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Abstract 

 

 The convergence of internal path integration with sensory information from 

external landmarks generates a cognitive spatial map in the hippocampus. We have 

recorded the activity of cells in CA1 during a virtual navigation task to examine how 

mice represent, recognize and employ sparse olfactory landmarks to estimate their 

location. We observe that the presence of odor landmarks at multiple locations in a 

virtual environment greatly enriches the place cell representation and dramatically 

improves navigation. Presentation of the same odor at different locations generates 

distinct place cell representations, indicating that path integration can disambiguate two 

identical cues on the basis of location. The enhanced place cell representation at one 

cue location led to the formation of place cells at locations beyond that cue and, 

ultimately recognition of a second odor cue as a distinct landmark. This suggests an 

iterative mechanism for extending place cell representations into unknown territory. 

These results reveal how odor cues can serve as landmarks to guide navigation and 

suggest a model to explain how the convergence of landmarks and path integration 

participates in an iterative process that generates a cognitive spatial map. 
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Hippocampal representations of an animal’s environment reflect both external 

sensory landmarks and internal path integration of the animal's movement in space1. 

These two sources of a cognitive spatial map, path integration and landmarks, are 

mutually dependent2-7.  Path integration uses idiothetic signals generated by self-motion 

to define an organism's position relative to fixed points or landmarks8-10. Such 

landmarks are valuable only if they are recognized as fixed in space, and this 

determination may require path integration11.  Sensory landmarks and internal path 

integration signals are likely to converge in the hippocampus. We examined 

hippocampal activity in mice performing a navigational task that relies solely on path 

integration and sparse olfactory cues. These observations provide a new model that 

explains how the convergence of sensory and idiothetic signals drive the development 

of a hippocampal spatial map. Our results suggest that the extension of a spatial map 

into previously unexplored territory is an iterative process in which path integration from 

existing landmarks identifies new landmarks that then provide a basis for further path 

integration.  

 Olfactory cues are a primary source of sensory information in mice and can 

serve as landmarks when fixed in space.  The hippocampus receives olfactory 

information from the lateral entorhinal cortex (LEC)12-15. The LEC receives input directly 

from the olfactory bulb and piriform cortex16,17, two structures that encode odor identity.  

The influence of odors on hippocampal activity has been shown in both spatial and non-

spatial contexts18-21. Grid22, head direction23, boundary24, and speed cells25 in the 

medial entorhinal cortex (MEC)26 provide information to the hippocampus about location 

and self-motion in real and virtual environments27. The hippocampus thus has access to 

both the position and identity of an olfactory landmark.  

We created a virtual spatial navigation task that required mice to combine path 

integration signals with olfactory cues, which provided the only sensory landmarks. 

While mice performed this odor-guided virtual navigation task we monitored large-scale 

neural ensemble activity in the CA1 region of hippocampus using a head-mounted 

miniature fluorescence microscope28,29. Head-fixed mice ran on a featureless spherical 

treadmill in total darkness and received a water reward after they traversed a virtual 

linear distance of 4m from the starting point. The ball had a single rotational axis, 
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rendering the task equivalent to navigation on a linear track. Mice first performed this 

task without sensory cues for 1-2 weeks (1 session per day, > 60 trials per session).  

We then introduced 1s odor pulses delivered when the mice reached locations 1m and 

3m from the starting point (figure 1a). The same odor was used at both locations in a 

given trial, but trials with two different odors (limonene and pinene) were interleaved 

randomly.  This task required the mice to determine their location solely on the basis of 

path integration plus minimal olfactory cues. Furthermore, because the same odor was 

introduced at two locations, the mice had to use path integration to disambiguate the 

location of the two odor cues. This experimental paradigm permitted the study of the 

convergence of idiothetic and external olfactory information in the generation of 

cognitive spatial maps. 

After performing the task in the absence of odor cues for 1-2 weeks, the mice 

initiated anticipatory licking and decreased their running speed after traveling about 2m 

along the 4m track (figure 1b and supp. figure 1a). This premature licking 2m before the 

reward location suggests that path integration alone cannot accurately measure 

distances greater than 2m. The mice then performed the task in the presence of odor 

cues at 1m and 3m locations for 4 days, after which the animals suppressed licking and 

maintained high running speeds for ~3.5m of travel, licking only ~0.5m before the goal 

location (figure 1b and supp. figure 1a). This suggests that the mice recognized the 

odors as spatial landmarks and used these landmarks to improve navigation. 

