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Abstract 15 
The pontine nuclei play a crucial role in sleep-wake regulation. However, pontine ensemble 16 
dynamics underlying sleep regulation remain poorly understood. By monitoring population 17 
activity in multiple pontine and adjacent brainstem areas, here we show slow, state-predictive 18 
pontine ensemble dynamics and state-dependent interactions between the pons and the 19 
cortex in mice. On a timescale of seconds to minutes, pontine populations exhibit diverse 20 
firing across vigilance states, with some of these dynamics being attributed to cell type-21 
specific activity. Pontine population activity can predict pupil dilation and vigilance states: 22 
pontine neurons exhibit longer predictable power compared with hippocampal neurons. On 23 
a timescale of sub-seconds, pontine waves (P-waves) are observed as synchronous firing of 24 
pontine neurons primarily during rapid eye movement (REM) sleep, but also during non-REM 25 
(NREM) sleep. Crucially, P-waves functionally interact with cortical activity in a state-26 
dependent manner: during NREM sleep, hippocampal sharp wave-ripples (SWRs) precede P-27 
waves. On the other hand, P-waves during REM sleep are phase-locked with ongoing 28 
hippocampal theta oscillations and are followed by burst firing in a subset of hippocampal 29 
neurons. Thus, the directionality of functional interactions between the hippocampus and 30 
pons changes depending on sleep states. This state-dependent global coordination between 31 
pontine and cortical regions implicates distinct functional roles of sleep. 32 
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Introduction 36 
The sleep-wake cycle is a fundamental homeostatic process across animal species (Anafi et al., 37 
2019; Aulsebrook et al., 2016; Siegel, 2005). In addition to the physiological functions of sleep 38 
(Boyce et al., 2017; Brown et al., 2012; Imeri and Opp, 2009; Liu and Dan, 2019; Rasch and Born, 39 
2013; Sara, 2017; Siegel, 2005; Stickgold et al., 2001; Tononi and Cirelli, 2014), the abnormalities 40 
in the sleep-wake cycle are associated with various diseases and disorders (Brown et al., 2012; Irwin, 41 
2015; Mander et al., 2017; Musiek and Holtzman, 2016).  42 

Sleep states are typically classified into two major states, non-rapid eye movement (NREM) sleep 43 
and REM sleep. While numerous brain regions and cell-types have been identified as part of sleep-44 
regulating circuits (Adamantidis et al., 2007; Brown et al., 2012; Herice et al., 2019; Jouvet, 1962; 45 
Luppi et al., 2017; Moruzzi, 1963; Peever and Fuller, 2017; Scammell et al., 2017; Tsunematsu et 46 
al., 2014; Weber et al., 2015; Weber and Dan, 2016; Zhang et al., 2019), sleep-related neural firing 47 
and oscillations have also been described across cortical and subcortical regions (Brown et al., 2012; 48 
Buzsaki, 2015; Herice et al., 2019; Hobson et al., 1975; Liu and Dan, 2019; McCarley and Hobson, 49 
1971; Rasch and Born, 2013; Sakai, 1985; Scammell et al., 2017; Steriade, 2006; Weber et al., 50 
2015; Weber et al., 2018). For example, cortical slow oscillations, sleep spindles and hippocampal 51 
sharp wave-ripples (SWRs) are prominent neural events during NREM sleep whereas theta 52 
oscillations and ponto-geniculo-occipital (PGO) or pontine (P) waves are seen during REM sleep 53 
(Bizzi and Brooks, 1963; Buzsaki, 2002, 2015; Callaway et al., 1987; Datta, 1997; Jouvet, 1969; 54 
Montgomery et al., 2008; Rasch and Born, 2013; Steriade, 2006; Steriade et al., 1993b). Although 55 
neural ensemble dynamics underlying these sleep-related neural events in the cortex and the 56 
thalamus have been well described (Buzsaki, 2002, 2015; Steriade, 2006; Steriade et al., 1993a), 57 
little is known about population activity within the brainstem. Toward a better understanding of 58 
functional roles of sleep states, it is essential to characterize state-dependent changes in brainstem 59 
network activity and their functional interactions with cortical regions across sleep states. 60 

The brainstem, including the midbrain, pons and medulla has long been implicated in the sleep-wake 61 
cycle (Brown et al., 2012; Herice et al., 2019; Jouvet, 1962; Liu and Dan, 2019; Luppi et al., 2017; 62 
Rasch and Born, 2013; Saper et al., 2010; Scammell et al., 2017; Weber et al., 2015; Weber and 63 
Dan, 2016). It contains various nuclei, each of which consists of diverse cell-types and exhibits state-64 
dependent firing (Brown et al., 2012; Herice et al., 2019; Liu and Dan, 2019; Luppi et al., 2017; Rasch 65 
and Born, 2013; Scammell et al., 2017; Weber et al., 2015; Weber and Dan, 2016; Weber et al., 66 
2018; Zhang et al., 2019). However, it remains poorly explored how brainstem populations act in 67 
concert. For example, it is still unclear to what extent their activity exhibits anticipatory dynamics for 68 
ongoing vigilant states. In addition, it is also unclear whether and how brainstem populations 69 
functionally interact with various neural oscillations or events in the cortex across sleep states. 70 
Characterizing these physiological properties is crucial to uncover the roles of brainstem populations 71 
in sleep regulation and ultimately the functions of sleep states. 72 

In the present study, we adopt several in vivo electrophysiological approaches in mice to investigate 73 
state-dependent ensemble dynamics in the brainstem, mainly the pons. We show that on a timescale 74 
of seconds to minutes, pontine neurons show state-dependent firing with cell type-specificity. They 75 
also have a longer predictive power for vigilance states compared to those in the hippocampus. On 76 
a timescale of sub-seconds, we find state-dependent functional interactions between the pons and 77 
the cortex, with a focus on P-waves: during NREM sleep, the timing of P-waves is phase-locked with 78 
various cortical oscillations and hippocampal SWRs precede P-waves. During REM sleep, P-waves 79 
co-occur with hippocampal theta and precede burst firing of hippocampal neurons. These results 80 
imply that pontine populations not only play a regulatory role in the sleep-wake cycle, but also 81 
contribute to global state-dependent dynamics across brain regions. 82 
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Results 83 

