
Cellular co-infection can modulate the efficiency of influenza A virus 1 
production and shape the interferon response  2 
 3 
Brigitte E. Martin1*, Jeremy D. Harris3*, Jiayi Sun1, Katia Koelle3, Christopher B. Brooke1,2 4 
 5 
1 Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 6 
2 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 7 
IL 8 
3 Department of Biology, Emory University, Atlanta, GA 9 
* Authors contributed equally 10 

 11 
Corresponding authors: Christopher Brooke (cbrooke@illinois.edu) and Katia Koelle 12 
(katia.koelle@emory.edu) 13 
 14 
ABSTRACT 15 
During viral infection, the numbers of virions infecting individual cells can vary significantly over 16 
time and space. The functional consequences of this variation in cellular multiplicity of infection 17 
(MOI) remain poorly understood. Here, we rigorously quantify the phenotypic consequences of 18 
cellular MOI during influenza A virus (IAV) infection over a single round of replication in terms of 19 
cell death rates, viral output kinetics, interferon and antiviral effector gene transcription, and 20 
superinfection potential. By statistically fitting mathematical models to our data, we precisely 21 
define specific functional forms that quantitatively describe the modulation of these phenotypes 22 
by MOI at the single cell level. To determine the generality of these functional forms, we compare 23 
two distinct cell lines (MDCK cells and A549 cells), both infected with the H1N1 strain A/Puerto 24 
Rico/8/1934 (PR8). We find that a model assuming that infected cell death rates are independent 25 
of cellular MOI best fits the experimental data in both cell lines. We further observe that a model 26 
in which the rate and efficiency of virus production increase with cellular co-infection best fits our 27 
observations in MDCK cells, but not in A549 cells. In A549 cells, we also find that induction of 28 
type III interferon, but not type I interferon, is highly dependent on cellular MOI, especially at early 29 
timepoints. This finding identifies a role for cellular co-infection in shaping the innate immune 30 
response to IAV infection. Finally, we show that higher cellular MOI is associated with more potent 31 
superinfection exclusion, thus limiting the total number of virions capable of infecting a cell. 32 
Overall, this study suggests that the extent of cellular co-infection by influenza viruses may be a 33 
critical determinant of both viral production kinetics and cellular infection outcomes in a host cell 34 
type-dependent manner. 35 
 36 
AUTHOR SUMMARY 37 
 38 
During influenza A virus (IAV) infection, the number of virions to enter individual cells can be 39 
highly variable. Cellular co-infection appears to be common and plays an essential role in 40 
facilitating reassortment for IAV, yet little is known about how cellular co-infection influences 41 
infection outcomes at the cellular level. Here, we combine quantitative in vitro infection 42 
experiments with statistical model fitting to precisely define the phenotypic consequences of 43 
cellular co-infection in two cell lines. We reveal that cellular co-infection can increase and 44 
accelerate the efficiency of IAV production in a cell line-dependent fashion, identifying it as a 45 
potential determinant of viral replication kinetics. We also show that induction of type III, but not 46 
type I, interferon is highly dependent upon the number of virions that infect a given cell, implicating 47 
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cellular co-infection as an important determinant of the host innate immune response to infection. 48 
Altogether, our findings show that cellular co-infection plays a crucial role in determining infection 49 
outcome. The integration of experimental and statistical modeling approaches detailed here 50 
represents a significant advance in the quantitative study of influenza virus infection and should 51 
aid ongoing efforts focused on the construction of mathematical models of IAV infection. 52 
 53 
INTRODUCTION 54 
Cellular co-infection plays an important, yet poorly defined, role in shaping the outcome of 55 
influenza A virus (IAV) infection. By facilitating reassortment between incoming viral genomes, 56 
cellular co-infection can give rise to new viral genotypes with increased fitness or emergence 57 
potential (1). Cellular co-infection can also enhance the replicative potential of the virus by 58 
promoting the complementation and multiplicity reactivation of the semi-infectious particles that 59 
constitute the bulk of influenza virus populations (2–4). Despite its clear importance, the 60 
prevalence and the specific functional consequences of cellular co-infection during IAV infection 61 
remain largely unknown. 62 
 63 
We and others have previously shown that cellular co-infection can be common in vivo (5–7). 64 
There is growing evidence that IAV replication and spread is focal and thus that the distribution 65 
of individual virions across cells and tissues is highly spatially structured, resulting in foci of high 66 
cellular multiplicity of infection (MOI) (8–11). Given the dynamic distribution of virions over time 67 
and space during infection, it is likely that the MOIs of individual infected cells are highly variable. 68 
This raises the question of whether variation in the number of virions that infect a cell has distinct 69 
phenotypic consequences. If so, it could have significant implications for understanding IAV 70 
infection dynamics as two viral populations of identical size and genome sequence could give rise 71 
to divergent infection outcomes if the dispersal patterns of virions (and thus the MOI distribution 72 
across cells) differs.  73 
 74 
Several previous studies have suggested that the number of virions that enter a given cell 75 
(referred to throughout as “viral input” or “cellular MOI”) may affect replication kinetics and 76 
interferon (IFN) induction (12–16). However, the phenotypic consequences of cellular MOI during 77 
IAV infection have not yet been rigorously or comprehensively quantified. In this manuscript, we 78 
focus on the infection dynamics of two cell lines (MDCK and A549) infected with A/Puerto 79 
Rico/8/1934 (PR8).  We combine precise single-cycle infection experiments with statistical model 80 
fitting to reveal that cellular MOI can significantly alter virus production rates, the host 81 
transcriptional response to infection, and the potential for superinfection. In doing so, we precisely 82 
define functional forms that can account for the observed relationships between viral input and 83 
the phenotypes of infected cells, information that will aid future efforts to quantitatively model IAV 84 
infection. Altogether, these results reveal and define an underappreciated role for cellular co-85 
infection in shaping the outcome of IAV infection. 86 
 87 
RESULTS 88 
To define how variation in cellular MOI affects viral replication dynamics and the host response 89 
to infection, we infected either MDCK or A549 cells with PR8 across a 100-fold range of bulk 90 
MOIs. The working stock of PR8 that we used has a physical particle (matrix segment genome 91 
equivalents (GE)/mL) to fully infectious particle ratio (tissue culture infectious dose 50 92 
(TCID50)/mL) of 8.19, similar to previous reports (2). To eliminate the confounding effects of 93 
secondary spread within culture on infectious outcomes, we limited infections to a single cycle by 94 
treating cells with 25 mM NH4Cl at 2 hpi (17). Thus, in all experiments described below, we were 95 
examining outcomes following a single round of infection. 96 
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 97 
Precise quantification of the actual bulk MOI 98 
An accurate assessment of the phenotypic consequences for cellular co-infection depends upon 99 
the precise measurement of the average number of viral genomes that actually contribute to viral 100 
replication and/or immune activation. We suspected that the standard method for calculating MOI 101 
in bulk cell culture, based on the dilutions of viral working stock used, may overestimate the actual 102 
number of virions that successfully infect due to incomplete virion adsorption or entry.  103 
 104 
To calculate the “actual” bulk MOI that contributed to infection, we quantified the fraction of virus 105 
inoculum that was successfully bound or taken up during the adsorption phase for both MDCK 106 
and A549 cells. We first measured the concentration of virus present in the inoculum added to 107 
cells (0 hpi) and the amount of remaining unbound virus following 1-hour adsorption at 4ºC (1 hpi) 108 
across a range of intended bulk MOIs (Fig 1A) in triplicate by RT-qPCR . Cells were washed 109 
extensively and transitioned to growth media following the 1 hr adsorption period. To confirm that 110 
our post-adsorption washes effectively removed any unbound inoculum virus that could artificially 111 
inflate subsequent viral output measurements, we quantified extracellular virus immediately 112 
following wash and found that viral loads were negligible (<103 genome equivalent (GE)/mL; data 113 
not shown). At 2 hours post-adsorption (3 hpi), we again measured the amount of extracellular 114 
virus present and found titers that were surprisingly high for this early timepoint, especially at an 115 
intended bulk MOI of 10 (Fig 1A).  116 
 117 

 118 
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To determine whether extracellular virus present at 3 hpi was newly produced or carried-over 119 
from the inoculum, we repeated the above experiments in MDCK cells treated from 2 hours prior 120 
to infection through the duration of infection (6 hpi) with 40 µM of the antiviral drug T-705, which 121 
inhibits the production of viral progeny (18). Drug treatment significantly reduced viral titers at 6 122 
hpi, but not 3 hpi, indicating that extracellular virus measured at 3 hpi consists of inoculum virus 123 
that was taken up but then released without actually infecting the cell (Fig 1B). Thus, to precisely 124 
quantify the actual bulk MOI of virus that contributed to infection in each sample, we subtracted 125 
the amounts of extracellular virus detected at both 1 hpi and 3 hpi (for this, we used the average 126 
of three experimental replicates since they were from independent samples) from our 127 
measurements of bulk MOI at 0 hpi. This gave us an actual bulk MOI range of 0.23-5.45 for MDCK 128 
cells and 0.16-8.09 for A549 cells (Fig 1C). Hereafter, we use these estimated actual bulk MOIs 129 
instead of intended bulk MOIs to quantify the effects of cellular MOI on virus production kinetics 130 
and cellular infection outcomes and refer to these actual bulk MOIs simply as ‘bulk MOIs’.   131 
 132 
Assumption of viral infection distribution 133 
To quantify the effects of cellular MOI on virus production kinetics and cellular infection outcomes, 134 
an assumption needs to be made about how virus particles are distributed across cells. It is often 135 
assumed that the number of virions that infect a given cell follows a Poisson distribution with both 136 
the mean and variance in cellular MOI equal to the overall bulk MOI. However, empirical support 137 
for this assumption is lacking. To accommodate potential deviations from the Poisson distribution, 138 
we instead assume that virions are distributed across cells according to a negative binomial 139 
distribution. This distribution allows for virions to be overdispersed when the dispersion parameter 140 
is small, with the variance in cellular MOI across cells exceeding the mean cellular MOI. That is, 141 
in the case of overdispersion (relative to a Poisson assumption), a higher fraction of cells will have 142 
either low/no viral input or high viral input relative. A negative binomial distribution, however, also 143 
allows for virions to be Poisson-distributed across cells when the dispersion parameter is large. 144 
As such, this distribution provides us with a more flexible approach for modeling the distribution 145 
of viral particles across cells. To be thorough, we also considered the possibility of virions being 146 
distributed according to a zero-inflated Poisson distribution, where a fraction of cells remain 147 
uninfected, and the remaining cells have cellular multiplicities of infection governed by a Poisson 148 
distribution with a higher mean to account for the cells that remain uninfected. Similar to the 149 
negative binomial distribution, the zero-inflated Poisson distribution allows for the incorporation of 150 
cellular heterogeneity in a phenomenological manner.  151 
 152 
When fitting the cell death models (described in the next section) to experimental data, we 153 
simultaneously estimate parameters of these viral infection distribution models using 154 
fluorescence-activated cell sorting (FACS) measurements taken at 18 hpi (Fig S1). When fitting 155 
the remaining statistical models (described below), we take as given the most well-supported, 156 
already-parameterized viral infection distribution and the most well-supported, already-157 
parameterized cell death model. 158 
 159 
Cell death rates are time-dependent but virus input-independent in both MDCK and A549 160 
cells 161 
The overall productivity of an infected cell depends in part upon how long the cell survives 162 
following infection, and we hypothesized that cellular lifespans might be affected by cellular MOI. 163 
We quantified how differences in bulk MOI affected cell survival at different times post-infection 164 
(compared with mock infected cells) using trypan blue exclusion. As expected, the number of 165 
surviving MDCK cells generally decreased with higher bulk MOIs for each timepoint tested (Fig 166 
2). To determine whether this observed decrease in cell survival was simply due to increases in 167 
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the fraction of infected cells, or if, instead, cells co-infected with multiple virions died at faster rates 168 
than singly infected cells, we statistically fit a set of mathematical models to the experimental data 169 
(Methods). 170 
 171 

