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Abstract 

 

Appraising sequential offers relative to an unknown future opportunity and a time cost requires an 

optimization policy that draws on a learned estimate of an environment’s richness. Converging 

evidence points to a learning asymmetry, whereby estimates of this richness update with a bias 

toward integrating positive information. We replicate this bias in a sequential foraging (prey 

selection) task and probe associated activation within two branches of the autonomic system, 

sympathetic and parasympathetic branches, using simultaneous cardiac autonomic physiology. In 

general, lower value offers were accepted during periods of autonomic drive, both in the 

sympathetic (shorter pre-ejection period PEP) and parasympathetic (higher HF HRV) branches. In 

addition, we reveal a unique adaptive role for the sympathetic branch in learning. It was 

specifically associated with adaptation to a deteriorating environment: it correlated with both the 

rate of negative information integration in belief estimates and downward changes in moment-to-

moment environmental richness, and was predictive of optimal performance on the task. The 

findings are consistent with a parallel processing framework whereby autonomic function serves 

both learning and executive demands of prey selection. 
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Introduction 

 

A specific but nonetheless ubiquitous dilemma that occurs with value-based decisions requires 

people to approach or avoid sequential offers that pit a reward against an opportunity cost of time, 

without full knowledge of what offers, if any, may follow. For example, by committing to a 

specific project, a contract worker receives a monetary payment (reward) while eschewing 

alternative projects during project completion (opportunity time cost), without knowing what 

alternative options will emerge post commitment. 

 

Inspired by animal ethology and optimal foraging theory, the Marginal Value Theorem (MVT; 

(Charnov, 1976) offers an optimality rule for sequential decisions of this nature. Behaviour is 

optimised by approaching yields that exceed the average reward-rate (richness) of an environment 

and avoiding yields that fall below it. The environment and its consequential opportunity cost thus 

prescribe the selectivity of choices; e.g., contract workers should only accept high yield projects 

during a construction boom (wiring a new supermarket) but accept low yield projects during a 

construction downturn (fixing a faulty domestic appliance). The boom presents a high opportunity 

cost, i.e., higher yields sacrificed when committing to a specific project, relative to the low 

opportunity cost during the downturn. Accordingly, studies across various species (Cowie, 1977; 

McNamara & Houston, 1985), including humans (Hayden, Pearson & Platt, 2011; Kolling, 

Behrens, Mars & Rushworth, 2012), have predicted foraging behaviour using MVT inspired 

models. 
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Learning the nature of the environment presents a computational challenge. In addition, contexts 

like the boom and downturn examples above rarely remain in steady-state, further requiring 

perturbation-driven behaviour adjustments. Recent work in humans resolves both issues, by 

demonstrating that sequential choice behaviour is best captured by an MVT inspired learning 

model (Constantino & Daw, 2015; Garrett & Daw, 2019; Lenow, Constantino, Daw & Phelps, 

2017). Specifically, the decision to depart one patch of potential resources to harvest in another 

during a dynamic patch foraging task is predicated on a leave threshold, defined as the harvest 

sacrificed when leaving. The threshold adheres to an optimality policy that compares harvests 

against fluctuating environmental richness (i.e., the average starting yield of iteratively depleting 

patches) which are learned via a standard delta rule (Constantino & Daw, 2015; Lenow et al., 

2017). Garrett and Daw (2019) later extended the application of MVT learning models to a prey 

selection task, and demonstrated that sequential capture behaviour also adheres to trialwise 

appraisal of prey quality relative to learned beliefs about fluctuating environmental richness (i.e., 

the concentration of hi or low quality prey). This later work further demonstrated that beliefs about 

the environmental richness update with asymmetric bias, that is, improvements (𝛿 > 0) are 

learned at a higher rate than deteriorations (𝛿 < 0); the ‘naïve perseverance of optimism’. 

 

One important next step in understanding the physiology that underlies foraging behaviour is 

characterising the forager's stress state associated with these emergent learning mechanisms. 

Dynamic changes of their stress state may serve as an implicit indicator of their appraisal of the 

environment and could potentially telegraph learning dependent shifts in selection criteria. At 

present only one study has indirectly explored the relationship of stress related endocrine activity 

and foraging behaviour by linking both acute and chronic stress elevation to overharvesting 
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tendencies in a patch foraging task (Lenow et al., 2017). However, the main assays in that study 

(cortisol and self-report) probed stress fluctuations operating on longer time horizons than the time 

scales associated with faster acting learning needed to update beliefs about environmental richness. 

Commonly used alternative assays of putative stress states include pupillometry or autonomic 

sympathetic tone via measures of galvanic skin conductance. Pupil size is mediated by 

noradrenergic neurons of the brainstem locus coeruleus and dynamically fluctuates both 

spontaneously and in response to a variety of external stimuli (Joshi, Li, Kalwani & Gold, 2016). 

Connections with other brainstem and cortical regions provide a pathway for surprising stimuli to 

drive arousal rather than stress specific stimuli (Krishnamurthy, Nassar, Sarode & Gold, 2017). 

Galvanic skin responses also suffer from a protracted response profile, limiting their ability to link 

sympathetic stress responses on fast time scales (Bradley, Miccoli, Escrig & Lang, 2008). More 

promising approaches have recently emerged in cardiac autonomic physiology, which have yet to 

be employed with sequential decision-making tasks. Such approaches have nonetheless charted 

the effects of experimentally manipulated reward and difficulty on summary states of the 

sympathetic branch of the autonomic system, indexed with aggregated measures of beta-

adrenergic myocardial mobilization (reviewed in (Richter, Gendolla & Wright, 2016). Of 

relevance to sequential decision-making, increased sympathetic states are associated with the 

difficulty of cognitive tasks and the relevance of reward – i.e., contractility increases with both 

increased difficulty and increased importance of reward (Richter, Friedrich & Gendolla, 2008; 

Kuipers et al., 2017).  Further, where task difficulty is either unknown (Richter & Gendolla, 2009) 

or user-defined (Wright, Killebrew & Pimpalapure, 2002), (mirroring the situation presented by 

sequential decisions), sympathetic states uniquely track reward relevance, suggesting they may be 
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involved with learning the opportunity cost of a reward state. However such a conclusion requires 

linking autonomic and reward state fluctuations over shorter time-scales. 

 

Specific advances within cardiac analyses now allow several approaches for trial-wise capture of 

the separate sympathetic and parasympathetic contributions of the autonomic state. These include 

point-wise estimates of low and high frequency heart rate variability (HF HRV), with the former 

reflecting a complex mixture of sympathetic and parasympathetic tone (Saul et al., 1991) and the 

latter serving as a proxy of parasympathetic cardiac tone (Barbieri, Matten, Alabi & Brown, 2005). 

A more direct measure of cardiac sympathetic tone can be obtained from impedance cardiography 

and state of the art signal processing (Cieslak et al., 2018). In the present paper, we employ these 

techniques on continuous cardiac data - electrocardiogram (ECG) and impedance cardiogram 

(ICG) - recorded while subjects performed a prey selection task. Together, HF HRV and ICG offer 

a temporally refined window into dynamic changes of autonomic mediated allostatic stress 

responses during trial-wise learning driven by perturbations in environmental richness. With this 

we first replicate behavioral results showing a belief updating asymmetry, first reported in Garrett 

and Daw (2019). We then demonstrate that autonomic drive in both the sympathetic and 

parasympathetic systems align with capture of lower value items, whether value is considered 

objectively, or relative to the environment’s richness at a given moment. A unique contribution 

from the sympathetic branch to the autonomic state then emerged with learning. First, sympathetic 

mobilization was uniquely associated with perturbations in environmental richness, i.e., tracking 

negative derivatives in the moment-to-moment rates of captured reward. In addition, 

computational models of choice behavior revealed that during periods of sympathetic drive, 

subjects were faster at learning a deterioration in the environment’s richness, allaying the known 
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positive biases they might have in integrating this negative information. Finally, we demonstrate 

that sympathetic – but not parasympathetic – engagement in crucial learning periods of the task 

predict overall optimal performance. 