Brainstem population recording across sleep-wake cycles 84 
To investigate the state-dependency of brainstem population activity, we inserted a silicon probe into 85 
the mouse brainstem in a head-fixed condition, together with simultaneous monitoring of cortical 86 
electroencephalograms (EEGs), electromyograms (EMGs) and pupil dilation (Fig. 1). Recorded 87 
regions spanned across multiple nuclei, including the sublaterodorsal nucleus, pontine reticular 88 
nucleus, medial preoptic nucleus, parabrachial nucleus, pontine central gray, laterodorsal tegmental 89 
nucleus and other surrounding areas according to post-mortem histological analysis 90 
(Supplementary Fig. 1). Although a majority of neurons were recorded from the pons, we refer to  91 
recorded populations as “brainstem” neurons because some  cells were located in the midbrain and 92 
medulla, but not the hypothalamus.  93 

The sleep-wake cycle was classified based on cortical EEGs and EMGs in every 4 second.  Based 94 
on the classified states, we observed clear state-dependency across measurements (Figs. 1C-F): 95 
wakefulness was characterized by high muscle tone (Fig. 1D) and pupil dilation (Fig. 1F) whereas 96 
NREM sleep was characterized by higher power of slow oscillations (Fig. 1C) and a wider dynamic 97 
range of pupil diameter (Fig. 1F). REM sleep was distinct from the other states, with respect to 98 
prominent theta oscillations (Fig. 1C), low muscle tone (Fig. 1D), higher brainstem LFPs power (Fig. 99 
1E) and fully constricted pupil (Fig. 1F). The higher power of brainstem LFPs during REM sleep was 100 
preserved across animals (7 animals, 9 recordings) (Supplementary Fig. 2).  101 

 

Figure 1. Population activity in the brainstem across the sleep-wake cycle.  

A. A diagram of experimental approaches, showing the insertion of a silicon probe for extracellular 
recording in the brainstem and a screw for cortical EEG recording.  Pupil dilation and EMGs were also 
monitored in a head-fixed condition. 
B. An example of multiple electrophysiological readings across three behavioral states, including local 
field potentials (LFPs) in the brainstem (locally subtracted LFP signals), brainstem single unit activities 
(SUAs), cortical EEG, EMG and normalized pupil diameter. REM, rapid eye movement sleep; NREM, 
non-REM sleep; AW, wakefulness. 
C and E. Power spectrum density of cortical EEGs (C) and brainstem LFPs (E) across three behavioral 
states. Spectrum was computed during every 4-sec window. Errors indicate SEM.  
D and F. Distribution of EMG signals (root mean square) (D) and normalized pupil diameter (F) across 
three behavioral states. Pupil diameter was normalized as z-score. 
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Neuronal spiking activity in the 102 
brainstem also demonstrated rich state-103 
dependent properties (Fig. 1B). For 104 
example, a subset of neurons fired 105 
exclusively during REM sleep, indicating 106 
state dependent population firing on a 107 
timescale of second-to-minute. In 108 
addition, we also observed frequent 109 
burst firing across neurons on a sub-110 
second timescale during REM sleep. In 111 
the following analysis, we investigate 112 
state-dependent brainstem neural 113 
ensembles on two distinct timescales: a 114 
long timescale of seconds to minutes 115 
(Figs. 2-4) and a short sub-second 116 
timescale (Figs. 5-7).     117 

 118 

Diversity and specificity of state-119 
dependent neural activity in the 120 
brainstem 121 
To assess state-dependent firing of 122 
individual neurons in the brainstem on a 123 
timescale of seconds to minutes, we 124 
performed in vivo silicon probe recording 125 
(Fig. 2A) from 7 head-fixed mice (9 126 
recording sessions) and examined how 127 
individual neurons change their firing 128 
across behavioral states. Figure 2B 129 
shows representative examples of state-130 
dependent firing from four 131 
simultaneously recorded neurons. Even 132 
within a particular state from the same 133 
animal, brainstem neurons show highly 134 
diverse and dynamic firing.  135 

To classify neurons according to their 136 
state-dependent firing, we computed 137 
mean firing rate in each state across 138 
neurons (n = 76) and applied a 139 
hierarchical clustering algorithm (Fig. 140 
2C). We identified four functional 141 
classes: awake (AW)-on neurons 142 
(23.7 %) were more active during 143 
wakefulness compared to sleep states. 144 
REM-off neurons (17.1 %) reduced their 145 
firing during REM sleep. REM/AW-on 146 
neurons (6.6 %) were quiet during 147 

 

Figure 2. Diverse and cell-type-specific state-
dependent firing in brainstem neurons. 

A. A diagram of an experimental approach,showing a 
silicon probe and a cortical EEG electrode.  
B. Four examples of simultaneously recording neurons.  
C. Classification of functional classes. Firing rates across 
three behavioral states were normalized as z-score for 
individual cells, then a hierarchical clustering was 
applied.  
D. A diagram of an experimental approach for fiber 
photometry-based Ca2+ imaging from pontine cholinergic 
neural populations in a freely behaving condition.  
E. An example of fluorescent signals across sleep-wake 
cycles. Fluorescent signals (470 nm) were normalized by 
off-peak (405 nm) signals. red, wakefulness, blue, 
NREM sleep, green, REM sleep.  
F.  Distributions of fluorescent signals across three 
behavioral states.  
G. Group statistics of average signals from 12 recordings 
from 4 mice (F2,32 = 5.12, p = 0.012, one-way ANOVA).  
*, p < 0.05 with post-hoc Tukey’s honest significant 
difference criterion. 
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NREM sleep. The largest class (52.6 %) was REM-on neurons, which showed the highest firing rate 148 
during REM sleep. Thus, we confirmed highly diverse state-dependent firing in the brainstem.  149 

Because the recorded neurons were distributed across various nuclei in the brainstem, it was difficult 150 
to determine their state-dependency in each nucleus. However, a subset of neurons was likely 151 
recorded from the cholinergic system, namely the pedunculopontine tegmental nucleus and the 152 
laterodorsal tegmental nucleus, which show AW-on or REM-on activity (Supplementary Fig. 3). To 153 
verify this, we performed in vivo fiber photometry of Ca2+ signals from pontine cholinergic neurons 154 
by expressing GCaMP6s in freely behaving mice (4 animals, 12 recording sessions) (Fig. 2D). 155 
Consistent with the data from in vivo electrophysiology, cholinergic populations showed larger 156 
activity during REM sleep and wakefulness, compared to NREM sleep (F2,32 = 5.12, p = 0.012, one-157 
way ANOVA) (Figs. 2E-G). Therefore, although state-dependency of individual neuronal firing in the 158 
brainstem is diverse, we also confirmed state-dependent and cell-type-specific firing. 159 

 160 

 

Figure 3. Pupil dilation across the sleep-wake cycle and prediction of pupil dilation by 
brainstem populations. 

