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Abstract

High mutation rates select for the evolution of mutational robustness where popula-
tions inhabit flat fitness peaks with little epistasis, protecting them from lethal mutage-
nesis. Recent evidence suggests that a different effect protects small populations from
extinction via the accumulation of deleterious mutations. In drift robustness, popula-
tions tend to occupy peaks with steep flanks and positive epistasis between mutations.
However, it is not known what happens when mutation rates are high and population
sizes are small at the same time. Using a simple fitness model with variable epistasis,
we show that the equilibrium fitness has a minimum as a function of the parameter
that tunes epistasis, implying that this critical point is an unstable fixed point for
evolutionary trajectories. In agent-based simulations of evolution at finite mutation
rate, we demonstrate that when mutations can change epistasis, trajectories with a
subcritical value of epistasis evolve to decrease epistasis, while those with supercritical
initial points evolve towards higher epistasis. These two fixed points can be identified
with mutational and drift robustness, respectively.

Introduction

When a population is in mutation–selection balance, it is able to maintain its mean fit-
ness while still generating genetic variation that may increase its fit to the environment via
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adaptive mutations [1]. However, this balance between the evolutionary forces of selection
and mutation can sometimes be precarious. When mutation rates become too high, for
example, mutations can overpower selection leading to the extinction of a population via
lethal mutagenesis [2]. Similarly, when population size dwindles, selection can become so
weak that deleterious mutations cannot be eliminated, leading to fitness decline via Muller’s
ratchet [3] or population extinction through a mutational meltdown [4]. Populations can
adapt to high mutation rates and/or small population sizes by evolving “mutational robust-
ness” [5] or “drift robustness” [6–8]. Populations evolve mutational robustness by moving
onto flat fitness peaks, where they experience a reduction in maximum fitness counterbal-
anced by an increased fraction of new mutations that are either neutral or have a small
fitness effect [9,10]; this phenomenon is often referred to as the “survival-of-the-flattest” ef-
fect [9]. Robustness to drift, on the other hand, appears to involve favoring fitness peaks that
have steep flanks, enabled by mutations that are synergistic in their deleterious effect [6, 7],
while reducing (rather than increasing) the likelihood of mutations with small effect, and
increasing the fraction of mutations that are lethal. Interestingly, a recent re-analysis of the
survival-of-the-flattest effect has shown that an increase in the fraction of lethal mutations
is also seen in the response to high mutation rates [10], suggesting that resistance to drift
and resistance to mutations are intertwined (see also [8]).

The threat of high mutation rates and small population sizes to genetic survival is partic-
ularly real for populations that periodically undergo bottlenecks during transmission between
hosts and cannot rely on sexual recombination to protect against gene loss, such as the mi-
tochondria of the salivarian Trypanosomes T. brucei and T. vivax [11]. For those organisms,
population size often drops into the single digits [12] while mutation rates are elevated due to
oxidative stress [13]. High mutation rates and small population sizes are also important for
viral populations. Mutational robustness (and possibly drift robustness) has been observed
in some strains of the RNA virus vesicular stomatitis virus (VSV) that differ in the rate at
which deleterious mutations accumulate at small population size [14].

How genomes respond to mutations is determined to a large extent by how mutations
interact. In general, the effect of a mutation on host fitness is influenced by the genetic back-
ground within which that mutation occurs, a phenomenon known as epistasis [15]. Epistasis
has a direction: the effect of a pair of mutations can either be larger or smaller than what is
expected from a single mutation, so that the deleterious effect of two mutations can be ei-
ther amplified (synergistic), or buffered (antagonistic). The average direction between pairs
(also-called directional epistasis, see for example [16]) plays an important role in determining
linkage equilibria [17, 18], canalization [19, 20], as well as theoretical investigations of the
origin of sex [21–23]. Epistasis has been measured quantitatively for a number of model
organisms, and both antagonistic and synergistic trends have been observed [24–30].

