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Abstract 
Computational prediction of binding between neoantigen peptides and major histocompatibility 
complex (MHC) proteins is an emerging biomarker for predicting patient response to cancer 
immunotherapy. Current neoantigen predictors focus on in silico estimation of MHC binding 
affinity and are limited by low positive predictive value for actual peptide presentation, 
inadequate support for rare MHC alleles and poor scalability to high-throughput data sets. To 
address these limitations, we developed MHCnuggets, a deep neural network method to predict 
peptide-MHC binding. MHCnuggets is the only method to handle binding prediction for common 
or rare alleles of MHC Class I or II, with a single neural network architecture.  Using a long short-
term memory network (LSTM), MHCnuggets accepts peptides of variable length and is capable 
of faster performance than other methods. When compared to methods that integrate binding 
affinity and HLAp data from mass spectrometry, MHCnuggets yields a fourfold increase in positive 
predictive value on independent MHC-bound peptide (HLAp) data. We applied MHCnuggets to 
26 cancer types in TCGA, processing 52.6 million allele-peptide comparisons in under 2.3 hours, 
yielding 103,587 candidate immunogenic missense mutations (IMMs).  IMM hotspots occurred 
in 36 genes, including 22 driver genes. Predicted IMM load was significantly associated with 
increased immune cell infiltration (p<2e-16) including CD8+ T cells.  Notably, only 0.15% of 
predicted immunogenic missense mutations were observed in >2 patients, with 65% of these 
derived from driver mutations.  Our results provide a new method for neoantigen prediction with 
high performance characteristics and demonstrate its utility in large data sets across human 
cancers. 
 
 
Synopsis 
We developed a new in silico predictor of Major Histocompatibility Complex (MHC) ligand 
binding and demonstrated its utility to assess potential neoantigens and immunogenic 
missense mutations (IMMs) in 6613 TCGA patients.  
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Introduction: 
The presentation of peptides bound to major histocompatibility complex (MHC) proteins on the 
surface of antigen-presenting cells and the subsequent recognition by T-cell receptors is 
fundamental to the mammalian adaptive immune system. Recent advances in cancer 
immunotherapy have brought mutation-associated neoantigens to the epicenter of tumor 
response and have highlighted the need for improved understanding of which peptides will 
bind to MHC proteins and generate an anti-tumor immune response (1-4). Neoantigens derived 
from somatic mutations have been shown to be targets of immunoediting and drive 
therapeutic responses in cancer patients treated with immunotherapy (5,6). Due to the fact 
that experimental characterization of neoantigens is both costly and time-consuming, many 
computational methods have been developed to predict peptide-MHC binding and the 
subsequent immune response (7,8). To date, supervised neural network machine learning 
approaches are the best-performing (9-11) and the most widely used in silico methods for this 
purpose. Despite these advances, computational approaches using modern neural network 
architectures have been unable to significantly improve predictive performance in the past 
several years, due in part to lack of sufficiently large sets of experimentally characterized 
peptide binding affinities for most MHC alleles.,  

While neoantigen prediction for common MHC Class I alleles is well-studied (12), predictive 
accuracy on rare and less well-characterized MHC alleles remains poor (13-15) and there is a 
general scarcity of Class II predictors (16). Current estimates suggest that Class II antigen 
lengths primarily range from 13-25 amino acids (17), and this diversity has been a major 
obstacle to developing in silico neoantigen predictors (16,18).  As most neural network 
architectures are designed for fixed-length inputs, methods such as NetMHC (19-22)and 
MHCflurry (23) require pre-processing of peptide sequences or extensive training of separate 
classifiers for each peptide length.  

Clinical application of MHC-peptide binding predictors, to identify biomarkers for cancer 
immunotherapy, requires predictors that are scalable to large patient cohorts with low false 
positive rates (24). A cancer may contain hundreds of candidate somatically altered peptides, 
but few will actually bind to MHC proteins and elicit an immune response (25). For many years, 
most neoantigen predictors were trained primarily on quantitative peptide-HLA binding affinity 
data from in vitro experiments (26). More recently, advances in immunopeptidomics 
technologies have enabled identification of thousands of naturally presented MHC bound 
peptides (HLAp) from cancer patient samples and cell lines (27) (28) (24). The potential to 
improve neoantigen predictors by integrating binding affinity and HLAp data (24) has motivated 
new hybrid approaches (19,23). Despite these advances, most methods predict large numbers 
of peptides as candidate neoantigens, of which only a few are actually immunogenic in patients 
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(16,24,29).  

In this work, we present a long short-term memory (LSTM) neural network method, 
MHCnuggets, as the first neoantigen predictor designed for MHC Class I and Class II alleles in a 
single framework.  The method leverages transfer learning and allele clustering to 
accommodate both common, well-characterized MHC alleles and less studied rare alleles. As 
computational neoantigen predictors generate a large ranked list of candidate peptides, we 
reasoned that maximizing the number of highly-ranked true positives would be preferred in 
many applications (23).  We demonstrate competitive predictive performance of MHCnuggets 
to widely-used methods on binding affinity datasets. In comparison to hybrid methods that 
have integrated binding affinity and HLAp data, we show decreased false positives and 
increased positive predictive value in a held-out cell line data set of ligands identified by mass 
spectrometry (11,30).  To demonstrate the clinical utility and scalability of MHCnuggets to large 
patient cohorts, we investigated candidate immunogenic mutations from 26 tumor types in The 
Cancer Genome Atlas (TCGA).  MHCnuggets yielded 103,587 candidate immunogenic missense 
mutations (out of 1,124,266) in less than 2.3 hours. These mutations were correlated with 
increased lymphocyte infiltration, however only 0.15% were observed in multiple patients. 

Methods: 

Implementation 
MHCnuggets uses a long short-term memory (LSTM) neural network architecture (31) (Figure 
1A). LSTM architectures excel at handling variable length sequence inputs and can learn long-
term dependencies between non-contiguous elements, enabling an input encoding that does 
not require peptide shortening or splitting (Figure 1B).   The networks were trained with a 
transfer-learning protocol (32), which allows networks performing predictions for less well-
characterized alleles to leverage information from extensively studied alleles (Figure 1C). 
Transfer learning was also used to train networks using both binding affinity and HLAp datasets.  
In addition, MHCnuggets’ architectures can be trained using either continuous binding affinity 
measurements from in vitro experiments (half maximal affinity or IC50) and/or 
immunopeptidomic (HLAp) binary labels. The former utilizes a mean-squared error (MSE) loss 
while the latter utilizes binary cross-entropy (BCE) loss for training.  
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For each MHC allele, we trained a neural network model consisting of an LSTM layer of 64 
hidden units, a fully connected layer of 64 hidden units and a final output layer of a single 
sigmoid unit. For the 16 alleles where allele-specific HLAp training data was available (33), we 
trained networks on both binding affinity and HLAp data (MHCnuggets).  Next, we trained 
networks only with binding affinity measurements (MHCnuggets noMS) for all MHC Class I 
alleles.  Due to the lack of allelic-specific HLAp training data for Class II, all MHC Class II 
networks were trained only on binding affinity measurements.  In total, we trained 148 Class I 
and 136 Class II allele-specific networks.  Common alleles with many characterized binding 
peptides comprise a small fraction of all known MHC alleles (34). To handle binding predictions 
for rare alleles, MHCnuggets selects a network by searching for the closest allele, based on 
previously published supertype clustering approaches (35,36).  Briefly, HLA-A and HLA-B alleles 
were clustered by MHC binding pocket amino acid residue composition, and HLA-C and all MHC 
II alleles were hierarchically clustered based upon experimental mass spectrometry and binding 
assay results. For alleles with no supertype classification, the closest allele was from the same 
HLA gene, and allele group if available, with preference for alleles with the largest number of 
characterized binding peptides. All networks were implemented with the Keras Python package 
(TensorFlow back-end) (37,38).  The open source software is available at 
https://github.com/KarchinLab/mhcnuggets-2.3, installable via pip, and has been integrated 
into the PepVacSeq (39) and Neoepiscope (40) pipelines. 