A. Mean normalized (z-scored) pupil diameter across the sleep-wake cycle (n = 18, F2, 53 = 220.33, p 
< 0.0001. one-way ANOVA). ***, p < 0.0001, with post-hoc Tukey’s honest significant difference 
criterion.  
B. Pupil dilation at the transition of behavioral states (n = 18).  
C. Linear regression analysis to predict pupil diameter by individual neuronal activity. (top) Normalized 
(z-scored) cross-validated R2 values are color-coded across neurons. (bottom) The average of 
normalized cross-validated R2 values. Error, SEM.  
D. Multiple linear regression analysis to predict pupil diameter by simultaneously recorded neuronal 
activity. The average of normalized (z-scored) root mean square errors across datasets (n = 6). Error, 
SEM. 
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Behavioral correlates of the sleep-wake cycle and underlying neural activity in the 161 
brainstem 162 
Pupil diameter is an excellent biomarker of global brain state or arousal level (Aston-Jones and 163 
Cohen, 2005; Larsen and Waters, 2018; McGinley et al., 2015; Yuzgec et al., 2018) and activity in 164 
brainstem neurons, especially locus coeruleus norepinephrine neurons, correlates with pupil 165 
diameter (Aston-Jones and Cohen, 2005). However, it is still unclear how pupil dilation changes 166 
around the transition of sleep-wake states and to what extent brainstem neurons as a population 167 
can predict pupil dilation quantitatively. To address these issues, we analyzed datasets from head-168 
fixed mice with either silicon probe recordings from the brainstem (6 animals, 6 recording sessions) 169 
or the hippocampus (2 animals, 3 recording sessions), or field potential recording from the brainstem 170 
with a bipolar electrode (6 animals, 9 recording sessions).  171 

As previously reported (Yuzgec et al., 2018), mice in a head-fixed condition kept their eyes open, 172 
allowing us to monitor pupil dilation across states along with cortical EEG and EMG. The effects of 173 
behavioral states on pupil diameter was statistically significant (Fig. 3A, F2, 53 = 220.33, p < 0.0001, 174 
one-way ANOVA). More specifically, pupil diameter was constricted during REM sleep and dilated 175 
during wakefulness. 176 

With respect to pupil dilation dynamics across states (Fig. 3B and Supplementary Fig. 4), pupil 177 
diameter dynamically fluctuated during wakefulness and gradually constricted during NREM sleep. 178 
Typically, 10-20 sec before REM sleep, the pupil diameter would further decrease and was fully 179 
constricted during REM sleep, with rapid eye movement (Supplementary Fig. 4).  180 

Taking advantage of the simultaneous neural population recording and pupil monitoring, we 181 
examined how brainstem neurons can predict pupil dilation. First, we predicted pupil dilation based 182 
on the activity of individual neurons (Fig. 3C) by applying a linear regression analysis. Because it 183 
was expected that the preceding neural activity can better predict pupil dilation, we systematically 184 
shifted the temporal relationship between spike trains and pupil diameter (see Methods). As 185 
expected, most of the neurons showed asymmetric profiles of R2 values (Fig. 3C). Although 186 
individual profiles were diverse, the average profile showed predictive activity of brainstem neurons 187 
for pupil diameter around 10 seconds in advance. We also predicted pupil diameter based on 188 
simultaneously recorded brainstem neurons (Fig. 3D) by applying a multiple linear regression 189 
analysis. As with individual neurons, we observed an asymmetric profile of predictability. Thus, 190 
changes in brainstem neural activity preceded those in pupil diameter. Thereby, brainstem 191 
populations have predictive power for pupil diameter.    192 

Longer predictability of brainstem ensembles for vigilance states 193 
Next, we examined whether and to what extent brainstem neurons have predictive power for 194 
behavioral states. To address this, first, we extracted features of neural population activity by 195 
applying non-negative matrix factorization (NMF) (Lee and Seung, 1999; Onken et al., 2016) (Figs. 196 
4A and B). While overall firing rate reflected state changes (Fig. 4A), NMF could extract several 197 
modules which captured state-dependent firing patterns across neurons in an unsupervised fashion. 198 
For example, module 1 represented REM-on activity whereas module 2 was activated at the end of 199 
NREM sleep and module 3 was most active during wakefulness. Indeed, the weights in each module 200 
were consistent with state-dependency of individual neural firing (Supplementary Fig 5).  201 
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Besides modules capturing firing patterns across neurons, NMF also yielded activation coefficients 202 
of these modules. We noticed that dynamics of these activation coefficients show predictive activity: 203 
in the case of Figure 4A, the activation coefficients of modules 1 and 2 gradually built up during REM 204 
and NREM sleep, respectively. Therefore, we hypothesized that brainstem population activity 205 
exhibits not just state-dependency, but also predictive power for behavioral states (i.e., wakefulness, 206 
NREM sleep and REM sleep). To test this, we took the activation coefficients profiles from three 207 
modules and classified behavioral states by training a linear classifier, with systematic time shifting 208 
(Fig. 4C). Brainstem populations showed predictive activity 10s of seconds before transitions to all 209 
three behavioral states. To compare, we also performed the same analysis for hippocampal neural 210 
activity (Fig. 4C). Although hippocampal neurons also had predictive power for several tens of 211 
seconds, the profile was relatively short-lasting compared to that of brainstem neurons. Thus, 212 
brainstem neurons have long-lasting predictive power for behavioral states compared to 213 
hippocampal neurons.  214 

Brainstem population activity underlying P-waves during NREM and REM sleep 215 
On a timescale of seconds to minutes, brainstem neurons show diverse but specific state-dependent 216 
firing and have predictive power for pupil dilation and behavioral states. To investigate brainstem 217 
neural firing on a sub-second timescale, we focused on P-waves (Callaway et al., 1987; Datta, 1997). 218 
Although these sub-second neural events in the brainstem have long been recognized, the 219 
underlying neural ensembles and relations to other sleep-related oscillations are fully understood.  220 

Taking advantage of our dataset, we first examined whether the mouse pons exhibits P-waves like 221 
other mammalian species. We implanted a bipolar electrode in the pons (n = 16 recordings) (Fig. 222 
5A) and monitored LFPs by subtracting signals. During REM sleep, we observed large amplitude 223 
irregular neural events, which often appeared as a burst (Fig. 5B right). We also observed similar, 224 
but isolated neural events during NREM sleep (Fig. 5B left). These neural events appeared more 225 
often during REM sleep (p < 0.0001, two-tailed t-test) (Fig. 5C). Intriguingly, the frequency of these 226 
events gradually increased during NREM to REM sleep transitions and decreased during REM sleep 227 
to wakefulness transitions (Fig. 5D). Because these characteristics generally resemble to those in 228 

 
Figure 4. State-dependent brainstem population dynamics and their predictability for behavioral 
states.  

