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Abstract 
Computational prediction of binding between neoantigen peptides and major histocompatibility 

complex (MHC) proteins is an emerging biomarker for predicting patient response to cancer 

immunotherapy. Current neoantigen predictors focus on in silico estimation of MHC binding 

affinity and are limited by low positive predictive value for actual peptide presentation, 

inadequate support for rare MHC alleles and poor scalability to high-throughput data sets. To 

address these limitations, we developed MHCnuggets, a deep neural network method to predict 

peptide-MHC binding. MHCnuggets is the only method to handle binding prediction for common 

or rare alleles of MHC Class I or II, with a single neural network architecture.  Using a long short-

term memory network (LSTM), MHCnuggets accepts peptides of variable length and is capable 

of faster performance than other methods. When compared to methods that integrate binding 

affinity and HLAp data from mass spectrometry, MHCnuggets yields a fourfold increase in positive 

predictive value on independent MHC-bound peptide (HLAp) data. We applied MHCnuggets to 

26 cancer types in TCGA, processing 26.3 million allele-peptide comparisons in under 2.3 hours, 

yielding 101,326 unique candidate immunogenic missense mutations (IMMs). Predicted-IMM 

hotspots occurred in 38 genes, including 24 driver genes. Predicted-IMM load was significantly 

associated with increased immune cell infiltration (p<2e-16) including CD8+ T cells.  Notably, only 

0.16% of predicted immunogenic missense mutations were observed in >2 patients, with 61.7% 

of these derived from driver mutations.  Our results provide a new method for neoantigen 

prediction with high performance characteristics and demonstrate its utility in large data sets 

across human cancers. 

 

 

Synopsis 

We developed a new in silico predictor of Major Histocompatibility Complex (MHC) ligand 

binding and demonstrated its utility to assess potential neoantigens and immunogenic 

missense mutations (IMMs) in 6613 TCGA patients.  
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Introduction: 
The presentation of peptides bound to major histocompatibility complex (MHC) proteins on the 

surface of antigen-presenting cells and subsequent recognition by T-cell receptors is 

fundamental to the mammalian adaptive immune system. Neoantigens derived from somatic 

mutations have been shown to be targets of immunoediting and drive therapeutic responses in 

cancer patients treated with immunotherapy (1,2). Because experimental characterization of 

neoantigens is both costly and time-consuming, many computational methods have been 

developed to predict peptide-MHC binding and subsequent immune response (3,4). Supervised 

neural network machine learning approaches are the best-performing (5-7) and the most 

widely used in silico methods. Despite these advances in computational approaches, 

improvements in predictive performance have been minimal, due in part to a lack of sufficiently 

large sets of experimentally characterized peptide binding affinities for most MHC alleles.   

While neoantigen prediction for common MHC Class I alleles is well-studied (8), predictive 

accuracy on rare and less characterized MHC alleles remains poor (9,10) and Class II predictors 

are scarce(11). Current estimates suggest that Class II antigen lengths primarily range from 13-

25 amino acids (12), and this diversity has been a major obstacle to developing in silico 

neoantigen predictors (11,13).  As most neural network architectures are designed for fixed-

length inputs, methods such as NetMHC (14-17) and MHCflurry (18) require pre-processing of 

peptide sequences or extensive training of separate classifiers for each peptide length.  

Clinical application of MHC-peptide binding predictors, to identify biomarkers for cancer 

immunotherapy, requires scalability to large patient cohorts and low false positive rates (19). A 

cancer may contain hundreds of candidate somatically altered peptides, but few will actually 

bind to MHC proteins and elicit an immune response (20). For many years, most neoantigen 

predictors were trained primarily on quantitative peptide-HLA binding affinity data from in vitro 

experiments (21). Recent advances in immunopeptidomics technologies have enabled 

identification of thousands of naturally presented MHC bound peptides (HLAp) from cancer 

patient samples and cell lines (22) (19). Several new neoantigen predictors are trained only on 

HLAp data for Class I, for a limited number of peptide lengths (21) (23). The EDGE neural 

network is trained primarily on multi-allelic HLAp and RNAseq data from 74 cancer patients; 

ForestMHC is a random forest trained on HLAp from publicly available mono-allelic and 

deconvoluted multi-allelic cell lines. Furthermore, the potential to improve neoantigen 

predictors by integrating binding affinity and HLAp data (19) has motivated new hybrid 

approaches (14,18). However, most methods predict large numbers of peptides as candidate 

neoantigens, of which only a few are actually immunogenic in patients (11,19).  