Benchmarks 

To accurately assess the performance of MHCnuggets on a variety of MHC-peptide binding 
prediction tasks, we utilized six distinct benchmark sets (Table S1).  The benchmarks were 
designed to evaluate binding prediction for MHC Class I alleles, MHC Class II alleles, well-
characterized alleles with a trained model (allele-specific prediction) and rare alleles with 
limited or no experimental peptide binding data (pan-allele prediction) (Figure 2).  To compare 
to the widely-used HLA ligand prediction tools from the NetMHC group (NetMHC3.0, NetMHC 
4.0, NetMHCpan2.0, NetMHCpan 4.0) (21,22), which incorporate IEDB data and can be trained 
only by their developers, as well as the open source MHCflurry tools, we decided to employ 
multiple benchmarking strategies. The four strategies include: 1) an independent benchmark 
test set of peptides not included as training data for any of the methods; 2) a previously 
published paired training/testing benchmark; 3) a five-fold cross-validation benchmark; 4) 
leave-one-molecule-out (LOMO) benchmark.   

We evaluated six MHC Class I predictors on independent binding affinity and HLAp datasets 
(11,12,30). First, we compared MHCnuggets to several Class I predictors that incorporate both 
binding affinity and HLAp data: MHCflurry 1.2.0, MHCflurry (train-MS), NetMHC 4.0, and 
NetMHCpan 4.0. Each method was benchmarked using an independent set of MHC-bound 
peptides identified by mass spectrometry across seven cell-lines for six MHC I alleles (Bassani-
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Sternberg 2017, Trolle 2016). For testing, HLAp hits were combined with random decoy 
peptides sampled from the human proteome (33) in a 1:999 hit-decoy ratio, totaling 26,317,000 
peptides. Next, four MHC Class I predictors trained only on binding affinity data (MHCnuggets 
(noMS) and MHCflurry (noMS), NetMHC 3.0 and NetMHCpan 2.0) were evaluated with the Kim 
et al dataset (9), in which each predictor was trained with the BD2009 data and tested on BLIND 
data. It was possible to compare NetMHC3.0 and NetMHCpan2.0 performance on Kim et al., 
because they have previously published predicted IC50s for all peptide-MHC pairs in BLIND.  
This allowed us to calculate their PPVn, area under the ROC curve (auROC), Kendall’s tau, and 
Pearson’s r correlations. 

Next, we compared MHCnuggets to the MHC Class II ligand prediction methods from the 
NetMHC group (41).  Such comparison was only possible through their self-reported summary 
performance statistics.  We used the Jensen et al. five-fold cross-validation benchmark to 
assess allele-specific MHC Class II prediction of MHCnuggets and NetMHCII 2.3, for 27 alleles.  
NetMHCII 2.3 reported the average auROC for five-fold cross-validation, and we report 
MHCnugget's  positive predictive value for each of the 27 alleles as well as the average auROC, 
Pearson’s r and Kendall-Tau correlations.   

The leave-one-molecule-out (LOMO) benchmarks are a type of cross-validation designed to 
estimate the performance of peptide binding prediction with respect to rare, poorly 
characterized MHC alleles, which lack binding affinity  training data.  Given training data for n 
MHC alleles, the data for a single allele is held out and networks are trained for the remaining 
n-1 alleles.  Then for each peptide, predictions are generated by the remaining networks. We 
designed a LOMO benchmark to evaluate MHC Class I rare allele prediction, by selecting 20 
alleles with 30 to 100 characterized peptides in IEDB. For Class II rare allele prediction, we used 
the Jensen et al. LOMO benchmark.  We were unable to assess rare allele prediction for 
NetMHC Class I methods, as no published results were available.  For the NetMHC Class II 
methods, we compared MHCnuggets to their self-reported auROCs.   

Runtime analysis 

To assess the speed and scalability of the tested methods, we selected one million peptides  
sampled from the Abelin et al. dataset (33) for Class I alleles, and one million peptides sampled 
from the IEDB (curated dataset 2018 (42)) for Class II alleles. Sampling was done with 
replacement. For each method listed in Figure 1A, networks for three Class I MHC alleles (HLA-
A*02:01, HLA-A*02:07, HLA-A*01:01) and three Class II MHC alleles (HLA-DRB1*01:01, HLA-
DRB1*11:01, HLA-DRB1*04:01) were used to predict binding over a range of input sample sizes 
(102,  103, 104, 105, 106 ).  All methods were run on a single GPU compute node (one NVIDIA 
TESLA K80 GPU plus six 2.50GHz Intel Xeon E5-2680v3 CPUs, 20GB memory).  
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TCGA analysis pipeline  

To assess candidate immunogenic somatic mutations in patients from the TCGA cohort, we 
developed and implemented a basic pipeline based on whole-exome and RNA sequencing data. 
Our analysis builds upon work from the TCGA PanCancer Analysis teams for drivers (43), 
mutation calling (44) and cancer immune landscapes (45).  We obtained somatic mutation calls 
for all cancer types from Multi-Center Mutation Calling in Multiple Cancers (MC3) (v0.2.8) (7775 
patients).  Tumor-specific RNA expression values from Broad TCGA Firehose were standardized 
across tumor types using the RSEM Z-score (46).  MHC allele calls were obtained from the TCGA 
cancer immune landscape publication, in which up to six MHC Class I alleles (HLA-A, HLA-B, and 
HLA-C) were identified for each patient using OptiType (47).  We included patients for which 
mutation calls, MHC allele calls and RNA expression values were available from TCGA 
(Supplementary Methods).  After these considerations, the analysis included 6613 patients 
from 26 TCGA tumor types.  Six cancer types were not included in our analysis, because 15 or 
fewer patients met this requirement: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
(DLBC), Esophageal carcinoma (ESCA) , Mesothelioma (MESO), Skin Cutaneous Melanoma 
(SKCM), Stomach adenocarcinoma (STAD), Ovarian serous cystadenocarcinoma (OV). 
 