A. Simultaneously recorded brainstem neurons across states and modules extracted by non-negative 
matrix factorization (NMF). (top) Firing profiles of brainstem neurons. Firing rate was normalized by the 
maximum firing rate and the normalized values were color-coded. Dotted lines indicate the timing of 
state transitions. (bottom) Average population activity (gray) and activation coefficients for each module 
derived by NMF. Background colors indicate behavioral states (red, AW; blue, NREM; green, REM)..  

B. Weights across neurons for each module.  

C. Decoding of behavioral states from population activity. top, Decoding performance of brainstem and 
hippocampal neural populations for behavioral states as a function of time-shift. Error, SEM. bottom, 
Effect size as a function of time-shift.        
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other species (Callaway et al., 1987; 229 
Datta, 1997), we concluded that 230 
these neural events are P-waves in 231 
mice. 232 

P-waves can also be seen in silicon 233 
probe recordings (Fig. 5E). Similar 234 
large-amplitude, irregular neural 235 
events were observed in subtracted 236 
and filtered LFPs (Fig. 5F). Many of 237 
the simultaneously recorded 238 
brainstem neurons fired during P-239 
waves. To assess this tendency, we 240 
pooled the peri-event firing profiles of 241 
all recorded brainstem neurons 242 
around P-waves (Figs. 5G and H). 243 
The firing profiles were aligned at the 244 
trough timing of P-waves. A subset of 245 
neurons showed peak firing at the 246 
falling phase of P-waves. This 247 
tendency was consistent between 248 
NREM and REM sleep, suggesting 249 
that P-waves during NREM sleep (P-250 
wavesNREM) are equivalent to P-251 
waves during REM sleep (P-252 
wavesREM), with respect to neural 253 
firing within the brainstem.     254 

 255 

State-dependent functional 256 
interactions between P-waves 257 
and cortical activity 258 
Co-firing of a subset of brainstem 259 
neurons underlies P-waves during 260 
both NREM and REM sleep. What 261 
are the impacts of such neural events 262 
onto other brain regions? Are any 263 
other sleep-related neural events 264 
associated with P-waves? 265 
Addressing these questions would 266 
provide insight into functions of P-267 
waves. To this end, first, we 268 
investigated the relationship between 269 
P-waves and cortical EEGs (Fig. 6). 270 
During NREM sleep, P-waves were 271 
associated with multiple oscillatory 272 
components. Averaged P-wave-273 
triggered cortical EEGs exhibited 274 
multiple phasic components (Fig. 275 

 

Figure 5. Pontine waves (P-waves) in the mouse.  

A.  A diagram of an experimental approach, with showing a 
bipolar electrode in the pons and a cortical EEG electrode. 

B. Examples of P-waves during NREM (left) and REM sleep 
(right), with showing cortical EEG and EMG traces.  

C. Frequency of P-waves during NREM and REM sleep (n = 
16). ***, p < 0.0001, two-tailed t-test.  

D. Temporal evolution of P-wave frequency. Duration of each 
state episode was normalized to one. Error, SEM. 

E.  A diagram of the experimental approach showing a multi-
shank silicon probe and cortical EEG electrode. 

F. An example of P-wave, showing LFPs from a shank, 
filtered, subtracted LFPs, and multiple single unit activity. 

G and H. Pooled peri-event time histograms of brainstem 
single units relative to P-wave timing during NREM (G) and 
REM sleep (H). Time zero is the timing of P-waves (trough 
time). Each peri-event time histogram is color-coded by 
normalizing the maximum firing rate for each cell. The order 
of single units was sorted by the peak timing in each state. 
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6B), which consisted of delta (1-4 Hz), theta (~7 Hz) and beta (15~30 Hz) frequencies. To examine 276 
this trend further, we assessed the phase relationship between P-wave timing and cortical 277 
oscillations (Fig. 6C). We found significant phase preferences of P-wave timing (p < 0.01, Rayleigh’s 278 
test). We further assessed this phase-locking activity by computing phase modulation index, which 279 
is defined as the difference in proportions of P-waves between the preferred phase and opposite 280 
phase by dividing phases into four bins (e.g., the higher phase modulation index reflects the larger 281 
difference in the proportion of P-waves between two opposing phase bins) (Fig. 6D). We found larger 282 
phase modulation at delta and beta ranges. 283 

On the other hand, P-wavesREM exhibited distinct associations with cortical oscillations (Figs. 6B-D). 284 
We observed significant phase modulation at theta range (p < 0.01) (Fig. 6C), indicating that two 285 
prominent neural markers in REM sleep, that is, theta oscillations and P-waves, are temporally 286 
organized.      287 

 288 

Next, we investigated the relationship between P-waves and hippocampal activity (Fig. 7). We 289 
started by assessing the phase relationship between hippocampal LFPs and P-waves across 290 
frequency bands (Fig. 7B). While the timing of P-waves was phase-locked strongly at theta range 291 
(~7 Hz) in both sleep states, we also observed stronger phase modulations with high frequency 292 
components during REM sleep. We also examined underlying spiking activity in the hippocampus 293 
(Fig. 7C). Intriguingly, while a subset of hippocampal neurons fired most strongly around the timing 294 
of P-waves during both NREM and REM sleep, the temporal order between hippocampal neural 295 
firing and P-waves was state-dependent (Fig. 7C): during NREM sleep, co-firing of hippocampal 296 
neurons was followed by P-waves whereas P-waves were followed by burst firing in subset of 297 

 

Figure 6. State-dependent interactions between P-waves and cortical oscillations. 

A. A diagram of an experimental approachshowing a bipolar electrode in the pons and cortical EEG 
electrode.  

B. Examples of averaged event-triggered  cortical EEGs and scalograms during NREM (left) and REM 
sleep (right). Time zero is the timing of P-waves (trough time). 

C. Examples of phase-histograms. Cortical EEGs were filtered at certain frequency bands and the 
proportion of P-waves elicited in each phase bin was calculated. *, p < 0. 01, Rayleigh’s test. 

D. Phase modulations across frequency bands of cortical EEGs. The phase modulation index was 
defined as the proportion in the preferred bin (the bin with maximal percentage) minus that in the 
opposite bin (the bin 180° apart). Error, SEM. 