Here we present a long short-term memory (LSTM) neural network method, MHCnuggets, the 
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first neoantigen predictor designed for MHC Class I and II alleles in a single framework.  The 

method leverages transfer learning and allele clustering to accommodate both common, well-

characterized MHC alleles and rare, less-studied alleles. While existing computational 

neoantigen predictors generate a large ranked list of candidate peptides, maximizing the 

number of highly-ranked true positives would be preferred in many applications (18).  We 

demonstrate competitive predictive performance of MHCnuggets to widely-used methods on 

binding affinity datasets. In comparison to hybrid methods that have integrated binding affinity 

and HLAp data, we show decreased false positives and increased positive predictive value in a 

held-out cell line data set of ligands identified by mass spectrometry (7,24).  To demonstrate 

the clinical utility and scalability of MHCnuggets to large patient cohorts, we investigated 

candidate immunogenic mutations from 26 tumor types in The Cancer Genome Atlas (TCGA).  

MHCnuggets yielded 101,326 candidate immunogenic missense mutations (out of 1,124,266) in 

less than 2.3 hours. These mutations were correlated with increased lymphocyte infiltration, 

however only 0.16% were observed in more than 2 patients. 

Methods: 

Implementation 

MHCnuggets uses a long short-term memory (LSTM) neural network architecture (25) (Figure 

1A). LSTM architectures excel at handling variable length sequence inputs and can learn long-

term dependencies between non-contiguous elements, enabling an input encoding that does 

not require peptide shortening or splitting (Figure 1B). LSTMs are capable of handling peptides 

of any length. In practice, a maximum peptide length should be selected for network training. 

We set maximum peptide input length of 15 for Class I and 30 for Class II, for computational 

efficiency purposes.  These values cover the vast majority lengths observed in naturally 

presented MHC bound peptides (12).  The networks were trained with transfer learning (26), 

which allows networks for less well-characterized alleles to leverage information from 

extensively studied alleles (Figure 1C). Transfer learning was also used to train networks 

combining binding affinity and HLAp datasets.  In addition, MHCnuggets’ architectures can be 

trained using either continuous binding affinity measurements from in vitro experiments (half 

maximal affinity or IC50) and/or immunopeptidomic (HLAp) binary labels. The former utilizes a 

mean-squared error (MSE) loss while the latter utilizes binary cross-entropy (BCE) loss for 

training.  
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For each MHC allele, we trained a neural network model consisting of an LSTM layer of 64 

hidden units, a fully connected layer of 64 hidden units and a final output layer of a single 

sigmoid unit (Figure 1A). Specifics of peptide encoding, training loss functions, optimization and  

regularization methods are in Supplementary Methods. For the 16 alleles where allele-specific 

HLAp training data was available (27), we trained networks on both binding affinity and HLAp 

data (MHCnuggets).  Next, we trained networks only with binding affinity measurements 

(MHCnuggets noMS) for all MHC Class I alleles.  Due to the lack of allelic-specific HLAp training 

data for Class II, all MHC Class II networks were trained only on binding affinity measurements.  

In total, we trained 148 Class I and 136 Class II allele-specific networks.  Common alleles 

comprise a small fraction of all known MHC alleles (28). To handle binding predictions for rare 

alleles, MHCnuggets selects a network by searching for the closest allele, based on previously 

published supertype clustering approaches. We prioritized approaches based on binding pocket 

biochemical similarity when available. Briefly, HLA-A and HLA-B alleles were clustered by MHC 

binding pocket amino acid residue composition (29), and HLA-C and all MHC II alleles were 

hierarchically clustered based upon experimental mass spectrometry and binding assay results 

(30,31). For alleles with no supertype classification, the closest allele was from the same HLA 

gene, and allele group if available, with preference for alleles with the largest number of 

characterized binding peptides. All networks were implemented with the Keras Python package 

(TensorFlow back-end) (32,33).  Open source software is available at 

https://github.com/KarchinLab/mhcnuggets, installable via pip or Docker, and has been 

integrated into the PepVacSeq (34), pvactools (35) and Neoepiscope (36) pipelines. 

Benchmarks 

To accurately assess the performance of MHCnuggets on a variety of MHC-peptide binding 

prediction tasks, we utilized six distinct benchmark sets: MHC Class I alleles, MHC Class II alleles, 

common alleles with a trained model (allele-specific prediction) and rare alleles (pan-allele 

prediction) (Figure 2, Table S1 ).  To compare to the widely-used HLA ligand prediction tools 

from the NetMHC group (NetMHC3.0, NetMHC 4.0, NetMHCpan2.0, NetMHCpan 4.0) (16,17), 

which can be trained only by their developers, as well as the open source MHCflurry tools, we 

employed multiple benchmarking strategies: 1) independent benchmark test set of peptides 

not included as training data for any of the methods; 2) a previously published paired 

training/testing benchmark; 3) five-fold cross-validation benchmark; 4) leave-one-molecule-out 

(LOMO) benchmark.   

