommunities and its environmental dependency, 451 

regardless the microbial group of interest, as well as to consider historical contingency (e.g. 452 

imprints of assembly history) as a potentially important assembly process.  453 

 454 
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Figure 1. Flow chart of the statistical analyses performed in this study. (A) Redundancy 610 

analysis with forward selection was performed to select the most important environmental 611 

variables that explain variation in the community matrices. Then, we compared the variance 612 

and homogeneity of environmental and community distances between the dry and wet period 613 

using PERMANOVA and PERMDISP, respectively. (B-C-D) Three null-model approaches 614 

were applied. (B) EMS identifies metacommunity properties emerging in site-by-OTUs 615 

incidence matrix [28, 29]. (C) Incidence-based (Raup-Crick) beta-diversity (βRC) tests 616 

stochasticity and determinism using a metric provided by Chase et al. [31]. (D) QPE 617 

quantifies assembly processes involving phylogeny and abundance-based (Raup-Crick) beta-618 

diversity (βRCbray) following the framework of Stegen et al. [27]. (E) We performed (partial) 619 

Mantel tests as a complement to the QPE between βRCbray and geographical and environmental 620 

distance matrices in order make a clear distinction of historical contingencies (e.g. priority 621 

effects) and/or unmeasured factors, phylogenetically non-conserved selection and pure effects 622 

of dispersal limitation. Then, we distinguished historical contingency and the effects of 623 

unmeasured factors by assessing temporal change of community composition at the level of 624 

individual rock pool using PERMANOVA. 625 

 626 

Figure 2. Temporal dynamics of the mean values and standard deviations of environmental 627 

variables that significantly affected either the composition of bacterial or the microeukaryotic 628 

communities (based on RDA) during the study period. The dashed line indicates rain that 629 

separated the study period into a dry and wet period. 630 

 631 

Figure 3. Temporal variation of metacommunity types of the bacterial and microeukaryotic 632 

datasets. Within the dotted lines (−1.96 < coherence z-value < 1.96) metacommunities are 633 

randomly structured. Positive significant values (coherence z-value > 1.96) indicate that 634 
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species’ distribution occur in response to environmental variation. Significantly negative 635 

coherence (coherence z-value < −1.96) indicates checkerboard distribution. The greyscale 636 

represents species turnover (z-value; number of observed replacements compared to a null 637 

distribution) where positive values indicate species replacements in response to environmental 638 

variation and negative values nested species distributions caused by species losses. The size 639 

of the symbols denotes the Morisita’s index (boundary clumping) which shows the degree of 640 

spatial distribution of species in a metacommunity where lower numbers indicate over-641 

dispersed boundaries and higher numbers clumped boundaries. Vertical dashed lines refer to 642 

the division between the dry and wet period. 643 

 644 

Figure 4. Variation of incidence-based (Raup-Crick) beta-diversity (βRC) for bacteria and 645 

microeukaryotic communities during the study period. Dashed line refers to the division 646 

between dry and wet period. 647 

 648 

Figure 5. Overall (A, B) and temporal (C, D) dynamics of the relative importance of different 649 

community assembly processes expressed as the proportion of community pairs assembled 650 

either by species-sorting (variable or homogeneous selection), dispersal limitation or 651 

historical contingency, homogenizing dispersal or drift for bacteria (A, C) and 652 

microeukaryotic (B, D) communities. Note that the scales are not equal on the C and D facet 653 

plot. The dashed lines refer to the division between the dry and wet period, and red asterisks 654 

indicate significant differences between them (Kruskal-Wallis test, significance at p < 0.05 655 

level). 656 

 657 

Figure 6. Mantel (Pearson) correlations between bacterial and microeukaryotic community 658 

dissimilarities (abundance-based Raup-Crick beta-diversity – βRCbray) and (A) environmental 659 
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and (B) geographic distances (Euclidean distances) for each sampling occasion. The dashed 660 

lines refer to the division between dry and wet period. 661 

 662 
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