E. Effect size of states across frequency bands.  
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hippocampal neurons during REM sleep. To test the hypothesis that co-firing of hippocampal 298 
neurons during NREM sleep may reflect sharp-wave ripples (SWRs), we detected high-frequency 299 
ripple events based on hippocampal LFPs to assess the temporal relationship between ripples and 300 
P-wavesNREM (Fig. 7D). We found that ripple events preceded P-waves during NREM sleep. Thus, 301 
P-waves are strongly associated with hippocampal activity in both sleep states. However, their 302 
associations are state-dependent.      303 

  304 

 

Figure 7. State-dependent interactions between P-waves and hippocampal 
activity. 

A. A diagram of an experimental approach showing a multi-shank silicon probe 
in the hippocampus, a bipolar electrode in the pons and a cortical EEG 
electrode. 

B. Phase modulations across frequency bands of hippocampal LFPs (top) and 
effect size of states (bottom). Error, SEM.  

C. Pooled peri-event time histograms of hippocampal single units relative to P-
wave timing in NREM (top) and REM sleep (bottom). Time zero is the timing of 
P-waves (trough time). Each peri-event time histogram is color-coded by 
normalizing the maximum firing rate for each cell. The order of single units was 
sorted by the peak timing in each state. 

D. Frequency of hippocampal SWRs relative to P-wave timing in NREM sleep. 
Time zero is the timing of P-waves (trough time). 
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Discussion 305 
Although state-dependent neural ensembles have been intensively characterized in the cortex, little 306 
is known about the brainstem. Here, we investigated state-dependent neural population activity in 307 
the brainstem, primarily the pons, on two distinct timescales. On a timescale of seconds to minutes, 308 
brainstem neurons show diverse state-dependent firing, with cell-type-specificity in pontine 309 
cholinergic neurons. Brainstem activity can collectively predict pupil dilation as well as behavioral 310 
states. The ability to predict behavioral states is longer lasting compared to hippocampal neurons. 311 
These relatively slow dynamics may be related to observations from optogenetic experiments where 312 
the effect of optogenetic stimulation on state transitions often emerges tens of seconds after stimulus 313 
onset (Adamantidis et al., 2007; Tsunematsu et al., 2013; Tsunematsu et al., 2014; Van Dort et al., 314 
2015; Zhang et al., 2019). 315 

On a timescale of sub-seconds, we characterized P-waves in the mouse, with respect to underlying 316 
neural firing as well as associated cortical activity. P-waves typically appear during REM sleep and 317 
less during NREM sleep. P-waves in both sleep states are accompanied by synchronous firing of 318 
brainstem neurons, suggesting that underlying local activity during P-waves is similar between sleep 319 
states. However, their relationship to cortical neural events is state-dependent: the timing of P-320 
wavesNREM are phase-locked to various cortical oscillations and hippocampal SWRs precede P-321 
wavesNREM, suggesting that P-waves are part of the brain-wide neural events triggered by SWRs. 322 
During REM sleep, P-waves are phase-locked most strongly at theta frequency in both the neocortex 323 
and hippocampus. Crucially, P-waves precede firing in a subset of hippocampal neurons, suggesting 324 
that P-waves may trigger brain-wide neural events. Thus, P-waves are part of the state-dependent 325 
coordinated activity across the brain. 326 

Technical considerations 327 
State-dependent activity in the brainstem has been described over the past several decades by 328 
using various methods. The present study utilized a silicon probe to monitor neural activity from 329 
multiple neurons simultaneously at a high temporal resolution. This approach allowed us to (1) 330 
quantify state dependency of brainstem neural ensemble dynamics on a timescale of seconds to 331 
minutes and (2) characterize neural population activity underlying P-waves for the first time. However, 332 
because silicon probe recording alone has a limitation to identify cell types, additional approaches, 333 
such as Ca2+ imaging (Fig.  2) or electrophysiology with optogenetic tagging (Weber et al., 2015; 334 
Yague et al., 2017; Zhang et al., 2019), can complement this study to determine how specific types 335 
of neurons contribute to state-dependent neural ensembles in the brainstem.  336 

Slow dynamics of brainstem ensemble dynamics 337 
Our results in Figures 3 and 4 are consistent with the notion that brainstem populations play a 338 
regulatory role in pupil dilation/constriction (Aston-Jones and Cohen, 2005; Larsen and Waters, 339 
2018) as well as global brain states (Brown et al., 2012; Herice et al., 2019; Luppi et al., 2012; Weber 340 
and Dan, 2016). Crucially, the asymmetric profile of the predictability for pupil diameter suggests that 341 
the modulation of brainstem activity precedes pupil dilation, rather than simple correlations.  342 

The long lasting predictability of brainstem populations for behavioral states is not trivial. Intriguingly, 343 
the slow (30-60 sec) timescale recalls us the timescale observed in some of optogenetic 344 
experiments: although optogenetic stimulation can modulate neural firing at a millisecond resolution, 345 
the effect of optical stimulation on state transitions typically emerges tens of seconds after stimulus 346 
onset (Adamantidis et al., 2007; Van Dort et al., 2015; Zhang et al., 2019). The exact mechanism is 347 
still unknown, but we hypothesize that the modulation of neural activity in the brainstem occurs tens 348 
of seconds before global brain state transitions from one state to another. In other words, each state 349 
emerges from complex interactions across various regions of the brain. 350 
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P-waves in mice 351 
Although PGO or P-waves have been studies since the 1970s in several mammalian species, to the 352 
best of our knowledge, we are the first to characterize P-waves in mice. Given the growing 353 
importance of the mouse as an animal model for sleep research (Herice et al., 2019), the 354 
confirmation of P-waves in mice is important for further interrogation.  355 

We have noticed several similarities and differences in P-waves between mice and other species. 356 
First, the waveform of P-waves in mice is generally consistent with those in other species, such as 357 
cats (Callaway et al., 1987; Jeannerod et al., 1965) and rats (Datta, 1997; Farber et al., 1980), 358 
suggesting that underlying neural ensembles may be similar across species. Second, the frequency 359 
of P-waves during REM sleep is generally consistent across species (Datta, 1997). However, we 360 
have also noticed that the frequency of detected P-waves varied across our experiments. This may 361 
be explained by either the variation of REM sleep quality or the variation of electrode positions. 362 
Further analysis of P-waves across brainstem nuclei will provide insights into their relationship with 363 
sleep homeostasis and the mechanism of P-wave genesis. Third, the temporal evolution of P-wave 364 
frequency generally agrees between mice and cats: the frequency of PGO-waves gradually 365 
increases before the transition of NREM to REM sleep in cats (Steriade et al., 1989). Although it was 366 
weak, a similar tendency was observed in our recordings (Fig. 5D). Rather, the frequency of P-367 
waves increases during REM sleep. This subtle difference may be explained by anatomical 368 
differences between species (Datta, 2012). Finally, although P-waves appear more frequently during 369 
REM sleep, it is important to note that similar neural events also occur during NREM sleep. Given 370 
state-dependent interactions between P-waves and cortical oscillations (Figs. 6 and 7), the 371 
mechanisms of P-wave genesis are likely distinct.   372 