 172 
 173 
We first considered a model in which all infected cells died at a constant (and identical) rate over 174 
the course of cellular infection, under all three possible viral infection distributions (Poisson, 175 
negative binomial, and zero-inflated Poisson). Jointly fitting this cell death model and the viral 176 
infection distribution to the FACS data and the number of surviving MDCK cells, we found that 177 
the negative binomial distribution was most well-supported by the data (Table S1; Fig S2B), 178 
indicating that the distribution of virions across cells is highly overdispersed. This model, with a 179 
constant and identical (input-independent) cell death rate, however systematically overestimated 180 
the number of surviving cells at early time points following infection (3 and 6 hpi; Fig S2A) and 181 
systematically underestimated the number of surviving cells at the latest time point (18 hpi; Fig 182 
S2A). We next considered a model in which infected cell death rates were allowed to vary over 183 
the course of infection (i.e., death rates could be time-dependent), with rates that were still 184 
independent of cellular MOI (i.e., death rates were input-independent). For this model, we chose 185 
a Weibull hazard function as the functional form to describe the time-varying death rate because 186 
of its common use in survival analysis. Jointly fitting this model and the viral infection distributions 187 
to the MDCK cell data and the FACS data yielded, for all three viral infection distributions 188 
considered, an infected cell death rate that decreased over the course of cellular infection (Table 189 
S1). Of the viral infection distribution models, the negative binomial one was again most well-190 
supported by the data (Table S1). Under this distribution, the parameterized time-dependent, 191 
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input-independent cell death model did not over- or underestimate the number of surviving cells 192 
at any of the four time points considered (Fig 2A) and was able to quantitatively reproduce the 193 
measured FACS data (Fig 2C). This time-dependent cell death rate model was statistically 194 
preferred over the time-independent cell death rate model (Table S1). 195 

 196 
We next considered a time-independent, input-dependent model of cell death rates in which the 197 
death rate of a given cell increased with viral input. Again, the negative binomial distribution was 198 
preferred over both the Poisson model and the zero-inflated Poisson model (Table S1). Under 199 
this negative binomial model for the viral infectivity distribution, the cell death model yielded similar 200 
fits as the time-independent, input-independent model (Fig S3). Indeed, its statistical 201 
parameterization effectively reduced this model to the time-independent, input-independent 202 
model (Table S1). This model had less statistical support than the time-independent, input-203 
independent model though because of its higher complexity (Table S1). Finally, we considered a 204 
general time-dependent, input-dependent model that could reduce, under specific 205 
parameterizations, to either a time-independent model, an input-independent model, or both 206 
(Table S1). Again, the negative binomial distribution was preferred over both the Poisson model 207 
and the zero-inflated Poisson model (Table S1). Under this negative binomial model, statistical 208 
parameterization of this cell death model yielded fits similar to those of the time-dependent, input-209 
independent model. Indeed, the parameterization of this model effectively reduced this model to 210 
this simpler, preferred model. Because of its greater complexity, this cell death rate model had 211 
less statistical support than the time-dependent, input-independent model. Overall, we found that 212 
the time-dependent, input-independent cell death rate model was the most well-supported cell 213 
death rate model for the MDCK cell data. This finding indicates that lower levels of cell survival at 214 
higher bulk MOIs (as observed in Figure 2) are likely simply due to there being a higher fraction 215 
of cells that are infected at higher MOIs, rather than being due to cell death rates being higher in 216 
cells with higher viral input.  217 
 218 
For all four models considered, the fits to the FACS data indicated that viral particles are decidedly 219 
not Poisson-distributed across cells in the bulk MOI range considered. Instead, the statistical 220 
parameterizations of all four models point towards a high level of viral overdispersion (Table S1). 221 
Models that forced the assumption of a Poisson distribution were unable to quantitatively 222 
reproduce the FACS data (Fig S4A). Models that allowed for a more flexible negative binomial 223 
distribution were statistically strongly preferred over those that assumed a Poisson distribution of 224 
virions across cells (Fig S4A, Table S1). The negative binomial model was also preferred over 225 
the zero-inflated Poisson model (Table S1), although not as strongly as over the standard Poisson 226 
model. 227 
 228 
For A549 cells, we considered the same set of cell death rate models and viral infectivity 229 
distribution models as we did for MDCK cells. Here, we again found that the best model fits 230 
assumed a negative binomial distribution for viral infectivity and that  the time-dependent, input-231 
independent cell death rate model was statistically preferred over the other three models (Table 232 
S2; Fig 3). In sum, by fitting to FACS data and a time course of surviving cell numbers, we found 233 
that a model that assumes that infected cell death rates are changing with time since infection 234 
(but not with viral input) is most well-supported by both MDCK and A549 data. In both cell lines, 235 
the parameterized model results in a cellular death rate that declines with time since infection. 236 
This finding, although not intuitive, is visually supported by the data. For example, it is visually 237 
apparent that in the MDCK cell line, at a given bulk MOI, that the number of surviving cells rapidly 238 
declines until 6 hpi, and then stays at similar levels until 18 hpi. 239 
 240 
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 241 
 242 
Cellular co-infection increases the rate of virus production in MDCK cells but not in A549 243 
cells 244 
We next asked how changes in bulk MOI affected virus production over a single cycle of infection 245 
in both MDCK and A549 cells. In the same experiments described above, we measured the total 246 
viral output (in GE/mL) from cells infected at different bulk MOIs at 6, 12, and 18 hpi. Not 247 
surprisingly, we observed that viral output from both cell lines was significantly increased at higher 248 
bulk MOIs for all time points tested (Fig 4A).  249 
 250 
These findings raised the question of whether the increase in viral output at higher bulk MOIs is 251 
simply due to higher numbers of infected cells at higher bulk MOIs, or whether individual infected 252 
cells produce more virus output when co-infected by multiple virions. To infer the functional 253 
relationship between cellular MOI and viral output, we statistically fit several mathematical models 254 
of virus production to our data (Methods). Each of these models incorporated our results of cell 255 
death kinetics, described in the previous section. They each also incorporated the negative 256 
binomial distribution for viral infectivity, described in the previous section. The incorporation of 257 
these models was needed to accommodate the fact that only surviving infected cells should have 258 
the ability to contribute to viral output. For both MDCK and A549 cell lines, the first three models 259 
we fit were time-independent with respect to the rate of virus production but differed in their 260 
dependence upon cellular input. The statistical fits of these time-independent models to the data 261 
are summarized in Table S3 (MDCK cells) and Table S4 (A549 cells). In both cell lines, we found 262 
that even the best models overestimated virus output at 6 hpi and underestimated virus output at 263 
18 hpi, across all bulk MOIs examined (Fig S5).  264 
 265 
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 266 
 267 
These results suggest that the rate of virus production increases over time. Therefore, we next 268 
considered a set of time-dependent models of virus production rate. Specifically, in these models 269 
we allowed for a time delay in virus production to account for the eclipse phase of infection. 270 
Following this delay, the rate of virus production was assumed to depend linearly on time. Input-271 
dependency on the rate of virus production was incorporated differently by the three different time-272 
dependent models. The first time-dependent model assumed that the rate of virus production was 273 
input-independent but increased linearly in time following the initial delay in virus production. 274 
When fit to the MDCK cell data, this model underestimated the amount of virus produced at high 275 
MOI values (Fig S6). We next considered a linear input-dependent model in which the rate of 276 
virus production (at any given point in time following the delay in virus production) increases 277 
linearly with the number of viruses infecting a given cell. In MDCK cells, this time-dependent 278 
model with linear input-dependent virus production rate was more supported by the data than the 279 
input-independent model (Table S3). Lastly, we considered a saturating input-dependent model 280 
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of virus production. In this model, at any given time point following the delay in virus production 281 
the rate of virus production increases with the cellular MOI, saturating at high levels of cellular 282 
MOI. The parameter estimates from fitting the model to MDCK virus production data gave similar 283 
model fits as the linear input-dependent model. However, due to the increased complexity of this 284 
model, the saturating input-dependent model had less statistical support than the linear input-285 
dependent model (Table S3).   286 
 287 
Of the models considered for MDCK cells, we find that the time-dependent model with linear input-288 
dependent virus production rate is best supported by the data. This model captures virus 289 
production vs. bulk MOI well at 12 and 18 hpi, but we do note discrepancies at 6 hpi between the 290 
fit of this model and the experimental data (Fig 4B). At 6 hpi, virus output at low bulk MOI is lower 291 
than that predicted by the model, while virus output at high bulk MOI is higher than that predicted 292 
by the model. This indicates that the delay in virus production may be longer for cells with low 293 
virus input than with higher virus input. A model that allows for the onset times of viral production 294 
to depend on cellular MOI may therefore better capture the relationship between viral output and 295 
cellular MOI at this early time point. Our overall results are consistent with previous reports of 296 
earlier and higher rates of replication under high experimental MOI conditions (19,20). 297 
 298 
For A549 cells, we considered the same set of time-dependent virus production rate models. In 299 
contrast to MDCK cells, we did not find that virus production rates depended on virus input; the 300 
input-independent model was most supported by the data (Table S4; Fig 4D,E). The linear input-301 
dependent model both overestimated viral output at high bulk MOI values at 6 and 12 hpi and 302 
underestimated output at low bulk MOI values at 18 hpi (Fig S7). The saturating input-dependent 303 
model yielded a slightly better fit to the data than the input-independent model, but due to its 304 
increased model complexity had less statistical support (Table S4). The statistically preferred 305 
input-independent virus production model reproduces the experimental data well at 6 hpi; 306 
however, we note that the model slightly overestimates viral output at 12 hpi and underestimates 307 
the output at 18 hpi (Fig 4D). This suggests that the rate of virus production may level off over 308 
time, instead of continuing to increase as assumed by our model structure. Similar to MDCK cells, 309 
all models fit to A549 cell data indicate that the onset of virus production occurs at approximately 310 
5 hpi (Table S4; Fig 4E). In contrast to MDCK cells, though, we find that the rates of virus 311 
production in A549 cells do not increase with cellular MOI, revealing that the relationship between 312 
cellular MOI and viral output is cell type-specific. 313 
 314 
Increased cellular co-infection enhances the efficiency of viral progeny production in 315 
MDCK cells but not in A549 cells 316 
To control for the differences in input genomes across the different bulk MOI conditions, we 317 
calculated per capita virus production by dividing the number of output viral genomes by the 318 
number of input genomes (Fig 5). For MDCK cells, increasing the bulk MOI significantly increased 319 
per capita virus output at 6 hpi (R2 = 0.71, p < 0.0001). However, this positive correlation between 320 
bulk MOI and per capita virus output was no longer apparent at later timepoints (12 hpi p = 0.47; 321 
18 hpi p = 0.38), likely due to the eventual saturation of virus production rates at high cellular 322 
MOIs. Importantly, MDCK cells infected at higher bulk MOI crossed the threshold into positive 323 
virus production (virus output/input > 1) by 6 hpi, while the lower MOI infections lagged. In contrast, 324 
increasing bulk MOI had no significant effects on per capita virus output from A549 cells at 6 hpi 325 
and 12 hpi (p = 0.11 and p = 0.06, respectively), and actually decreased per capita output at 18 326 
hpi (R2 0.54, p = 0.0029). These results suggest that increasing the number of virions introduced 327 
into a given cell can increase or potentially decrease the efficiency of viral progeny production in 328 
a cell-type specific manner.  329 
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 330 
 331 
Cellular co-infection enhances ISG induction in A549 cells but not MDCK cells 332 
We next asked whether cell type-specific differences in innate immune activation might explain 333 
the divergent effects of cellular MOI on virus output in MDCK and A549 cells. We examined the 334 
effects of increasing cellular MOI on the expression of two interferon stimulated genes (ISGs) 335 
known to inhibit IAV replication (ISG15 and Mx1) (Fig 6). In MDCK cells, we found no significant 336 
positive correlations between ISG expression levels and cellular MOI at either timepoint tested 337 
(Fig 6A). In A549 cells, expression of ISG15 was positively correlated with bulk MOI at 18 hpi, 338 
but not 8 hpi, while Mx1 expression levels were positively correlated with bulk MOI at both 339 
timepoints (Fig 6B). These results suggest that the benefits of increasing cellular MOI for viral 340 
progeny production that we observed in MDCK cells may be offset in A549 cells by increasing 341 
anti-viral ISG activity, thus potentially explaining the divergent effects of cellular MOI on virus 342 
output in these two cell types. 343 
 344 
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 345 
 346 
Cellular co-infection enhances type III (but not type I) IFN induction in A549 cells 347 
A prior study observed that the magnitude of interferon (IFN) transcription during IAV infection is 348 
higher under higher experimental MOI conditions (12); however, this relationship was not 349 
rigorously defined and it was not clear whether this effect simply arose from increases in infected 350 
cell numbers. In contrast, a more recent study suggests that increasing cellular MOI might result 351 
in more potent antagonism of IFN activation (15). To precisely define the effects of cellular co-352 
infection on IFN induction, we measured the effects of varying bulk MOI on the induction of both 353 
type I (IFNB1) and type III (IFNL1) IFN transcription in both MDCK and A549 cells at 8 and 18 hpi 354 
under single cycle infection conditions.  355 
 356 
For MDCK, expression levels of IFNB1 and IFNL1 in infected cells were barely if at all elevated, 357 
compared with mock cells (Fig 7A). We found no significant correlation between bulk MOI and 358 
levels of IFNB1 induction at either time-point tested (log-log linear regression: p = 0.38 for 8 hpi 359 
and p = 0.23 for 18 hpi). For IFNL1, expression was independent of bulk MOI (p = 0.67) at 8 hpi; 360 
however, at 18 hpi there was a statistically significant yet modest positive correlation between 361 
bulk MOI and levels of IFNL1 induction (slope = 0.34; p = 0.0077).  362 
 363 
In A549 cells, we observed that IFNB1 and IFNL1 expression responded very differently to 364 
increasing bulk MOI. By 8 hpi, IFNB1 expression was significantly elevated above mock under all 365 
MOI conditions (Fig 7B); however, there was no correlation between bulk MOI and levels of IFNB1 366 
induction (p = 0.81). This suggests that IFNB1 induction, at least in bulk, is independent of MOI 367 
or even the total number of infected cells in the culture. By 18 hpi, we did observe a statistically 368 
significant positive correlation between bulk MOI and IFNB1 induction (p = 0.0002); however, this 369 
effect was quite small (slope = 0.16). In contrast to IFNB1 expression, we observed a strong 370 
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positive correlation between IFNL1 expression and bulk MOI at both 8 and 18 hpi (p < 0.0001 for 371 
both time points; Fig 7B), although the effect was less pronounced at 18 hpi (slope = 0.58) 372 
compared with 8 hpi (slope = 1.08).  373 
 374 