We used a miniature microscope (nVista 2.0, Inscopix) and the genetically 

encoded fluorescent Ca2+ indicator GCamp6f to image the somatic Ca2+ activity of 

~2,400–3,000 CA1 pyramidal neurons per session in 5 mice. We computationally 

extracted individual neurons and their Ca2+ activity traces from the fluorescence videos 

and registered their activity patterns to the trajectories of the mice on the virtual track 

(see methods). Neurons with consistent position-selective activity were classified as 

place cells (see methods). 

After 1-2 weeks of training without odor cues, 6% (169/2893 total cells) of the 

imaged neurons exhibited the properties of place cells (figure 1c). The number of place 

cells was maximal at the starting location and decreased exponentially with distance 

along the track (figure 1e), 86% (146/169) of place cells had place fields at locations 
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less than 2m from the start. In addition, the variability in the activity of recorded cells 

across trials increased with distance from the start location (supp. figure 2a,b). These 

results suggest that path integration alone can only support the formation and activity of 

place cells over distances less than 2m. The sparsity of place cells beyond 2m is 

consistent with the behavioral observation that mice could not reliably determine their 

location beyond this distance. 

After mice performed the task for 4 days with odor cues at 1m and 3m we 

observed a 6-fold increase in the percentages of neurons that qualify as place cells. In 

trials with either limonene or pinene 35% of recorded cells were classified as place cells 

(979/2778 total cells) (figure 1d). This increase occurred at all locations but was 

particularly pronounced at 1m and 3m, the locations of odor exposure. Local peaks in 

place cell density appeared at the start of the virtual track and at the sites of each of the 

two odor cues (figure 1e). Between these local peaks, the number of place cells 

decreased exponentially as a function of distance. The variability in the activity of 

recorded cells across trials also increased as a function of distance from the start 

location and both odor cues (supp. figure 2a,b). The presence of three spaced peaks 

caused the place cell density to remain high along the entire track despite the 

exponential decline between the peaks. The elevated place cell density correlated with 

the animal’s ability to suppress licking and retain running speed up to the reward site 

when odor cues are present. These results demonstrate that brief olfactory cues create 

landmarks that can combine with path integration to generate a robust ensemble of 

place cells in support of accurate navigational behavior. 

Performing the same experiment with two different odors allowed us to examine 

the generation of spatial maps in two different sensory contexts. The two sensory 

contexts generated different place cell representations, demonstrating remapping. As 

expected, place cells between the start site and the first odor cue were the same in the 

two odor contexts (figure 1f). However, following the first exposure to odor, the limonene 

and pinene trials evoked different sets of place cells. Only 11% (78/708) of all place 

cells with fields beyond 1m, the location of the first odor cue, were shared at the same 

locations in the two contexts. In accord with these findings, population vectors (PV) 

representing the neural ensemble activity during the two trial types were highly 
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correlated for the first 1m of travel, but these correlations decreased to ~15% after the 

onset of the first odor and remained low at all positions beyond 1m (supp. figure 3). 

These data indicate that different odors generate distinct cognitive spatial maps under 

conditions with identical task contingencies.  

We next asked whether the continued presence of odor landmarks is needed to 

maintain the place cell map and the associated improvement in behavior. After 4 days 

of experience with odor cues, the mice performed additional sessions in which odors 

were presented on only half of the trials. The density of place cells in trials without odor 

cues exhibited a single peak at the start location in contrast to the three peaks observed 

when odor cues were present. Beyond the start location the density of place cells 

decayed exponentially with a length constant of 1.5m (figure 2d), only slightly greater 

than the 1m length constant seen prior to odor training. Moreover, the number of place 

cells beyond 2m was 2.4 times greater on trials with odor cues than on trials with 

without odor cues, 308 and 128 respectively (figure 2a, 2b). In accord with the neural 

activity, anticipatory licking and slowing were less accurate on trials without odor cues 

than on trials with cues (figure 2c, supp. figure 1b). These observations suggest that the 

generation of a robust place cell map and navigation behavior are enhanced by the 

continued presence of odor landmarks.  

We next explored the dependence of place cell activity on reward. After 5 days of 

training in the presence of odor cues, the mice performed an additional session in which 

the reward site was absent. Under these conditions the mice ran at similar speeds but 

did not lick or stop at the previously rewarded site, and the percentage of place cells 

decreased from 35% to 1% (28/3919 cells) (figure 3c). Thus, the activation of a robust 

place cell representation is contingent on both odor landmarks and reward. 