When faced with changed conditions, one of the ways in which populations can adapt
is by changing the way information is encoded in the genome, leading to changes in epista-
sis [31]. Here we study the impact of epistasis on both drift and mutational robustness in
a simple model fitness landscape. We show that whether a population predominantly dis-
plays drift or mutational robustness is largely determined by the average value of directional
epistasis: populations occupying a peak with synergistic epistasis above a critical value will
tend to evolve towards drift-robust peaks (by moving towards peaks with increased positive
epistasis), while those inhabiting peaks with sub-critical epistasis will respond by lowering
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epistasis until mutations are mostly neutral, consistent with mutational robustness. Thus,
evolutionary trajectories for populations under evolutionary stress will bifurcate towards
drift-robust or mutationally-robust fixed points.

Model

We study a simple fitness landscape in which the wild type genotype resides on a fitness
peak with a height of 1, and the fitness of a k-mutant is given by

f(k) = e−sk
q

, (1)

where s = − log f(1) is the mean effect of a deleterious mutation to the wild type, q deter-
mines the degree of directional epistasis, and genotypes have a finite number of binary loci
L (see, e.g., [16])1. In such a model q = 1 signals absence of epistasis (i.e., the fitness land-
scape is multiplicative), q > 1 describes a peak with synergy between deleterious mutations
(synergistic epistasis), and q < 1 is indicative of buffering mutations (antagonistic epistasis).
When q > 1 we sometimes speak of negative epistasis (because the combined two-mutant
fitness is lower than the multiplicative expectation), while q < 1 indicates positive epistasis
(the double-mutant is higher in fitness than expected on the basis of the single-mutation
effect). Of course, a model that only treats the mean epistatic effect between mutations
using a single parameter q has significant limitations. In particular, such a model cannot
capture effects that are due to a distribution of pair-wise epistatic effects (something that
can be delivered by an NK model, for example [33]). Furthermore, we ignore here all the
subtleties of sexual reproduction, which can also affect how epistasis evolves. The loss of
realism is offset by our ability to control the parameters of such an effective model precisely
(s and q), which in more sophisticated models depend on each other. Furthermore, an anal-
ysis in terms of asexual processes is warranted for those genomic stretches in strong linkage
disequilibrium.

We can analytically calculate the evolutionary dynamics of a population on this fitness
landscape in the weak mutation limit, Nµ � 1, where N is the effective population size
and µ is the mutation rate per genome per generation. In this limit, the population is
monomorphic and individual mutations either rapidly go to fixation or are lost to drift [34].
The dynamics of an evolving population in this limit can be mathematically represented
as a Markov process, where the state of the Markov process at time t corresponds to the
predominant genotype present in the population at that time, and a transition to a new
state corresponds to the fixation of a new mutation [34, 35]. For sufficiently large times t,
the Markov process reaches stationarity, at which point its probability to reside in any given
state is provided by the equilibrium distribution pk. We can interpret pk as the probability
to observe the population centered around a genotype carrying k mutations at any point in
time.

1The present model in which fitness declines as a function of genetic distance from the wild-type (mod-
ulated by epistasis) gives rise to conclusions similar to what Fisher’s geometric model would predict, even
though in Fisher’s model the distance from wild-type is phenotypic rather than genetic [32].
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Assuming that we know the equilibrium distribution pk, we can calculate the population
mean fitness feq by averaging over the stationary distribution of k-mutants,

feq =
L∑

k=0

pkf(k) . (2)

Importantly, feq represents an average over time. It is the mean fitness in the population
when averaged both over all individuals in the population and over a long period of time.

The distribution pk can be calculated using the transition probability P (0 → k) in the
Markov process, solving the detailed balance equations [35]. More precisely, detailed balance
entails that in a process where the transitions i→ j and j → i are both possible, the number
of changes ni→j must equal the number nj→i. To obtain ni→j and ni→j, we calculate the
number of k-mutants that go to fixation, starting with the wild type sequence with fitness
f(0), and compare this with the number of k-mutants that are replaced by the wild type.
Using the Sella-Hirsh fixation formula [35] that is appropriate for a haploid Wright-Fisher
process, for a k-mutant with fitness f(k), we find

P (0→ k) =
1− 1/f(k)2

1− 1/f(k)2N
. (3)

The reverse rate is then

P (k → 0) =
1− f(k)2

1− f(k)2N
, (4)

so that the detailed balance condition becomes

p0

(
L

k

)
P (0→ k) = pkP (k → 0) . (5)

