Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response

Brigitte E. Martin, Jeremy D. Harris, Jiayi Sun, Katia Koelle, Christopher B. Brooke
doi: https://doi.org/10.1101/752329
Brigitte E. Martin
1Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeremy D. Harris
3Department of Biology, Emory University, Atlanta, GA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiayi Sun
1Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katia Koelle
3Department of Biology, Emory University, Atlanta, GA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cbrooke@illinois.edu katia.koelle@emory.edu
Christopher B. Brooke
1Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL
2Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cbrooke@illinois.edu katia.koelle@emory.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

During viral infection, the numbers of virions infecting individual cells can vary significantly over time and space. The functional consequences of this variation in cellular multiplicity of infection (MOI) remain poorly understood. Here, we rigorously quantify the phenotypic consequences of cellular MOI during influenza A virus (IAV) infection over a single round of replication in terms of cell death rates, viral output kinetics, interferon and antiviral effector gene transcription, and superinfection potential. By statistically fitting mathematical models to our data, we precisely define specific functional forms that quantitatively describe the modulation of these phenotypes by MOI at the single cell level. To determine the generality of these functional forms, we compare two distinct cell lines (MDCK cells and A549 cells), both infected with the H1N1 strain A/Puerto Rico/8/1934 (PR8). We find that a model assuming that infected cell death rates are independent of cellular MOI best fits the experimental data in both cell lines. We further observe that a model in which the rate and efficiency of virus production increase with cellular co-infection best fits our observations in MDCK cells, but not in A549 cells. In A549 cells, we also find that induction of type III interferon, but not type I interferon, is highly dependent on cellular MOI, especially at early timepoints. This finding identifies a role for cellular co-infection in shaping the innate immune response to IAV infection. Finally, we show that higher cellular MOI is associated with more potent superinfection exclusion, thus limiting the total number of virions capable of infecting a cell. Overall, this study suggests that the extent of cellular co-infection by influenza viruses may be a critical determinant of both viral production kinetics and cellular infection outcomes in a host cell type-dependent manner.

AUTHOR SUMMARY During influenza A virus (IAV) infection, the number of virions to enter individual cells can be highly variable. Cellular co-infection appears to be common and plays an essential role in facilitating reassortment for IAV, yet little is known about how cellular co-infection influences infection outcomes at the cellular level. Here, we combine quantitative in vitro infection experiments with statistical model fitting to precisely define the phenotypic consequences of cellular co-infection in two cell lines. We reveal that cellular co-infection can increase and accelerate the efficiency of IAV production in a cell line-dependent fashion, identifying it as a potential determinant of viral replication kinetics. We also show that induction of type III, but not type I, interferon is highly dependent upon the number of virions that infect a given cell, implicating cellular co-infection as an important determinant of the host innate immune response to infection. Altogether, our findings show that cellular co-infection plays a crucial role in determining infection outcome. The integration of experimental and statistical modeling approaches detailed here represents a significant advance in the quantitative study of influenza virus infection and should aid ongoing efforts focused on the construction of mathematical models of IAV infection.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • Added new experimental data and analyses

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted September 06, 2020.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response
Brigitte E. Martin, Jeremy D. Harris, Jiayi Sun, Katia Koelle, Christopher B. Brooke
bioRxiv 752329; doi: https://doi.org/10.1101/752329
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response
Brigitte E. Martin, Jeremy D. Harris, Jiayi Sun, Katia Koelle, Christopher B. Brooke
bioRxiv 752329; doi: https://doi.org/10.1101/752329

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4105)
  • Biochemistry (8808)
  • Bioengineering (6509)
  • Bioinformatics (23446)
  • Biophysics (11784)
  • Cancer Biology (9199)
  • Cell Biology (13314)
  • Clinical Trials (138)
  • Developmental Biology (7430)
  • Ecology (11403)
  • Epidemiology (2066)
  • Evolutionary Biology (15143)
  • Genetics (10430)
  • Genomics (14036)
  • Immunology (9167)
  • Microbiology (22142)
  • Molecular Biology (8802)
  • Neuroscience (47539)
  • Paleontology (350)
  • Pathology (1427)
  • Pharmacology and Toxicology (2489)
  • Physiology (3729)
  • Plant Biology (8076)
  • Scientific Communication and Education (1437)
  • Synthetic Biology (2220)
  • Systems Biology (6036)
  • Zoology (1252)