The somatic missense mutations identified in each patient were filtered to include only those 
with strong evidence of mutant gene RNA expression in that patient (Z>=1.0).  For each 
mutation that passed this filter, we used the transcript assigned by MC3 to pull flanking amino 
acid residues from the SwissProt database (48), yielding a 21 amino acid residue sequence 
fragment centered at the mutated residue.  All peptides of length 8,9,10 and 11 that included 
the mutated residue were extracted from each sequence fragment.  Next binding affinity 
predictions were generated for each mutated peptide and its paired germline peptide for up to 
six MHC Class I alleles, depending on the patient's HLA genotypes.  In total, each somatic 
mutation was represented by 38 mutated peptides and 38 matched germline peptides for up to 
6 possible MHC pairings.   

We applied a permissive filter to select candidate immunogenic peptides, requiring that at least 
one MHC allele was predicted to have binding affinity of IC50<500nM with respect to the 
mutated peptide and that the reference peptide had IC50 at least two-fold larger.  The ratio of 
peptide binding affinity of a germline peptide to its matched mutated peptide, known as 
differential agretopic index (DAI) has been previously shown to be a strong signal of point 
mutation immunogenicity (40,49,50).  Somatic missense mutations that generated neoantigens 
meeting these criteria were considered candidate immunogenic missense mutations (IMMs). If 
multiple neoantigens and/or MHC alleles were predicted by MHCnuggets, the IMM was 
counted only once for the MHC allele with maximum DAI. Finally, for each patient we counted 
the number of candidate IMMs found in their exome and stratified by tumor type.  We then 
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identified candidate IMMs that were harbored by more than one patient.   

We sought to ascertain whether candidate IMMs occurred preferentially in particular gene or 
protein regions.  To assess the largest number of protein sequences, we used clustering in 
primary amino acid residue sequence to identify statistically significant IMM hotspots (HotMaps 
1D algorithm v1.2.2) (51) q<0.1, Benjamini-Hochberg method (52)). In this analysis, mutations 
were stratified by cancer type, and we considered enrichment within linear regions of length 50 
amino acid residues.  

We considered that mutation immunogenicity might be associated with potential driver status 
of a mutation.  Driver status was inferred by CHASMplus (53), a random forest classifier that 
predicts driver missense mutations. It utilizes a multi-faceted feature set, incorporating 
mutational hotspot detection, annotations about molecular function and adjusts for gene-level 
covariates. It has been previously shown to be effective at identifying both common and rare 
driver mutations.  For each mutation, its immunogenicity was represented as a binary response 
variable and driver status was used as a covariate. Mutations with CHASMplus q-value < 0.1 
were considered drivers (53).  We modeled the relationship with univariate logistic regression 
(R glm package with binomial link logit function).  

To assess whether the total number of candidate IMMs per patient was associated with 
changes in tumor immune infiltrates, we performed Poisson regression (R glm package with 
Poisson link log function).  All estimates of immune infiltrates were obtained from Thorsson et 
al. (45,54).   We fit two univariate models in which the response variable was the IMM count 
and the covariate was either total leukocyte fraction or fraction of CD8+ T-cells.  Our results 
supported an association between increased IMM load and significant increases in both total 
leukocyte fraction and CD8 T-cells. 

Results: 
High-throughput MHCnuggets breaks the MHC ligand prediction plateau 

The MHCnuggets LSTM neural network architecture accepts peptides of variable lengths as 
inputs so that ligand binding prediction can be performed for both MHC Class I and Class II 
alleles. To enable prediction for peptides that bind to rare MHC alleles with limited 
experimental data, in addition to several hundred allele-specific networks for common alleles, 
we designed a method to predict binding to a closely-related common allele. When available, 
we utilize a transfer learning protocol to integrate binding affinity and HLAp results in a single 
network model, to better represent the natural diversity of MHC-binding peptides. 

To assess the baseline performance assessment for MHCnuggets' allele-specific networks on 
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binding affinity data, we compared our approach to the most widely used MHC Class I ligand 
prediction methods, using two validation sets of binding affinity measurements (Kim et al. (9) 
Bonsack et al. (12)). We trained and tested MHCnuggets (noMS) and MHCflurry (noMS) using 
the Kim et al dataset, and evaluated the predictions provided by NetMHC 3.0 and NetMHCpan 
2.0. We observed that MHCnuggets' performance (PPVn = 0.829, auROC=0.924) was 
comparable to these methods (Figure 3a) (PPVn of all methods=0.825 +/- 0.005, auROC of all 
methods = 0.928 +/- 0.0031). MHCnuggets was also comparable (PPVn = 0.633, auROC=0.794) 
to these methods when tested on the Bonsack et al. dataset (PPVn of all methods = 0.625 +/- 
0.008, auROC of all methods = 0.77 +/- 0.02) (Figure 3A) (+/- refers to standard deviation) (Table 
S3a, S3b, Table S4a, S4b). 

Historically, neoantigen prediction methods have focused on Class I and trained on binding 
affinity data from IEDB (42).  More recent work has incorporated both binding affinity and HLAp 
data into network training (19,23).  We compared MHCnuggets to several Class I predictors that 
also used both binding affinity and HLAp data: MHCflurry 1.2.0, MHCflurry (train-MS), NetMHC 
4.0, and NetMHCpan 4.0.  We selected the Bassani-Sternberg/Trolle (BST) HLAp dataset 
(11,30,33) as an independent benchmark, as it was not previously included as training data by 
any of these methods. For all alleles tested, MHCnuggets achieved an overall PPVn of 0.46 and 
auROC of 0.85 (Figure 3B). On average, MHCnuggets' PPVn was more than three times higher 
than MHCflurry 1.2.0, MHCflurry (train-MS), NetMHC 4.0, and NetMHCpan 4.0. For all alleles, 
MHCnuggets predicted substantially fewer binders than other methods, resulting in fewer false 
positive predictions.  We further analyzed PPVn performance by stratifying according to peptide 
length. McNuggets’ increased PPVn was most prominent for peptides of length 9, 10, and 11 
(Figure 3C). The length distribution of predicted binders was also commensurate with the 
observed distribution of naturally occurring binders in the HLAp benchmark tests (Trolle 2016  
(Table S5a, S5b, S5c, S5d). 

For some clinical applications, it may be desirable to minimize the number of false positives 
among a small number of top-scored peptides.  We also compared PPV of the methods listed 
above on their top 50 and 500 ranked peptides from the BST dataset (six MHC Class I alleles).  
MHCnuggets exhibited the highest PPV in the top 50 for all alleles except HLA-B*51:01 and the 
highest PPV in the top 500 for all alleles (Figure 3D, Table S5e). 