 375 
 376 
To determine whether the observed relationship between bulk MOI and IFNL1 induction in A549 377 
cells could be explained simply as the result of increasing the number of infected cells, we 378 
statistically fit several mathematical models to these experimental data. Because only 8 hpi and 379 
18 hpi data were available for model fitting, we considered different model combinations by 380 
piecing together a model governing the 0-8 hpi epoch with a model governing the 8-18 hpi epoch. 381 
During each epoch, we considered three different possible time-independent interferon induction 382 
rate models (Table S5; Methods): (1) an input-independent model in which all infected cells have 383 
similar IFNL1 induction rates relative to mock cells; (2) an input-dependent model in which IFNL1 384 
induction rates scale linearly with virus input; and (3) an input-dependent model in which IFNL1 385 
induction rates increase with virus input, saturating at high input values. The results of fitting these 386 
models jointly to the 8 hpi and 18 hpi IFNL1 induction data are shown in Table S6.  387 
 388 
The best fitting model had IFNL1 expression in A549 cells be linearly dependent on cellular input 389 
during the 0-8 hr epoch, while being independent of cellular input during the 8-18 hr epoch. Figure 390 
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7C shows this combined model fit to the data, along with two other model combinations for 391 
comparison. A model assuming input-independence during both epochs does poorly in 392 
reproducing the 8 hpi data; in fact, all models with input-independence during the 0-8 hpi epoch 393 
do poorly (Table S6). A model that instead assumes linear input-dependence during both epochs 394 
can reproduce the 8 hpi data but does poorly at reproducing the 18 hpi data (Fig 7C). In Fig 7D 395 
we show graphically what the most supported IFN induction model looks like, for IFNL1 induction 396 
in A549 cells. Early in the infection (<8 hpi), the rate of IFNL1 induction depends linearly on cellular 397 
MOI, such that cells with higher levels of virus input have higher rates of IFNL1 induction than 398 
cells with lower levels of virus input. However, later in the infection (>8 hpi), the rate of IFNL1 399 
induction does not depend on virus input. These results are consistent with a mechanism by which 400 
increasing cellular MOI accelerates the intra-cellular accumulation of viral replication products, 401 
resulting in earlier, more robust detection by RIG-I or other innate sensing pathways and a higher 402 
bulk rate of IFNL1 induction early during infection.     403 
 404 
Cellular co-infection decreases the potential for superinfection. 405 
Finally, we wanted to understand how cellular coinfection may affect the potential for cellular 406 
superinfection. We previously showed that under low bulk MOI conditions in multiple cells lines, 407 
increasing the number of functional gene segments delivered to a given cell resulted in more 408 
potent superinfection exclusion (SIE), limiting the potential for cellular co-infection in a cell-type 409 
independent manner (21). We thus hypothesized that increases in cellular MOI would shorten the 410 
time window during which superinfection is possible, thus limiting the total number of virions that 411 
can successfully infect a given cell. 412 
 413 
To define how cellular MOI affects subsequent superinfection potential, we measured the extent 414 
of SIE across a range of bulk MOIs in MDCK cells. We generated 2 antigenically distinct 415 
reassortant viruses (rH3N1 and rH1N2) that could be differentiated using specific monoclonal 416 
antibodies. We infected MDCK cells with rH3N1 at a range of intended MOIs resulting in groups 417 
with average bulk MOIs of 0.25, 1.13, 3.00, 15.43, and 53.72 TCID50/cell (based on subtracting 418 
post-adsorption inoculum GE titers from pre-adsorption inoculum titers as detailed above). At 6 419 
hpi, we superinfected with a constant bulk input MOI of rH1N2. To measure the baseline co-420 
infection rates in the absence of SIE effects, we included co-infection controls for each input MOI 421 
where we simultaneously co-infected with rH3N1 and rH1N2 viruses. At 19 hpi, we examined the 422 
infection status of cells by flow cytometry, using H3 and H1 expression as markers of rH3N1 423 
infection and rH1N2 infection, respectively. 424 
 425 
As expected, during simultaneous co-infection (where no SIE occurs), we observed that the 426 
fraction of co-infected cells (H3+H1+) increased with the input MOI of rH3N1 virus and plateaued 427 
when almost all rH1N2-infected cells (H1+) were co-infected with rH3N1 (Fig 8A). These 428 
simultaneous co-infection data allowed us to develop and parameterize an appropriate “null” 429 
model of co-infection in the absence of SIE (Methods). To capture the possibility of 430 
overdispersion of viral particles (which we found to be important when analyzing cell death rates), 431 
the null model assumed that cells could belong to either a low susceptibility class of cells or a 432 
high susceptibility class of cells.  Fig 8A shows the fit of this null model to the data.    433 
 434 
In contrast to what was observed under simultaneous co-infection conditions, under 435 
superinfection conditions we observed that the fractions of both double-infected (H3+H1+) cells 436 
and rH1N2-infected (H1+) cells decreased with increasing rH3N1 input MOI. To determine 437 
whether these patterns could simply be explained by higher numbers of cells being infected with 438 
rH3N1 at higher rH3N1 input MOIs, we assessed how well two different models of super-infection 439 
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fit the experimental data (Methods). The first model assumed that all rH3N1-infected cells had the 440 
same reduced probability of becoming infected with rH1N2 (input-independent). The second 441 
model assumed that the probability of being infected with rH1N2 decreased with cellular rH3N1 442 
MOI (input-dependent). Similar to the coinfection null model, both models assumed that cells fall 443 
into either a high or low susceptibility class. We fit each of these two models to the SIE data. The 444 
input-independent model underestimated the extent of rH1N2 infection to a greater extent than 445 
the input-dependent model (Fig 8B). The input-independent model further systematically 446 
underestimated the extent of double (H3+H1+) infection at low rH3N1 input MOI, while 447 
systematically overestimating these measurements at high rH3N1 input MOI (Fig 8B). In contrast, 448 
the input-dependent model was better able to reproduce the double (H3+H1+) infection 449 
measurements across all experimental MOIs (Fig 8B). As anticipated from these patterns, we 450 
found that the input-dependent model was significantly better supported by the data than the 451 
input-independent model (Table S7). Fig 8C shows the relationship between cellular input and 452 
susceptibility to superinfection predicted by this input-dependent model, indicating a rapid decline 453 
in susceptibility to superinfection with rH1N2 at 6 hpi at increasing levels of rH3N1 virus input. 454 
 455 