We evaluated six MHC Class I predictors on independent binding affinity and HLAp datasets 

(7,8,24). First, we compared MHCnuggets to several Class I predictors that incorporate both 

binding affinity and HLAp data: MHCflurry 1.2.0, MHCflurry (train-MS), NetMHC 4.0, and 

NetMHCpan 4.0. Each method was benchmarked using an independent set of MHC-bound 

peptides identified by mass spectrometry across seven cell-lines for six MHC I alleles (Bassani-
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Sternberg 2017, Trolle 2016). For testing, HLAp hits were combined with random decoy 

peptides sampled from the human proteome in a 1:999 hit-decoy ratio, as described by Abelin 

et al. (27), totaling 23,971,000 peptides. Next, four MHC Class I predictors trained only on 

binding affinity data (MHCnuggets (noMS) and MHCflurry (noMS), NetMHC 3.0 and NetMHCpan 

2.0) were evaluated with the Kim et al. dataset (5), in which each predictor was trained with the 

BD2009 data and tested on BLIND data. It was possible to compare NetMHC3.0 and 

NetMHCpan2.0 performance on Kim et al., because they have previously published predicted 

IC50s for all peptide-MHC pairs in BLIND.  This allowed us to calculate their PPVn, area under 

the ROC curve (auROC), Kendall’s tau, and Pearson’s r correlations. 

Next, we compared MHCnuggets’ Class II ligand prediction performance with self-reported 

performance statistics of NetMHC group’s MHC Class II methods (37). We used the Jensen et al. 

five-fold cross-validation benchmark to assess allele-specific MHC Class II prediction of 

MHCnuggets and NetMHCII 2.3, for 27 alleles.  NetMHCII 2.3 reported the average auROC for 

five-fold cross-validation, and we report MHCnugget's  positive predictive value for each of the 

27 alleles as well as the average auROC, Pearson’s r and Kendall-Tau correlations.   

The leave-one-molecule-out (LOMO) benchmarks are a type of cross-validation designed to 

estimate the performance of peptide binding prediction with respect to rare MHC alleles.  

Given training data for n MHC alleles, the data for a single allele is held out and networks are 

trained for the remaining n-1 alleles.  Then for each peptide, predictions are generated by the 

remaining networks. We designed a LOMO benchmark to evaluate MHC Class I rare allele 

prediction, by selecting 20 alleles with 30 to 100 characterized peptides in IEDB. For Class II rare 

allele prediction, we used the Jensen et al. LOMO benchmark.  We were unable to assess rare 

allele prediction for NetMHC Class I methods, as no published results were available.  For the 

NetMHC Class II methods, we compared MHCnuggets to their self-reported auROCs.   

TCGA analysis pipeline  

To assess candidate immunogenic somatic mutations in patients from the TCGA cohort, we 

developed and implemented a basic pipeline based on whole-exome and RNA sequencing data. 

Our analysis builds upon work from the TCGA PanCancer Analysis teams for drivers (38), 

mutation calling (39) and cancer immune landscapes (40).  We obtained somatic mutation calls 

for all cancer types from Multi-Center Mutation Calling in Multiple Cancers (MC3) (v0.2.8) (7775 

patients).  Tumor-specific RNA expression values from Broad TCGA Firehose were standardized 

across tumor types using the RSEM Z-score (41).  MHC allele calls were obtained from the TCGA 

cancer immune landscape publication, in which up to six MHC Class I alleles (HLA-A, HLA-B, and 

HLA-C) were identified for each patient using OptiType (42). We included patients for which 

mutation calls, MHC allele calls and RNA expression values were available from TCGA 

(Supplementary Methods).  After these considerations, the analysis included 6613 patients 
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from 26 TCGA tumor types.  Six cancer types were not included in our analysis, because 15 or 

fewer patients met this requirement: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

(DLBC), Esophageal carcinoma (ESCA) , Mesothelioma (MESO), Skin Cutaneous Melanoma 

(SKCM), Stomach adenocarcinoma (STAD), Ovarian serous cystadenocarcinoma (OV). 

 

The somatic missense mutations identified in each patient were filtered to include only those 

with strong evidence of mutant gene RNA expression in that patient (Z>=1.0).  For each 

mutation that passed this filter, we used the transcript assigned by MC3 to pull flanking amino 

acid residues from the SwissProt database (43), yielding a 21 amino acid residue sequence 

fragment centered at the mutated residue. All candidate peptides of length 8,9,10 and 11 that 

included the mutated residue were extracted from each sequence fragment.  Next binding 

affinity predictions were generated for each mutated peptide for up to six MHC Class I alleles, 

depending on the patient's HLA genotypes.  In total, each somatic mutation was represented by 

38 mutated peptides for up to 6 possible MHC pairings.   

We applied a permissive filter to select candidate immunogenic peptides, requiring mutated 

peptides to have binding affinity of IC50<500nM for at least one MHC allele. Somatic missense 

mutations that generated neoantigens meeting these criteria were considered candidate 

immunogenic missense mutations (IMMs). For a given patient, if a mutation was predicted to 

be a candidate IMM for multiple alleles, it was counted only once using the MHC allele with the 

lowest predicted IC50. Finally, for each patient we counted the number of predicted IMMs 

found in their exome and stratified by tumor type.  We then identified predicted IMMs that 

were harbored by more than one patient. 