In Eq. (5), p0 is the equilibrium density of the wild-type, while pk is the (combined) equilib-
rium density of all individual k-mutants. Equations (3–5) then lead to the solution [35]

pk =

(
L

k

)
f(k)2N−2/Z . (6)

In this expression, Z is the partition function

Z =
L∑

k=0

(
L

k

)
f(k)2N−2 . (7)

For q = 1 we can obtain a closed-form expression for the equilibrium fitness,

feq =

(
1− 1− e−s

1 + e(2N−2)s

)L

≈
(

1− se−Ns

2 cosh(Ns)

)L

, (8)

that shows clearly the steep fitness drop with decreasing population size that is due to genetic
drift. But different values for q affect the fitness drop differently. In Fig. 1A, we can see
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A B

Figure 1: (A) Equilibrium fitness Eq. (2) as a function of population size N for strong
positive epistasis (q = 2.0, dark grey), no epistasis (q = 1.0, teal), and strong negative
epistasis (q = 0.5, light grey). (B) Equilibrium fitness as a function of epistasis q, for three
different population sizes (red: N = 10, dark red: N = 50, black: N = 100). In both panels,
we used s = 0.01 and L = 100. The equilibrium fitness tends to increase with increasing N
but displays a minimum at intermediate q.

the dependence of feq on the population size for the multiplicative model (q = 1), a model
with positive epistasis (q = 2.0), as well as the case of negative epistasis (q = 0.5), evaluated
at s = 0.01 and L = 100. The model suggests that while positive epistasis protects from
a fitness drop for moderate population sizes (higher mean equilibrium fitness), the drop
becomes severe once populations dwindle below 100. In fact, plotting feq against q as in
Fig. 1B reveals a fitness minimum as a function of q, suggesting that fitness loss via drift can
be prevented in two different ways: high positive epistasis or high negative epistasis, while
populations with weak or no epistasis appear to be the most vulnerable.

Two regimes: selection and neutral drift

The minimum in mean equilibrium fitness apparent in Fig. 1B can be seen as interpolating
between two regimes: the neutral drift regime and the selection regime. To formalize these
two regimes, we define the critical epistasis parameter q? at which mean fitness is minimal.
Then, the neutral drift regime corresponds to q � q? and the selection regime corresponds
to q � q?. In the selection regime, an organism’s fitness declines rapidly with increasing
number of mutations, and this rapid decline effectively limits the maximum number of mu-
tations an organism can carry. By contrast, in the neutral drift regime additional mutations
have increasingly smaller effects on organism fitness, and as a consequence selection cannot
effectively purge deleterious mutations.

When q � q?, selection cannot effectively purge deleterious mutations, and consequently
the evolutionary dynamics are dominated by neutral drift. We can estimate the mean equi-
librium fitness in the neutral regime by using

pk =

(
L

k

)
/Z , (9)

that is, the distribution given by Eq. (6) but with f(k) ≡ 1. To calculate the mean fitness
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Figure 2: Equilibrium fitness as a function of the epistasis parameter q for N = 10, s = 0.01,
and L = 100. The solid black line represents the full model, Eq. (2), while the dashed blue line
represents the drift-driven approximation, Eq. (9), and the dotted brown line represents the
selection-driven approximation, Eq. (10) with a maximum number of mutations kmax = 20.
For q . 0.8, the solid black line lies exactly on top of the dashed blue line, and for q & 1.7, the
solid black line lies exactly on top of the dotted brown line. Thus, the two approximations
represent the full model well in the two limits of small and large q, respectively.

under this distribution, we insert this expression for pk into Eq. (2), but note that we need
to keep the original expression for f(k) in Eq. (2). The idea is that in the drift regime fitness
differences are sufficiently small that they have no influence on the mutant distribution pk.
This does not mean, however, that all organisms have a fitness of 1. The result of this
derivation is the dashed line in Fig. 2, which agrees with the full model for sufficiently small
q.

On the other hand, when epistasis between deleterious mutations is synergistic (q � q?),
the number of mutations that a population can sustain before it goes extinct is limited
to some number kmax. We can model this limitation by imposing a maximum number of
mutations kmax,

f sel
eq =

kmax∑
k=0

f(k)pk, (10)

where kmax < L. This truncated mutation model agrees with the full solution for large q
(Fig. 2, dotted line).