 456 
 457 
These results are consistent with our previous finding that susceptibility to superinfection is 458 
inversely correlated with the cellular dosage of replication complexes delivered by incoming 459 
virions (21). Thus, the MOI-dependence of SIE may serve as a negative feedback loop that 460 
restricts the maximum number of virions that can successfully infect a given cell.  461 
 462 
DISCUSSION 463 
In this study, we defined the functional consequences of cellular co-infection by quantifying the 464 
effects of cellular MOI on the phenotypes of infected cells. We combined precise, quantitative 465 
single-cycle in vitro infection experiments with statistical model fitting to demonstrate that at the 466 
cellular level, variation in viral input gives rise to substantial variation in infection outcomes. This 467 
includes cell line-dependent variation in viral output dynamics as well as the host transcriptional 468 
response to infection. Intriguingly, type I and type III IFN exhibited distinct responses to increases 469 
in MOI, suggesting that variation in cellular MOI could alter the balance of these two antiviral 470 
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cytokines. Altogether, these results clearly suggest that the incidence of cellular co-infection could 471 
play an important role in influencing influenza virus infection outcome.  472 
 473 
These results complicate the common understanding of viral genotype-phenotype relationships. 474 
Generally, we understand that the phenotype of a virus within a given host system is encoded by 475 
its genome sequence. Our data add another layer to this view: it is not simply the sequence(s) of 476 
a viral genome that influences its phenotype but also how those sequences are distributed across 477 
cells. Two viruses with identical genome sequences could exhibit significantly different replication 478 
dynamics or patterns of IFN induction if they differ in their cellular MOI distribution (22,23). These 479 
results suggest that we need to better understand the forces that govern the extent of cellular co-480 
infection and the spatial distribution of virions during IAV infection. 481 
 482 
Our finding that the relationship between cellular MOI and viral replication efficiency differed 483 
between cell types complements the results of two recent reports. In the first, Andreu-Moreno et 484 
al. examined the effect of cellular co-infection on vesicular stomatitis virus (VSV) fitness across 485 
multiple cell types (22). They found that increasing cellular MOI (via virion aggregation) enhanced 486 
viral fitness, but that the magnitude of this effect varied between cell types. Specifically, they 487 
observed an inverse relationship between the susceptibility of a given cell line to VSV infection 488 
and the extent to which cellular co-infection enhanced viral output. Similarly, Phipps et al. 489 
observed that cellular co-infection could enhance influenza virus replication when the virus strain 490 
used was poorly adapted to the cell line used (20). Along with these studies, our results illustrate 491 
the importance of considering variation between cell types. This point is especially relevant given 492 
the diversity of cell types infected by IAV in vivo. Beyond cell type variation, it is likely that other 493 
viral genotypes will exhibit quantitative or qualitative differences in the dynamics that we have 494 
measured here. Thus, we do not argue that our specific results will describe all combinations of 495 
influenza virus strains and target cell types. Instead, our results identify cellular co-infection as an 496 
important determinant of viral replication dynamics and immune activation and provide a rigorous 497 
quantitative framework for future efforts to understand the consequences of co-infection.  498 
 499 
It is important to point out that the experimental data described here were all collected from 500 
aggregate populations of cells and that our models ignore single cell heterogeneity between cells 501 
with the same cellular MOI. There is substantial heterogeneity in viral gene expression and 502 
progeny production between individual cells infected under similar conditions (24–27). Time-503 
course experiments from single poliovirus-infected cells have demonstrated that bulk 504 
measurements like those used here can obscure more complex, heterogeneous dynamics that 505 
occur at the single cell level (28). A more complete understanding of the functional consequences 506 
of cellular co-infection will likely depend upon future studies that quantify single cell variability.  507 
 508 
The IFN system represents one of the earliest and most potent lines of defense against IAV within 509 
the respiratory tract (29–31). Similar to previous reports, we observed that IAV infection resulted 510 
in a more dramatic induction of type III IFN (32), compared with type I IFN, in A549 cells. We were 511 
surprised to find that type I and type III IFN induction responded differently to increases in input 512 
MOI, as the induction pathways that lead to initiation of IFNB1 and IFNL1 are thought to largely 513 
overlap (33). Our data suggest that the induction or regulatory circuitry for these two pathways 514 
are differentially affected by the amount of viral input. Even more surprising was our finding that 515 
type I IFN induction was largely insensitive to input MOI over two orders of magnitude. In our 516 
hands, not only was IFNB1 induction MOI-independent at the cellular level, it was also largely 517 
unaffected by the total number of infected cells, which ranged from ~3% to ~63% across the 518 
samples tested. Induction of IFNB1 expression by IAV is known to be highly stochastic at the 519 
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single cell level and many infected cells do not upregulate IFN expression (15,24,34); however, it 520 
is still counterintuitive that increasing the total number of infected cells would not increase the 521 
overall number of cell producing IFNB1 (and thus the bulk expression level). More work is clearly 522 
needed to understand the factors that govern IFN expression at the single cell level.   523 
 524 
The implications of these results for understanding what happens during natural infection remain 525 
unclear, but at a minimum suggest that frequent occurrence of cellular co-infection is likely to 526 
boost the magnitude of the type III, but not the type I IFN response. This dynamic could lead to 527 
MOI-dependent changes in the relative balance of type I versus type III IFN induction which could 528 
be consequential given that these cytokine families can trigger non-redundant effector responses 529 
during IAV infection (35–38). One important caveat here is that we are only examining IFN 530 
induction within a single cycle of replication and a single cell type and patterns of type I and type 531 
III IFN induction over the course of infection are sure to be much more complicated.  532 
 533 
Given that cellular MOI and co-infection have clear functional consequences during IAV infection, 534 
it is critical to quantify the actual occurrence of cellular co-infection during in vivo infection and to 535 
identify host and viral determinants of cellular co-infection frequency. Natural infections are likely 536 
typically initiated under low MOI conditions due to the relatively small size of transmitted founder 537 
populations (though even small numbers of transmitted virions could achieve high cellular MOI if 538 
they are physically aggregated) (39,40). Even if infection is initiated at low cellular MOI, high 539 
cellular MOI conditions could be very rapidly established if viral spread is locally restricted, as 540 
appears to be the case (8). This idea is supported by a recent study that demonstrated a virus 541 
that is entirely dependent upon cellular co-infection to replicate can successfully replicate in 542 
guinea pigs (7). Though very few studies have attempted to actually quantify the MOI distribution 543 
in vivo because of the inherent technical challenges, our work suggests that this feature could be 544 
an important, underappreciated determinant of infection outcome. 545 
 546 
This study also highlights the power of interfacing carefully quantified experimental data with 547 
statistical modeling approaches. By fitting models to our experimental data, we were able to 548 
rigorously test our hypotheses concerning the phenotypic effects of cellular MOI to an extent that 549 
would not be possible based on standard data analysis. This was essential for confidently 550 
distinguishing between the different functional forms that could potentially describe the phenotypic 551 
consequences of different levels of virus input. Hopefully, the data generated here will help inform 552 
future mathematical modeling efforts focused on understanding IAV within-host infection 553 
dynamics. Our results to date certainly suggest that future model structures may better capture 554 
the underlying biology of IAV infection if they account for the phenotypic consequences of cellular 555 
co-infection (41,42).    556 
 557 
Altogether, our results clearly demonstrate that cellular MOI can have concrete effects on infection 558 
outcome, highlighting the functional importance of collective interactions during IAV infection (43). 559 
At a minimum, our data establish that the distribution of viral genomes across cells and the 560 
patterns of cellular co-infection that result can significantly alter emergent viral infection 561 
phenotypes. This suggests that future efforts to understand influenza virus infection dynamics 562 
and outcomes should consider patterns of virus input and cellular co-infection. 563 
 564 
MATERIALS AND METHODS 565 
Cells  566 
HEK293T (human embryonic kidney) cells were used for rescue of PR8 by plasmid transfection. 567 
MDCK (Madin-Darby canine kidney) cells were used for virus propagation, TCID50, and infection 568 
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experiments. 293T and MDCK were maintained in MEM (Thermo Fisher Scientific) supplemented 569 
with 8.3% fetal bovine serum (FBS). A549 (human lung carcinoma) cells were used for infection 570 
experiments and were maintained in Ham’s F12 nutrient mixture (Thermo Fisher Scientific) with 571 
8.3% FBS.  572 
 573 
Virus rescue and propagation  574 
Eight plasmids encoding the A/Puerto Rico/8/1934 (H1N1; PR8) segments PB2, PB1, PA, HA, 575 
NP, NA, MA, and NS in the dual promoter pDZ vector were used to generate recombinant virus 576 
stocks through standard IAV reverse genetics. The recombinant PR8 virus (rPR8) differs from the 577 
published sequence (GenBank accession nos. AF389115–AF389122) at two positions: PB1 578 
A549C (K175N) and HA A651C (I207L) (numbering from initiating Met). rH3N1 and rH1N2 viruses 579 
used in superinfection studies were similarly generated through reverse genetics, using the HA 580 
and NA segments from A/Udorn/307/72 (H3N2) respectively and the remaining segments from 581 
PR8.  582 
 583 
For virus rescue, 500 ng of each plasmid were mixed with 200 µL jetPRIME buffer (Polyplus-584 
transfection) and 8 µL jetPrime reagent and incubated at room temperature for 10 minutes. The 585 
transfection mixture was added dropwise to 293T cells at 60% confluency in 6-well cell culture 586 
plates and incubated at 37ºC, 5% CO2. Media was changed 18-24 hours post-transfection, with 587 
2 mL of virus growth media (MEM, 1 mM HEPES, 1 µg/mL TPCK trypsin (Worthington 588 
Biochemical Corporation; Lakewood, NJ, USA), 50 µg/mL gentamicin) containing 2.5×105 MDCK 589 
cells. Rescue supernatant was harvested and used in plaque assay. Briefly, 300 µl 10-fold serially 590 
diluted transfection supernatant in 1X DPBS (+Ca/+Mg), 0.1% BSA, pH 7.1, was added per 100% 591 
confluent MDCK well in 6-well cell culture plate, in duplicate. After 1 hour of incubation, 3 mL 592 
agarose overlay (0.9% agarose, 1X EMEM, 1 µg/mL TPCK trypsin, 0.2% BSA, 1X glutamax, 1 593 
mM HEPES, 50 µg/mL gentamicin) was added to each well and incubated for 48-72 hours at 594 
37ºC.  595 
 596 
To generate seed virus stocks, three isolated plaques were picked and resuspended in 200µL 1X 597 
DPBS (+Ca/+Mg), 0.1% BSA; 100 µL was added to one well of 6-well cell culture plate with 80% 598 
confluent MDCK cells with 2 mL of virus growth media and incubated at 37ºC, 5% CO2 for 48-72 599 
hours. To generate working stock virus, confluent MDCK cells were infected with seed virus stock 600 
at an MOI of 0.001 TCID50. One-hour post infection, inoculum was discarded and replaced with 601 
virus growth media and incubated at 37ºC, 5% CO2 for 48-72 hours. Supernatant was clarified at 602 
3000 RPM for 10 minutes and 500 µL aliquots were stored at -70ºC.  603 
 604 
50% tissue culture infective dose (TCID50) for PR8 viral supernatant was titrated in 96-well cell 605 
culture plates with 100% confluent MDCK cells by 1:10 serial dilution in virus growth media. 606 
Cytopathic effect was visualized 3-5 days post infection. TCID50 values were calculated based on 607 
Reed and Munch calculation (44). 608 
 609 
Viral output assay 610 
To precisely quantify the effects of viral input on viral output and cell death rates, PR8 was diluted 611 
in 1X PBS +/+ pH 7.3 in 200 µL triplicates to yield intended MOIs of 0.25, 1, 2.5, 5, and 25 and 612 
used to inoculate MDCK or A549 cells in 24-well plates. Infections were synchronized by carrying 613 
out adsorption at 4ºC for 1 hour. The supernatant was collected at 1 hpi, the cell monolayers were 614 
washed three times with 1X PBS, media was replaced with 500 µL MEM or F12, for MDCK and 615 
A549 respectively, with 8.3% FBS and cells were shifted to 37ºC. At 2 hpi, media was 616 
supplemented with 20 mM NH4Cl to block secondary spread of the virus (45). Total viral 617 
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supernatant was collected at 3, 6, 12, and 18 hpi and stored for at -70ºC for later use. Cell 618 
monolayers were then trypsinized and either stained with trypan blue and manually counted with 619 
a bright-line hemocytometer (to quantify remaining live cells) or prepared directly for flow 620 
cytometry.  621 
 622 
Quantification of infected cell percentages 623 
To quantify infected cells, cells in suspension were transferred to 96-well plate round bottom plate, 624 
centrifuged for 5 minutes at 1000 RPM, and the supernatant was removed by one quick flick. 625 
Cells were washed once with 200 µL 1X PBS with 0.1% BSA, then 200 µL 1X FoxP3 transcription 626 
factor fixation/permeabilization (Thermo Fisher Scientific) was added to each well and incubated 627 
on ice for 30 minutes or 4ºC overnight while protected from light. Cells were then washed three 628 
times with perm wash, 1X PBS with 0.1% BSA and 0.1% saponin. 100 µL primary monoclonal 629 
antibodies anti-HA (H28-E23-AF488) and anti-NP (HB65-AF647) were incubated with each 630 
sample for 30 minutes on ice, washed three additional times to remove unbound antibody, and 631 
resuspended in 200 µL perm wash. Labeled cells were immediately analyzed with BD LSR II flow 632 
cytometer (BD Biosciences) and FlowJo version 10.4 software package (FlowJo, LLC). Positively 633 
infected cells are any cells that expresses one or both protein of interest (HA or NP); mock infected 634 
cells were used to gate for negatively infected cells. The negative gate for MDCK cells at MOI 635 
5.35, 5.41, and 5.45 was shifted to account for the shift in fluorescence seen in uninfected cells.  636 
 637 
Measurement of viral genome equivalents by RT-qPCR 638 
Viral RNA was isolated from viral supernatant with Zymo vRNA 96-well extraction kit (Zymo 639 
Research) according to manufacturer’s instructions, eluted with 30 µL RNase free water, and 640 
stored at -70ºC. For cDNA synthesis, 5 µL vRNA, 0.5 µL 10 mM dNTP mix (Sigma-Aldrich), and 641 
1.0 µL Uni12(46) (AGCAAAAGCAGG) were incubated at 65ºC for 5 minutes then transferred to 642 
ice for 2 minutes. 1 µL SUPERase In RNase inhibitor (20 U/µL; Thermo Fisher Scientific) was 643 
added to each mixture and incubated on ice again for 2 minutes. 6.5 µL dH2O, 4 µL 5X First-644 
Strand Buffer, 1 µL 100 mM DTT, and 1 µL SuperScript III RT (200 U/µL; Thermo Fisher Scientific) 645 
were added to each reaction and incubated at 55ºC for 60 minutes and heat inactivated at 70ºC 646 
for 15 minutes. 647 
 648 
Genome equivalents (GE) were estimated by RT-qPCR of MA gene segment. In duplicate for 649 
each sample, 10 µL Power SYBR Green PCR master mix (Thermo Fisher Scientific), 0.5 µL 10 650 
µM forward and reverse primers (MA-Forward: ACAGAGACTTGAAGATGTC and MA-Reverse: 651 
TCTTTAGCCATTCCATGAG), 8 µL dH2O, and 1 µL cDNA were added to 0.2 mL MicroAmp 652 
Optical 96-well reaction plate (Thermo Fisher Scientific). RT-qPCR was performed on the 653 
QuantStudio 3 (Thermo Fisher Scientific) platform and the cycling conditions were as follows: 654 
95ºC for 10 minutes, 40 cycles of 95ºC for 15 seconds and 60ºC for 60 seconds. The standard 655 
curve established with pDZ-PR8 MA plasmid (R2 of 0.9992) was used to estimate GE/µL and then 656 
each sample was corrected for dilution factor to give a final GE/mL.  657 
 658 
Superinfection assay  659 
For the 6hr superinfection group, confluent MDCK cells in six-well plates were infected with rH3N1 660 
virus at intended MOIs of 0.05, 0.25, 1, 2.5, and 10 TCID50/cell respectively at 4°C. 1 hour post-661 
adsorption, remaining inoculum was collected, monolayers were washed with PBS and incubated 662 
in MEM + 8.3% FBS. At 6 hpi, monolayers were superinfected with rH1N2 at MOI=0.5 TCID50/cell 663 
at 4°C. One hour post-adsorption, monolayers were washed with PBS and incubated in MEM + 664 
8.3% FBS. At 9 hpi of rH3N1 (3 hpi of rH1N2), the media was changed to MEM with 50 mM 665 
HEPES and 20 mM NH4Cl to block spread of both viruses. For the 0hr co-infection group, cells 666 
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were infected with a mixture of rH3N1 and rH1N2 at the same MOIs as in 6hr superinfection group. 667 
At 3 hpi, 20 mM NH4Cl was added to block viral spread. For both 0hr and 6hr groups, at 19 hpi 668 
of rH3N1 (13 hpi of rH1N2), cell monolayers were trypsinized into single-cell suspensions and 669 
stained with Alexa Fluor 647-conjugated mouse anti-N1 mAb NA2-1C1 and Alexa Fluor 488-670 
conjugated mouse anti-H1 mAb H28-E23 (gifts of Dr. Jon Yewdell). After staining, cells were 671 
washed with PBS, run on a BD LSR II, and analyzed using FlowJo version 10.1 (Tree Star, Inc.). 672 
To quantify actual MOIs, virus present in both pre- and post-adsorption inoculum was quantified 673 
by RT-qPCR as above using the following primers specific for the N1 segment: 674 
AAATCAGAAAATAACAACCATTGGA, ATTCCCTATTTGCAATATTAGGCT.  675 
 676 
Interferon quantification and interferon stimulated gene quantification 677 
Interferon ß1 (IFNB1) and interferon λ1 (IFNL1) and interferon stimulated genes (ISG15 and Mx1) 678 
induction was quantified during infection of MDCK and A549 cells with PR8 at intended MOIs of 679 
0.1-100. In brief, MDCK and A549 cells in 24-well plate were inoculated for one-round of 680 
replication, as described above. At 8 or 18 hpi, supernatant was removed, cells were washed 681 
thoroughly, dissociated from the plate, and cellular mRNA was extracted with RNeasy Mini kit 682 
(QIAGEN), according to manufacturer’s instructions. Reverse transcription was completed with 683 
SuperScript III first-strand synthesis system for RTq-PCR (Thermo Fisher Scientific). Briefly, 8 µL 684 
cellular mRNA was incubated with 2.5 ng/µL random hexamers, and 0.5 nM dNTP mix at 65ºC 685 
for 5 minutes then placed on ice for 1 minute. Then 1X RT buffer, 5 mM MgCl2, 0.01 M DTT, 2 686 
U/µL RNaseOUT, and 10 U/µL SuperScript III RT were added to each sample and incubated at 687 
25ºC for 10 minutes, 50ºC for 50 minutes, and 85ºC for 5 minutes; finally 1 µL RNase H was 688 
added and incubated at 37ºC for 20 minutes. With cellular cDNA for A549, TaqMan gene 689 
expression assays (FAM-MGB; Thermo Fisher Scientific) specific for IFNB1 and IFNL1 were used 690 
in multiplex with TaqMan GAPDH control reagents kit (JOE-TAMRA; Thermo Fisher Scientific). 691 
Briefly, in duplicate 2µL cellular cDNA was added to 2 µL TaqMan Fast Advanced Master Mix, 1 692 
µL either IFNB1 or IFNL1 TaqMan Gene expression assay, 100 nM GAPDH forward and reverse 693 
primers, 200 nM GAPDH TaqMan probe, and dH2O in 20 µL. RTq-PCR was performed on the 694 
QuantStudio 3 platform and the cycling conditions were as follows: 95ºC for 20 seconds, 40 cycles 695 
of 95ºC for 1 second and 60ºC for 20 seconds. For the remaining targets of both MDCK and A549, 696 
primers were used for SYBR green chemistry (see Table S8), with ß-actin as an endogenous 697 
control. Briefly, in duplicate 2 µL cellular cDNA was added to 10 µL PowerUp SYBR Green Master 698 
Mix (Thermo Fisher Scientific), 250 nM of each forward and reverse primers, and dH2O in 20 µL. 699 
RTq-PCR was performed on the QuantStudio 3 platform and the cycling conditions were as 700 
follows: 95ºC for 10 minutes, 40 cycles of 95ºC for 15 seconds and 60ºC for 1 minute, followed 701 
by melt curve analyses of 95ºC for 15 seconds, 60ºC for 1 minute and 95ºC for 1 second. Induction 702 
of IFN and ISG was quantified by the fold change of infected cells from mock infected cells. 703 
 704 
Statistical modeling of cell death 705 
To infer infected cell death rates from experimental data, and to determine whether these rates 706 
are time-dependent and/or virus input-dependent, we fit the following general model to the 707 
experimental data points from 3, 6, 12, and 18 hpi: 708 
 709 
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In this equation, Ncells denotes the initial number of cells on the plate, the parameter µ denotes the 712 
background death rate of (both infected and uninfected) cells, and  is the general form for 713 
the instantaneous death rate of of cells at time s since infection, infected with viral input i.  714 
 715 