 

Methods 

 

Participants 

We recruited twenty subjects via word of mouth. Nine subjects were male and had a mean 

(standard deviation) age of 19.11 (1.37) while the remaining eleven female subjects had a mean 

(standard deviation) age of 20 (2.18). Total mean (standard deviation) age of our sample (N=20) 

was 19.65 (2.18). Two male subjects and one female subject reported themselves left-handed. All 

subjects provided informed consent to participate and experimental procedures were carried out 

following IRB approval from the University of California, Santa Barbara. 

 

Task 

Subjects spent 24 minutes playing the Prey Selection task (Garrett & Daw, 2019); a computerized 

video game emulating a formal sequential foraging task under a time constraint (see Fig. 1A-C). 

Subjects were pilots of a space ship and instructed to harvest as much fuel as possible to earn a 

bonus ($0.01 per point). Fuel was harvested by capturing sequentially approaching space-invaders. 

Invaders carried either a high (80 points) or low (30 points) fuel reward, and a high (8s) or low 

(3s) capture cost. The four identities (see Fig. 1B) mapped onto a three-tier profitability rank: high 

(high reward / low cost); mid (high reward / high cost, or low reward / low cost); and low (low 

reward / high cost). Participants spent half of the game-time foraging in an environment with a 
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disproportionately high concentration of high profit invaders (boom; high:mid:low = 4:2:1) and 

the other half in an environment with a disproportionately high concentration of low profit invaders 

(downturn; high:mid:low = 1:2:4) (see Fig. 1C). The two environments had different background 

colours, and subjects were informed that they would differ in terms of invader concentrations, but 

not explicitly how. Half of the subjects foraged in the order boom to downturn (BD) and the other 

half in the order downturn to boom (DB), with an opportunity to rest in-between the two 

environments. 

 

Subjects performed the Prey Selection task seated 150cm from a 68.6cm (diameter) computer 

monitor and registered responses on a standard PC keyboard. Experimental stimuli were presented 

on a Mac mini computer, using Psychtoolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner, 

Brainard & Pelli, 2007) in MATLAB v9.4 (MATLAB, 2018a). 

 

The task paradigm is described in Figure 1A. At all times subjects saw a cockpit with two target 

boxes, one on the left and one on the right of the screen. On each trial, subjects had two seconds 

to decide if they wished to capture or release an invader approaching their cockpit. Invaders would 

pseudo randomly approach one of the two target boxes. Captures were registered by holding the 

response button corresponding to the target box in the path of incoming invader (z with left index 

finger for the box on the left, m with right index finger for the box on the right). Subjects were 

required to keep the response button held as the invader finished its two second approach to the 

box, and thereafter for the entirety of the capture time (2s or 7s). Following a successful capture, 

a feedback screen (1s) described the harvested reward, during which subjects could release the 

response button. After the feedback screen the next invader immediately began its approach. 
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Releases were registered by holding the response button corresponding to the response box 

opposite the incoming invader. Subjects were required to hold the response button until the invader 

reached the capture box. The invader would then disappear and the next invader would begin its 

approach. Errors carried an 8s time penalty, during which the response boxes disappeared and no 

invaders approached. Errors were (i) failing to register any response during the 2s invader 

approach; (ii) releasing the response button before the invader reached the response box (captures 

and avoids); (iii) releasing the response button before the end of the capture cost (captures only). 

To encourage full exploration of each environment, 25% of trials were forced-choice. On these 

trials, a red asterisk would appear above one of the two capture boxes, and participants were 

instructed to press this response button regardless of whether they wished to perform the 

corresponding capture or release. Error and forced-choice trials were excluded from later analyses. 

Participants received a standardised set of instructions, performed a two-minute block of practice 

trials and required a perfect score on a questionnaire probing task comprehension before starting 

the task. 

 

Physiological recording and preprocessing 

Physiological measures of ICG and ECG were collected using non-invasive approaches with a 

total of ten EL500 electrodes. Prior to each electrode placement, an exfoliation procedure was 

performed on each electrode location to maximise signal quality. An approximate one-inch area 

of skin was cleaned with an abrasive pad, followed by exfoliation with NuPrep gel (ELPREP, 

BIOPAC). Once the skin area was fanned dry, a small amount of BIOPAC GEL100 was placed 

on the electrode and on the skin. In order to assess ICG, a total of eight of the ten electrodes were 

placed on the neck and torso: two on each side of the neck and two on each side of the torso 
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(Bernstein, 1986). ECG recordings were obtained with a total of two sensors placed beneath the 

right collarbone and just below the left ribcage. The ICG electrodes provided the necessary ground. 

Continuous ECG was collected using an ECG100C amplifier and continuous ICG using a 

NICO100C amplifier (both from BIOPAC). Data were integrated using an MP150, system 

(BIOPAC) and displayed and stored using AcqKnowledge software version 4.3 (BIOPAC). 

 

We extracted three estimates of the physiological state at each heartbeat – heart rate (HR), pre-

ejection period (PEP) and high frequency heart rate variability (HF HRV). Semi-automated 

software MEAP labeled the continuous ECG and ICG (Cieslak et al., 2018). For each heartbeat, 

the ECG R point serves as the t=0 landmark for within-heartbeat events. We next converted the 

continuous ICG (thoracic impedance (z)) to its derivative '(
')

, to facilitate the identification of key 

impedance inflection points required to estimate the pre-ejection period (PEP). This derivative 

time series was further corrected for concurrent respiratory activity; we first estimated the 

respiratory activity from the z timeseries and then applied a filter to '(
')

 with a polort drift of one 

and high frequency cutoff of 0.35. The time interval between the ICG Q and B points defines the 

pre-ejection period (PEP) of a heartbeat, which is related to the contractility of the heart muscle 

before blood is ejected. However, due to difficulty in reliably capturing the relatively small Q 

point, PEP is often calculated as the difference between the easily detected R point and the B point 

(the RBI). This latter interval is comparable to PEP in reliability (Kelsey, Ornduff & Alpert, 2007; 

Kelsey et al., 1998) and validity (Kelsey et al., 1998; Mezzacappa, Kelsey & Katkin, 1999) and 

sometimes referred to as PEPr (Berntson, Lozano, Chen & Cacioppo, 2004). We used the RBI 

definition for our measure of PEP. Reduced values of PEP reflect a shorter pre-ejection interval, 

indicating increased sympathetic cardiovascular drive. However, to align PEP with the direction 
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of our other autonomic variables, allowing easier comparison from the results of later analyses, we 

negative signed (i.e., *-1) all extracted values. For all subsequent references to PEP, higher values 

reflect increased sympathetic cardiovascular drive. 

 

High frequency heart rate variability (HRV) was characterized with point process estimation 

software developed by Riccardo Barbieri and Luca Citi, executed as MATLAB code (available at 

http://users.neurostat.mit.edu/barbieri/pphrv). In brief, the code uses inverse Gaussian regression 

and spectral analysis of the latencies of ECG R points to generate a continuous estimation of HF 

HRV (Chen, Brown & Barbieri, 2007). We extracted the logarithmic transform of these 

estimations as a proxy of parasympathetic input to the heart, with higher values reflecting increases 

in this autonomic branch. 

 

Finally, we used the reciprocal of R-R intervals as a measure of heart rate (HR), such that higher 

HR values reflect a decrease in the interval between R points, i.e., increased heart rate. HR was 

included in our analyses to control for a known cardiac effect where increased left-ventricular 

preload time (which occurs with slowing HR) can shorten PEP independent of sympathetic 

influences (Sherwood et al., 1990). 