One of the most striking features of the interplay between the neutral regime and the
selection regime is the appearance of a minimum mean fitness (as a function of epistasis)
where the drop of fitness is largest. The location of this minimum q? (reflecting the amount
of directional epistasis that leads to the largest fitness loss) depends on the population size,
the mean deleterious effect of mutations, and the number of loci (Fig. 3).

To estimate the epistasis coefficient at which the steady-state fitness is at its minimum,
we analyze the stationary distribution of fitness, Eq. (6), which apart from the normalization
constant Z consists of two factors,

(
L
k

)
and f(k)2N−2 = exp[−skq(2N − 2)]. As discussed
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Figure 3: Relationship between the critical epistasis value q? and the selection coefficient
s, for different population sizes N (L = 100 throughout). The lines represent analytically
derived q?, as given by Eq. (12). The dots represent q? values obtained by numerically
minimizing Eq. (2). Throughout the entire parameter range, Eq. (12) provides a good
approximation to the true location of the minimum.

in the derivations to Eqs. 9 and 10, these two factors represent neutral drift and selection,
respectively. Importantly, for most values of k the binomial coefficient

(
L
k

)
is much larger

than 1 whereas the selection term exp[−skq(2N − 2)] is much smaller than 1. Further, to
the left of the minimum the binomial coefficient dominates the product whereas to the right
of the minimum the selection term dominates. Thus, at the minimum we expect the two
factors to cancel, i.e., have a combined value of ∼ 1. To arrive at an expression that is
independent of k, we maximize

(
L
k

)
by setting k = L/2. Then, the condition for maximal

fitness loss (where drift maximally balances selection) becomes

1 =

(
L

L/2

)
e−s(L/2)

q? (2N−2). (11)

We can solve this equation for q? by using the Stirling approximation (log n! = n log n− n)
to expand the binomial coefficient. We obtain for the minimum q? that

q? ≈ log (L log 2[s(2N − 2)]−1)

log (L/2)
. (12)

We test this estimate by comparing it to the numerically inferred minimum obtained via
numerically minimizing Eq. (2) and find that Eq. (12) generally performs well, though it
has a tendency to overestimate the true value of q? by a few percent (Fig. 3). Importantly,
Eq. (12) captures the correct functional relationship between q? and the model parameters.
In particular, the location of q? is primarily determined by the product of s and N , and not
by their individual values. Further, because the product sN enters the expression for q? via
a double-log, q? changes very slowly even if sN changes by orders of magnitude.

Increased mutation rate exacerbates fitness loss in neutral regime

The theoretical results shown above were derived in the weak mutation limit where every
mutation is either lost or goes to fixation before another mutation occurs in the population.
In this section we study how finite mutation rates modify those results.
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We simulate finite populations on a single-peak fitness landscape at finite mutation rates
µ using stochastic simulation. The population evolves asexually, and the population size
is held constant over time for all simulations. For each combination of mutation rates and
epistasis parameters, we simulated populations sizesN = 10 andN = 100, as well as selection
coefficients s = 0.01 and s = 0.001. We recorded the mean fitness of the population over
a period of time after a population reached steady-state (see Methods), as a proxy for this
equilibrium fitness feq. The simulations of the evolutionary process on the fitness landscape
defined by Eq. (1) recover the theoretical results well for small mutation rates, as expected.
As the mutation rate increases, we see notable departures from the weak mutation limit for
the selection regime (larger q), while the neutral (drift) regime is largely unaffected by the
increased rates (Fig. 4).

In particular, we notice that the minimum of the equilibrium fitness shifts towards higher
q (Fig. 4). Furthermore, while for small mutation rates an increased epistasis protects from
the loss of fitness due to genetic drift (mean fitness does not drop appreciably), it is clear that
higher mutation rates negate this effect, and instead exacerbate the loss of fitness. Indeed,
the increased mutation rate mimics the effect of a smaller population size (see Fig. 1B),
which is expected as the effective population size decreases with mutation rate.

While the depressed equilibrium fitness suggests that there are two routes to withstand
genetic drift at small population sizes, it is not clear whether evolutionary trajectories could
indeed bifurcate.