 denotes the initial fraction of the cell population that has viral input i, which depends 716 
on the actual bulk MOI and the model specifying the distribution of viruses across cells. We 717 
included a background cell death rate µ because we noted a small (but non-negligible) amount of 718 
cell loss in mock infected (uninfected) cells. Because of uncertainty in the initial number of cells, 719 
we estimate  along with the other parameters in the model fitting to experimental data.  720 

This expression assumes that uninfected cells (i = 0) survive the time course of the experiment 721 
with probability . The probability of infected cells with viral input i surviving up to time t is 722 

given by the survival function, . The percent of surviving cells that are 723 

infected at time t is given by 724 

 .  (2) 725 

For each of the four cell death rate models listed in Tables S1 and S2, we estimated the 726 
parameter µ and the parameters of  by simultaneously fitting models to the time course data 727 
on the number of cells surviving and to the flow data on the percent of infected cells at t = 18 hpi. 728 
We performed these fits each three times, under three different viral distribution models: a 729 
Poisson distribution, a negative binomial distribution, and a zero-inflated Poisson distribution. For 730 
both the Poisson and negative binomial distributions, we parameterized models with the mean of 731 
the distribution equaling the mean actual bulk MOI. When fitting to the data under the assumption 732 
of a negative binomial distribution, we further simultaneously estimated r along with µ and the 733 
parameters of . At r = ∞, the negative binomial distribution is equivalent to the Poisson 734 
distribution. As r becomes smaller (closer to 0), the distribution of virions become increasingly 735 
overdispersed. For the zero-inflated Poisson distribution, the mean of the zero-inflated Poisson 736 
distribution is , where p is an estimated parameter between 0 and 1 that quantifies 737 
the probability of extra zero counts. When fitting the zero-inflated Poisson model, we thus 738 
estimated p along with m and the parameters of .  All viral infectivity distributions considered 739 
(Poisson, negative binomial, and zero-inflated Poisson) fed into the evaluation of  . 740 