State-dependent global coordination of neural ensembles 373 
The temporal correlation between P-waves and hippocampal theta rhythms during REM sleep is 374 
consistent with previous studies in cats and rats (Karashima et al., 2004; Sakai et al., 1973). The 375 
phase-locked activity with fast gamma (80-110 Hz) in the hippocampus may relate to the recent 376 
observation that demonstrated the close association between local hippocampal theta and fast 377 
gamma events and brain-wide hyperemic events (Bergel et al., 2018). Because a number of 378 
hippocampal neurons fire immediately after P-waves (Fig. 7C), P-waves may play a role in the 379 
regulation of hippocampal ensemble dynamics as well as these brain-wide events during REM sleep. 380 

On the other hand, the picture during NREM sleep seems to be distinct. Because SWRs precedes 381 
P-waves (Fig. 7D) and SWRs are known to be generated within hippocampal circuits (Buzsaki, 2015), 382 
SWRs play a leading role in brain-wide sub-second neural events including P-waves. These state-383 
dependent brain-wide neural ensembles imply distinct functional roles of sleep states.    384 

  385 
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Methods 386 

Animals 387 
All experimental procedures were performed in accordance with the United Kingdom Animals 388 
(Scientific Procedures) Act of 1986 Home Office regulations and approved by the Home Office (PPL 389 
70/8883). A total of 21 mice were used in this study (Supplementary Table 1). Their genotypes 390 
consisted of wild-type, ChAT-IRES-Cre (JAX006410), or ChAT-IRES-Cre::Ai32 (JAX012569) on 391 
C57BL/6 background. ChAT-IRES-Cre::Ai32 mice were used to identify pontine cholinergic neurons 392 
post-hoc histological analysis. For brainstem silicon probe recordings, 6 animals were used (9 393 
recordings). For hippocampal silicon probe recordings, 2 animals were used (4 recordings). For P-394 
wave recordings, 10 animals were used, but 4 were excluded due to electrode mispositioning or lack 395 
of histological data. 16 datasets were used for further analysis. For pupil monitoring, 14 animals were 396 
used, but one animal was excluded due to their eye closure during recording. 18 datasets were used 397 
for further analysis. For fiber photometry, 4 animals were used (12 recordings). The detailed 398 
information of genotypes, age, sex, body weight and the number of recordings was provided in 399 
Supplementary Table 1. 400 

Surgical procedures 401 
For all in vivo electrophysiological experiments, mice were anesthetized with isoflurane (5% for 402 
induction, 1-2% for maintenance) and placed in a stereotaxic apparatus (SR-5M-HT, Narishige). 403 
Body temperature was maintained at 37°C with a feedback temperature controller (40–90–8C, FHC). 404 
Lidocaine (2%, 0.1-0.3 mg) was administered subcutaneously at the site of incision. Two bone 405 
screws were implanted on the skull as electrodes for cortical EEGs and twisted wires were inserted 406 
into the neck muscle as electrodes for EMG. Another bone screw was implanted on the cerebellum 407 
as a ground/reference.  408 

For pontine EEG recording, bipolar electrodes were bilaterally implanted in the medial parabrachial 409 
nucleus of the pons (5.1 mm posterior, 1.2 mm lateral from bregma, 3.2 mm depth from brain surface). 410 
The bipolar electrodes consisted of 75 or 100 µm diameter stainless wires (FE631309, Advent 411 
Research Materials and FE205850, Goodfellow, respectively). The tip of two glued wires were 412 
separated by 0.5-1.0 mm vertically to differentiate EEG signals. All electrodes were connected to 413 
connectors (SS-132-T-2-N, Semtec) and securely attached on the skull with dental cement. A pair 414 
of nuts was also attached on the skull with dental cement as a head-post. After the surgery, 415 
Carprofen (Rimadyl, 5 mg/kg) was administered intraperitoneously.  416 

For brainstem or hippocampal silicon probe recording, in addition to bone screws for cortical EEGs 417 
and a ground/reference, a pair of nuts was attached on the skull with dental cement as a head-post. 418 
After the head-post surgery, the animals were left to recover for at least 5 days. During the 419 
habituation period, the animals were placed in a head-fixed apparatus, by securing them by the 420 
head-post and placing the animal into an acrylic tube. This procedure was continued for at least 5 421 
days, during which the duration of head-fixed was gradually extended from 10 to 120 min. A day 422 
after the habituation period, the animals were anesthetized with isoflurane and a craniotomy to insert 423 
silicon probe the brainstem and hippocampus was performed. A craniotomy on the left hemisphere 424 
(4.0 mm to 5.5 mm posterior, 1.0 to 1.3 mm lateral from bregma) for the brainstem recording and on 425 
the left hemisphere (2.0 mm posterior, 1.5 mm lateral from bregma) for the hippocampus recording 426 
were performed, respectively. To protect and prevent the brain from drying, the surface was covered 427 
with biocompatible sealants (Kwik-Sil and Kwik-Cast, WPI). In the following day, the animals were 428 
placed in the head-fixed apparatus for electrophysiological recording as described below.  429 

For fiber photometry experiments, cortical EEG and EMG electrodes were implanted as described 430 
above and connected to a 2-by-3 piece connector (SLD-112-T-12, Semtec). Two additional anchor 431 
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screws were implanted bilaterally over the parietal bone to provide stability and a small portion of a 432 
drinking straw was placed horizontally between the anchor screws and the connector. The viral 433 
vector (AAV5-CAG-flex-GCaMP6s-WPRE-SV40, Penn Vector Core; titer 8.3x1012 GC/ml) was 434 
microinjected (500 nl at 30 ml/min) (Nanoliter2010, WPI) to target the PPT/LDT area (-4.5 mm 435 
posterior, 1 mm lateral from bregma and 3.25 mm depth from brain surface). The micropipette was 436 
left in the brain for an additional 10 minutes and then slowly raised up. An optic fiber cannula 437 
(CFM14L05, Thorlabs) was then implanted 3 mm deep from the surface of the brain and all 438 
components were secured to each other and the skull with dental cement.  439 