We sought to ascertain whether predicted IMMs occurred preferentially in particular gene or 

protein regions. Using the HotMaps 1D algorithm v1.2.2 (46), we clustered primary amino acid 

residue sequence to identify regions where mutations were frequently predicted as IMM, with 

statistical significance (q<0.01, Benjamini-Hochberg method (47)). In this analysis, mutations 

were stratified by cancer type, and we considered enrichment within linear regions of 50 amino 

acid residues.  

We considered that mutation immunogenicity might be associated with potential driver status 

of a mutation.  Driver status was inferred by CHASMplus (48), a random forest classifier that 

utilizes a multi-faceted feature set to predict driver missense mutations. It has been previously 

shown to be effective at identifying both common and rare driver mutations.  For each 

mutation, its immunogenicity was represented as a binary response variable and driver status 

was used as a covariate. Mutations with CHASMplus q-value < 0.01 were considered drivers 

(48).  We modeled the relationship with univariate logistic regression (R glm package with 

binomial link logit function).  
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To assess whether the total number of predicted IMMs per patient was associated with 

changes in tumor immune infiltrates, we performed Poisson regression (R glm package with 

Poisson link log function).  All estimates of immune infiltrates were obtained from Thorsson et 

al. (40,49).   We fit two univariate models in which the response variable was the predicted 

IMM count and the covariate was either total leukocyte fraction or fraction of CD8+ T-cells.  

Results: 

High-throughput MHCnuggets breaks the MHC ligand prediction plateau 

The MHCnuggets LSTM neural network architecture accepts peptides of variable lengths as 

inputs so that ligand binding prediction can be performed for both MHC Class I and Class II 

alleles. To enable binding prediction for rare MHC alleles with limited experimental data, we 

designed a method that leverages networks built for closely-related common alleles with 

extensive data. When available, we utilize a transfer learning protocol to integrate binding 

affinity and HLAp results in a single network model, to better represent the natural diversity of 

MHC-binding peptides. 

To assess the baseline performance assessment for MHCnuggets' allele-specific networks on 

binding affinity data, we compared our approach with the most widely used MHC Class I ligand 

prediction methods, using two validation sets of binding affinity measurements (Kim et al. (5) 

Bonsack et al. (8)). We trained and tested MHCnuggets (noMS) and MHCflurry (noMS) using the 

Kim et al dataset, and evaluated the predictions provided by NetMHC 3.0 and NetMHCpan 2.0. 

We observed that MHCnuggets' performance (PPVn = 0.829, auROC=0.924) was comparable to 

these methods (Figure 3a) (PPVn of all methods=0.825 +/- 0.005, auROC of all methods = 0.928 

+/- 0.0031). MHCnuggets was also comparable (PPVn = 0.633, auROC=0.794) to these methods 

when tested on the Bonsack et al. dataset (PPVn of all methods = 0.625 +/- 0.008, auROC of all 

methods = 0.77 +/- 0.02) (Figure 3A) (+/- refers to standard deviation) (Table S3a, S3b, Table 

S4a, S4b). 

Historically, neoantigen prediction methods have focused on Class I and trained on binding 

affinity data from IEDB (50).  More recent work has incorporated both binding affinity and HLAp 

data into network training (14,18).  We compared MHCnuggets with several Class I predictors 

that also used both binding affinity and HLAp data: MHCflurry 1.2.0, MHCflurry (train-MS), 

NetMHC 4.0, and NetMHCpan 4.0.  We selected the Bassani-Sternberg/Trolle (BST) HLAp 

dataset (7,24,27) as an independent benchmark, as it was not previously included as training 

data by any of these methods. For all alleles tested, MHCnuggets achieved an overall PPVn of 

0.42 and auROC of 0.82 (Figure 3B). On average, MHCnuggets' PPVn was more than three times 

higher than MHCflurry 1.2.0, MHCflurry (train-MS), NetMHC 4.0, and NetMHCpan 4.0. For all 
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alleles, MHCnuggets predicted substantially fewer binders than other methods, resulting in 

fewer false positive predictions.  Stratifying by peptide length, MHCnuggets’ increased PPVn 

was most prominent for peptides of length 9, 10, and 11 (Figure 3C). The length distribution of 

predicted binders was also commensurate with the observed distribution of naturally occurring 

binders in the HLAp benchmark tests (Trolle 2016; Table S5a, S5b, S5c, S5d).   

For some clinical applications, it may be desirable to minimize the number of false positives 

among a small number of top-scored peptides.  We also compared PPV of the methods listed 

above on their top 50 and 500 ranked peptides from the BST dataset (six MHC Class I alleles).  