 741 
The first model of cell death rate we considered was a time-independent, input-independent 742 
model, such that cell death rates were the same across all infected cells and cell death rates did 743 
not change over the course of a cell’s infection. The second model we considered was a time-744 
dependent, input-independent model. For this model, we let the infected cell death rate be given 745 
by the Weibull hazard function, a commonly used function to incorporate time-dependency into 746 
time of death estimations. The Weibull hazard function is a two-parameter model (b, k) with 747 
functional form given in Table S1. An estimate of the shape parameter k of less than 1 indicates 748 
that the death rate decreases over time, while an estimate of k greater than 1 yields a death rate 749 
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that increases over time.  When k = 1, this time-dependent, input-independent model becomes 750 
identical to the time-independent, input-independent.  751 
 752 
The third and fourth models we considered allowed for cell death rates to depend on viral input: 753 
the first of these two models assumed that cell death rates were time-independent; the second 754 
further allowed for time-dependency, again according to the Weibull hazard function (Table S1). 755 
The input-dependency was incorporated into the third and fourth models using the monomial 𝑖! 756 
where i is again viral input (i = 1, 2, 3, …) and  is real-valued. The time-independent, input-757 
dependent model of cell death rate has the form , where c is a positive constant. When , 758 
this model becomes identical to first time-independent, input-independent cell death rate model. 759 
The fourth model, the time-dependent, input-dependent model, has the form . 760 
When , the model becomes identical to the time-dependent, input-independent model, i.e. 761 
the second model considered. When  and k = 1, the model becomes identical to the time-762 
independent, input-independent model, i.e. the first model considered.  When and k = 1, this 763 
model is identical to the time-independent, input-dependent model, i.e the third model.  764 
 765 
Statistical modeling of virus production 766 
To infer rates of virus production from infected cells and to determine whether these rates depend 767 
on cellular input or time since cellular infection, we developed six virus production models (Table 768 
S3) and statistically fit these models to the data shown in Figure 4. When fitting each of the virus 769 
production models to these data, we incorporated parameter estimates of cell death rates and 770 
viral infection distributions that were most supported by the data, in a cell line-specific manner. 771 
Specifically, for both MDCK and A549 cells, we let viral input be distributed across cells according 772 
to a negative binomial distribution and let the cell death rate be given by a Weibull hazard function 773 
(parameters provided in Table S1,S2). 774 
 775 
We considered a set of six virus production rate models, 𝜐(𝑡, 𝑖), which are listed in Table S3. The 776 
general equation governing the total amount of virus produced in bulk cell culture at t hours post 777 
infection is given by 778 

 .  (3) 779 

Here, the parameter,  , is the initial number of cell which was based on quantification of the 780 
total number of cells used in the bulk cell culture experiments of virus output, which was 2 million 781 
cells. 782 
 783 
Statistical modeling of the interferon response 784 
To infer whether the rate of IFN induction from a cell was dependent on cellular MOI, we fit models 785 
of the interferon response (Table S5) to the IFN induction levels (relative to mock) that are shown 786 
in Figure 7. Because there was not a clear dependence of IFNB1 induction on bulk MOI and 787 
because there was no appreciable IFN induction in MDCK cells, we decided to fit models only to 788 
the IFNL1 induction data from A549 cells. While fitting these IFN response models, we assumed, 789 
based on our earlier analyses, that virions were distributed according to a negative binomial 790 
distribution and that infected cells died according to the time-dependent, input-independent model 791 
of cell death rate (parameters provided in Table S2). Because only two time point measurements 792 
were available, we fit the IFN response data using a piecewise approach, rather than considering 793 
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continuous time models of IFN induction. Specifically, we assumed that during each of the two 794 
epochs (0-8 hpi and 8-18 hpi), IFN induction occurred at a rate that was constant in time but that 795 
could depend on cellular MOI. The three different models we considered implemented different 796 
forms for MOI-dependency. Because each epoch could be governed by one of three models, a 797 
total of 9 models were fit to the data shown in Figure 7C.  798 
 799 
The general model equation for the level of IFN induction (relative to mock) at 8 hpi is: 800 

,   (4) 801 

where 𝜆(𝑖) is the induction rate model as a function cellular MOI,  is the time-dependent, 802 
input-independent model of cell death rate for infected A549 cells, and r is the dispersion 803 
parameter of the negative binomial distribution. The parameters associated with the time-804 
dependent cell death rate and virus distribution models were set to the estimates given in Table 805 
S2. 806 
 807 
The general model for IFN expression (relative to mock) between 8 and 18 hpi is given by:  808 

.  (5) 809 

The level of IFN expression (relative to mock) predicted by the model is given by the model-810 
predicted level of IFN expression by 8 hpi, plus the model-predicted level of IFN expression 811 
between 8 and 18 hpi.  812 
  813 
We considered all nine possible model combinations (3 models for 0-8 hpi epoch x 3 models for 814 
8-18 hpi epoch), fitting each simultaneously to INFL1 data at 8 and 18 hpi (Table S6). The best 815 
model combination was the model that assumed linear dependence of viral input on IFN induction 816 
during the 0-8 hpi epoch and cellular MOI-independence during the 8-18 hpi epoch. (Table S6; 817 
Fig 7C,D).  818 
 819 
Statistical modeling of superinfection exclusion 820 
We first developed and parameterized an appropriate ‘null’ model, where both viruses are 821 
introduced simultaneously, and superinfection exclusion would not be anticipated.  In this model, 822 
we assumed that cells differed in their susceptibility to viral infection. This assumption reflects our 823 
finding that viral particles are unlikely to be Poisson-distributed across cells (Table S1). In our null 824 
model, we did not adopt a negative binomial model to implement the possibility of viral particle 825 
overdispersion, as we had earlier, because if both reassortant viruses were assumed to be 826 
distributed according to a negative binomial distribution, viral particles (together) would not be 827 
distributed according to a negative binomial distribution. We instead considered a model that 828 
implemented different cell susceptibility classes, which we found to better accommodate viral 829 
overdispersion of distinct viral strains. To maintain simplicity, we considered only two types of 830 
cells: cells that had high susceptibility to infection and cells that had low susceptibility to infection. 831 
We defined fraction y of the cell population to be in low susceptibility state; the remaining fraction 832 
(1-y) we assumed was in a high susceptibility state. We let a fraction x of the viral population enter 833 
the low susceptibility state cells; the remaining fraction of the viral population (1-x) we assumed 834 
entered the high susceptibility state cells. Under this model, the MOI of specifically the low 835 
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susceptibility class of cells is given by (input MOI)*(x/y), and the MOI of specifically the high 836 
susceptibility class of cells is given by (input MOI)*(1-x)/(1-y). When x = y, the Poisson distribution 837 
assumption is recovered, and both classes of cells have the same input MOI. We fit this simple 838 
model to the coinfection data, estimating three parameters: the actual rH1N2 MOI, and the 839 
fractions x and y. The parameter values, estimated using an RSS approach, are actual rH1N2 840 
MOI = 1.86  (95% CI = [1.71, 2.03]), x = 2.14e-4 (95% CI = [0.334e-4, 13.8e-4]), and y = 0.0526 841 
(95% CI =  [0.0381, 0.0725]). This parameterized model fit the experimental data well (Fig 7A). 842 
Since the parameter x was estimated to be close to 0, this model effectively implemented the 843 
zero-inflated Poisson model shown in Table S1, which had slightly lower statistical support than 844 
the negative binomial distribution. 845 
 846 
To analyze the data from the superinfection experiment, we set as given the three parameter 847 
values and simple two-state susceptibility model structure derived from the fitting of the data from 848 
the simultaneous coinfection experiment described above. We then considered two distinct 849 
models to determine how cellular MOI may impact the rate of superinfection exclusion: an input-850 
independent model and an input-dependent model. The input-independent model assumed that 851 
all infected cells had the same lower chance of being superinfected than previously uninfected 852 
cells. The parameter s quantified the extent of susceptibility of the previously infected cells (1 853 
being full susceptibility). The input-dependent model instead assumed that cells that were infected 854 
with rH3N1 could experience different probabilities of superinfection exclusion. These different 855 
probabilities depended on a rH3N1 virus input, with, presumably, higher levels of rH3N1 virus 856 
input corresponding to higher probabilities of superinfection exclusion. For the input-dependent 857 
model, we specifically assumed a functional form given by , where i denotes rH3N1 virus input 858 
and 0 ≤ r ≤ 1. We estimated s for the input-independent model to be 0.0361 (95% CI = [0.0227, 859 
0.0576]) and r for the input-dependent model to be 0.293 (95% CI = [0.214, 0.402]). Based on 860 
AIC, the input-dependent model is strongly preferred over the input-independent model (ΔAIC = 861 
22.0) (Table S7). 862 
 863 
Fitting models to data and model selection criterion 864 
To fit models to data, we minimized the sum squared error between the models and data to obtain 865 
the residual sum of squares (RSS). Note that minimizing the sum squared error is equivalent to 866 
maximizing the log-likelihood assuming normally distributed measurement error. These 867 
minimizations were done on the linear scale for the percent cells surviving and flow data, on the 868 
natural log scale for the virus output data, and on the log base 2 scale for IFN response to reflect 869 
the likely scale at which measurement error occurs for these data.  870 

We calculated 95% confidence intervals by numerically estimating the covariance matrix using 871 
the “sandwich estimator.” This method approximates the observed Fisher information matrix 872 
by numerically estimating the inverse of the Hessian and allowing for the residuals to have 873 
different variances (47). We accounted for the chain rule in the log-transformation of 874 
parameters to obtain partial derivatives when estimating 95% percent confidence intervals. 875 
When parameter estimates are very large (e.g. the saturating input-dependent IFN induction 876 
models from 0-8 hpi; Table S6) or very close to zero (e.g. the input-dependent models of cell 877 
death under the negative binomial distribution; Tables S1,S2), the estimator of the covariance 878 
matrix is close to singular and thus sample variance estimates obtained from numerically 879 
inverting this matrix may be unreliable. In the more complex set of models, these large and 880 

r i
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close-to-zero estimates indicate further support for a simpler model that is nested within the 881 
more complex one.  882 

To perform model selection, we used the Akaike Information Criterion (AIC). AIC based on RSS 883 
values is given by the equation: 2k + n ln(RSS) + constant, where k is the number of estimated 884 
parameters and n is the number of data points (48). Since AIC is a relative measure of information 885 
loss and the model with the lowest AIC has the most support, we calculated ∆AIC values to 886 
perform model selection by taking the difference between a given model and the model with the 887 
lowest AIC value.  888 
 889 
In the tables throughout, we report the fitting results of each set of models, including parameter 890 
estimates with 95% confidence intervals, minimal sum squared error (RSS), and ΔAIC values.  891 
 892 
All statistical modeling code is available on GitHub:  https://github.com/Jeremy-D-893 
Harris/MOIpaper_models_data.  894 
 895 
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FIGURE LEGENDS 1033 