 We further analyzed the interplay of path integration and landmarks by examining 

the emergence of place cells during training and its relation to improved navigational 

behavior. On the first day of training in the presence of odor mice initiated licking and 

decreased their speed at ~2m as observed before odors were introduced. However, the 

mice transiently reduced their lick rate at the 3m odor cue, suggesting that they had 

learned that the odor cue is distant from the reward site (figure 3a). Over the next 3 

days of training, we observed a gradual reduction of licking at locations that preceded 
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reward and by the fourth day of training the mice avoided licking and maintain a high 

running speed up to 3.5m (figure 3a, supp. figure 1c). 

 The evolution of the place cell representation correlated well with the successive 

improvement in navigational behavior.  On the first day of training with odor cues we 

observed the emergence of a large number of odor cells, neurons that responded 

similarly at the two sites of odor presentation (figure 3c, supp. figure 4b). In addition, 

cells with place fields at the 1m odor cue increased in number, whereas cells with place 

fields at the 3m odor cue largely remained absent (figure 3b, supp. figure 4a). Over the 

subsequent days of training, the percentage of place cells steadily increased, whereas 

the number of odor cells steadily decreased (figure 3c, supp. figure 4c). Importantly, the 

emergence of a peak in the density of place cells at 1m was accompanied by an 

increase in the percentage of place cells between 1m and 3m.  Over the course of 

several days, as more place cells formed in the region between 1m and 3m, an 

additional peak in place cell density arose at 3m (figure 3b). The emergence of peaks in 

the place cell densities at 1m and 3m was thus gradual and sequential. This suggests 

that an increased number of place cells at one location can enhance the formation of 

place fields further along the animal’s trajectory. This results in the emergence of place 

cells beyond 3m, coinciding with the improvement in behavior.  

 These results suggest a sequence in which first, the odor cue nearest the start 

location is recognized as a landmark, resulting in a peak in place cell density at 1m.  

This recognition then leads to a gradual increase in place cell density at locations 

between 1m and 3m. The extension of the place cell map to 3m then allows the animals 

to recognize the 2nd odor cue as a different landmark, resulting in a second peak in 

place cell density at 3m.  Recognition of this second landmark supports the creation of 

additional place cells beyond 3m, and this leads to more precise navigation to the goal. 

This sequential iterative process may be a basic mechanism for extending place cell 

representations into unknown territory. 

We complemented the study of individual place cells with an analysis of 

population level activity. We used a population vector to represent the activity patterns 

of all imaged neurons and compared the correlations in the population vectors at the 

two locations where odor cues were presented. These population vectors were strongly 
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correlated on the initial day of odor training, but this correlation gradually declined to 

near zero over the course of training (figure 3d). This decline parallels the 

transformation of odor cells into place cells at the locations of the odor cues and 

reflects, at the population level, the recognition of distinct spatial landmarks. 

We performed a principal component decomposition to study the dynamic 

trajectories of the neural ensemble activity across all imaged cells. A projection of the 

trajectory of the population activity onto the first two principal component vectors shows 

an interesting relationship to the task. This virtual task has the topology of a circle 

because the mice 'return’ to the start position on the next trial after reaching the reward 

location. After 4 days of odor training, when the animals have developed an accurate 

sense of the location of the odor cues and reward, the PC-projected population activity 

has a circular shape and the locations of the odor cues are appropriately spaced along 

this trajectory. (figure 3e) Thus, the trajectory of activity in neural 'state' space bears a 

striking topological and metrical similarity to the virtual space of the task. 

We also examined the evolution of the state-space trajectory during odor training. 

On the first day of odor exposure, the state-space trajectory corresponding to locations 

near 2m is close to the point on the trajectory representing the reward location. When 

the 3m odor cue is delivered the trajectory loops back to the location of the 1m odor cue 

and then closely follows its previous path (figure 3f). On the second day of training, 

backward looping is reduced and by the 4th day the points of the state-space trajectory 

near 2m are well separated from the representation of the reward site (supp. figure 

5a,b). These results are consistent with a transformation of the internal representation 

of odor cues into two distinct odor landmarks that serve to guide navigational behavior.  