MHCnuggets exhibited the highest PPV in the top 50 for all alleles except HLA-B*51:01 and the 

highest PPV in the top 500 for all alleles (Figure 3D, Table S5e). 

Prediction of peptide-MHC binding for Class II and rare alleles 

We assessed baseline performance of MHCnuggets Class II allele-specific networks on binding 

affinity data. To enable comparison with the Class II methods from the NetMHC group, we used 

a five-fold cross validation benchmark derived from IEDB that was included in the publication 

describing NetMHCII-2.3 and NetMHCIIpan-3.2 (37). First, we computed PPVn for each of the 27 

allele-specific networks separately (Figure 4A) (mean PPVn=0.739).  Next, we computed the 

overall auROC, Pearson r and Kendall Tau correlations for all 27 Class II alleles. MHCnuggets 

overall auROC (0.849) was comparable to that of the NetMHCII-2.3 (0.861) and NetMHCIIpan-

3.2 (0.861).  Comparison to NetMHC Class II methods was limited to overall auROC as published 

in (37), because their results are not publicly available (Figure 4B) (Table S6a, Table S6b). 

We estimated performance for those Class I and Class II MHC alleles for which we were unable 

to train allele-specific networks, using leave-one-molecule-out (LOMO) cross-validation (37).  In 

this LOMO protocol, MHC-peptide binding is assessed for a well-characterized allele that has 

been held out from training, to approximate prediction performance for a rare allele (Figure 

5A). For the 20 Class I alleles, the mean PPVn was 0.65 and the mean auROC was 0.671.  For the 

27 Class II alleles, the mean PPVn was 0.65 and the mean auROC was 0.792. In comparison, the 

Class II mean auROC of NetMHCIIpan-3.2 was 0.781 (Figure 5B, Figure 5C). Further performance 

results of NetMHCpan rare allele predictors for both Class I and Class II were not publicly 

available for LOMO tests (Table S7, Table S8a, Table S8b). 

Fast and scalable computation 

When run on a GPU architecture, MHCnuggets was substantially faster and scaled more 

efficiently than MHC ligand predictors from the NetMHC family and MHCflurry. Given an input 

of one million peptides randomly selected from Abelin et al., MHCnuggets runtime was 4.5, 3.2, 

and 18 times faster than MHCflurry 1.2.0, NetMHC 4.0, NetMHCpan 4.0, respectively  (Figure 

6A). The improvement was even more pronounced for Class II peptides, for which an input of 
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one million peptides to MHCnuggets ran 65.6 times and 126 times faster than NetMHCII2.3 and 

NetMHCIIpan 3.2, respectively (Figure 6B). As the total number of input peptides was increased 

from 0 to one million, the runtime per peptide plateaued for other methods but decreased 

exponentially for MHCnuggets. 

Candidate MHC Class I immunogenic missense mutations in TCGA patients 

To illustrate the utility of MHCnuggets' improvements in scalability and positive predictive value 

for the analysis of very large patient cohorts, we predicted Class I immunogenic missense 

mutations (IMMs) in patients sequenced by the TCGA consortium (Methods). In our analysis 

pipeline, patient exomes were split into 21 amino acid residue sequence fragments, centered 

on each somatic missense mutation. For each sequence fragment, MHCnuggets predicted the 

MHC binding for all possible 8-, 9-, 10- and 11-length peptide windows. Peptides that passed 

filters of predicted IC50 threshold (<500nM) and gene expression (Z>1.0) (Methods) for at least 

one patient-specific MHC allele were classified as predicted IMMs (Table S9a).  Finally, we 

characterized driver status and positional hotspot propensity of the predicted IMMs. 

Total processing time for 26,284,638 allele-peptide comparisons supported by RNAseq 

expression was under 2.3 hours. First, we sought to ascertain the extent of variability in 

predicted IMM count among individuals with different cancer types.  Next, we identified 

predicted IMMs and protein regions enriched for predicted IMMs that were shared across 

patients, because these might be informative for neoantigen-based therapeutic applications.  

Then we considered whether predicted IMMs were more or less likely to be driver mutations. 

Finally, we assessed the associations between predicted patient IMM load and computationally 

estimated immune cell infiltrates.   

After applying a strict gene expression filter, we identified 101,326 unique predicted IMMs in 

26 TCGA cancer types, with a mean of 15.6 per patient.  We found that the majority of patients 

harbored fewer than 6 predicted IMMs, and 197 patients had none.  Seventy-two percent of 

patients had from 1 and 10 predicted IMMs, compared to 1.9% of patients with more than 100, 

and nine patients with more than 1000 (Figure 7A).  Cancer types with the highest number of 

predicted IMMs were uterine corpus endometrial carcinoma (UCEC), colon adenocarcinoma 

(COAD), and lung adenocarcinoma (LUAD), previously known for high mutation burden and 

immunogenicity (40).  UCEC and COAD are also known to have a high frequency of 

microsatellite-instable (MSI) tumors.  The lowest number were found in Uveal Melanoma 

(UVM), Paraganglioma & Pheochromocytoma (PCPG), and Testicular Germ Cell Cancer (TGCT)  

(Figure 7B, Table S9b).  