 

Trialwise estimates of the three physiological states were next derived by taking an average from 

all heartbeats during the two-second time window while invaders approached the spaceship on 

each trial. This provided trialwise estimates of the physiological states during a uniform length 

time window for all trials, regardless of the executed decision or the identity of the invader. 
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Finally, each trialwise physiology estimate was corrected for trialwise respiratory state. We 

performed this additional trialwise respiration correction to account for known influences of 

respiratory activity on heart rate and vagal tone (Larsen, Tzeng, Sin & Galletly, 2010), computed 

in our pipeline from raw ECG R points. We defined trialwise respiratory state as the average 

normalized product of the phase and magnitude of respiration activity (estimated from the z time 

series) at each R point during the two-second time window of invader approaches. Respiration 

corrected measures of each trialwise physiological state were the residuals from a linear model of 

each raw trialwise physiology state and the trialwise respiratory state, performed separately for 

each subject. 

 

We will now present the methods and results separately for three separate branches of analyses. 

The first branch uses ANOVA and linear mixed effects models to explore the dynamics between 

physiological states, choices and objectively estimated measures of environmental richness and its 

moment-to-moment derivatives. The second analysis employs computationally modelled 

subjective estimates of the environment’s richness; and compares models that allow the learning 

parameter to vary with physiological states. In the third and final analysis we test if blockwise 

changes in physiological state predict optimal task performance. 

 

Analysis branch 1 - Methods 

All ANOVAs and trialwise mixed-effects models were fitted using lme4 (Bates et al., 2015) and 

lmerTest (Kuznetsova, Brockhoff & Christensen, 2017) packages in R. Unless otherwise specified, 

trialwise logistic models were fitted with logit link functions and Laplacian maximum likelihood 

approximation, while trialwise models of continuous measures used restricted maximum 
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likelihood approximation (REML). Also, unless otherwise specified, each trialwise mixed-effects 

model fitted a fixed effect for each specified coefficient, and an individual intercept for each 

subject. For both ANOVA and trialwise mixed-effects models, significant marginal effects of 

significant higher order interactions are not reported. Post-hoc ANOVA contrasts use Tukey 

correction. All other data pre-processing and analyses were conducted using MATLAB v9.4 

(MATLAB, 2018a). 

 

Analysis branch 1 - Results 

Our first behavioural analysis attempted to replicate the Garrett and Daw (2019) finding regarding 

asymmetric belief updating. To this end, we ran a three-way mixed ANOVA of mean capture-rate 

as a function of between-group factor 𝑜𝑟𝑑𝑒𝑟 (RP, PR) and two repeated-measures factors 𝑒𝑛𝑣 

(boom, downturn) and 𝑟𝑎𝑛𝑘 (hi, intermediate, low). Summarised in Figure (1D), the ANOVA 

reported a significant three-way interaction between 𝑜𝑟𝑑𝑒𝑟, 𝑒𝑛𝑣 and 𝑟𝑎𝑛𝑘 (𝐹 = 3.49, 𝑑𝑓	 =

(2, 90), 𝑝 = 	 .035). We accordingly contrasted mean capture rates between BD and DB, for the 

six levels of the 𝑒𝑛𝑣*𝑟𝑎𝑛𝑘 interaction. These contrasts demonstrated significantly higher capture 

of mid-rank invaders in the downturn environment for order DB, relative to BD (𝜇 = 0.828 vs. 

𝜇 = 0.402, both 𝑠. 𝑒.= 	 .050, 𝑝 < 0.001), with no other contrasts reaching statistical significance. 

In other words, foraging during the two order conditions differed only in terms of adjustments in 

the number of mid-rank captures in the downturn environment, in line with Garrett and Daw 

(2019), and suggestive of slower learning in the face of a contextual deterioration. 

 

A corollary of asymmetric belief updating (prioritising positive information) is a decision 

threshold weighted preferentially toward recent reward over recent cost. To formally probe the 
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influence of current and recent offers on choice behaviour, we fitted a trialwise mixed-effects 

model of 𝑐ℎ𝑜𝑖𝑐𝑒) (capture, release) as a function of an intercept term and four parameters: reward 

and delay on a given trial 𝑡 (respectively: 𝑟𝑒𝑤𝑎𝑟𝑑), 𝑑𝑒𝑙𝑎𝑦)) and reward and delay on the previous 

trial, i.e., 𝑡 − 1 (respectively: 𝑟𝑒𝑤𝑎𝑟𝑑)JK, 𝑑𝑒𝑙𝑎𝑦)JK). The model yielded a significant positive 

influence of 𝑟𝑒𝑤𝑎𝑟𝑑L (𝛽 = 2.20, 𝑠. 𝑒. = 	 .071, 𝑝 < 	 .001) and significant negative influence of 

𝑑𝑒𝑙𝑎𝑦L (𝛽 = −2.19, 𝑠. 𝑒.= 	 .073,𝑝 < 	 .001) on capture probability. Regarding recent offers, 

choice was only influenced by recent reward; 𝑟𝑒𝑤𝑎𝑟𝑑)JK: (𝛽 = −0.340, 𝑠. 𝑒. = 	 .067, 𝑝 < 	 .001), 

𝑑𝑒𝑙𝑎𝑦)JK: (𝛽 = 0.062, 𝑠. 𝑒. = 	 .067, 𝑝 = 	 .353). The negative coefficient for 𝑟𝑒𝑤𝑎𝑟𝑑)JK is 

predicted by MVT; for example a high reward drives positive belief updating (of the environment’s 

richness), increasing opportunity cost to future captures, and decreasing future acceptance. The 

specific influence of 𝑟𝑒𝑤𝑎𝑟𝑑)JK further supports the Garrett and Daw (2019) finding that positive 

information integrates more readily into state appropriate behavioural policy, relative to negative 

information. 

 

We next assessed the influence of current physiological state on the relationship between current 

offer and choice behaviour. In three separate models, i.e., one each for PEP, HF HRV and HR, we 

ran a trialwise mixed-effects model of 𝑐ℎ𝑜𝑖𝑐𝑒) (capture, release) as a function of the two-way 

interaction effects	𝑝ℎ𝑠𝑦𝑖𝑜𝑙𝑜𝑔𝑦)*𝑟𝑒𝑤𝑎𝑟𝑑) and 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦)*𝑑𝑒𝑙𝑎𝑦). We also included, in each 

model, an intercept term, and nuisance coefficients 𝑜𝑟𝑑𝑒𝑟 (BD, DB), 𝑒𝑛𝑣 (boom, downturn) and 

𝑡𝑟𝑖𝑎𝑙	𝑖𝑛𝑑𝑒𝑥. In line with the behaviour analyses above, each model showed the same influence of 

𝑜𝑟𝑑𝑒𝑟 and 𝑠𝑡𝑎𝑡𝑒 on choice – higher capture rates in the downturn state, and for the DB order (all 

p-values < .004). Each model also returned a significant negative coefficient for 𝑡𝑟𝑖𝑎𝑙	𝑖𝑛𝑑𝑒𝑥 (all 

p-values < .001) reflecting higher capture rates early in foraging. 
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In addition, the PEP model returned a significant positive coefficient for the 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦*𝑑𝑒𝑙𝑎𝑦 

effect (𝛽 = .548, 𝑠. 𝑒. = 	 .147, 𝑝 < .001), suggesting that an increase in contractility (shorter PEP) 

blunts the negative association between delay and capture. The 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦*𝑟𝑒𝑤𝑎𝑟𝑑 did not 

reach statistical significance (𝛽 = −.241, 𝑠. 𝑒.= 	 .148,𝑝 = .098). 