Prediction of peptide-MHC binding for Class II and rare alleles 

We assessed baseline performance of MHCnuggets Class II allele-specific networks on binding 
affinity data. To enable comparison with the Class II methods from the NetMHC group, we used 
a five-fold cross validation benchmark derived from IEDB that was included in the publication 
describing NetMHCII-2.3 and NetMHCIIpan-3.2 (41). First, we computed PPVn for each of the 27 
allele-specific networks separately (Figure 4A) (mean PPVn=0.739).  Next, we computed the 
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overall auROC, Pearson r and Kendall Tau correlations for all 27 Class II alleles. MHCnuggets 
overall auROC (0.849) was comparable to that of the NetMHCII-2.3 (0.861) and NetMHCIIpan-
3.2 (0.861).  Comparison to NetMHC Class II methods was limited to overall auROC as published 
in (41), because their results are not publicly available (Figure 4B) (Table S6a, Table S6b). 

We estimated performance for those Class I and Class II MHC alleles for which we were unable 
to train allele-specific networks, using leave-one-molecule-out (LOMO) cross-validation (41).  In 
this LOMO protocol, MHC-peptide binding is assessed for a well-characterized allele that has 
been held out from training, to approximate prediction performance for a rare allele (Figure 
5A). For the 20 Class I alleles, the mean PPVn was 0.65 and the mean auROC was 0.671.  For the 
27 Class II alleles, the mean PPVn was 0.65 and the mean auROC was 0.792. In comparison, the 
Class II mean auROC of NetMHCIIpan-3.2 was 0.781 (Figure 5B, Figure 5C). Further performance 
results of NetMHCpan rare allele predictors for both Class I and Class II were not publicly 
available for LOMO tests (Table S7, Table S8a, Table S8b). 

Fast and scalable computation 

When run on a GPU architecture, MHCnuggets was substantially faster and scaled more 
efficiently than MHC ligand predictors from the NetMHC family and MHCflurry. Given an input 
of one million peptides randomly selected from Abelin et al., MHCnuggets runtime was 4.5, 3.2, 
and 18 times faster than MHCflurry 1.2.0, NetMHC 4.0, NetMHCpan 4.0, respectively  (Figure 
6A). The improvement was even more pronounced for Class II peptides, for which an input of 
one million peptides to MHCnuggets ran 65.6 times and 126 times faster than NetMHCII2.3 and 
NetMHCIIpan 3.2, respectively (Figure 6B). As the total number of input peptides was increased 
from 0 to one million, the runtime per peptide plateaued for other methods but decreased 
exponentially for MHCnuggets. 

Candidate MHC Class I immunogenic missense mutations in TCGA patients 

To illustrate how MHCnuggets' improvements in scalability and positive predictive value could 
provide utility in the analysis of very large patient cohorts, we developed a basic pipeline to 
predict Class I MHC-ligand binding in patients sequenced by the TCGA consortium (Methods).  
As incorporated into the pipeline, patient exomes were split into 21 amino acid residue 
sequence fragments, centered on each somatic missense mutation.  For each 8-, 9-, 10- and 11-
length peptide window in the sequence fragment, MHCnuggets predicted the MHC binding of 
the peptide with the somatic mutation and the binding of the peptide translated from the 
reference transcript (Ensembl reference transcript from Multi-Center Mutation Calling in 
Multiple Cancers (MC3) (v0.2.8) (44) translated peptide from SwissProt, using UniProt mapping 
service (48) ).  Next, we reduced the very large number of candidate peptides with filters that 
considered expression and differential binding affinity of somatically mutated peptides 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/752469doi: bioRxiv preprint 

https://doi.org/10.1101/752469


 
 

11 

compared with reference peptides. We identified candidate immunogenic missense mutations 
(IMMs) as those which generated peptides that passed these filters, for at least one patient-
specific MHC allele (Table S9a).  Finally, we characterized their predicted driver status and 
positional hotspot propensity. 

Total processing time for 52,569,276 allele-peptide comparisons supported by RNAseq 
expression was under 2.3 hours. First, we sought to ascertain the extent of variability in 
predicted IMM count among individuals with different cancer types.  Next, we identified IMMs 
that were shared across patients and protein regions that were highly enriched for IMMs across 
patients, because these might be candidates for neoantigen-based therapeutic applications.  
Then we considered whether IMMs were more or less likely to be driver mutations. Finally, we 
assessed the associations between patient IMM load and computationally estimated immune 
cell infiltrates.   

After applying a strict gene expression filter, we identified 103,587 candidate IMMs in 26 TCGA 
cancer types, with a mean of 14.9 IMMs per patient.  We found that the majority of patients 
harbored fewer than 10 IMMs, and 900 patients had none.  Seventy-six percent of patients had 
between 1 and 10 IMMs, compared to 1.8% of patients with more than 100, and nine patients 
with more than 1000 (Figure 7A).  Cancer types with the highest number of IMMs were uterine 
corpus endometrial carcinoma (UCEC), colon adenocarcinoma (COAD), and lung 
adenocarcinoma (LUAD), previously known for high mutation burden and immunogenicity (45).  
UCEC and COAD are also known to have a high frequency of microsatellite-instable (MSI) 
tumors.  The lowest number were found in Uveal Melanoma (UVM), Paraganglioma & 
Pheochromocytoma (PCPG), and Testicular Germ Cell Cancer (TGCT)  (Figure 7B, Table S9b).  

Across all cancer types, we identified 1,379 IMMs harbored by two or more patients, of which 
157 were identified in three or more patients.  Of these 157 only 11.5% occurred exclusively in 
a single cancer type (Figure 7C). The IMMs identified in the largest number of patients were 
IDH1 R132H (62), PIK3CA E545K (25), FGFR3 S249C (23), PIK3CA E542K (19), AKT1 E17K (14), 
KRAS G12D (14) and KRAS G12V (14), which are well known recurrent oncogenic driver 
mutations (55,56).   

Genes with the largest number of shared IMMs include P53 (63), CTNNB1 (18), PIK3CA (15), 
KRAS (8), HRAS (8), PTEN (6) and FBXW7 (7), EP300 (5) and POLE (5).  Among the few IMMs 
observed in a single cancer type in three or more patients were SF3B1 K700E (BRCA), EGFR 
L858R (LUAD), CIC R215W (LGG), GNA11 Q209L and SF3B1 R625H (UVM) and NFE2L2 R34G 
(BLCA). The highly mutagenic cancer type UCEC harbored 11 of these shared IMMs (DYM R70Q, 
NBN S72Y, PTEN R142W, RASA1 R427Q, ROCK1 R1330Q, SETD5 R882Q, TOPORS R347Q, TCEA1 
R153Q, COPS2 S2967L, ROCK1 D1014Y, SASS6 R437Q, ZNF283 R283I) (Table S9c). 
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Furthermore, 65.3% of the 156 IMMs shared by three or more patients were classified as driver 
missense mutations by CHASMplus (q<0.01).  It is worth noting that while many shared IMMs 
were predicted to be driver missense mutations, the percentage IMMs predicted to be drivers 
was less than 1% of total IMMs in our study.   