Figure 1. Precise quantification of actual bulk MOI. (A) Extracellular virus concentrations 1034 
present in the inoculum (0 hpi), remaining unbound following adsorption (1 hpi), and measured 1035 
extracellularly at 3 hpi for both MDCK and A549 cells, at the indicated bulk MOIs. Extracellular 1036 
virus concentrations are given in units of viral genome equivalents (GE) per cell. 0 hpi data points 1037 
show single viral measurements from the inoculum used for all replicates.  1 hpi and 3 hpi points 1038 
show individual measurements from replicate infection wells. (B) Virus output at 3 or 6 hpi from 1039 
MDCK cells infected in triplicate with PR8 at the indicated intended MOIs and treated with either 1040 
PBS or with 40 uM T-705 for 2 hrs prior to infection and throughout the duration of infection. (C) 1041 
Quantification by RT-qPCR of virus present in inoculum (0 hpi; “added MOI”), virus adsorbed into 1042 
cells after 1 hpi (calculated by subtracting extracellular virus present at 1 hpi from that present in 1043 
inoculum at 0 hpi; “adsorbed MOI”), and virus expected to actually contribute to infection 1044 
(calculated by subtracting the average of three replicates of extracellular virus measurements at 1045 
3 hpi from adsorbed MOI; “actual MOI”) for MDCK and A549 cells. 1046 
 1047 
Figure 2. MDCK cell death rates are time-dependent and input-independent. (A) The 1048 
numbers of MDCK cells surviving following infection, as determined by by trypan blue exclusion 1049 
at the indicated timepoints across our experimental range of bulk MOIs. Values represent the 1050 
number of trypan blue negative cells in each sample at 3, 6, 12, and 18 hours post infection (hpi). 1051 
Lines indicate the best model fit to these data, which is given by the time-dependent, input-1052 
independent cell death rate model, as parameterized in Table S1. (B) Estimated input-1053 
independent cell death rate over the course of cellular infection (solid) and constant background 1054 
cell death rate (dashed; obtained from mock infected cells). (C) Percent of surviving MDCK cells 1055 
that are infected at 18 hpi, as measured by FACS (FACS plots shown in Fig S1). The line indicates 1056 
the negative binomial distribution with time-dependent input-independent cell death rate model fit 1057 
evaluated at 18 hpi. Statistical parameterization of this model (overdispersion parameter r = 0.597; 1058 
Table S1) indicates a high level of overdispersion and significant deviation from a Poisson-1059 
distributed model. Data from the highest bulk MOI were excluded from model fits due to the lack 1060 
of confidence in the accuracy of FACS measurements at the highest MOI examined. 1061 
 1062 
Figure 3. A549 cell death rates are time-dependent and input-independent. (A) The 1063 
numbers of A549 cells surviving following infection, as determined by by trypan blue exclusion 1064 
at the indicated timepoints across our experimental range of bulk MOIs. Values represent the 1065 
number of trypan blue negative cells in each sample. Lines indicate the best model fit to these 1066 
data, given by the time-dependent, input-independent cell death rate model, as parameterized 1067 
in Table S2. (B) Estimated A549 cell death rate (solid) and the constant background cell death 1068 
model (dashed), fitting to both mock infected cells and MOI treatments over the course of 1069 
infection. (C) Percent of surviving A549 cells that are infected at 18 hpi (FACS data). The line 1070 
indicates the negative binomial distribution (r = 0.338; Table S2) with time-dependent input-1071 
independent cell death rate model fit evaluated at 18 hpi. Data from the highest bulk MOI were 1072 
excluded from model fits due to the lack of confidence in the accuracy of FACS measurements 1073 
at the highest MOI examined. 1074 
 1075 
Figure 4. Cellular co-infection increases the rate of virus production in MDCK cells but not 1076 
in A549 cells. (A) Viral output from single cycle infections of MDCK cells or A549 cells with PR8 1077 
over a range of bulk MOIs, as measured by RT-qPCR at the indicated hours post infection. Each 1078 
data point represents both the actual MOI and viral output from a single infection well. Trend lines 1079 
show linear regressions performed on the log-log scale. All regression slopes for MDCK cells are 1080 
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significantly positive (p < 0.0001; 6 hpi: slope = 2.2, R2 = 0.90; 12 hpi: slope = 1.15, R2 = 0.71; 18 1081 
hpi: slope = 0.88, R2 = 0.78). All regression slopes for A549 cells are significantly positive (p < 1082 
0.01; 6 hpi: slope = 0.71, R2 = 0.68; 12 hpi: slope = 0.61, R2 = 0.44; 18 hpi: slope = 0.48, R2 = 1083 
0.49). (B) The time-dependent, linear input-dependent model of virus production fit to virus output 1084 
data from MDCK cells at the indicated timepoints. (C) Visualization of the time-dependent, linear 1085 
input-dependent model of virus production from infected MDCK cells, parameterized with values 1086 
shown in Table S3. Rates of virus production are shown over time for cells with virus input of i = 1087 
1, 4, and 8. (D). Same as panel (B) but for A549 cells. (E) Visualization of the time-dependent, 1088 
input-independent model of virus production rate from infected A549 cells.  1089 
 1090 
Figure 5. Cellular co-infection increases the efficiency of virus production in MDCK cells 1091 
but not in A549 cells. Per capita virus output calculated as the ratio of output viral genomes over 1092 
input viral genomes for individual infection replicates at the indicated timepoints vs. bulk MOI for 1093 
MDCK or A549 cells. Trend lines represent linear regressions performed on the log-log scale for 1094 
each time point plotted on the semilog scale. P values for the correlations between bulk MOI and 1095 
per capita virus output at the indicated timepoints are shown. 1096 
 1097 
Figure 6. Cellular co-infection enhances ISG induction in A549 but not MDCK. (A) MDCK 1098 
and (B) A549 cells were infected with PR8 under single cycle conditions at the indicated bulk 1099 
MOIs. Levels of cellular ISG15 and Mx1 transcript were measured by RT-qPCR at 8 and 18 hpi, 1100 
compared to levels in mock cells. P values for the correlations between bulk MOI and fold 1101 
induction of the indicated ISGs at the indicated timepoints are shown. 1102 
 1103 
Figure 7. Cellular co-infection enhances type III (but not type I) IFN induction in A549 cells, 1104 
but has no significant effects on MDCK cell IFN induction. (A) Levels of cellular IFNB1 and 1105 
IFNL1 transcript were measured by RT-qPCR at the times indicated in MDCK cells infected with 1106 
PR8 under single cycle conditions at a range of bulk MOIs. Each data point represents values 1107 
from a single infection well and lines represent log-log linear regressions. No significant positive 1108 
correlation between IFNB1 induction and bulk MOI at 8 hpi and 18 hpi (p = 0.21 and p=0.24, 1109 
respectively), and no significant positive correlation between IFNL1 induction and bulk MOI at 8 1110 
hpi and 18 hpi (p = 0.98 and p = 0.15, respectively). (B) Same as in (A) but for A549 cells. No 1111 
significant correlation between IFNB1 induction and bulk MOI at 8 hpi (p = 0.81), but at 18hpi the 1112 
slope is significantly non-zero (p =0.0002). For IFNL1, there is a significant positive correlation 1113 
between normalized IFNL1 induction and bulk MOI at both timepoints (p < 0.0001). (C) Three IFN 1114 
induction model fits to IFNL1 induction data in A549 cells at 8 and 18 hpi. Note that for the 0-8 hr 1115 
plot, linear+linear and linear+input-independent are overlapping since they are the same for this 1116 
epoch, and for the 8-18 hr plot, input-independent+input-independent and linear+input-1117 
independent are nearly overlapping. (D) IFN induction rates for the linear + input-independent 1118 
model. From 0-8 hpi, IFN induction rates increase linearly with viral input: i = 1, 10, 20, and from 1119 
8-18 hpi, the IFN induction rate is independent of viral input.  1120 
 1121 
Figure 8. Cellular co-infection decreases the potential for superinfection. (A) MDCK cells 1122 
were simultaneously coinfected with rH1N2 (at a constant MOI) and rH3N1 (at varying input MOIs 1123 
shown; x-axis) under single cycle conditions; SIE would not be expected to occur during 1124 
simultaneous coinfection. Plot shows the percentages of all cells infected with rH1N2 (H1+; 1125 
includes co-infected cells; dark blue), all cells infected with rH3N1 (H3+; includes co-infected cells; 1126 
red), and cells coinfected with both (H3+H1+; light blue), as determined by flow cytometry at 19 1127 
hpi. Solid lines indicate the two-susceptibility state null model fit to these data. (B) MDCK cells 1128 
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were infected with rH3N1 at varying input MOIs (x-axis) under single cycle conditions. 6 hours 1129 
later, cells were superinfected with rH1N2 at an intended MOI of 0.5 TCID50/cell. Percentages of 1130 
cells that were H1+ (including cells co-infected with rH3N1), H3+ (including cells co-infected with 1131 
rH1N2), and H3+H1+ were determined by flow cytometry at 19 hpi. Lines indicate statistical fits 1132 
of the input-independent (solid) and input-dependent (dashed) models. (C) Visualization of the 1133 
input-dependent model of superinfection susceptibility where the susceptibility of infected cells to 1134 
superinfection is shown relative to the susceptibility of uninfected cells. 1135 
 1136 
SUPPLEMENTAL FIGURE LEGENDS 1137 
 1138 
Fig S1. FACS quantification of infected cell percentages based on HA and NP expression. 1139 
for MDCK (top row) and A549 (bottom row) cells. Gates for determining infection status were 1140 
drawn based on NP and HA expression of mock cells. Gates were modified by eye for the MDCK 1141 
cell line at the MOI of 5.35 for MDCK and 7.81 for A549 to better exclude negative cells. These 1142 
data were generated from the same experiments used to generate cell death and virus production 1143 
data. 1144 

Figure S2. MDCK cell survival patterns cannot be reproduced under a time-independent, 1145 
input-independent cell death rate model. (A) The number of cells remaining for 3, 6, 12, and 1146 
18 hpi, respectively, as a function of bulk MOI, along with time-independent, input-independent 1147 
cell death rate model fits (lines). (B) Number of surviving MDCK cells that are infected at 18 hpi, 1148 
as measured by FACS, along with the negative binomial distribution model fit (line). As in Figure 1149 
2C, statistical parameterization of this model (overdispersion parameter r = 0.756; Table S1) 1150 
indicates a high level of overdispersion and significant deviation from a Poisson-distributed model. 1151 
FACS data at high bulk MOI (open circles) were excluded from model fits due to the lack of 1152 
confidence in high MOI measurements. 1153 