 

The HF model also returned a significant positive coefficient for the 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦*𝑑𝑒𝑙𝑎𝑦 effect 

(𝛽 = 1.09, 𝑠. 𝑒. = 	 .145, 𝑝 < .001), suggesting that the negative association between delay and 

capture may be alleviated with increasing HF power (increased parasympathetic tone). In contrast 

to PEP, the 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦*𝑟𝑒𝑤𝑎𝑟𝑑 effect from the HF model was also significant (𝛽 =

−1.29, 𝑠. 𝑒.= 	 .144, 𝑝 < .001); the negative coefficient suggests the positive association between 

reward and capture also alleviates when HF power increases. 

 

The HR model returned a significant negative coefficient for the 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦*𝑑𝑒𝑙𝑎𝑦 effect (𝛽 =

−.892, 𝑠. 𝑒.= 	 .168, 𝑝 < .001), and a significantly positive coefficient for the 

𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦*𝑟𝑒𝑤𝑎𝑟𝑑 effect (𝛽 = 1.14, 𝑠. 𝑒.= 	 .169,𝑝 < .001), suggesting that decreased heart 

rate blunts both the aversion of delay and the appeal of reward. 

 

The findings from these preliminary models suggest that increases in both branches of the 

autonomic state (PEP and HF) are aligned with lower value acceptance, with PEP tuned more 

specifically to the cost dimension of value. HR, in contrast, decelerates during moments of low 

value capture. A shortcoming of these models, however, is that they do not consider value relative 

to the current rate of reward, i.e., environmental richness. Also, by running three separate models, 
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i.e., one each for the three different physiology variables, we cannot confirm if physiological 

associations with reward and cost are independent of one another. We accordingly simplified the 

parameter space such that a single trialwise parameter 𝑣𝑎𝑙𝑢𝑒̈ ) would account for both dimensions 

of value, adjusted by an evolving estimation of the opportunity cost at the time of each choice. 

 

𝑣𝑎𝑙𝑢𝑒̈ 	for a given trial 𝑡 was defined as:  

 

𝑣𝑎𝑙𝑢𝑒̈ ) = 𝑟𝑒𝑤𝑎𝑟𝑑) − 𝜃) 

Eq [1] 

 

Where 𝑟𝑒𝑤𝑎𝑟𝑑) is the reward of the offer on trial 𝑡 and 𝜃) is the opportunity cost of capturing 

offer 𝑡,	computed as: 

 

𝜃) = 	𝑑𝑒𝑙𝑎𝑦) ∗ 𝜇) 

Eq [2] 

 

Where 𝜇) is the average rate of reward captured per second through to the beginning of trial 𝑡, i.e.: 

 

𝜇) = 	
∑ 𝑟W𝑐W	)JK
WXK

𝑠)JK
 

Eq [3] 
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where 𝑐W is a discrete variable reflecting the selection for trial 𝑗 (1 = capture, 0 = release) and 𝑠)JK	is 

the time in seconds at the end of the feedback of trial 𝑡 − 1 (relative to opening frame of the first 

trial of the experiment). 

 

Accordingly, 𝑣𝑎𝑙𝑢𝑒̈  approaching positive ∞ reflect offers that exceed the opportunity cost of the 

current moment, and should readily be captured, while 𝑣𝑎𝑙𝑢𝑒̈  approaching negative ∞ describe 

readily avoidable offers where the reward harvested in exchange for the absorbed time cost is not 

justified at that moment. In choice models, this relationship is reflected by a positive coefficient, 

i.e., higher choice probability follows higher 𝑣𝑎𝑙𝑢𝑒̈ . 

 

We then ran a single model of 𝑐ℎ𝑜𝑖𝑐𝑒) (capture, release) as a function of three two-way interaction 

effects:	𝑃𝐸𝑃)*𝑣𝑎𝑙𝑢𝑒̈ ), 𝐻𝐹)*𝑣𝑎𝑙𝑢𝑒̈ ) and 𝐻𝑅)*𝑣𝑎𝑙𝑢𝑒̈ ), in addition to an intercept term, and nuisance 

coefficients 𝑜𝑟𝑑𝑒𝑟 (BD, DP), 𝑒𝑛𝑣 (boom, downturn) and 𝑡𝑟𝑖𝑎𝑙	𝑖𝑛𝑑𝑒𝑥. The model (see Fig. 1E) 

returned a significantly negative coefficient for the 𝑃𝐸𝑃 ∗ 𝑣𝑎𝑙𝑢𝑒̈  interaction (𝛽 = −.306, 𝑠. 𝑒. =

	.134, 𝑝 = .023), suggesting that increased contractility blunts the positive association between 

choice and 𝑣𝑎𝑙𝑢𝑒̈ ; in other words, sympathetic drive is associated with higher acceptance of offers 

presenting low value at a given moment. The model also returned a significantly negative 

coefficient for the 𝐻𝐹 ∗ 𝑣𝑎𝑙𝑢𝑒̈  interaction (𝛽 = −.861, 𝑠. 𝑒.= 	 .130,𝑝 < .001), which also 

describes a blunting of the 𝑣𝑎𝑙𝑢𝑒̈  coefficient when HF power increased; in other words, 

parasympathetic drive is also associated with higher acceptance of low value offers at a given 

moment. The 𝐻𝑅 ∗ 𝑣𝑎𝑙𝑢𝑒̈  interaction also reached statistical significance (𝛽 = .341, 𝑠. 𝑒.=

	.144, 𝑝 = .018), indicating that a slower heart-rate again blunts the positive association between 

value and capture.  
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Sympathetic and parasympathetic drive may track with unpleasant decisions, i.e., a specific action 

associated with an individual offer and its immediate negative consequence. However, 

mobilization of either of these autonomic branches could also reflect their association with 

derivatives (perturbations) of rate of reward, i.e., learning the richness of the environment. We 

consider 𝜇) from Eq [3] a proxy for the evolution of this reward rate. The derivative of 𝜇) with 

respect to trial 𝑡, i.e., '_
') )

, represents trialwise perturbations. We modelled '_
') )

 as a function of 

'`a`
') )

 , 'bc
') )

 and 'bd
') )

. The model also contained an intercept term and nuisance coefficients 

𝑒𝑛𝑣, 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑜𝑟𝑑𝑒𝑟, and 𝑡𝑟𝑖𝑎𝑙	𝑖𝑛𝑑𝑒𝑥. 

 

This model of '_
')

 (see Fig. 1F) returned a significantly negative coefficient for '`a`
')

 (𝛽 =

−.006, 𝑠. 𝑒.= 	 .002, 𝑝 < .001), indicating countercyclical perturbations in contractility and 

reward rate – i.e., if the reward rate decreased, contractility would increase, and vice versa. The 

coefficients for 𝐻𝐹 and 𝐻𝑅 failed to reach statistical significance (both p-values > .591). 

Perturbations in the reward rate are therefore exclusively associated with sympathetic drive; 

contractility increases as reward rate reduces. A control model of rectified reward rate derivative, 

i.e., | '_
')
|, modelled as a function of '`a`

') )
 , 'bc

') )
 and 'bd

') )
 returned no significant physiology 

coefficients (all p-values > .079), ruling out a more global responsivity of the sympathetic system 

to reward rate changes in any direction. 
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Finally, we reran all models in Analysis branch 1 using the raw physiology measures, i.e., not 

corrected for respiration state using the residualization procedure outlined in the pre-processing 

section. The pattern of results were the same across all models. 