 440 

in vivo electrophysiological experiments in a head-fixed condition 441 
Experimental procedures were as described previously (Lyngholm and Sakata, 2019; Yague et al., 442 
2017). Briefly, all electrophysiological recordings were performed in a single-walled acoustic 443 
chamber (MAC-3, IAC Acoustics) with the interior covered with 3 inches of acoustic absorption foam. 444 
For pontine EEG recording, cortical EEG, EMG and pontine EEG signals were amplified (HST/32V-445 
G20 and PBX3, Plexon), filtered (0.1 Hz low cut), digitized at a sampling rate of 1 kHz and recorded 446 
using LabVIEW software (National Instruments). Recording was performed for 5 hrs from 9:00 to 447 
14:00. For brainstem or hippocampal silicon probe recording, a 32 channels 4 shank silicon probe 448 
(A4 x 8-5 mm-100-400-177 for brainstem recording or Buzsaki32 for hippocampus recording) was 449 
inserted slowly with a manual micromanipulator (SM-25A, Narishige) into the brainstem (3.75 mm – 450 
4.3 mm from the brain surface) or the hippocampus (1.55 mm – 1.85 mm from brain surface). Probes 451 
were inserted perpendicularly with respect to the brain surface. Broadband signals were amplified 452 
(HST/32V-G20 and PBX3, Plexon) relative to screw on the cerebellum, filtered (0.1 Hz low cut), 453 
digitized at 20 kHz and recorded using LabVIEW software (National Instruments). The recording 454 
session was initiated > 1 hr after the probe was inserted to its target depth, to stabilize neural signals. 455 
Recording preparation started from 8:00 and terminated by 15:00. For verification of silicon probe 456 
tracks, the rear of the probes were painted with DiI (∼10% in ethanol, D282, Invitrogen) before 457 
insertion. 458 

 459 

Pupil monitoring 460 
In a subset of in vivo electrophysiological experiments under a head-fixed condition, pupil was also 461 
monitored with an off-axis infrared (IR) light source (860 nm IR LED, RS Components). A camera 462 
(acA1920-25µm, Basler Ace) with a zoom lens (M0814-MP2, computar) and an IR filter (FGL780, 463 
Thorlabs) was placed at ~10 cm from the animal’s left eye. Images were collected at 25 Hz using a 464 
custom-written LabVIEW program and a National Instruments image grabber (PCIe-8242).   465 

 466 

in vivo fiber photometry experiments in a freely behaving condition 467 
The fiber photometry system consisted of two excitation channels. A 470 nm LED (M470L3, 468 
Thorlabs) was used to extract a Ca2+- dependent signal and a 405 nm LED (M405L3, Thorlabs) was 469 
used to obtain a Ca2+- independent isosbestic signal. Light from the LEDs was directed through 470 
excitation filters (FB470-10, FB405-10, Thorlabs) and a dichroic mirror to the fiber launch 471 
(DMLP425R and KT110/M, respectively), The fiber launch was connected to a multimode patch 472 
cable (M82L01, Thorlabs) which attached to an implantable optic fiber on the mouse via a ceramic 473 
mating sleeve (CFM14L05 and ADAF1, respectively). Light emissions from GCaMP6s expressing 474 
neurons were then collected back through the optic fiber, and directed through a detection path, 475 
passing a dichroic mirror (MD498) to reach a photodetector (NewFocus 2151, Newport). A National 476 
Instruments DAQ (NI USB-6211) and custom-written LabVIEW software was used to control the 477 
LEDs and acquire fluorescence data at 1 KHz. LEDs were alternately turned on and off at 40Hz in a 478 
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square pulse pattern. Electrophysiology signals were recorded at 1 KHz using an interface board 479 
(RHD2000, Intan Technologies) and connected to the mouse via an amplifier (RHD2132, Intan 480 
Technologies). Mice were habituated to being handled and tethered to the freely behaving system 481 
over several consecutive days. Mice were scruffed and the straw on the headcap slotted into a 482 
custom-made clamp, to keep the head still and absorb any vertical forces when connecting the 483 
electrophysiology and fibre photometry tethers to the headcap. Once connected, mice were placed 484 
in an open top Perspex box (21.5 cm x 47 cm x 20 cm depth) lined with absorbent paper, bedding 485 
and some baby food. Recordings lasted 4-5 hours to allow for multiple sleep/wake transitions.  486 

 487 

Histological analysis 488 
After electrophysiological experiments, animals were deeply anesthetized with mixture of 489 
pentobarbital and lidocaine and perfused transcardially with 20 mL saline followed by 20 mL 4% 490 
paraformaldehyde/0.1 M phosphatase buffer, pH 7.4. The brains were removed and immersed in 491 
the above fixative solution overnight at 4°C and then immersed in a 30% sucrose in phosphate buffer 492 
saline (PBS) for at least 2 days. The brains were quickly frozen and were cut into coronal or sagittal 493 
sections with a sliding microtome (SM2010R, Leica) or with a cryostat (CM3050, Leica) at a 494 
thickness of 50 or 100 µm. The brain sections were incubated with a NeuroTrace 500/525 Green-495 
Fluorescence (1/350, Invitrogen) or NeuroTrace 435/455 Blue-Fluorescence (1/100, Invitrogen) as 496 
Nissl staining in PBS for 20 min at room temperature (RT) followed by incubating with a blocking 497 
solution (10% normal goat serum, NGS, in 0.3% Triton X in PBS, PBST) for 1 hr at RT. For ChAT-498 
IRES-Cre::Ai32 mice, to confirm the position of ChAT-expressing neurons, we performed GFP and 499 
ChAT double staining. These brain sections were incubated with mouse anti-GFP antiserum (1/2000, 500 
ABCAM) and goat anti-ChAT antiserum (1/1000, Millipore) in 3% NGS in PBST for overnight at 4°C. 501 
After washing, sections were incubated with DyLight 488-labeled donkey anti-mouse IgG (1/500, 502 
Invitrogen) and Alexa 568-labeled donkey anti-goat IgG (1/500, Invitrogen) for 2 hrs at RT. After 503 
staining, sections were mounted on gelatin-coated or MAS-coated slides and cover-slipped with 50% 504 
glycerol in PBS. The sections were examined with a fluorescence microscope (BZ-9000, Keyence). 505 

 506 

Data analysis 507 
Sleep scoring 508 
Vigilance states were visually scored offline according to standard criteria (Radulovacki et al., 1984; 509 
Tobler et al., 1997). Wakefulness, NREM sleep, or REM sleep was determined in every 4 second 510 
based on cortical EEG and EMG signals using custom-made MATLAB GUI. For electrophysiological 511 
or fiber photometry experiments, the same individual scored all recordings for consistency.  512 