 Our experiments reveal that odor cues can serve as landmarks to guide 

navigation, and they suggest a model to explain how the convergence of landmarks and 

path integration generates a cognitive spatial map in the hippocampus. The model we 

constructed consists of a population of place cells driven by inputs from a set of path 

integrators, and feedback from the place cells back to the path integrators (figure 4a). In 

the absence of odor cues, each path integrator generates an independent estimate of 

the distance that the animal has travelled from the starting point, and each estimate 

drives a different spatially modulated input to the place cells. The path integrators are 
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noisy so their estimates of position and, consequently, the inputs they drive vary from 

trial to trial. The trial-to-trial variance grows with the distance travelled as path 

integration becomes less reliable (figure 4b).  

 In the model, place cells form by a process that simulates the effects of plateau 

potentials30,31. The model suggests that, in each cell, a plateau potential occurs at a 

random location, resulting in plasticity that sets the weights of the synapses from the 

integrators to the place cell to values proportional to the presynaptic input at the time of 

the plateau. Following this plasticity, the cell performs template matching, responding if 

there is a close enough match between the current input rates and the rates 

experienced at the time of the plateau. This process creates reliable place cells at short 

distances from the starting location because the inputs driven by path integration are 

similar from trial to trial at these locations and therefore well matched to the template. 

For large distances, on the other hand, inputs vary considerably from trial to trial and 

rarely match the template. As a result, reliable place cells cannot form. We chose a 

level of noise for the path integrators so that reliable place cells form at a distance less 

than 2m but not at greater distances (figure 4c).  In agreement with the model, the 

dominant contributor to the variability of place cell responses in the data (supp. figure 

2a) is failure of place cells to fire reliably across trials (supp. figure 2b). 

 Model place cells project back to the path integrators, and this pathway is also 

subject to plasticity7. Thus, at the same time that plasticity modifies synapses from path 

integrators to a place cell, it also modifies connections from this place cell back to the 

path integrators. This plasticity stores a trace of the distance estimate provided by each 

path integrator at the time of the plateau. The result is a pathway by which the activity of 

a place cell can reset the path integrator7 back to the value it took when the place field 

formed. In our model, this pathway is only engaged when a sensory cue, the odor, 

appears.  

In the model, when an odor appears, place cell activity drives the path integrators 

to their previously stored values (figure 4d). Although these values are no more 

accurate than the estimates of distance on any other trial, they are consistent from trial 

to trial due to the reset provided by the odor-activated place cells. Thus, place cells that 

form beyond the 2m point have inputs that are more reliable as a consequence of odor 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2019. ; https://doi.org/10.1101/752360doi: bioRxiv preprint 

https://doi.org/10.1101/752360
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fischler, et al.  

 10 

landmarks. This consistency allows reliable place cells to be created by the plateau 

potential mechanism. This results in a generative process that produces a complete 

place cell representation along the entire 4m track (figure 4e).   

The system we have described consists of two networks, the place cells and the 

path integrators, that store within their synapses the traces of their relationship at the 

time of place cell formation. Place cells are maximally driven by path integrators that 

match the input when their place fields formed. Reciprocally, place cell inputs to each 

path integrator store the value of that path integrator when the place field formed. This 

system is calibrated by an external event that identifies when these relationships are 

consistent. This event is a landmark.  

Our experiments are in accord with several features of the model. The same 

sensory information at different locations can generate distinct place cell 

representations. Thus, path integration can disambiguate two identical cues on the 

basis of location. Moreover, different odor cues at the same location generate different 

place cell representations that extend beyond the odor cue. These observations are 

consistent with the role of the hippocampus in the transformation of egocentric sensory 

information into allocentric cognitive spatial maps of the external world.  

 In our experiments the enhanced place cell representations at the location of a 

brief odor cue led to the formation of place cells at locations beyond that cue. This 

implies that the number of place cells active at one location influences the number of 

place cells active at subsequent locations. In the absence of new information from the 

senses, this influence diminishes as the path integrator becomes progressively less 

accurate. Place cell densities show a quantitatively similar exponential decrease as a 

function of distance either from the start location or from the location of olfactory 

landmarks. Thus, the presence of olfactory cues appears to reset the path integrator, as 

suggested by our model. 