 

Analysis branch 2 - Methods 

The key finding from our analysis so far centres on perturbations in the sympathetic state tracking 

perturbations in the reward rate. This may reflect a relationship between the sympathetic state and 

learning, however the objective measure of reward rate used above (the rate of reward harvested 

per second) is not direct evidence that subjects are learning these perturbations in environment 

quality. In this branch of analysis, we employ computational models fitted to the choice data, and 

estimate parameters of the subjective estimate of reward rate, in addition to parameters scaling the 

learning of perturbations in the reward rate. Recall from the previous section, that 𝜇) represents a 

moving threshold against which encountered options can be assessed. A simple means by which 

participants can keep track of 𝜇) (Constantino & Daw, 2015; Hutchinson, Wilke & Todd, 2008; 

McNamara & Houston, 1985) is to implement an incremental error-driven learning rule  (Schultz 

et al., 1997; Sutton and Barto, 1998) whereby a subjective estimate of 𝜇), which we will refer to 

here as 𝜌 for clarity, is incrementally updated according to recent experience. The optimal policy 

from the MVT remains the same: capture an option 𝑖, whenever the reward, 𝑟g, exceeds the 

opportunity cost of the time taken to pursue the option. As with Eq [2], opportunity cost is 

calculated as the time, 𝑑𝑒𝑙𝑎𝑦g, that the option takes to pursue (in seconds) multiplied by the 

subjective estimated of the reward rate, 𝜌. 

 

𝑐g 	= 	𝑑𝑒𝑙𝑎𝑦g ∗ 𝜌 
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Eq [4] 

 

We will refer to this measure of opportunity cost, using the subjective estimate 𝜌, as 𝑐g. As with 

the objective measures, participants should capture items that exceed their subjective estimate of 

the reward rate, i.e., whenever 𝑟g 	≥ 𝑑𝑒𝑙𝑎𝑦g ∗ 𝜌. Note that we assume quantities 𝑟g and 𝑑𝑒𝑙𝑎𝑦g are 

known to participants from the outset since they were easily observable and each of the 4 invader 

identities (𝑖	 = 	 {1,2,3,4}) always provided the exact same 𝑟g	and 𝑑𝑒𝑙𝑎𝑦g. 

 

We assumed that subjects learn 𝜌 in units of reward, using a Rescorla-Wagner learning rule 

(Rescorla and Wagner, 1972; Sutton and Barto, 1998) which is applied at every second (𝑠). After 

each second, their estimate of the reward rate updates according to the following rule: 

 

𝜌(𝑠 + 1) 	= 	𝜌(𝑠) 	+ 	𝛼	 ∗ 	𝛿(𝑠) 

Eq [5] 

 

Here,	𝛿(𝑠) is a prediction error, calculated as: 

 

𝛿(𝑠) 	= 	𝑟(𝑠) 	− 	𝜌(𝑠) 

Eq [6] 

 

where 𝑟(𝑠) is the reward obtained. 𝑟(𝑠) will either be 0 (for every second in which no reward is 

obtained, i.e. during approach time, capture time and timeouts from missed responses) or equal to 

𝑟g (following receipt of the reward from captured option 𝑖).  
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The learning rate α acts as a scaling parameter and governs how much participants change their 

estimate of the reward rate (𝜌) from one second to the next. Accordingly, 𝜌 increases when 𝑟(𝑠) 

is positive (i.e. when a reward is obtained) and decreases every second that elapses without a 

reward. 

 

Symmetric and Asymmetric Models. We first implemented two versions of this reinforcement 

learning model, used previously to test for the presence of learning asymmetries in this task 

(Garrett & Daw, 2019). A Symmetric Model, with only a single α and a modified version, an 

Asymmetric Model, which had two α: 𝛼m and 𝛼J. In this second model, updates to 𝜌 apply as 

follows: 

	

𝜌(𝑠 + 1) = 	𝜌(𝑠) + n𝛼
m ∗ 𝛿(𝑠)	(𝑖𝑓	𝑟(𝑠) > 0)

𝛼J ∗ 𝛿(𝑠)	(𝑖𝑓	𝑟(𝑠) < 0)	

Eq [7] 

 

This second model allows updates to occur differently according to whether a reward is received 

or not. We refer to the mean difference in learning rates as the learning bias (𝛼m − 𝛼J). A positive 

learning bias (𝛼m > 𝛼J) indicates that participants adjust their estimates of the reward rate to a 

greater extent when a reward is obtained compared to when rewards are absent. The converse is 

true when the learning bias is negative (𝛼m < 𝛼J). If there is no learning bias (𝛼m = 𝛼J) then this 

model is equivalent to the simpler Symmetric Model with a single α.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 2, 2019. ; https://doi.org/10.1101/752493doi: bioRxiv preprint 

https://doi.org/10.1101/752493


Asymmetric Models with physiology. Next, we extended the Asymmetry Model described above 

to test whether learning from positive (𝛼m) or negative (𝛼J) information was modulated by trial 

to trial perturbations in the physiological state. For each physiological state (i.e., HR, PEP and HF) 

we compared two separate models (i.e., six models were fitted in total). 

 

For each physiological state, the first model (Asymmetry Phys 𝛼m) tested physiological 

modulation of the 𝛼m parameter. In this model, 𝛼m was adjusted at each moment in time, according 

to the participants physiological state on that trial: 

 

𝛼m(𝑠) 	= 	 𝑏p 	+	𝑏K ∗ 𝑝ℎ𝑦𝑠(𝑡) 

Eq [8] 

 

Here, 𝑡 indexes the current trial. 𝑏K	governs the extent to which the learning rate for positive 

information (𝛼m) is adjusted by the trialwise measure of the physiological state. 𝛼J was 

unmodulated by physiological state in this model. 

 

The second of these additional models (Asymmetry Phys 𝛼J) tested physiological modulation of 

the	𝛼J parameter. This was setup exactly as for Asymmetry Phys 𝛼m, except 𝛼J was adjusted on 

each trial, according to: 

 

𝛼J(𝑠) 	= 	 𝑏p 	+	𝑏K ∗ 𝑝ℎ𝑦𝑠(𝑡) 

Eq [9] 
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Here, 𝑏K governs the extent to which the learning rate for negative information (𝛼J) is adjusted on 

each trial. 𝛼m was unmodulated by physiological state in this model. 

 

In all models, the probability of capturing an item is estimated using a softmax choice rule, 

implemented at the final frame of the encounter screen as follows:  

 

𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) 	=
1

1 + 𝑒𝑥𝑝q𝛽p − 𝛽K(𝑟g − 𝑐g)r
	 

Eq [10] 

 

This formulation frames the decision to accept an option as a stochastic decision rule in which 

participants (noisily) choose between two actions (capture/release) according to value of each 

action. The temperature parameter 𝛽K governs participants’ sensitivity to the difference between 

these two values whilst the bias term 𝛽p captures a participant’s general tendency toward 

capture/release options (independent of the values of each action). Note that under the above 

formulation, negative values for 𝛽p indicate a bias towards capturing options, positive values 

indicate a bias towards releasing options. 

 

In each model, 𝜌 was initialized at the beginning of the experiment to the arithmetic average reward 

rate across the experiment, but subsequently carried over between environments (Constantino & 

Daw, 2015; Garrett & Daw, 2019). For each participant, we estimated the free parameters of the 

model by maximizing the likelihood of their sequence of choices, jointly with group-level 

distributions over the entire population using an Expectation Maximization (EM) procedure (Huys 

et al., 2011) implemented in the Julia language (Bezanson, Karpinski, Shah, & Edelman, 2012) 
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version 0.7.0. Models were compared by first computing unbiased marginal likelihoods for each 

subject via subject-level cross validation and then comparing these likelihoods between models 

(Asymmetric versus Symmetric) using paired sample ttests. 

 

To formally test for differences in learning rates (𝛼m, 𝛼J) we estimated the covariance matrix 

Σt over the group level parameters using the Hessian of the model likelihood (Oakes, 1999) and 

then used a contrast cvΣtc to compute the standard error on the difference 𝛼m - 𝛼J. 

 

Analysis branch 2 – Results 

A key feature of the learning previously observed in this task (Garrett & Daw, 2019) is that 

individuals adjusted their subjective estimates of the reward rate to a greater degree when the 

update was in a positive compared to negative direction. This learning asymmetry accounted for 

the order effect whereby participants changed capture rates between environments to a greater 

degree when richness improved (participants transitioned from downturn to boom) compared to 

when richness deteriorated (participants transitioned from boom to downturn), an effect we also 

observe here (see Fig. 1D). 