While we observed a limited number of shared IMMs, we reasoned that particular protein 
regions enriched for IMMs could present a therapeutic opportunity in certain cancer types. 
Using HotMaps 1D, we identified clusters of residues within protein regions having statistically 
significant enrichment of IMMs (q<0.1). These included CIC in low grade glioma (LGG) (7 IMMs 
between residues 202 and 260), NFE2L2 (8 mutations, residues 24-81), FGFR3 (22 IMMs, 
residues 216-249) (Figure 7D), PIK3CA (9 IMMs, residues 542-545) and BIRC6 (5 IMMs, residues 
440-480) in bladder cancer (BLCA), PTEN (28 IMMs, residues 95-173) and CTNNB1 (22 IMMs, 
residues 32-41) in uterine corpus endometrial carcinoma (UCEC) (Table S9d).   

We explored the relationship between mutation driver status predicted by CHASMplus, and 
IMM status using logistic regression.  The log-odds of being an IMM was significantly decreased 
for drivers (𝛽=-0.14, Wald test p=0.002), which is consistent with previous work suggesting that 
negative evolutionary selection eliminates MHC Class I immunogenic oncogenic mutations early 
in tumor development (57).  

Finally, we considered whether a patient's IMM load was associated with changes in immune 
cell infiltrates as estimated from RNA sequencing of bulk cancer tissue.  IMM load was 
significantly associated with increased total leukocyte fraction (𝛽=0.77, Wald test p<2e-16 ) and 
with increased CD8+ T-cell fraction (𝛽=3.4, Wald test p<2e-16). 

These findings suggest a central role of IMMs in driving tumor immunoediting and may be 
informative for the interpretation of responses in the setting of immunotherapy. 

Discussion 
MHCnuggets provides a flexible open-source platform for MHC-peptide binding prediction that 
can handle common MHC Class I and Class II alleles, as well as rare alleles of both classes. The 
LSTM network architecture can handle peptide sequences of arbitrary length, without 
shortening or splitting. In addition, our neural network transfer learning protocols allow for 
parameter sharing among allele-specific, binding affinity -and HLAp-trained networks. When 
trained on binding affinity data, MHCnuggets achieves comparable performance to current 
methods. When trained on both binding affinity and HLAp data, we demonstrate significantly 
improved PPVn on an independent HLAp test set, with respect to other methods that use both 
binding affinity and HLAp data.  We attribute this improvement to both our choice of optimizing  
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PPVn in our network training protocol and our implementation of transfer learning to integrate 
information from binding affinity and HLAp measurements. 
 
We demonstrate improved scalability by comparing the runtime of MHCnuggets on 1 million 
peptides to comparable methods, and further by processing over 52 million expressed peptide-
allele pairs across TCGA samples in under two hours.  We identified 103,587 immunogenic 
missense mutations (IMMs) harbored by patients using 26 cancer types sequenced by the 
TCGA, based on transcriptional abundance and differential binding affinity compared to 
reference peptides.  These results contrast with a previous report of neoantigens in TCGA 
patients in several respects.  Rech et al. (50) applied a minimum expression threshold of 1 RNA 
sequencing read count, an IEDB-recommended combination of neoantigen predictors derived 
primarily from different versions of NetMHC, and IC50 threshold of 50nM to identify strong 
MHC binders. Their approach yielded 495,793 predicted Class I classically defined neoantigen 
peptides (each harboring a single immunogenic mutation) from 6,324 patients in 26 cancer 
types.  As in our study, high variability in neoantigen burden across cancer types was observed.  
The striking difference between IMM and neoantigen burden in the two studies is likely due to 
differences in RNA expression threshold and the low false positive rate of MHCnuggets 
compared to IEDB-recommended tools.   
 

Based on our conservative thresholds, IMMs were almost exclusively private to individual TCGA 
patients, with only 1,379 IMMs observed in more than one patient. Although more than 65% of 
IMMs shared by more than two patients were predicted to be driver mutations, the overall log 
odds of immunogenicity significantly decreased for predicted driver mutations, indicating 
immunogenicity might shape the driver mutation landscape.  Patient IMM counts were also 
significantly associated with increase in total leukocyte fraction and fraction of CD8+ T-cells,  
suggesting that they may be relevant to immune system response to cancer. 

 
This work has several limitations.  First, our analyses are limited to missense mutations, and 
while these are very numerous, there is substantial evidence that somatic gene fusions, 
frameshift indels, splice variants etc. in tumors may also generate neoantigens.  Next, recent 
work suggests that peptidal context, such as flanking sequence, its source protein and the 
expression level of the source protein, is informative for MHC ligand prediction (26,33). This 
type of information is currently only available for a limited number of HLAp data sets, which 
were unavailable to us for training purposes.  As more well-characterized HLAp datasets 
become available, we will extend MHCnuggets to include these features.  We did not address T-
cell receptor (TCR) binding to bound peptide-MHC complexes or T-cell activation upon complex 
binding.  While we are actively pursuing this more complex modeling problem, we believe that 
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improved prediction of peptide binding to MHC is also therapeutically relevant (26). Finally, we 
are unable to directly compare performance to the MHC Class II prediction methods from the 
NetMHC group, except for self-reported auROC. While we are not able to do a rigorous 
comparison of MHCnuggets Class II prediction, our benchmark comparisons suggested that 
MHCnuggets was competitive with NetMHCII2.3 and that MHCnuggets Class II rare allele 
performance was competitive with NetMHCIIpan3.2. Generally rare allele performance 
estimated for each allele, regardless of MHC Class or performance metric was variable among 
individual alleles for both MHCnuggets and NetMHCIIpan3.2, suggesting that further work in 
this area is warranted.  

 

In summary, we present MHCnuggets, an open source software package for MHC ligand 
prediction that improves on performance of previous methods with respect to positive 
predictive value by leveraging transfer learning to integrate binding affinity and HLAp data.  In 
contrast to previous methods, it handles both MHC Class I and Class II ligand prediction and 
both common and rare HLA alleles, within a single framework.  The utility of MHCnuggets is 
demonstrated with a basic pipeline for large-scale cancer patient sequencing data from TCGA, 
which analyzed mutation immunogenicity, shared IMMs and the relationship between 
mutation immunogenicity, driver potential and immune infiltrates. 
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Figures: 

 