 The ability of an odor cue to serve as a spatial landmark depends on the 

accuracy of the path integrator at positions leading up to the odor location. When the 

same odor cue is present at two distinct locations the cue nearest the starting position 

(itself a landmark) is first to generate a unique place cell representation and appears to 

reset the path integrator. Over the course of training, place cells are generated that 
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span the gap between the two spaced, but identical, odor cues. Thus, identical sensory 

features reliably present at multiple locations can be identified as unique landmarks by 

means of a generative process that relies on path integration. The addition of new 

landmarks could then further extend the cognitive spatial map.  This allows the 

convergence of path integration signals with landmarks in the hippocampus to construct 

a spatial map that supports navigation over distances far greater than path integration 

alone.   
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Figure 1 | Odor landmarks dramatically enhance place cell representations and 

improve navigation behavior. 

a, Schematic of the virtual track with odor landmarks. Either limonene (blue) or pinene 

(red) is presented for 1s at both 1m and 3m depending on trial type. b, Mean rate of 

licking at positions along the track for different trial types (n = 5). Last session with no 

odor landmarks (black) and on 4th day with odor landmarks, limonene trials (blue) and 

pinene trials (red). Shaded grey areas denote 1s odor pulses on odor trials. c, d, Activity 

of combined place cells for all mice (n = 5) along the virtual track sorted by the position 

of peak mean activity. c, Activity on last session with no odor landmarks (6%, 169/2893 

cells). d, Activity on 4th day with odor landmarks (35%, 979/2778). Yellow lines denote 

onset of 1s odor pulses. e, Distribution of place fields across the virtual track. Mean 

density of place cells, as a percentage of all recorded cells (n = 5). Black circles, last 

session with no odor landmarks. Black line, exponential fit to the data between the peak 

at the start and 4m. Red circles, trials on 4th day with odor landmarks. Red line, 

exponential fits to the data from peak at the start and 1m odor landmark, between the 

1m and 3m odor landmarks, and 3m odor landmark to 4m. f,  Activity of place cells on 

4th day of training with odor landmarks on either limonene or pinene trials. Top, cells 

sorted by place fields on limonene trials, activity on limonene trials (left) and pinene 

trials (right). Bottom, cells sorted by place fields on pinene trials, activity on pinene trials 

(left) and limonene trials (right).  

 

 

Figure 2 | Odor landmarks are required to enhance place cell representations. 

a, Activity of place cells on trials with no odor landmarks after odor training (16.9%, 

523/3087 cells). b, Activity of place cells on trials with pinene odor landmarks after 4 

days of training (25.2%, 779/3087). c, Mean rate of licking at positions along the track 

for different trial types (n = 5). Grey, last session with no odor landmarks before odor 

training. Red, after 4 days with odor landmarks. Black, 4 days of odor training followed 

by one day without odor. d, Distribution of place fields across the virtual track. Mean 

density of place cells, as a percentage of all recorded cells (n = 5). Colors as in c. 

Curves are exponential fits as in figure 1e. 
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Figure 3 | Evolution of place cell maps and improvement in navigation behavior.  

a, Mean rate of licking at positions along the track on each day (n = 5).  b, Distribution of 

place fields across the virtual track. Mean density of place cells, as a percentage of all 

recorded cells, at positions along the track on each day (n = 5). c, Mean percentage of 

place cells (red) and odor cells (blue) on each day (n = 5, error bars = SEM). d, Mean 

Pearson correlation per mouse (n =5, error bars = SEM) of the activity population vector 

of all recorded cells from 1m to 2m and 3m to 4m. e, f, Population vector trajectory 

along the virtual track on pinene trials in the 2-dimensional space defined by the first 2 

principal components for all recorded cells. e, 4 days of training. f, 1 day of training. 

 

 

 

Figure 4 | A model for the convergence of path integration and odor landmarks in 

place cell formation. 

a, Schematic of the 3 components of the model with reciprocal connections between 

place cells and path integrators. b, The trial-to-trial standard deviation of position 

estimates by a population of model path integrators in the absence of odor landmarks.  

The standard deviation and hence positional uncertainty grow monotonically with 

distance travelled. c, Model place cells formed in the absence of odor landmarks d, The 

trial-to-trial standard deviation of position estimates by the population of model path 

integrators in the presence of odor landmarks.  The standard deviation decreases at the 

locations of the odor cues due to resetting of the path integrators by the place cells.  