 

First, we tested if the same learning asymmetry was present in our data by fitting choices to two 

reinforcement learning models (Sutton & Barto, 1998): a Symmetric Model and an Asymmetric 

Model, exactly as done previously (Garrett & Daw, 2019). Both models used a delta-rule running 

average (Rescorla & Wagner, 1972) to update 𝜌 according to positive and negative prediction 

errors. Negative prediction errors were generated every second that elapsed without a reward (for 

example, each second of a time delay). Positive prediction errors were generated on seconds 
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immediately following a time delay when rewards were received. The difference between the 

Symmetric Model and the Asymmetric Model was whether there were one or two learning rate 

parameters. The Symmetric Model contained just a single learning parameter, 𝛼. This meant that 

𝜌 updated at the same rate regardless of whether the update was in a positive or a negative 

direction. The Asymmetric Model had two learning parameters: 𝛼m and 𝛼J. This enabled 𝜌 to 

update at a different rate, according to whether the update was in a positive (𝛼m) or a negative (𝛼J) 

direction. 

 

Replicating past findings (Garrett & Daw, 2019), the Asymmetric Model again provided a superior 

fit (see Table 1) to the choice data than the Symmetric Model (𝑡(19) = 	3.14, 𝑝 = .005, paired 

sample ttests comparing Leave One Out cross validation scores for the Asymmetry versus the 

Symmetric Model) with information integration again being biased in a positive direction (𝛼m 	>

	𝛼J:	𝑧	 = 	1.80, 𝑝 < 0.05	one-tailed). Prediction errors that caused 𝜌 to shift upwards (following 

receipt of a reward) had a greater impact than prediction errors that caused 𝜌 to shift downwards 

(following the absence of a reward).  

 

Table 1 

 

Next, we looked to relate our fine-grained trialwise measures of participants physiological state to 

learning from positive (𝛼m) and negative (𝛼J) prediction errors. To do this, we tested two further 

models: (1) Asymmetry Phys 𝛼m; (2) Asymmetry Phys 𝛼J, separately for HR, PEP and HF. Each 

model respectively allowed 𝛼m or 𝛼J to change trial as a function of participants trial to trial 

physiological state (see analysis branch 2 methods). Results are summarized in Table 2; in the case 
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of HF HRV, we observed evidence that learning from both positive (𝛼m) and negative (𝛼J) 

prediction errors was modulated by the physiological state (both p-values below . 040; paired 

sample ttests comparing both Asymmetry HF models versus Asymmetry model). The direction of 

the effect in both of these models was such that when HF HRV was increased, learning was 

reduced, i.e., 𝜌 shifted upwards more slowly following reward, or downward more slowly 

following absence of reward. In the case of HR, we observed no evidence that learning from either 

prediction error was modulated by the physiological state (both p-values above . 222). Finally, for 

PEP, we did not find evidence that learning from positive prediction errors (𝛼m) was modulated 

by its state (𝑝	 = 	 .135), however we did find evidence that learning from negative prediction 

errors (𝛼J) was modulated (𝑡(19) 	= 	2.18, 𝑝 = 0.042; paired sample ttests comparing both 

Asymmetry PEP models versus Asymmetry model). The direction of the effect in this model was 

such that negative prediction errors that caused 𝜌 to shift downwards (following the absence of a 

reward) changed beliefs to a greater extent when sympathetic drive was high (shorter PEP). In 

other words, participants were faster to learn that their environment was deteriorating when the 

sympathetic branch of the autonomic state was heightened.  

 

Analysis branch 3 - Methods  

Our analyses to this point reveal that perturbations in the reward rate are exclusively associated 

with changes in sympathetic tone, and that sympathetic activation increases learning symmetry 

between positive and negative information. We might accordingly expect sympathetic engagement 

to predict optimal performance in the prey selection task. Here we formalise optimal performance 

(𝐷 − 𝐵	𝑀𝑖𝑑) for each subject as the delta in the rate of mid-rank capture in the downturn 

environment, relative to the boom environment:  
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𝐷 − 𝐵	𝑀𝑖𝑑 = 	𝑝({2,3})'|}L)~�L − 𝑝({2,3})�||� 

Eq [11] 

 

Where 𝑝(𝑋)� is the proportion of items in vector 𝑋 captured in environment 𝑆. Higher positive 

𝐷 − 𝐵	𝑀𝑖𝑑 values accordingly reflect more optimal prey selection in the downturn environment, 

which predicts better task performance. We also computed a similar downturn-boom delta value 

for each subject for each physiological environment: 

	

𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒bd = 	
∑ 𝐻𝑅(𝑡)�
)X�
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)X�

𝑞 �||�
 

𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒`a` = 	
∑ 𝑃𝐸𝑃(𝑡)�
)X�

𝑞 '|}L)~�L
	−	

∑ 𝑃𝐸𝑃(𝑡)�
)X�

𝑞 �||�
 

𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒bc = 	
∑ 𝐻𝐹(𝑡)�
)X�

𝑞 '|}L)~�L
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Eq [12(a-c)] 

 

whereby each 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒 corresponds to the downturn-boom delta between the average of each 

trialwise physiological state from trial 𝑘 to 𝑞. Higher positive values reflect higher drive (i.e. 

increased contractility, increased HF power and increased HR) in the downturn environment. We 

probed the relationship between our assay of optimal performance and environment-wise 

physiology fluctuations with a linear model of each subject’s 𝐷 − 𝐵	𝑀𝑖𝑑 as a function of an 

intercept, and their 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒bd , 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒`a` and 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒bc values. Further, we ran 

two iterations of this model, one from the trialwise measures taken from trials in the first half (i.e. 
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0-360s) of the time spent in each environment (where we assumed the majority of learning is 

required) and as a control, another model using trials in the second half (360-720s) of the time 

spent in each state. In other words, in Eq [12(a-c)], for the first model 𝑘 was always 1 and 𝑞 was 

the last trial for each subject that started before 360s. For the second model, 𝑘 was the first trial 

that started after 360s, and 𝑞 was the subject’s final trial. Positive coefficients associate the 

engagement of the relevant physiological state with optimised learning. 

 

Analysis branch 3 - Results 

The linear model (see Fig. 1G) of 𝐷 − 𝐵	𝑀𝑖𝑑, as a function of the 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒 value for each 

physiological state, estimated from trials in the first half (early) of each reward state returned a 

significant positive coefficient for 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒`a` (𝛽 = .035, 𝑠. 𝑒. = 	 .016, 𝑝 = .046),	with 

neither coefficient for 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒bd nor 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒bc  reaching statistical significance (both 

p-values > .569). The model of 𝐷 − 𝐵	𝑀𝑖𝑑	using physiological 𝐷 − 𝐵	𝐷𝑟𝑖𝑣𝑒 values estimated 

from trials in the second half (late) of reward states did not return any significant coefficients (all 

p-values > .134). These final models suggest that the sympathetic engagement during crucial 

learning periods of a low reward environment predicts optimal behavioural adjustment. 
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Discussion 

 

Appraising sequential offers of reward relative to an unknown future opportunity and a time cost 

requires an optimization policy that draws on a belief about the richness characteristics of the 

current environment. Across a range of experiments, including reinforcement-learning tasks, belief 

updating paradigms and prey selection, information integration shows a positive bias (Eil & Rao, 

2011; Garrett & Sharot, 2014, 2017; Garrett, González-Garzón, Foulkes, Levita & Sharot, 2018; 

Garrett et al., 2014; Korn, Prehn, Park, Walter, & Heekeren, 2012; Kuzmanovic and Rigoux, 2017; 

Kuzmanovic, Jefferson & Vogeley, 2015, 2016; Lefebvre et al., 2017; Garrett & Daw, 2019). That 

is, the rate at which humans update their belief about a probability, association or reward rate is 

more sluggish if the new information carries a negative or aversive valence or telegraphs a 

deterioration of the current belief. In our prey selection task, subjects updated their belief about 

the rate of harvested reward with a similar bias toward reward over delay information. However, 

using simultaneous continuously recorded cardiac autonomic physiology measures, we reveal a 

uniquely adaptive role for the sympathetic branch in this situation. 