Figure 1. A) MHCnuggets architecture. B) Input encoding scheme for peptides with variable 
lengths. MHCnuggets accepts peptides with length up to 64 amino acid residues. C) Transfer 
learning protocol for parameter sharing among alleles.  The base network is selected to be 
most abundantly represented allele in the training set. 
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Figure 2. MHCnuggets. A) Venn diagram representation of the MHC-peptide binding prediction 
functions of MHCnuggets and several other currently available tools. B) Training and MHC allele 
model selection scheme for MHCnuggets. 
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Figure 3. MHC Class I benchmark comparisons. A) PPVn for MHC Class I allele-specific 
prediction on binding affinity test sets from Bonsack et al. (7 alleles) and Kim et al. (53 alleles) 
B) PPVn for MHC Class I allele-specific prediction on HLAp BST data set (Bassani-Sternberg et al. 
and Trolle et al.), stratified by allele (6 alleles).  C) PPVn for MHC Class I allele-specific prediction 
on HLAp BST data set (from B) stratified by peptide sequence length. D) True and false positives 
for each method on the top 50 ranked peptides from the HLAp BST data set. PPVn = positive 
predictive value on the top n ranked peptides, where n is the number of true binders. TP=true 
positives.  FP=false positives. 
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Figure 4. MHC Class II benchmark comparisons. A) PPVn for MHC Class II allele-specific 
prediction on binding affinity test set from Jensen et al. (27 alleles, stratified by allele). B) 
auROC, K-Tau, Pearson r scores for MHC Class II alleles from five-fold cross-validation.  
NetMHCII2.3 performance is from their self-reported auROC.  auROC= area under the receiving 
operator characteristic curve. K-Tau = Kendall’s tau  correlation. PPVn = positive predictive value 
on the top n ranked peptides, where n is the number of true binders.  
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Figure 5. MHC Class I and II benchmark comparisons to estimate rare allele performance. A) 
Schematic representation of leave one molecule out (LOMO) testing. B) PPVn for MHC Class I 
rare allele prediction on IEDB pseudo-rare alleles binding affinity test set (20 alleles, stratified 
by allele). C) PPVn for MHC Class II rare allele prediction on binding affinity test set from Jensen 
et al. (27 alleles, stratified by allele). D) auROC for MHC Class II rare allele prediction on LOMO 
binding affinity test set from Jensen et al. (27 alleles, stratified by allele). NetMHCIIpan3.2 
results are from their self-reported auROC.    auROC = area under the receiving operator 
characteristic curve. PPVn = positive predictive value on the top n ranked peptides, where n is 
the number of true binders. 

  

0.00

0.25

0.50

0.75

1.00

A*
03
:1
9

A*
24
:0
1

A*
32
:0
7

A*
32
:1
5

A*
68
:2
3

B*
14
:0
1

B*
15
:1
6

B*
27
:0
2

B*
27
:0
4

B*
27
:0
6

B*
27
:0
9

B*
27
:2
0

B*
39
:0
6

B*
40
:1
3

B*
44
:0
1

B*
57
:0
3

B*
58
:0
2

B*
62
:0
1

B*
81
:0
1

C*
08
:0
1

Av
er
ag
e

PP
Vn

MHCnuggets

0.00

0.25

0.50

0.75

1.00

H−
2−
IA
b

H−
2−
IA
d

DP
A1
*0
1:
03
−D

PB
1*
02
:0
1

DP
A1
*0
1:
03
−D

PB
1*
04
:0
1

DP
A1
*0
2:
01
−D

PB
1*
01
:0
1

DP
A1
*0
2:
01
−D

PB
1*
05
:0
1

DP
A1
*0
3:
01
−D

PB
1*
04
:0
2

DQ
A1
*0
1:
01
−D

QB
1*
05
:0
1

DQ
A1
*0
1:
02
−D

QB
1*
06
:0
2

DQ
A1
*0
3:
01
−D

QB
1*
03
:0
2

DQ
A1
*0
4:
01
−D

QB
1*
04
:0
2

DQ
A1
*0
5:
01
−D

QB
1*
02
:0
1

DQ
A1
*0
5:
01
−D

QB
1*
03
:0
1

DR
B1
*0
3:
01

DR
B1
*0
4:
01

DR
B1
*0
4:
04

DR
B1
*0
4:
05

DR
B1
*0
7:
01

DR
B1
*0
8:
02

DR
B1
*0
9:
01

DR
B1
*1
1:
01

DR
B1
*1
3:
02

DR
B1
*1
5:
01

DR
B3
*0
1:
01

DR
B4
*0
1:
01

DR
B5
*0
1:
01

Av
er
ag
e

PP
Vn

MHCnuggets

0.00

0.25

0.50

0.75

1.00

H−
2−
IA
b

H−
2−
IA
d

DP
A1
*0
1:
03
−D

PB
1*
02
:0
1

DP
A1
*0
1:
03
−D

PB
1*
04
:0
1

DP
A1
*0
2:
01
−D

PB
1*
01
:0
1

DP
A1
*0
2:
01
−D

PB
1*
05
:0
1

DP
A1
*0
3:
01
−D

PB
1*
04
:0
2

DQ
A1
*0
1:
01
−D

QB
1*
05
:0
1

DQ
A1
*0
1:
02
−D

QB
1*
06
:0
2

DQ
A1
*0
3:
01
−D

QB
1*
03
:0
2

DQ
A1
*0
4:
01
−D

QB
1*
04
:0
2

DQ
A1
*0
5:
01
−D

QB
1*
02
:0
1

DQ
A1
*0
5:
01
−D

QB
1*
03
:0
1

DR
B1
*0
3:
01

DR
B1
*0
4:
01

DR
B1
*0
4:
04

DR
B1
*0
4:
05

DR
B1
*0
7:
01

DR
B1
*0
8:
02

DR
B1
*0
9:
01

DR
B1
*1
1*
01

DR
B1
*1
3:
02

DR
B1
*1
5:
01

DR
B3
*0
1:
01

DR
B4
*0
1:
01

DR
B5
*0
1:
01

Av
er
ag
e

au
R
O
C

MHCnuggets
NetMHCIIpan3.2

C D

BA

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/752469doi: bioRxiv preprint 

https://doi.org/10.1101/752469


 
 

21 

 

Figure 6.  Timing and scalability. Runtime benchmark of most recent version of tested methods 
over a range of inputs (up to 1 million peptides). A) MHC Class I prediction. B) MHC Class II 
prediction 
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Figure 7.  MHC Class I IMMs in TCGA patients. A). Number of candidate immunogenic missense 
mutations (IMMs) identified in 6,613 TCGA patients. Dotted line = mean IMMs per patient 
(14.9). B) Number of candidate IMMs by cancer type. C) IMMs shared by three or more patients 
and the cancer types in which they occurred.  Each row represents a cancer type and each 
column illustrates the overlap of IMMs seen in a single cancer type or multiple cancer types. For 
example, the first column shows the number of IMMs shared among patients with colorectal 
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adenocarcinoma (COAD) and uterine corpus endometrial carcinoma (UCEC). Bars to the left 
show the total number of unique IMMs in each cancer type. *Bar heights are count of unique 
shared IMMs, not total number of patients in which the IMM was observed. Cancer type 
abbreviations are in Supplementary Methods. Image generated with UpSetR (58). D) Fibroblast 
growth factor receptor (FGFR3) IMM hot region identified by HotMAPs in bladder cancer 
(BLCA). IMMs shown and number of BLCA patients with the IMM: p.E216K (1),  p.G235D (1) 
p.R248C (2) and p.S249C (18). Except for p.G235D, these IMMs are proximal to the interface of 
FGFR3 protein and the light and heavy chains of an antibody fragment designed for therapeutic 
application in bladder cancer (PDB ID: 3GRW) (59). 
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Supplementary Information 
 
Methods 
 
Implementation 
Transformation of peptide binding affinities. Predicted binding affinity can be transformed into 
a range of values well-suited for neural network learning by selecting a logarithmic base to 
match the weakest binding affinity of interest (60). For most benchmarks in this work, we used 
the standard upper limit of 50,000 nM, so that predicted binding affinity was 𝑦 = 𝑚𝑎𝑥(0,1 −
𝑙𝑜𝑔/01(𝐼𝐶50)). For the Bonsack et al. dataset (12), the upper limit was changed to 100,000nM 
because in their experiments, as described in O'Donnell et al. (23), binders were defined as 
peptides with IC50<100,000nM. As binding affinity was determined based on in vitro HLA 
binding-competition vs. a known strong binder (reported IC50 <50nM) experimental IC50 
values were in µM range. 