Red lines denote locations of odor input. e, Model place cells formed in the presence of 

odor landmarks. Red lines denote locations of odor input. 
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Methods 

 

Animals and surgery 

All experiments were approved by the Columbia University Institutional Animal Care and 

Use Committee. Adult male C57BL/6 mice (aged 8-12 weeks) underwent two surgical 

procedures under isoflurane (1-2%, vol/vol). We injected ~500nl of a 1:3 dilution in PBS 

of UPenn Vector Core packaged AAV2/1 serotype virus expressing GCaMP6f under the 

control of the CaMKII promoter (AAV1.CamKII.GCaMP6f.WPRE.SV40, titer 1-3 x 1013 

vg/ml) with a thin glass pipette into the left hemisphere of dorsal CA1 (-2.2mm from 

bregma, 1.6mm mediolateral, -1.2mm dorsoventral). 1-2 weeks after viral injection we 

implanted a 1.8mm diameter imaging cannula (metal cannula with a glass coverslip 

attached at the bottom, Inscopix part #: 1050-002189) over the dorsal surface of CA1 

centered on the site of viral injection after aspiration of the overlying cortical area as 

previously described32. We then secured the cannula and a custom metal head bar to 

the cranium of the mice using dental cement (Dentsply). 1-2 weeks after cannula 

implant we inserted a 1mm diameter gradient refractory index (GRIN) micro-endoscope 

(Inscopix part #: 1050-=002176) into the cannula and a plastic baseplate (Inscopix part 

#: 1050-002192) was cemented into place after confirming even expression of 

GCaMP6f in healthy tissue using a miniaturized fluorescent microscope (Inscopix 

nVista, v2.0). 

 

Virtual odor-guided navigation system 

Mice were head-fixed on a spherical treadmill (20cm diameter Styrofoam ball) rotating 

on a single axis. The axis of the treadmill was attached to an analog rotary encoder (US 

Digital part #: MA3-A10-125-B) connected to an Arduino Mega2560. Angular 

displacement was converted into a virtual linear distance based on the circumference of 

the treadmill. A water port consisting of a small gavage needle (Cadence Science part 

#: 7901) connected to a water reservoir was placed within reach of the mouse’s tongue. 

A capacitance touch sensor (Sparkfun #MPR121) was attached to the water port to 

measure licking and the sensor was connected to the Arduino Mega2560. Small 2-4ul 

drops of water were delivered by the brief opening a solenoid valve (Lee Valves #LHDA 
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12712154) connected to the water port. Custom Arduino software was used to deliver 

water drops at reward locations. Limonene and pinene odor cues were delivered via a 

custom olfactometer controlled by an Arduino Mega2560. 10% solutions of limonene 

(Sigma #183164) and pinene (Sigma #P45680) diluted in mineral oil (Fisher Scientific 

#0121-1) were added to syringe filters (Whatman #6888-2527) and an additional filter of 

pure mineral oil was used to provide blank odor stimuli between the 1s presentations of 

limonene and pinene cues. Custom Arduino software was used to control odor valves 

for switching between limonene or pinene and blank (mineral oil) filters. Two mass flow 

controllers (MFC) were used to maintain a constant airflow of compressed medical 

grade air for odor delivery. One MFC was set to deliver air to the odor and blank filters 

at 0.3 L/min. The other MFC was set at 0.7 L/min to deliver clean air for a carrier 

stream. The combined airflow experienced by the mouse was a constant 1 L/min in the 

absence or presence of limonene and pinene odor cues. The odor or blank air streams 

and the carrier stream were combined in an 8-port odor manifold (Island Motion 

Corporation 020206.0001) connected to one side of a custom odor port that was placed 

within 2mm of the nose. A vacuum was connected to the opposite side of the odor port. 

The vacuum line was controlled by an MFC set at 1 L/min to remove air and odor 

continuously from the odor port. Speakers delivering white noise at 70 dBs were placed 

in front of the mouse to cancel out ambient noise and the sound of the valves opening 

and closing. The entire experimental system was enclosed by black hardboard 

(Thorlabs TB4) on the sides, Blackout nylon fabric (Thorlabs BK5) on the top, and the 

lights were kept off in the room to maintain a dark environment. Mice were monitored 

using an IR camera (Basler A601f) and illuminated using an IR light.  

 

Behavior training 

After surgeries, mice were place on a 12-hour reverse light/dark cycle. All experiments 

were performed in the middle of the active (dark) period. Mice were habituated to 

handling for several days. Mice were then habituated to head-fixation on the spherical 

treadmill for several days before being put on water restriction. After 2-3 days on water 

restriction (~2 ml water per day), mice were then trained to walk increasing linear 

distances to receive water rewards. Water rewards consisted of 2-4ul water drops 
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triggered by 2 consecutive licks over 4s. The beginning of the water reward epoch was 

signaled by the emergence of a single 2-4ul drop on the lick port. At the end of the 4s 

water reward window the virtual distance was reset to 0 and the next trial began. Initial 

distance to reward was set at 0.5m. After mice were able to complete >60 trials in one 

20min session (1 session/day) the distance was gradually increased from 0.5 to 1m and 

then from 1m to 4m in 1m increments. Upon beginning of training on the 4m virtual 

track, the area in which water rewards were available was restricted to a spatial window 

from 4m to 5m. At the 4m distance mice were required to complete >80 trials in a single 

20 min session for 3 consecutive days, at which point we began collecting the data for 

these experiments. The 5 mice used in this study reached criteria after 5-10 days of 

training at 4m.  