 

In our choice models (analysis 1), activation in both branches of the autonomic state blunted the 

positive association between value and choice, whether or not the immediate context was factored 

into the value of the offer, i.e., whether cost reflected the objective capture-time of an invader and 

reward reflected the objective harvested fuel, or whether these value dimensions were collapsed 

into a single variable that compared reward to the opportunity cost of capture in the current reward 

context. However, we observed contextual derivatives, i.e., changes in the rate of harvested 

reward, having a unique association with sympathetic over parasympathetic state derivatives. 
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Specifically, increases in contractility (shorter PEP) scaled with decreases in the average rate of 

reward harvested per second. No relationship emerged between contractility changes and absolute 

fluctuations in the environment’s richness, dissociating sympathetic drive from a more global 

richness-monitoring role that tracks outright contextual changes regardless of direction or valence. 

In our learning models (analysis 2), drive in the sympathetic system uniquely increased the rate of 

learning, and specifically when reward rate estimates were updated via negative prediction error. 

In contrast, parasympathetic drive aligned with decreased learning rates from both positive and 

negative prediction error. Finally, in analysis 3, we revealed that the unique deterioration specific 

relationship between sympathetic drive and learning was not exclusively a phenomenological 

response to a worsening environment, by observing a positive relationship between activation of 

the sympathetic state during crucial periods of the task – i.e., early in the downturn environment - 

and the deployment of optimal behavioural policy – i.e., increased capture of mid rank invaders.  

 

The only other study (Lenow et al., 2017) to probe the stress system in a human foraging task 

demonstrated an opposing relationship whereby stress increased overharvesting. Overharvesting 

occurs when an animal or human exploits proximal known resources beyond a threshold 

determining that better yields would be obtained by switching location. Such maladaptive 

perseveration indicates a biased low estimation of environmental quality. That this tendency is 

exacerbated by stress is interestingly both consistent and at odds with our finding that sympathetic 

stress adaptively increases the rate of negative information integration. Consistent, in so far as 

stress drives a pessimistic learning style in both cases, but at odds in terms of adaptivity. It could 

be the case that stress simply plays a general role in driving more pessimistic foraging behaviour 

and whether or not this proves adaptive is an arbitrary consequence of task design. However it’s 
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important to also note that Lenow et al (2017) assayed the hypothalamic-pituitary-adrenal axis of 

the stress response (HPA) via cortisol. Some studies show alignment between the sympathetic 

system and the HPA response to stressors (e.g., Bosch et al., 2009), others demonstrate task 

selectivity, particularly where subjects feel threat or a loss of control (see Dickerson and Kemeny 

(2004) for review) and others still argue a sequential framework that sees HPA respond once a 

threshold level of activation has been reached by the sympathetic system (Cacioppo et al., 1995; 

Bosch et al., 2009). 

 

The unique reactivity of the sympathetic branch of the autonomic system for learning that the rate 

of reward is deteriorating is consistent with division specific neural control of autonomic function. 

Meta-analysis of human neuroimaging data demonstrate that divergent brain networks regulate the 

sympathetic and parasympathetic branch, with control of the former including prefrontal and 

insular cortices, in addition to multiple areas within the medial wall of the mid and anterior 

cingulate (ACC; Beissner, Meissner, Bär, & Napadow, 2013; Dum, Levinthal & Strick, 2016). 

Further, animal tracer evidence (Dum et al., 2016) reveals direct synaptic inputs into the adrenal 

medulla - a key sympathetic site for catecholaminergic release - from both pregenual and 

subgenual portions of ACC. The specific mobilization of the sympathetic branch when the reward 

rate is deteriorating may offer a support mechanism for involvement of the ACC, a key node in a 

network associated with value-based decisions, specifically decisions that involve costs or 

negative affect (Walton et al, 2009, Shackman et al., 2011, Amemori & Graybiel, 2012). ACC has 

also been implicated amongst other prefrontal sites in tracking reward history (Seo, Barraclough 

& Dee, 2007; Bernacchia, Seo, Lee & Wang, 2011). This would align with previous 

neurophysiological work in human learning, which implicates heightened stress states – assayed 
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via electrodermal activity - with closer trialwise tracking of adjustments in information integration 

(Li et al., 2011), with selective stress-driven sensitivity increases to negative prediction errors, 

eradicating positive learning biases that emerge under calm conditions when stress levels are 

normal (Garrett et al., 2018). 

 

A curious finding emerged in our initial choice models, where drive in both sympathetic and 

parasympathetic branches was associated with low value capture; curious given the antagonistic 

manner in which the two branches of the autonomic state typically respond, e.g., a stressor will 

induce increased contractility of the heart and decreased vagal tone. This parallel activation could 

therefore reflect the two autonomic branches serving different functions in the prey selection task 

via different time constants. As predicted by MVT, and as evidenced by increases in mid-rank 

invader captures, the downturn reward state increased the subjective value of lower value items. 

Thus, having learned of a deteriorated environmental richness (associated with increased 

sympathetic activation), subjects now require a change in behaviour policy. In other words, 

subjects must overwrite the prepotent policy of avoiding mid-rank invaders, and switch to a policy 

of capturing them. Parasympathetic drive may therefore signal increased executive control 

requirements. Neurovisceral integration models of cognitive control (Thayer, Hansen, Saus-Rose 

& Johnsen, 2009) would support this interpretation. Under this model, prefrontal-subcortical 

inhibitory circuits that govern the control of thoughts and goal-directed behaviour provide 

inhibitory input to the heart via the vagus nerve (Benarroch, 1993; Ellis and Thayer, 2010). Later 

studies supported this model by demonstrating participants with higher resting state HF HRV 

perform better on task switching (Colzato, Jongkees, de Wit, van der Molen & Steenbergen, 2018), 

supporting the idea that vagal tone is important for adaptive responses to environmental demands 
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(Thayer & Lane, 2000). Human meta-analytic imaging data also support a vagal role in supporting 

behavioural adaptation; sympathetic neural sites are more associated with paradigms involving 

cognitive stress, while parasympathetic neural sites contribute where tasks involve somatosensory-

motor performance (Beissner et al., 2013). While no evidence exists in humans for such parallel 

autonomic drive, examples exist in the animal literature, such as parallel sympathetic and vagal 

outflow during the freeze response to conditioned fearful stimuli (Carrive, 2006). 

 

However, it's important to note that an alternative to this parallel processing framework is that the 

shorter PEP associated with low value capture was not driven by sympathetic drive, but was instead 

a downstream consequence of a dominant parasympathetic engagement. This interpretation is 

supported by the additional association we observed between decreased heart-rate and low value 

capture. Heart-rate can link the concurrent sympathetic and parasympathetic associations via the 

Frank-Starling mechanism, whereby a beat to beat deceleration in heart rate, which increases the 

preload, i.e., ventricular filling, causes increased contractility (shorter PEP) for reasons not 

mediated by the sympathetic system (Sherwood et al., 1990; Kuipers et al., 2017). In other words, 

capture of low value may be predominantly associated with increased vagal tone, which transiently 

slows the heart-rate, which in turn increases PEP via increased preload. Such an autonomic cascade 

would align with the directions we observed in the coefficients relating the physiology variables 

and value in our choice models. 