Selection of final network weights. To minimize overfitting, network training was stopped after 
100 epochs but if the best PPVn was reached earlier, network weights from that earlier epoch 
were used in the final network. Notably, while we chose to optimize the networks on PPVn, an 
alternative approach could optimize on auROC, Kendall’s tau or Pearson’s r correlation.  For the 
two alleles in IEDB with the most training examples in their respective class, HLA-A*02:01 for 
Class I and HLA-DRB2*01 for Class II, training was stopped after 200 epochs.  

Network training.  Mean-squared error loss 𝐿789  was used to train networks with continuous-
valued binding affinity data and binary cross-entropy loss 𝐿:;9  for binary HLAp data.  For a 
dataset with n samples, 

𝐿789(𝑦<, 𝑦) 	=
1
𝑛?(𝑦(@) − 𝑦<(@))A

B

@CD

	

𝐿:;9(𝑦<, 𝑦) = −
1
𝑛?𝑦(@)𝑙𝑜𝑔(𝑦<(@))

B

@CD

+ (1 − 𝑦(@))𝑙𝑜𝑔(1 − 𝑦<(@))	

 

All training used backpropagation with the Adam optimizer (61) and learning rate of 0.001. 
Regularization was performed with dropout and recurrent dropout (62) probabilities of 0.2. The 
number of hidden units, dropout rate, and number of training epochs was estimated by three-
fold cross-validation on MHC Class I A*02:01, a common allele with a large number of 
experimentally characterized binding peptides. 
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One-hot encoding: Peptides were represented to the network as a series of amino acids; each 
amino acid was represented as a 21-dimensional smoothed, one-hot encoded vector (0.9 and  
0.005 replace  1 and  0, respectively).   

Transfer Learning Protocol for binding affinity data only. We used transfer learning to improve 
network learning for MHC alleles with limited characterized peptides available for training. We 
first trained base allele-specific networks for Class I and Class II, using alleles with the most 
training examples in IEDB (HLA-A*02:01 for Class I and HLA-DRB2*01 for Class II).  For all other 
alleles, the final weights of the base network for its respective class were used to initialize 
network training, and then an allele-specific network was trained for each allele.  Next, we 
assessed prediction performance of each allele-specific network on the training examples for 
each of the alleles. For each allele, if the network that performed  best  was not  the HLA-
A*02:01  network  (for Class I alleles) or HLA-DRB1*01:01 network  (for  Class  II alleles),  we did  
a second  round  of training,  with  the best performing network’s weights used in the 
initialization step. 
 
Transfer Learning Protocol for binding affinity and HLAp data. To integrate HLAp data into the 
Class I networks we initially trained each network with binding affinity data as described above, 
transferred the final weights to a new network, and then continued training with the HLAp data 
as positive examples augmented with random peptide decoys as negative examples.  
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Dataset collection and curation 
Table S1. Data sources used in training and benchmarking.  BA=binding affinity. HLAp=peptide 
elution/mass spectrometry. LOMO=leave one molecule out cross-validation. Only alleles with 
>30 characterized peptides were included. IEDB=curated version 2018. Common allele=>30 
peptides with characterized binding information, rare allele= <30 characterized peptides, 
mono-allelic = engineered cells that express a single MHC allele, multi-allelic = cells that express 
multiple MHC alleles. Abelin et al. (33), Bonsack et al. (12), Kim et al. (9) Bassani-Sternberg et al. 
(30)  Trolle et al. (11), Jensen et al. (41), IEDB (63).  

MHC 
Class 

Common 
or rare 
alleles 

Training Sets Benchmarks 

Datasets Description Datasets Description 

Class I Common IEDB BA, 241,553 peptides for 
217 alleles 

Bonsack et 
al 

BA, Tested on 475 peptides for 7 alleles 

Abelin et 
al 

HLAp, 23,651 peptides for 
16 alleles, mono-allelic 

Kim et al BA, Trained on 53 alleles (BD2009), tested on 53 
alleles (BLIND) 

  BST HLAp, 29,501 hits for 6 alleles .from Bassani-
Sternberg 2017 and Trolle et al. plus random 
peptide decoys.  

  Bassani-
Sternberg 
et al 2017 

HLAp, 22,598 hits for 26 alleles, multi-allelic  
Included in BST. 

  Trolle et al HLAp, 15,524 hits for 5 alleles, mono-allelic 
Included in BST.  

    Random 
peptide 
decoys 
from 
human 
proteome 

29471500 random decoy peptides generated 
from the human proteome (courtesy of Sisi 
Sarkizova and Cathy Wu) 
Included in BST. 

Class II Common IEDB BA, 96,211 peptides for 
135 alleles 

Jensen et al BA, Five-fold cross-validation on 27 alleles. 

Class I Rare NA NA IEDB 
Pseudo-
Rare Alleles  

BA, LOMO on 20 alleles, alleles with training 
samples between 30 and 100 

Class II Rare NA NA Jensen et al BA, LOMO on 27 alleles 
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Data sources for network training and testing, TCGA somatic mutations, TCGA tumor gene 
expression and haplotype calling are shown in Table S1 and Table S2. A curated version of the 
IEDB database 2018 (63) and the sixteen Class I mono-allelic B-cell line immunopeptidomes (33) 
was provided by Tim O'Donnell (https://data.mendeley.com/datasets/8pz43nvvxh/2), binding 
affinity assays of HPV-derived peptides were provided by Maria Bonsack and Angelika Riemer 
(12), BST = immunopeptidomes from six cell lines with multi-allelic MHCs (26 MHC Class I 
alleles) (30) and from soluble HLA(sHLA)-transfected HeLa cells separated by allele (4 MHC Class 
I alleles) (11).  Decoy random peptides sampled from the human proteome were generously 
provided by Cathy Wu (33).  
 
Kim et al: This benchmark contained 53 MHC Class I alleles and 137,654 IC50 measurements  
published  prior to 2009 (training set) and 53 unique MHC Class I alleles with 26,888 IC50 
measurements, published  from 2009-2013 (test set).  Three alleles (HLA-B*27:03, HLA-
B*38:01, HLA-B*08:03) did not contain sufficient training data, and two alleles (HLA-A*46:01, 
HLA-B*27:03)  did not  contain any  peptides defined  as binders  in this work (IC50<500nM). 
Therefore, a total of four alleles (HLA-A*46:01,HLA-B*27:03, HLA-B*38:01, and HLA-B*08:03) 
were dropped  from the analysis.  All peptides in this benchmark set consisted of 8-11 amino 
acid residues.  