Bifurcation analysis of survival strategies

The minimum in feq at q? suggests that if q were a dynamical variable, then q? represents an
unstable fixed point of the evolutionary dynamics. While q is not a dynamical variable in the
usual sense, we can simulate it by endowing each genotype with a particular value of q that
can be changed via mutation. In such a simulation, the statistics of the mutational process
affecting q (the rate of change µq as well as the mean change per mutation ∆q) matter, so
we test multiple different values for each.

It is worth pointing out that a genotype-dependent q appears to contradict the idea
of fitness optimization in a landscape with a fixed fitness function such as Eq. (1). Such a
function suggests that as a population climbs this peak, the parameters q and s are unaffected
by this climb. While this is true for such a simple fitness function, it does not hold for more
realistic evolutionary landscapes (for example in digital life [16,36–38]), where the mean effect
of mutations s and the directional epistasis q are not fixed properties of the landscape, but
instead emerge as properties of the local neighborhood in genetic space. As a consequence,
moving in this space (via mutations) will affect both s and q. We attempt to simulate part of
that dynamics by allowing q to adapt (while keeping s fixed). If selection favors a particular
value of epistasis, we should see a gradual change in the mean epistasis q̄ of a population.

In Fig. 5, we show how the mean epistasis parameter q̄ (averaged over sequences in the
population) changes over time when populations are seeded with different seed organisms
with fixed initial q. A bifurcation is indicated when trajectories move to different future
fixed points given different initial states. While we can see clear signs of a bifurcation when
plotting the mean trajectory in q-space over time (Fig. 5), viewing each trajectory separately
reveals significant variation among them. In particular, for trajectories that are initialized
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Figure 4: Comparison between theoretical equilibrium fitness and simulated equilibrium
fitness. The black line represents theoretical fitness of the population at steady state, Eq. (2).
The dots represent mean fitness of a population at steady state over 10 simulations for
different mutation rates (see legend). The error bars represent the standard error. For
almost all cases, error bars are smaller than the symbol size. (A–D) Theoretical fitness and
simulated fitness for different population sizes (N), epistasis coefficient (q), and selection
coefficient (s). Mutation rate seems to have no effect on equilibrium fitness to the left of
the fitness minimum, but to the right higher mutation rates lead to systematically lower
equilibrium fitness values.
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Figure 5: Mean epistasis q as a function of time t for different combinations of µq and ∆q
in simulations with evolving q. Each line corresponds to the mean over 10 replicates. The
labels on top of each panel specify the mutation rate of q, µq, and the mutation step size, ∆q.
The different colors correspond to different starting points of q. Each population had a fixed
q until t = 200, 000, for equilibration, and then q was allowed to evolve. Other simulation
parameters were µ = 0.01, N = 100, s = 0.01, and L = 100. We observe bistable behavior,
such that populations with a mean q below the critical value experience continued decline
in mean q, whereas populations with a mean q above the critical value do not.

with a q above the fixed point, some trajectories still move towards the low-q fixed point,
which results in the mean of trajectories to appear constant (for example, in Fig. 5C). We
discuss this phenomenon below.

Discussion

The dynamics of evolution in asexual population is well-understood in the common population-
genetic limits, namely vanishingly small mutation rate and large population (weak mutation
and strong selection). When mutation rates are high and selection is weak, the classic
theoretical results are undermined by new effects such as mutational robustness (effect of
large mutation rate) and drift robustness (effect of small population size), as anticipated
by generalized population-genetic models such as “free-fitness” evolution [35, 39–41]. Such
theoretical models posit that Darwinian evolution does not optimize reproduction rate, but
rather a combination of terms (the “free fitness”, in analogy to the free energy concept of
statistical physics) that includes the reproduction rate as well as a term proportional to
the inverse of population size and one proportional to mutation rate. In such theories, it is
possible to increase the free fitness by trading reproduction rate for robustness to mutations,
to drift, or both.

In most populations, we expect both mutational and drift robustness to contribute to
survival. For example, when the mutation rate is large, the effective population size is
diminished, so that both mutational and drift robustness are bound to be intertwined. The
mean directional epistasis between mutations plays a role in both effects. While fitness peaks
for mutationally robust populations tend to be flatter with little epistasis between mutations,
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Figure 6: Individual population trajectories for the simulations shown in the middle panel
of Fig. 5 (µq = 0.001,∆q = 0.001). Thin gray lines correspond to the evolution of individual
populations, and the thick colored lines trace the mean among the replicate populations, as
in Fig. 5. The labels on top of each panel indicate the initial population epistasis q(t = 0)
in that panel.

we also observe something akin to truncation selection [9,10]. In drift robustness, we observe
both an increase in neutral mutations as well as an increase in strongly deleterious and lethal
mutations, mediated by strong negative epistasis (q > 1).