 

Ultimately, we can only speculate at this point with regard to the precise roles of the 

parasympathetic and sympathetic branch in making low value choices, and an aim for future 

research should be tasks that manipulate both learning and executive demands while recording 
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simultaneous measures of both branches of the autonomic state. It’s nonetheless important to 

clarify that the Frank-Starling effect does not apply to the primary association revealed by our 

learning models, models of reward rate derivatives, and model of choice optimization, all of which 

did not show concurrent influence of heart rate with other autonomic responses, and all of which 

point to the sympathetic system being uniquely involved in tracking deteriorations in reward rate, 

and that sympathetic drive during crucial learning windows is uniquely associated with optimal 

behavioural adaptation in the prey selection task.  

 

Cannon originally proposed that the body readies itself for a ‘fight or flight’ via secretions of the 

adrenal medulla, initiated by sympathetic neural projections from the thoracic spine. Our findings 

offer a potential parcellation of the modulatory role of the autonomic system in context specific 

decisions - sympathetic support of learning environmental deterioration, and, possibly, 

parasympathetic support of behaviour modification. 
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Figure 1 
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Figure Legends 

 

Figure 1: Panel A-C: Paradigm overview. Subjects decide whether to capture or release serially 

approaching invaders during their two-second approach to the cockpit. Releasing an invader 

progresses immediately to the next invader, while capturing the invader incurs a capture time cost, 

and fuel reward. Four invader identities (panel B) map onto a two-by-two reward-by-cost value 

space, and can be described categorically as hi (green), mid (blue), or low (brown) profitability. 

Subjects foraged for twelve minutes in each of two reward states states (panel C) with different 

proportions of invader profitability. Panel D: Replication of Garret and Daw (2019) learning 

asymmetry. Order of foraging (boom – downturn,BD; downturn – boom, DB) predicts optimal 

behavior (higher rank 3 captures in downturn relative to boom state). Learning deterioration of a 

reward state takes longer than learning state improvement. Error bars illustrate the standard error 

of the mean across subjects. Panel E: Relationship between autonomic states, value and capture. 

From a single model (see analysis branch 2) a series of significant two-way interactions is 

described where increased contractility (lower pep) and increased vagal tone (higher HF HRV) are 

both associated with increased capture of lower value (blue line) offers. In contrast, increased low 

value capture is associated with decreased heart-rate (HR). Here, value is described as in equation 

1, i.e., reward relative to opportunity cost in current objective reward state. As a guide, grey arrows 

above the plot describe whether increased capture for low value is associated with increased (+) 

or decreased (-) drive within the respective autonomic state. Panel F: PEP tracks deterioration in 

reward state. Only trialwise changes in PEP ('`a`
')

) significantly predicted trialwise changes in 

reward state ('_
')
	), positive coefficient indicates that decreases to the reward state, i.e., 

deterioration, increased contractility (shorter PEP). Panel G: PEP predicts optimal learning. 



Blockwise changes in percentage of rank 3 captures (downturn – boom) modeled as a function of 

blockwise changes in PEP (red), HF (yellow) and HR (grey); separately for mean physiological 

changes in the early portion (0 – 360s) and later (360-720s) of blocks. Optimal performance (higher 

D-B rank 3 score) predicted by higher relative drive in early downturn state, relative to early boom, 

only for PEP. *p<0.05; ***p<0.001 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: model fitting and parameters 

 

Model LOOCV α α+ α- β0 β1 

Symmetry Model 1230.54 -2.49  

[95% CI: 

± 0.54] 

 

 

 1.80 

[95% CI: 

± 0.66] 

0.15 

[95% CI: 

± 0.05] 

Asymmetry Model 1076.02** - 

 

-2.17  

[95% 

CI: 

± 0.38] 

-2.38 

[95% 

CI: 

± 0.49] 

-0.15 

[95% CI: 

± 1.79] 

0.13  

[95% CI: 

± 0.03] 

 

Table 1: model fitting and parameters for Symmetry and Asymmetry Models. The table 

summarizes for each model its fitting performances and its average parameters: LOOCV: leave 

one out cross validation scores, summed over participants; α: learning rate for both positive and 

negative prediction errors (Symmetric Model); α+: learning rate for positive prediction errors; α-

: average learning rate for negative prediction errors (Asymmetric Model); β0: softmax intercept 

(bias towards reject); β1: softmax slope (sensitivity to the difference in the value of rejecting versus 

the value of accepting an option). Data are expressed as mean and 95% confidence intervals 

(calculated as 1.96*standard error). Note: learning rates displayed here (α, α+ and α-) are 

untransformed parameters from the model fitting procedure; the function 0.5 + 0.5*erf(α/sqrt(2)) 

is subsequently applied to transform these to conventional learning rates within the range 0 to 1.  

**p<0.01 comparing LOOCV scores between the two models, paired sample ttest 

 



Model LOOCV α+ Intercept 

(α+) 

w(α+) α- Intercep

t (α-) 

w(α-) β0 β1 

PEP 

Modulate 

α+ 

1023.63  -2.60 

[95% CI: 

± 1.23] 

0.002 

[95% CI: 

± 0.02] 

-2.67 

[95% CI: 

± 0.40] 

  -0.19 

[95% CI: 

± 1.88] 

0.13 

[95% CI: 

± 0.03] 

PEP 

Modulate 

α- 

1008.02* -2.41 

[95% CI: 

± 0.21] 

   -2.11 

[95% CI: 

± 1.05] 

-0.007 

[95% CI: 

± 0.01] 

-0.30  

[95% CI: 

± 1.83] 

0.14 

[95% CI: 

± 0.03] 

HF 

Modulate 

α+ 

989.07*  -2.44 

[95% CI: 

± 0.27] 

-0.014 

[95% CI: 

± 0.06] 

-2.69 

[95% CI: 

± 0.33] 

  -0.71 

[95% CI: 

± 2.12] 

0.14 

[95% CI: 

± 0.03] 

HF 

Modulate 

α- 

993.60* -2.39 

[95% CI: 

± 0.27] 

   -2.04 

[95% CI: 

± 0.51] 

-0.09 

[95% CI: 

± 0.05] 

0.13 

[95% CI: 

± 1.91] 

0.15 

[95% CI: 

± 0.04] 

HR 

Modulate 

α+ 

1031.42  -2.05  

[95% CI: 

± 0.96] 

-0.49  

[95% CI: 

± 1.25] 

-2.71  

[95% CI: 

± 0.34] 

  -0.22  

[95% CI: 

± 1.79] 

0.13 

[95% CI: 

± 0.04] 

HR 

Modulate 

α- 

1082.25 -2.14  

[95% CI: 

± 0.34] 

   -1.50  

[95% CI: 

± 0.83] 

-1.09 

[95% CI: 

± 1.31] 

-0.33  

[95% CI: 

±1.97] 

0.13  

[95% CI: 

± 0.03] 

 

Table 2: model fitting and parameters for physiology modulated learning models. Each model 

allows either α+ or α- (untransformed) to be modulated on a trial by trial (t) basis according to one 

of the physiological readouts (PEP, HF or HR) according to an intercept and a slope (e.g., α+(t) = 

intercept + w*PEP(t)). A transfer function [0.5 + 0.5*erf(α/sqrt(2))] is then used to convert this to 

a conventional learning rate. The alternate learning rate is not modulated by physiology and is fit 



as a single free parameter. The table summarizes for each model its fitting performances and its 

average parameters: LOOCV: leave one out cross validation scores, summed over participants; 

α+: learning rate for positive prediction errors (untransformed); α-: average learning rate for 

negative prediction errors (untransformed); intercept: unstandardized intercept for regressing 

learning rate (α+ or α-) against physiology; w: unstandardized slope for regressing learning rate 

against physiology; β0: softmax intercept (bias towards reject); β1: softmax slope (sensitivity to the 

difference in the value of rejecting versus the value of accepting an option). Data are expressed as 

mean and 95% confidence intervals (calculated as 1.96*standard error).  

*p<0.05 comparing LOOCV scores against scores for the basic Asymmetry Model which does not 

include physiology measures (see Table 1), paired sample ttest 
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