Across all cancer types, we identified 1,393 predicted IMMs harbored by two or more patients, 

of which 167 were identified in three or more patients.  Of these 167 only 11.5% occurred 
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exclusively in a single cancer type (Figure 7C). The predicted IMMs identified in the largest 

number of patients were IDH1 R132H (62), FGFR3 S249C (24), PIK3CA E545K (23) , KRAS G12D 

(18), PIK3CA E542K (18), TP53 R175H (18), TP53 R248Q (18), TP53 R273C (17),  and KRAS G12V 

(16), which are well known recurrent oncogenic driver mutations (51,52).  Of the 1071 genes 

harboring predicted IMMs in 2 or more patients, the ones containing the most included TP53 

(68), CTNNB1 (18), PIK3CA (16), HRAS (8), KRAS (7), PTEN (7), FBXW7 (6), EGFR (5), MDN1 (5), 

POLE (5), TRRAP (5), and VPS13C (5) (Table S9c).  Six missense mutations harbored by patients 

in the TCGA cohorts were previously validated by CD8+ T cell response assays (53) (54) (55).  Of 

the six missense mutations, TP53R248Q, TP53Y220C, TP53R175H, TP53R248W and KRASG12D were 

predicted to be IMMs by our MHCnuggets pipeline and were shared by three or more of the 

TCGA patients. 

Furthermore, 61.7% of the 167 predicted IMMs shared by three or more patients were 

classified as driver missense mutations by CHASMplus (q<0.01).  This percentage is significantly 

higher than the number of predicted drivers among all TCGA missense mutations (9,821 out of 

791,637 or 1.2%). It is worth noting that while many shared IMMs were predicted to be driver 

missense mutations, the percentage of predicted IMMs predicted to be drivers was  ~0.1% of 

total predicted IMMs in our study.  When compared to the OncoKB database of experimentally 

confirmed driver mutations (56), 53.9% of the shared predicted IMMs identified as “oncogenic” 

or “likely oncogenic” driver mutations. The percentage is lower (25.7%) if “likely oncogenic” 

mutations are excluded.  

While we observed a limited number of shared IMMs, we reasoned that particular protein 

regions enriched for predicted IMMs could present a therapeutic opportunity in certain cancer 

types. Using HotMaps 1D, we identified clusters of residues within protein regions having 

statistically significant enrichment of predicted IMMs (q<0.01). These included CIC in low grade 

glioma (LGG); NFE2L2 and FGFR3 (Figure 7D) in bladder cancer (BLCA), KRAS in pancreatic 

adenocarcinoma (PAAD), KIT in testicular germ cell tumors (TGCT), HRAS in head and neck 

squamous carcinoma (HNSC); PTEN, POLE and PPP2R1A in uterine corpus endometrial 

carcinoma (UCEC) and GNAQ and SF3B1 in uveal melanoma (UVM). Three genes were notable 

for harboring predicted immunogenic regions in more than one cancer type: P53 in BLCA, BRCA, 

HNSC, LGG and UCEC, PIK3CA in HNSC and cervical squamous cell carcinoma (CESC) and 

CTNNB1 in Liver Hepatocellular Carcinoma (LIHC) and UCEC.  (Table S9d) 

We explored the relationship between mutation driver status predicted by CHASMplus, and 

IMM status using logistic regression.  The log-odds of being an IMM was significantly decreased 

for drivers (𝛽=-0.66, Wald test p<2e-16), which is consistent with previous work suggesting that 

negative evolutionary selection eliminates MHC Class I immunogenic oncogenic mutations early 

in tumor development (57).  
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Finally, we considered whether a patient's predicted IMM load was associated with changes in 

immune cell infiltrates as estimated from RNA sequencing of bulk cancer tissue.  IMM load was 

significantly associated with increased total leukocyte fraction (𝛽=0.75, Wald test p<2e-16 ) and 

with increased CD8+ T-cell fraction (𝛽=5.9, Wald test p<2e-16). 

These findings suggest a central role of IMMs in driving tumor immunoediting and may be 

informative for the interpretation of responses in the setting of immunotherapy. 