Here, we have calculated the mean equilibrium fitness of a population in the limit of small
mutation rates using a simple fitness function with variable epistasis and tunable mutation
effect-size, and we have found a minimum as a function of the mean directional epistasis
parameter q that depends on population size. Stochastic simulations of adaptation on this
landscape suggest that the minimum also depends on mutation rate. The model further
suggests that there are two attractive fixed points for evolutionary dynamics, namely small
q where mutations become nearly neutral, and large q where deleterious mutations interact
synergistically. The low-q fixed point2 can be identified with mutational robustness (q ≈ 0).
In contrast, the q > 1 fixed point is reminiscent of drift robustness.

While the existence of a minimum in equilibrium fitness is suggestive of an unstable fixed
point q? at which evolutionary trajectories bifurcate towards a low-q and a high-q fixed point,
an agent-based simulation of such trajectories in a bit-string fitness model implementing
Eq. (1) but with variable q paints a more complicated picture. It is clear from inspection of
Eq. (1) that for every single sequence, a reduction of q while keeping k constant increases
fitness (as ∂f/∂q < 0), no matter what the mean q of the population. This means that
the population will sense an evolutionary pressure to reduce q independently of the mean
population epistasis. However, if q > q?, a secondary selective pressure appears that acts via
the fitness distribution of a sequence’s offspring. For sequences with q > q?, sequences with
higher q have on average off-spring with higher fitness than those with lower q, leading to a
second-order selective pressure to increase q. However, in any particular fitness trajectory,
there is a chance that a sequence with q < q? is among the offspring. Such a sequence may

2Note that while technically the low-q fixed point is q = 0, this value cannot be attained in any realistic
population as such a landscape is completely neutral (f = 1) in this limit.
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then go to fixation and abrogate the evolutionary trajectories leading towards a q > q?,
even though the selective pressure towards higher q is still present. We also expect that
the likelihood of mutations that create sequences with q < q? in the offspring distribution
depends on µq as well as ∆q. This is precisely what we observe in Figs. 5 and 6: while for
small q < q? the trend towards the mutationally robust fixed point is evident, at q > q? the
mean epistasis across 10 replicate experiments often shows a decrease (or remains constant)
even though theoretically we expect an approach towards the drift-robust fixed point. The
distribution of fitness trajectories shown in Fig. 6 shows that while some trajectories indeed
move towards higher q, the possibility of mutating towards q < q? leads to trajectories
in which the secondary selective pressure towards higher q is muted. Indeed, trajectories
towards q > q? are absent among the replicates with initial q < q?, reinforcing the conclusion
that a critical amount of epistasis separates a population’s response to evolutionary stress
either in a mutationally-robust, or a drift-robust manner.

Throughout this work, we have used relatively small population sizes around N = 100
or less, as any investigation of drift robustness necessitates sufficiently small populations
sizes such that drift can play a significant role in the evolutionary dynamics. However, our
analytical results provide a more nuanced picture of the conditions under which our results
may be relevant. First, we can see from Eq. (12) that the location of q? depends only on
the product sN (i.e., the scaled selection coefficient) for sufficiently large N . Thus, drift
robustness can act even for very large population sizes as long as s is sufficiently small.
However, this is only true with one additional caveat: There can only be a fitness minimum
separating the drift and selection regimes if the number of sites L is sufficiently large (on the
order of 1/s), so that a large number of deleterious mutations can accumulate. By contrast,
if both s and L are small, then the mean fitness is always approximately 1 and whether
mutations are present or absent in a genotype makes virtually no difference.