 

Imaging and behavior data collection 

At the beginning of each experimental session, mice were head fixed on the spherical 

treadmill and the miniature microscope (Inscopix, v2.0) was attached to the plastic 

baseplate. The field of view containing G-Camp6f expressing neurons was examined to 

confirm that the site was aligned with previous recording sessions. Imaging data was 

collected at a frame rate of 20Hz. LED power was set between 30-40%. The data was 

initially collected at a resolution of 1440 x 1080 pixels and then subsequently down-

sampled by a factor of 4 for further analysis.  

 

Processing of imaging data 

Calcium imaging movies were preprocessed using the Mosaic software package 

(Inscopix). During preprocessing, movies were spatially cropped to fit the imaging site 

and motion corrected. Individual neurons were isolated using published CNMF-E Matlab 

code33. The output of the deconvolved signal S based on the OASIS algorithm34 for 

each identified cell was used for further analysis of neural activity.  

 

Behavioral data processing and alignment to neural activity 

We used custom Matlab software to convert rotary encoder signals to a virtual linear 

distance and speed was calculated over rolling 200ms time windows. Lick detection 
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from touch sensor signals was aligned to virtual distances. A TTL pulse was sent to the 

Arduino Mega2560 from the microscope on the acquisition of each imaging frame to 

align neural activity to virtual distance, speed, and licking. Signals for the opening and 

closing of odor and water reward valves were recorded by Arduino Mega2650 and 

aligned to behavior and activity data.  

 

Spatial binning and selection of trials for analysis 

Aligned behavioral and imaging data was averaged within spatial bins of 100mm. We 

excluded the first spatial bin from 0-100mm and any data after initiation of the initial 

water reward to limit our analysis to periods when the mice were actively running 

towards the next goal location. The first 5 trials for each trial type in a session were 

excluded as there was no explicit signal for the start of the experiment and several 4m 

reward crossings were required before mice showed awareness of the task. We 

analyzed trials 5-30 for each trial type so as to confine the study to epochs with constant 

running (speed > 5cm/s) along the virtual track and similar levels of motivation.  

Mean lick rate and speed over all trials in a session was normalized to the max lick rate 

and speed for each individual mouse and then averaged across all 5 mice.  Data on 

limonene and pinene trial types was averaged for each mouse on all plots except figure 

1b and S1a. 

 

Place cell analysis  

We classified neurons as place cells after meeting three criteria: 1) Activity was 

averaged over all trials and the bin with peak mean activity had > 3 times the mean 

activity over all bins. 2) Activity on all trials was z-scored and cell had z > 1 in the bin of 

peak mean activity on > 25% of all trials of that trial type 3) The virtual track was divided 

into 4 equal sectors (0-1m, 1-2m, 2-3m, and 3-4m) and criteria both 1 and 2 were met 

on one and only one sector of the track. Additionally, we classified neurons as odor cells 

if both criteria 1 and 2 were met on both sectors of the track in which odor cues were 

present (1-2m and 3-4m). Mean activity over all trials was normalized to the max mean 

activity for each neuron.  
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Population vector (PV) activity 

The variability in neural activity from trial to trial across the virtual track was calculated 

by using Pearson’s correlation on the spatially binned PV activity (mean for all trials, 

combination of all recorded neurons in all 5 mice) on odd and even numbered trials. 

Comparison of the activity at odor cue areas (1-2m and 3-4m) was calculated using 

Pearson’s correlation of the spatially binned PV activity (mean for all trials) of all 

recorded cells in individual mice and taking the average of all 5 mice.  Comparison of 

activity between limonene and pinene sensory contexts calculated using Pearson’s 

correlation of spatially binned PV (mean over all trials) of all recorded cells in individual 

mice and taking mean of all 5 mice.  

 

 

 

Principal component analysis 

To calculate the population trajectory, we applied the Matlab PCA algorithm to the 

spatially binned PV activity (mean for all trials) on pinene trials from day 1 to day 4 of 

training with the presence of odor landmarks. PV activity (combination of all recorded 

neurons in all 5 mice) generated from mean activity on all trials normalized to the max 

mean activity for each neuron. Trajectories were plotted in the dimensions of the first 2 

principal components.  

