Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A novel weight lifting task for investigating effort and persistence in rats

View ORCID ProfileBlake Porter, View ORCID ProfileKristin L. Hillman
doi: https://doi.org/10.1101/752410
Blake Porter
Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Blake Porter
  • For correspondence: blakeporterneuro@gmail.com
Kristin L. Hillman
Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kristin L. Hillman
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Here we present a novel effort-based task for laboratory rats: the weight lifting task (WLT). Studies of effort expenditure in rodents have typically involved climbing barriers within T-mazes or operant lever pressing paradigms. These task designs have been successful for neuropharmacological and neurophysiological investigations, but both tasks involve simple action patterns prone to automatization. Furthermore, high climbing barriers present risk of injury to animals and/or tethered recording equipment. In the WLT, a rat is placed in a large rectangular arena and tasked with pulling a rope 30 cm to trigger food delivery at a nearby spout; weights can be added to the rope in 45 g increments to increase the intensity of effort. As compared to lever pressing and barrier jumping, 30 cm of rope pulling is a multi-step action sequence requiring sustained effort. The actions are carried out on the single plane of the arena floor, making it safer for the animal and more suitable for tethered equipment and video tracking. A microcontroller and associated sensors enable precise timestamping of specific behaviors to synchronize with electrophysiological recordings. The rope and reward spout are spatially segregated to allow for spatial discrimination of the effort zone and the reward zone. We validated the task across five cohorts of rats (total n=35) and report consistent behavioral metrics. The WLT is well-suited for neuropharmacological and/or in vivo neurophysiological investigations surrounding effortful behaviors, particularly when wanting to probe different aspects of effort expenditure (intensity vs. duration).

Footnotes

  • https://github.com/blakeporterneuro/weightLiftingTask

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 04, 2019.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A novel weight lifting task for investigating effort and persistence in rats
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
A novel weight lifting task for investigating effort and persistence in rats
Blake Porter, Kristin L. Hillman
bioRxiv 752410; doi: https://doi.org/10.1101/752410
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
A novel weight lifting task for investigating effort and persistence in rats
Blake Porter, Kristin L. Hillman
bioRxiv 752410; doi: https://doi.org/10.1101/752410

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Animal Behavior and Cognition
Subject Areas
All Articles
  • Animal Behavior and Cognition (1534)
  • Biochemistry (2493)
  • Bioengineering (1747)
  • Bioinformatics (9700)
  • Biophysics (3915)
  • Cancer Biology (2980)
  • Cell Biology (4219)
  • Clinical Trials (135)
  • Developmental Biology (2641)
  • Ecology (4111)
  • Epidemiology (2033)
  • Evolutionary Biology (6912)
  • Genetics (5224)
  • Genomics (6520)
  • Immunology (2194)
  • Microbiology (6977)
  • Molecular Biology (2766)
  • Neuroscience (17354)
  • Paleontology (126)
  • Pathology (431)
  • Pharmacology and Toxicology (709)
  • Physiology (1063)
  • Plant Biology (2500)
  • Scientific Communication and Education (646)
  • Synthetic Biology (832)
  • Systems Biology (2692)
  • Zoology (434)