Bonsack et al.  This dataset contains 475 synthetic peptides derived from model protein 
sequences HPV16 E6 and E7 tested for binding to 7 alleles (HLA-A*01:01, HLA-A*02:01, HLA-
A*03:01, HLA-A*11:01, HLA-A*24:02, HLA-B*07:02 and HLA-B*15:01). Each peptide was tested 
in competition-based cellular binding assays with a known high-affinity fluorescein-labeled 
reference peptide. EBV-transformed B-lymphoblastic cells were stripped of their naturally-
bound peptides and mixed with serially diluted test peptides and 150 nM of reference peptide. 
Each synthetic peptide was tested at 8 different concentrations ranging from 780 nM to 
100,000 nM. Mixture fluorescence at each synthetic peptide concentration was measured with 
flow cytometry, and a non-linear regression analysis was used to find the test peptide 
concentration that inhibited 50% of the reference peptide binding (IC50). Peptides were 
classified as binders (IC50 <= 100,000 nM) or nonbinders (IC50 > 100,000 nM).  Peptides in this 
independent benchmark set do not have IEDB entries. 

Bassani-Sternberg et al. 2017 (30) This dataset contains 22,598 unique peptides eluted from 6 
cell lines with multi-allelic MHCs.  Out of the total 6 cell lines, a total of 26 alleles were 
reported. For each multi-allelic cell line, peptide/MHC pairs were found through deconvolution, 
following the protocol described by (33), with the difference that we used MHCnuggets rather 
than NetMHCpan2.8 (64) to predict IC50 values for each peptide-MHC pair.  For each cell line, 
each peptide was initially assigned as a binder to all expressed alleles.  Then, for each allele, we 
filtered out any peptide predicted to bind with IC50>1000nM to that allele, and with 
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IC50<150nM to any other allele. Peptides found for 6 alleles (HLA-A*01:01, HLA-A*02:01, HLA-
A*03:01, HLA-A*24:02, HLA-A*31:01, HLA-B*51:01), were selected for allele-specific prediction 
testing. Trained networks were available for these alleles from all the methods that we 
compared.   

Trolle et al. This dataset contains 15,524 unique peptides eluted from soluble HLA(sHLA) 
transfected HeLa cells, a process that allowed for separating binding peptides to a single MHC 
allele. This dataset reports peptides for 5 MHC alleles. Peptides found for 4 alleles (HLA-
A*01:01, HLA-A*02:01, HLA-A24*02, HLA-B*51:01) were selected for testing. Peptide lengths in 
this dataset range from 8-15 amino acid residues. 

BST. This benchmark consists of 29,501 HLAp hits for 6 alleles, from Bassani-Sternberg et al. 
2017 and Trolle et al. plus 29471500 random decoy peptides and was used as an independent 
test set of HLAp data for neural networks trained on Abelin et al. in a previous work (33). 

Jensen et al.  This benchmark was designed to assess both allele-specific and rare MHC Class II 
binding affinity predictors. Allele-specific prediction was tested with a five-fold cross validation 
experiment on peptides found in IEDB in 2016 but not 2013.  Rare allele predictions were 
tested with the LOMO protocol. 

IEDB Class I rare alleles.  This dataset was designed to apply the LOMO protocol to Class I 
alleles.  It included 20 "pseudo-rare" alleles with 30-100 binding affinity peptide measurements 
in IEDB.  

Performance metrics 
 
We calculated positive predictive value with respect to the top-ranked n peptides, where n is 
the number of true binders in the ranked list, denoted as PPVn.    
PPV = NTP / (NTP+NFP), where NTP=number of true positives and NFP=number of false 
positives. We calculated PPV with respect to the top-ranked n peptides, where n is the number 
of true binders in the ranked list, denoted as PPVn.  For the BST benchmark, we also calculated 
PPV over the top 50 and 500 ranked peptides. 
  
TCGA analysis pipeline  

MC3 mutation filtering: MC3 TCGA somatic mutation calls were filtered with the same 
procedure used in the TCGA PanCan Atlas Drivers Analysis Working Group paper, including 
exclusion of highly mutated (hypermutator) samples. A hypermutator was defined as a sample 
with a mutation count exceeding Tukey’s outlier condition, of  >1.5 times the interquartile 
range above the third quartile (3Q + 1.5*IQR) in its cancer type and number of mutations in a 
sample>1000 (43).  
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Cancer types in the TCGA are abbreviated as follows: Bladder Urothelial Carcinoma (BLCA), 
Brain Lower Grade Glioma (LGG), Breast invasive carcinoma (BRCA), Cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon 
adenocarcinoma (COAD), Glioblastoma multiforme (GBM), Head and Neck squamous cell 
carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell 
carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung 
squamous cell carcinoma (LUSC), Pancreatic adenocarcinoma (PAAD), Prostate adenocarcinoma 
(PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Thymoma (THYM), Thyroid 
carcinoma (THCA), Uterine Carcinosarcoma (UCS), Uterine Corpus Endometrial Carcinoma 
(UCEC), Uveal Melanoma (UVM). 

Regression models: We applied two univariate Poisson regression models. In the first model, 
each patient’s immunogenic missense mutation load was the response variable and X1 was the 
total leukocyte fraction. The fitted coefficient  𝛽D = 0.77 (p<2e-16, Wald test) indicated that 
increased IMM load was associated with increased leukocyte fraction in a patient's cancer. In a 
second model, X1 was the proportion of CD8+ T cells inferred by CIBERSORT (65). The fitted 
coefficient  𝛽D = 3.4	(p<2e-16, Wald test) indicated that increased IMM load was associated 
with increased tumor-infiltrating CD8+ T cells.  Total lymphocyte and (Aggregate3) CD8+ T cell 
fractions were estimated in Thorsson et al. (45). 
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Figure S1. Flow chart describing the neoantigen prediction pipeline applied to TCGA. A. Per 
patient workflow. TCGA mutation calls were filtered by transcript expression for each patient. 
Mutations were mapped to reference transcripts and protein sequences. Peptides of length 8-
11 were generated based upon reference and mutated sequences. Candidate peptides for each 
mutation were selected by differential binding affinity to up to six possible Class I alleles from 
each patient (Methods).   B. Hourglass data processing of TCGA samples. Peptides were 
aggregated by allele, and differential agretopic index based on MHCnuggets predicted binding 
affinities was calculated across all patients for each allele.  Peptides that passed all filters were 
considered candidate neoantigens and were re-assigned to the originating patient.  C. Somatic 
missense mutations included in candidate neoantigen peptides were considered to be IMMs, 
and IMM load was computed for each patient and in aggregate for each cancer type.   
IMM=immunogenic missense mutation. 
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