Figure S3. MDCK cell survival patterns cannot be reproduced under a time-independent, 1154 
input-dependent cell death rate model. (A) The number of cells remaining for 3, 6, 12, and 18 1155 
hpi, respectively, as a function of bulk MOI, along with time-independent, input-dependent cell 1156 
death rate model fits (lines). (B) Number of surviving MDCK cells that are infected at 18 hpi, as 1157 
measured by FACS, along with the negative binomial distribution model fit (line). As in Figure 2C, 1158 
statistical parameterization of this model (overdispersion parameter r = 0.756; Table S1) indicates 1159 
a high level of overdispersion and significant deviation from a Poisson-distributed model. FACS 1160 
data at high bulk MOI (open circles) were excluded from model fits due to the lack of confidence 1161 
in high MOI measurements. 1162 

Figure S4. Comparison of Poisson, zero-inflated Poisson, and negative binomial 1163 
distribution fits to MDCK and A549 FACS data. (A) Number of surviving MDCK cells infected 1164 
at 18 hpi (dots) and viral dispersion model fits to these data (lines). Under the most supported cell 1165 
death rate model (the time-dependent, input-independent model), the best fit to the FACS data 1166 
occurred under the negative binomial model with an overdispersion parameter of r = 0.597 (solid 1167 
orange line; Table S1). FACS data points from the high MOI experiments (open circles) were 1168 
excluded from the model fit. Higher levels of overdispersion (r = 0.2; blue line) underestimated 1169 
percentages of infected cells at 18 hpi. Lower levels of overdispersion (r = 2; blue line) 1170 
overestimated percentages of infected cells at 18 hpi. To obtain the negative binomial models at 1171 
fixed dispersion parameter values, r = 0.2, 2,  we re-fit the parameters of the time-dependent, 1172 
input-independent cell death rate model. A Poisson distribution assumption (r = ∞; solid red line) 1173 
severely overestimated percentages of infected cells at 18 hpi. The zero-inflated Poisson is shown 1174 
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with the time-dependent, input-independent cell death rate model and with the probability of extra 1175 
zeros, p = 0.312 (dashed red line). Table S1 shows the four cell death rate models parameterized 1176 
under the assumption of Poisson, negative binomial, and zero-inflated Poisson distributions for 1177 
viral input across cells. DAIC values for these models are significantly larger than 0, indicating 1178 
that the negative binomial distribution model is strongly preferred over both the Poisson and zero-1179 
inflated Poisson distribution models. (B) Number of surviving A549 cells infected at 18 hpi (dots) 1180 
and viral dispersion model fits to these data (lines). Under the most supported cell death rate 1181 
model (the time-dependent, input-independent model), the best fit to the FACS data occurred 1182 
under the negative binomial model with an overdispersion parameter of r = 0.338 (solid orange 1183 
line; Table S2). FACS data points from the high MOI experiments (open circles) were excluded 1184 
from the model fit. Higher levels of overdispersion (r = 0.1; dashed blue line) underestimated 1185 
percentages of infected cells at 18 hpi. Lower levels of overdispersion (r = 1; dashed blue line) 1186 
overestimated percentages of infected cells at 18 hpi. A Poisson distribution assumption (r = ∞; 1187 
solid red line) severely overestimated percentages of infected cells at 18 hpi. The zero-inflated 1188 
Poisson is shown with the time-dependent, input-independent cell death rate model and with the 1189 
probability of extra zeros, p = 0.493 (dashed red line). Table S2 shows the four cell death rate 1190 
models parameterized under the assumption of Poisson, negative binomial, and zero-inflated 1191 
Poisson distributions for viral input across A549 cells. DAIC values for these models are 1192 
significantly larger than 0, indicating that the negative binomial distribution model is also strongly 1193 
preferred in A549 cells over the Poisson distribution models.  1194 
   1195 

Figure S5. Most supported time-independent models of virus production cannot capture 1196 
virus production kinetics.  (A) Time-independent, linear input-dependent model fits to virus 1197 
production in MDCK cells overestimate viral output at 6 hpi and underestimate the output at 18 1198 
hpi. (B) The virus production rate is constant over time and the rate increases linearly with 1199 
increasing cellular MOI:  i = 1, 4, 8. (C) Time-independent, input-independent model fits to virus 1200 
production in A549 cells overestimate viral output at 6 hpi and underestimate viral output at 18 1201 
hpi. (D) The virus production rate is constant over time and independent of the cellular MOI.  1202 

Figure S6. The input-independent model overestimates virus output at low bulk MOI and 1203 
underestimates virus output at high bulk MOI in MDCK cells. (A) The time delay in virus 1204 
production was estimated in this model to be 5.27 days. After that point, the virus production rate 1205 
was assumed to increase linearly in time, with an estimated slope of 2.52. (B) Model fits to virus 1206 
production in MDCK cells (Table S3). 1207 

Figure S7. The linear input-dependent model cannot capture virus production in A549 cells. 1208 
(A) The virus production rate is zero until ~ 5 hpi after which point the rate increases linearly in 1209 
time. The slope of this linear increase depends on the cellular MOI: i=1, 4, 8 (Table S4). (B) The 1210 
linear input-dependent model fits to data: at 6 and 12 hpi, the model overestimates viral output 1211 
for high bulk MOI values, and at 18 hpi, the model underestimates viral output for low bulk MOI 1212 
values.  1213 
 1214 
Figure S8. Cellular co-infection enhances ISG induction in A549 but not MDCK. MDCK and 1215 
A549 cells were infected with PR8 under single cycle conditions at the range of bulk MOIs: 0.08-1216 
7.86 and 0.06-26.1, respectively. Levels of cellular IFNB1 and IFNL1 transcript were measured 1217 
by RT-qPCR at 8 and 18 hpi, compared to levels in mock cells. Interferon stimulated genes (ISGs) 1218 
induction relative to mock vs. bulk MOI in MDCK cells at 8 and 18 hpi; ISG15, ZC3HAV1, and 1219 
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Mx1 did not show significant positive correlation between ISG induction and bulk MOI at 8 hpi (p 1220 
= 0.69, p = 0.11, p = 0.46, respectively) nor 18 hpi (p = 0.06, p = 0.17, p = 0.08, respectively). 1221 
ISGs induction relative to mock vs. bulk MOI in A549 cells at 8 and 18 hpi showed different 1222 
temporal patterns of induction. Significant positive correlation between ISG15 induction and bulk 1223 
MOI was not found at 8 hpi (p = 0.07) yet at 18 hpi (p = 0.0002). Significant positive correlation 1224 
between ZC3HAV1 induction and bulk MOI was found at 8 hpi (p = 0.01) yet not at 18 hpi (p = 1225 
0.31). For Mx1, there is a significant positive correlation to bulk MOI at both timepoints (p = 0.02 1226 
for both).  1227 
 1228 
SUPPLEMENTAL TABLE LEGENDS 1229 
 1230 
Table S1. Fits of cell death rate models to MDCK cell data. Rows correspond to distinct cell 1231 
death rate models. The mathematical formulation for each cell death rate model is provided in the 1232 
second column. The models are group by the virus distribution assumption, going from top to 1233 
bottom: Poisson, Negative binomial, zero-inflated Poisson. Point estimates and 95% confidence 1234 
intervals are provided in the third column for each model’s parameters. Confidence intervals for 1235 
parameter estimates close to zero were omitted (Methods). Units of the parameters are provided 1236 
in the fourth column. The fifth column lists the residual sum of squares (RSS) for each model, 1237 
parameterized with the point estimates of the third column. The model most supported by the data 1238 
is the time-dependent, input-independent model (∆AIC = 0). Models with higher ∆AIC have less 1239 
statistical support.  1240 
 1241 
Table S2. Fits of cell death rate models to A549 cell data. As in Table S1, rows correspond to 1242 
distinct cell death rate models assuming the viral infection distribution from top to bottom: Poisson, 1243 
negative binomial, zero-inflated Poisson. The model most supported by the data is the time-1244 
dependent, input-independent model (∆AIC = 0). 1245 
 1246 
Table S3. Fits of viral production rate models to MDCK cell data. 1247 
Rows correspond to distinct viral production rate models. Parameter estimates are given along 1248 
with 95 percent confidence intervals for viral production rate model parameters. The model 1249 
that is most supported by the data has ∆AIC = 0, and models with higher ∆AIC have less 1250 
statistical support. Confidence intervals for high parameter estimates were omitted (see 1251 
methods). 1252 
 1253 
Table S4. Fits of viral production rate models to A549 cell data. 1254 
Rows correspond to distinct viral production rate models. Parameter estimates are given along 1255 
with 95 percent confidence intervals for viral production rate model parameters. The model 1256 
that is most supported by the data has ∆AIC = 0, and models with higher ∆AIC have less 1257 
statistical support. 1258 
 1259 
Table S5. Descriptions of interferon induction models. We considered three IFN induction 1260 
models in which the induction rates are independent of time but differ based on the viral input. 1261 
We fit an input-independent, linear input-dependent, and saturating input-dependent induction 1262 
rate models to data at 8 and 18 hpi, giving a total of nine model combinations (see Table S6).  1263 
 1264 
Table S6. Fits of IFN induction models to IFNL1 data in A549 cells. Rows correspond to 1265 
different combinations of the IFN induction rate models listed in Table 5 from 0-8 hpi and from 1266 
8-18 hpi. The first column gives the model number from 0-8 hpi, and the third column gives 1267 
the model number from 8-18 hpi. Parameter estimates are given along with 95 percent 1268 
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confidence intervals for IFN induction rate model parameters. The model that is most 1269 
supported by the data has ∆AIC = 0, and models with higher ∆AIC have less statistical support. 1270 
Confidence intervals for high parameter estimates were omitted (see methods). 1271 
 1272 
Table S7. Fits of superinfection exclusion models to FACs data in MDCK cells. 1273 
Rows correspond to distinct viral production rate models. The first model assumed that all 1274 
rH3N1-infected cells had the same reduced probability of becoming infected with rH1N2 1275 
(input-independent). The second model assumed that the probability of being infected with 1276 
rH1N2 decreased with cellular rH3N1 MOI (input-dependent). Parameter estimates are given 1277 
along with 95 percent confidence intervals for viral production rate model parameters. The 1278 
model that is most supported by the data has ∆AIC = 0, and models with higher ∆AIC have 1279 
less statistical support. 1280 
 1281 
Table S8. RT-qPCR primers for the quantification of interferons, interferon stimulated 1282 
genes, and endogenous control for MDCK (canine) and A549 (human) cell lines.  SYBR 1283 
green primers were used for the quantification of canine targets of IFNB1, IFNL1, ISG15, and 1284 
Mx1, with ß-actin as the endogenous control. For A549, Taqman assays were used for the 1285 
quantification of IFNB1 and IFNL1 with GADPH as the endogenous control and SYBR green 1286 
chemistry was used for the quantification of ISG15 and Mx1, with ß-actin as the endogenous 1287 
control. 1288 
 1289 
SUPPLEMENTAL SOURCE DATA FILE LEGEND 1290 
 1291 
This file contains the source data used to generate every figure (main and supplemental) in this 1292 
manuscript. Each tab of the Excel file includes figure panels, which are often grouped according 1293 
to cell line, MDCK or A549 cells. For data that was used in multiple figures, we included these 1294 
only once and made a note within the sheet of any other figures that also show these data. 1295 
Oftentimes, the data are included in both a main figure (found in the text) and one or more 1296 
supplemental figures; in these cases, we labeled the tabs according to the main figure. 1297 
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