 

A model of place cells driven by and interacting with path integrators 

Model place cells receive inputs that are modulated by a set of locations estimated by 

path integration (figure 4a).  All of the model place cells receive the same set of 100 

spatially tuned inputs with firing rates fi(xi) for i = 1, 2, ... , 100.  Each function fi is 

generated initially by a Gaussian random process (Gaussian noise low-passed filtered 

with a length constant of 0.5 m) and then held fixed.  Each variable xi(t) is an 

independent noisy estimate of the location of the animal at time t, obtained by 

integrating a noisy estimate of the animal's velocity with added white-noise fluctuations.   

Specifically, on each trial, velocities for these integrators are chosen from a Gaussian 

distribution around the true velocity of the animal (taken to be 0. 4 m/s) with a standard 
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deviation of 0.1 m/s.  In addition, white noise (Gaussian with standard deviation of 0.004 

m/s for an integration step size of 0.025 s) was added to the integrated velocity.  This 

causes each xi to differ from the others on every trial and also to vary from trial to trial.  

As a result, the modulated inputs, fi(xi(t)), are also different and vary from trial to trial.  

These fluctuations increase as a function of t (as the animal moves along the virtual 

track) because the integrator-to-integrator and trial-to-trial variance of the location 

estimates increases as a function of the integration interval (figure 4b).   

 

The input to place cell a, for a = 1, 2, ..., 150, is Si wai fi(xi(t))/|f(x(t))|, where the 

expression in the denominator is the norm of the vector with components fi(xi(t)), and wai 

is the weight of the input from integrator i to place cell a.  A threshold is subtracted from 

this input, and the place cells firing rate, ra(t), is determined by rectifying the result.  

 

All place cells that are inactive on a given trial are subject to plasticity at their synapses 

from the integrator-modulated inputs.  For each inactive place cell, we choose a time ta* 

for this plasticity to take place, simulating the effects of a dendritic plateau potential30,31.  

We denote the values of the path integrators at this time and on this trial by xi*(ta*).  The 

result of this plateau is that the weights to model place cell a are set to wai = 

fi(xi*(ta*))/|f(x*(ta*))|, i.e. the input at time of the plateau.  Following this plasticity, the 

input to place cell a is equal to the cosine of the angle between the vector f(x*(ta*)) (the 

input vector at time t* on the trial when the plasticity occurred) and the vector f(x) at the 

current time on the current trial.  If the place cell happened to form near the start of the 

virtual track, it is likely that it will fire on subsequent trials because the vector f(x) only 

fluctuates by a small amount from trial to trial when the integrators only have to 

integrate over a short distance.  If, on the other hand, the place cell formed at a larger 

distance from the start, the larger fluctuations in f(x) from trial to trial cause a poor 

match to the weights and, as a result, the place cell is unlikely to fire.  This is the reason 

that reliable place cells only form across the first 2 m of the virtual track (figure 4c).    

 

Thus far, we have described the connections from the path integrators to the place 

cells, but there are connections from place cells to path integrators in the model as well 
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(figure 4a), and these are also plastic.  When plasticity acts on the inputs to place cell a, 

we imagine that it also acts on the inputs from that place cell back to the path 

integrators.  This is assumed to be similar to the plasticity discussed in reference7, but 

we do not model this circuit in full, focusing instead on the results of this plasticity.  The 

effect of this plasticity is that the value x*i(ta*) is stored in synapses from place cell a to a 

path integrator i.  Specifically, if an odor is present at time todor, which we assume gates 

the effect of place cells on the path integrators (figure 4a), path integrator i is reset to 

xi(todor) = Sa x*i(ta*)ra(todor)/Sa ra(todor).  The result of this resetting is that, after the odor 

appears, the trial-to-trial variability of the path integrator estimates is greatly reduced 

(figure 4d).  This consistency produces a better match between the weight vectors of 

place cells formed beyond the odor location and the input vectors generated by the path 

integrators.  The result is that reliable place cells can now form along the entire virtual 

track (figure 4e). 
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Figure 2 | Odor landmarks are required to enhance place cell representations.
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Figure 3 | Evolution of place cell maps and improvement in navigation behavior.  
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Figure 4 | A model for the convergence of path integration and odor landmarks in place cell 
formation
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