Discussion 

MHCnuggets provides a flexible open-source platform for MHC-peptide binding prediction that 

can handle common MHC Class I and Class II alleles, as well as rare alleles of both classes. The 

LSTM network architecture can handle peptide sequences of arbitrary length, without 

shortening or splitting. The single neural network architecture requires fewer hyperparameters 

than more complex architectures and simplifies network training.  In addition, our neural 

network transfer learning protocols allow for parameter sharing among allele-specific, binding 

affinity -and HLAp-trained networks. When trained on binding affinity data, MHCnuggets 

achieves comparable performance to current methods. When trained on both binding affinity 

and HLAp data, we demonstrate significantly improved PPVn on an independent HLAp test set, 

with respect to other methods that use both binding affinity and HLAp data. Although PPVn was 

lowest for the independent HLAp test set for all methods, this result is likely due to systematic 

differences between training HLAp data (monoallelic B-cell lines) (27) and the test data 

comprised of seven multi-allelic cell lines  (HeLA, HTC116, JY, fibroblasts, SupB15, HCC1937, 

HCC1143)(24) (7), yielding a more challenging prediction problem.  We attribute MHCnuggets’ 

improvement on the independent test set with respect to other methods to: 1) optimization of  

PPVn in our network training protocol; and 2) our implementation of transfer learning to 

integrate information from binding affinity and HLAp measurements.  Notably the performance 

of all methods is generally highest when both training and test data come from similar binding 

affinity experiments, but performance improvement on HLAp data is more biologically relevant 

(24). 

We demonstrate improved scalability by comparing the runtime of MHCnuggets on 1 million 

peptides to comparable methods, and further by processing over 26 million expressed peptide-

allele pairs across TCGA samples in under 2.3 hours.  We identified 101,326 unique 

immunogenic missense mutations (IMMs) harbored by patients using 26 cancer types 

sequenced by the TCGA, based on transcriptional abundance and differential binding affinity 

compared to reference peptides.  These results contrast with a previous report of neoantigens 

in TCGA patients in several respects.  Rech et al. (45) applied a minimum expression threshold 

of 1 RNA sequencing read count, an IEDB-recommended combination of neoantigen predictors 
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derived primarily from different versions of NetMHC, and IC50 threshold of 50nM to identify 

strong MHC binders. Their approach yielded 495,793 predicted Class I classically defined 

neoantigen peptides (each harboring a single immunogenic mutation) from 6,324 patients in 26 

cancer types.  As in our study, high variability in neoantigen burden across cancer types was 

observed.  The striking difference between IMM and neoantigen burden in the two studies is 

likely due to differences in RNA expression threshold and the low false positive rate of 

MHCnuggets compared to IEDB-recommended tools.   

 

Based on our conservative thresholds, IMMs were almost exclusively private to individual TCGA 

patients, with only 1,393 IMMs observed in more than one patient. Although more than 61% of 

IMMs shared by more than two patients were predicted to be driver mutations, the overall log 

odds of immunogenicity significantly decreased for predicted driver mutations, indicating 

immunogenicity might shape the driver mutation landscape.  Patient IMM counts were also 

significantly associated with increase in total leukocyte fraction and fraction of CD8+ T-cells,  

suggesting that they may be relevant to immune system response to cancer. 

 

This work has several limitations.  First, our analyses are limited to missense mutations, and 

while these are very numerous, there is substantial evidence that somatic gene fusions, 

frameshift indels, splice variants etc. in tumors may also generate neoantigens. While 

MHCnuggets can handle peptide sequences regardless of their mutational origins, we 

prioritized missense mutations in this study. Next, recent work suggests that peptidal context, 

such as flanking sequence, its source protein and the expression level of the source protein, is 

informative for MHC ligand prediction (21,27). This type of information is currently only 

available for a limited number of HLAp data sets, which were unavailable to us for training 

purposes.  As more well-characterized HLAp datasets become available, we will extend 

MHCnuggets to include these features.  We did not address T-cell receptor (TCR) binding to 

bound peptide-MHC complexes or T-cell activation upon complex binding.  While we are 

actively pursuing this more complex modeling problem, we believe that improved prediction of 

peptide binding to MHC is also therapeutically relevant (21). Finally, we are unable to directly 

compare performance to the MHC Class II prediction methods from the NetMHC group, except 

for self-reported auROC. While we are not able to do a rigorous comparison of MHCnuggets 

Class II prediction, our benchmark comparisons suggested that MHCnuggets was competitive 

with NetMHCII2.3 and that MHCnuggets Class II rare allele performance was competitive with 

NetMHCIIpan3.2. Generally rare allele performance estimated for each allele, regardless of 

MHC Class or performance metric was variable among individual alleles for both MHCnuggets 

and NetMHCIIpan3.2, suggesting that further work in this area is warranted.  
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In summary, we present MHCnuggets, an open source software package for MHC ligand 

prediction that improves on performance of previous methods with respect to positive 

predictive value by leveraging transfer learning to integrate binding affinity and HLAp data.  In 

contrast to previous methods, it handles both MHC Class I and Class II ligand prediction and 

both common and rare HLA alleles, within a single framework.  The utility of MHCnuggets is 

demonstrated with a basic pipeline for large-scale cancer patient sequencing data from TCGA, 

which analyzed mutation immunogenicity, shared IMMs and the relationship between 

mutation immunogenicity, driver potential and immune infiltrates. 
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Figure Captions. 