While it is difficult to extrapolate results obtained using the abstract fitness function
Eq. (1) to more complex landscapes in which many different peaks with different effect
sizes and directional epistasis exist at the same time, our results support the notion that
mutational robustness and drift robustness are indeed two different effects, which are likely
to be intertwined in realistic scenarios. In particular, it would be interesting to study the
response of experimental populations exposed to different mutation rates and populations,
something that is possible using strains of T. brucei, for example. In those eukaryotic
parasites, the directional epistasis between mutations in mitochondrial genes is controlled
in part by RNA editing leading to overlapping genes [42]. Because the rate of gene overlap
strongly correlates with directional epistasis, the present theory predicts that strains that
differ in the number of overlapping genes could take different evolutionary trajectories when
subjected to severe bottlenecks. While experimental evolution over prolonged time with
parasites through controlled bottlenecks is difficult, such experiments might reveal to us
these hidden dimensions of genomic adaptation.
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Methods

Evolutionary model with fixed epistasis

For all simulations, we implemented an individual-based bit string model. Each individual
was represented with a number of deleterious mutations it possesses. The number of delete-
rious mutations is k and k = 0, 1, ..., L. L is the maximum number of deleterious mutations
allowed in a population. A population was represented as a vector V of a length L+1. Each
bin Vk within a vector corresponded to the number of individuals with deleterious mutations
k. The fitness of an individual could be determined with equation fk = e−sk

q
, where s is the

selection coefficient, and q is the epistasis coefficient. At each time point, a population repro-
duces and mutates. A reproduction event increases or decreases the number of individuals
within each bin. The number of offspring was drawn from a multivariate distribution, and
the probability of reproduction for each bin was determined by the number of individuals
within a bin and a bin’s fitness. For all reproduction events, the population size was held
constant. After reproduction, a mutation event moves individuals up or down a bin. For
most simulations, the maximum number of moves up or down a bin was set to 3. When
mutation rate was set to 1, the maximum number of moves was set to 4. The probability of
mutating was calculated with

max(L−j,k)∑
i=max(0,k−j)

(
k

i

)(
L− k

i− k + j

)
u(j−k+2i)u(L+k−j−2i). (13)

Here, u is the per-site mutation rate, k is number of mutation an individual has at time t,
and j is the number of mutations an individual has at time t + 1. Using the probabilities
calculated from the equation above, the number of individuals that would move or stay were
drawn from a multivariate distribution. We simulated population sizes of 100 and 10. We
set selection coefficients to 0.01 and 0.001. We use mutation rates µ of 0.1, 0.01, 0.001,
and 0.0001 (mutation rate is defined as the expected number of mutations per genome per
duplication, µ = uL). For each combination of population size, selection coefficient, and
mutation rate, we simulated 10 replicates. After a population has reached an equilibrium at
t = 1, 500, 000, we calculated equilibrium fitness by taking the mean of population fitness
over the next 1,000,000 time steps.

Evolutionary model with evolving epistasis

Similarly to simulations with fixed epistasis, we implemented an individual-based bit-string
model to simulate populations with evolving epistasis. A population was represented with
two vectors. The length of each of the vectors corresponded to the size of the population,
and each element within a vector represented an individual. The first vector contained
a number of mutations (k) an individual possesses, and the second vector contained an
epistasis coefficient (q) an individual’s genome experiences. The fitness of an individual
could be determined with equation fk = e−sk

q
. At each time point, a population reproduced

and mutated. We reproduced a population by creating a new generation with Wright-Fisher
model. We mutated a population with a two step process. First, an individual either gained
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a mutation (k+ 1), lost a mutation (k− 1), or did not mutate. The probability of mutating
was calculated with equation 13. Second, each individual’s epistasis mutated. If epistasis
was set to change, it could equally likely increase or decrease by a fixed amount (∆q). We
set ∆q to remain the same across generations per one trajectory of an evolving population.
However, epistasis was only set to evolve after a population has reached an equilibrium (after
t = 200, 000).

Data analysis and code

We wrote our simulations in Python [43], using the NumPy [44] and SymPy [45] libraries for
numeric and symbolic manipulations of matrices, respectively. Downstream data analysis
and visualization was performed in R [46], making extensive use of the tidyverse family of
packages [47]. Our simulation and analysis code is available at
https://github.com/clauswilke/epistasis evolution/ and it is archived on Zenodo at
https://doi.org/10.5281/zenodo.3558802. Simulation datasets generated with this code
are archived in the Texas Data Repository at https://doi.org/10.18738/T8/GUNX76.
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