Figure 1. A) MHCnuggets’ architecture. A network is trained for each MHC allele. Each network 

has a LSTM layer with 64 hidden units, a Fully Connected (FC) layer with 64 hidden units and a 

final output layer of a single sigmoid unit. B) Input scheme for peptides with variable lengths. 

MHCnuggets architecture is capable of handling peptides of any length, but in practice a 

maximum length should be selected. Peptides are extended with padding until they reach the 

maximum length, prior to input into the neural network. The example shows padding for Class 

II peptides with maximum length set to 30 amino acids. C) Transfer learning protocol for 

parameter sharing among alleles.  A base allele-specific network is trained for each MHC class, 

with an allele selected by largest number of training examples. Transfer learning is applied to 

train networks for the remaining alleles with initial network weights set to final base network 

weights. A fine tuning step identifies alleles that can be leveraged for a second round of 

transfer learning to produce a final network (detail in Supplementary Methods).  

Figure 2. MHCnuggets’ features. A) Venn diagram representation of the MHC-peptide binding 

prediction functions of MHCnuggets and several other currently available tools. B) Training and 

MHC allele model selection scheme for MHCnuggets. 

Figure 3. MHC Class I benchmark comparisons. A) PPVn for MHC Class I allele-specific 

prediction on binding affinity test sets from Bonsack et al. (7 alleles) and Kim et al. (53 alleles) 

B) PPVn for MHC Class I allele-specific prediction on HLAp BST data set (Bassani-Sternberg et al. 

and Trolle et al.), stratified by allele (6 alleles).  C) PPVn for MHC Class I allele-specific prediction 

on HLAp BST data set (from B) stratified by peptide sequence length. D) True and false positives 

for each method on the top 50 ranked peptides from the HLAp BST data set. PPVn = positive 

predictive value on the top n ranked peptides, where n is the number of true binders. TP=true 

positives.  FP=false positives. 

Figure 4. MHC Class II benchmark comparisons. A) PPVn for MHC Class II allele-specific 

prediction on binding affinity test set from Jensen et al. (27 alleles, stratified by allele). B) 

auROC, K-Tau, Pearson r scores for MHC Class II alleles from five-fold cross-validation.  

NetMHCII2.3 performance is from their self-reported auROC.  auROC= area under the receiving 

operator characteristic curve. K-Tau = Kendall’s tau correlation. PPVn = positive predictive value 

on the top n ranked peptides, where n is the number of true binders.  

Figure 5. MHC Class I and II benchmark comparisons to estimate rare allele performance. A) 

Schematic representation of leave one molecule out (LOMO) testing. B) PPVn for MHC Class I 

rare allele prediction on IEDB pseudo-rare alleles binding affinity test set (20 alleles, stratified 

by allele). C) PPVn for MHC Class II rare allele prediction on binding affinity test set from Jensen 

et al. (27 alleles, stratified by allele). D) auROC for MHC Class II rare allele prediction on LOMO 
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binding affinity test set from Jensen et al. (27 alleles, stratified by allele). NetMHCIIpan3.2 

results are from their self-reported auROC.    auROC = area under the receiving operator 

characteristic curve. PPVn = positive predictive value on the top n ranked peptides, where n is 

the number of true binders. 

Figure 6.  Timing and scalability. Runtime benchmark of most recent version of tested methods 

over a range of inputs (up to 1 million peptides). A) MHC Class I prediction. B) MHC Class II 

prediction 

Figure 7.  MHC Class I IMMs in TCGA patients. A). Number of predicted immunogenic missense 

mutations (IMMs) identified in 6,613 TCGA patients. Dotted line = mean IMMs per patient 

(15.6).   Note, 123 patients had >100 predicted IMMs but are not included for visual clarity. B) 

Number of predicted IMMs by cancer type. C) IMMs shared by three or more patients and the 

cancer types in which they occurred.  Each row represents a cancer type and each column 

illustrates the overlap of IMMs seen in a single cancer type or multiple cancer types. For 

example, the first column shows the number of IMMs shared among patients with colorectal 

adenocarcinoma (COAD) and uterine corpus endometrial carcinoma (UCEC). Bars to the left 

show the total number of unique IMMs in each cancer type. *Bar heights are count of unique 

shared IMMs, not total number of patients in which the IMM was observed. Cancer type 

abbreviations are in Supplementary Methods. Image generated with UpSetR (58). D) Fibroblast 

growth factor receptor (FGFR3) IMM hot region identified by HotMAPs in bladder cancer 

(BLCA). IMMs shown and number of BLCA patients with the IMM: p.E216K (1),  p.D222N (1), 

p.G235D (1) p.R248C (3) and p.S249C (24). Except for p.G235D, these IMMs are proximal to the 

interface of FGFR3 protein and the light and heavy chains of an antibody fragment designed for 

therapeutic application in bladder cancer (PDB ID: 3GRW) (59). 
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