 513 

Pupil analysis 514 
Video files were processed by using DeepLabCut (Mathis et al., 2018). Each video file consisted of 515 
a 5 min segment of the recording, meaning that each experiment yields tens of video files. For 516 
training, a single file was chosen so that all states (AW, NREM sleep and REM sleep) could appear 517 
based on the sleep score. This initial step was critical to reflect the dynamic range of pupil 518 
dilation/constriction in each experiment. After choosing the file, 20 frames were randomly selected 519 
to manually mark the left and right edges of pupil. ImageJ was used for this manual marking. Using 520 
these labeled frames,  the deep convolutional neural network was then trained, and all video files 521 
were processed to detect the left and right edges of pupil. After processing, visual inspection was 522 
performed by generating a down-sampled (50-100 times) video clip. The same procedure was 523 
applied across all recordings. To compute pupil diameter, the distance between the left and right 524 
edges of the pupil was calculated across frames. The profile was filtered (low-pass filter at 0.5 Hz) 525 
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and z-scored. To compute eye movement, the middle point of pupil was determined and the distance 526 
of the middle points between two continuous frames was calculated. The profile was then normalized 527 
by the maximal value of the profile. From 20 pupil recordings (14 animals), 2 recordings from a single 528 
animal were excluded due to eye closure during most of recording period (Supplementary Table 529 
1).   530 

Fiber photometry signal processing 531 
Custom-written MATLAB scripts were used to compute dF/F signals. To extract 405 and 470 nm 532 
signals, illumination periods were determined by detecting synchronization pulses. For each 533 
illumination epoch, the median fluorescent signal was calculated. Because each illumination epoch 534 
consisted of pulses at 40 Hz, the fluorescent signals originally sampled at 1 kHz were effectively 535 
down-sampled to 40 Hz. Photobleaching was estimated by a single exponential curve and the 536 
difference between the fluorescent signal trace and the estimate was further low-pass filtered at 4 537 
Hz. To estimate moving artifacts, the filtered 405 nm signals were linearly scaled based on the filtered 538 
470 nm signals using a linear regression. To estimate dF/F signals, then the 470 nm signals were 539 
subtracted from the scaled 405 nm signals. In this study, the first 10 min segment was excluded for 540 
further analysis due to poor estimation of the photobleaching profile. 541 

Spike train and LFP/EEG analysis 542 
For spike sorting, Kilosort (Pachitariu et al., 2016) was used for automatic processing, followed by 543 
manual curation using phy (https://github.com/cortex-lab/phy). Clusters with ≥ 20 isolation distance 544 
were recognized as single units. The position of single units was estimated based on the channel 545 
providing the largest spike amplitude. All subsequent analysis were performed by using custom-546 
written codes (MATLAB, Mathworks).  547 

To categorize functional classes of single units, average firing rate for each behavioral state was 548 
calculated and a hierarchical clustering approach with the Ward’s method was applied.   549 

To predict the pupil diameter from single unit activity, spike trains were filtered (band-pass filter 550 
between 0.5 and 25 Hz) and then a liner regression analysis was performed. To evaluate the 551 
goodness-of-fit of the linear model, R-squared value was calculated. The same process was 552 
repeated by shifting the time relationship between spike trains and pupil diameter to determine an 553 
optimal time window to predict pupil diameter from spike train. Then the sequence of R-squared 554 
values were normalized by computing Z-scores.   555 

To predict the pupil diameter from simultaneously monitored multiple single unit activities, spike 556 
trains were filtered (band-pass filter between 0.5 and 25 Hz) and a linear regression model was 557 
trained by using a regularized support-vector machine algorithm with 10-hold cross-validation. Then 558 
cross-validated mean squared error (MSE) was computed. The same process was repeated by 559 
shifting the time relationship between spike trains and pupil diameter. The sequence of MSEs were 560 
normalized. 561 

To decompose neural population activity into "space" (neurons) modules and activation coefficients 562 
of these modules, we adopted non-negative matrix factorization (NMF) (Lee and Seung, 1999; 563 
Onken et al., 2016). First, spike trains were discretized by binning them into 4 sec intervals, which 564 
were equivalent to the time window for sleep scoring (see above). Let r(t) denote the resulting vector 565 
of population spike counts in bin t. We represented all population spike count vectors in a matrix R 566 
= [r(1) r(2) ... r(T)] of size N by T, where N denotes the number of neurons and T denotes the number 567 
of time bins. We then decomposed the matrix R into two non-negative matrices W of size N by m 568 
and H of size m by T as follows: R = WH, where m is the number of modules. To this end, we applied 569 
multiplicative update rules (Lee and Seung, 2001): 570 
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These update rules minimize the Kullback-Leibler divergence, corresponding to a Poisson noise 572 
assumption for the spike counts (Févotte and Cemgil, 2009). In each run, we randomly initialized W 573 
and H and applied the update rules up to 100 times or until convergence. For each decomposition, 574 
we performed 10 runs and selected the run with the lowest Kullback-Leibler divergence. The m 575 
columns of W then represented the m space modules and the m corresponding rows of H 576 
represented their activation coefficients for each time bin. 577 

To select the number of space modules m, we evaluated how many modules were needed so that 578 
additional modules did not significantly improve the decomposition. Our procedure was similar to 579 
that used in De Marchis et al. (De Marchis et al., 2013). We generated surrogate data by shuffling 580 
all elements of the matrix R and then decomposed the shuffled matrix like we previously 581 
decomposed the original R. We quantified the quality of a decomposition using the variance 582 
accounted for (VAF) (Clark et al., 2010). Starting with one module, we incremented the number of 583 
modules until the VAF of the unshuffled data decomposition did not exceed 3/4 of the average VAF 584 
of the decompositions of 100 shuffles. 585 

To classify three behavioral states based on the activation coefficients, a linear classifier was trained 586 
by fitting a multivariate normal density to each state with 10-fold cross validation. Then classification 587 
performance was calculated. This procedure was repeated by shifting the time relationship between 588 
the activation coefficients and sleep scores.  589 

To detect P-waves, two EEG or LFP signals in the pons were subtracted and filtered (5-30 Hz band-590 
pass filter). If the signals cross a threshold, the event was recognized as P-waves. To determine the 591 
detection threshold, a 1-min segment of the subtracted signals was extracted from the longest NREM 592 
sleep episode for a reliable estimation of stable noise level. The noise level was estimated by 593 
computing root-mean-square (RMS) values in every 10 ms time window. The threshold was defined 594 
as mean + 5 x standard deviation of the RMS values. The timing of P-waves was defined as the 595 
timing of the negative peak.   596 

The phase analysis was essentially the same as that described previously (Yague et al., 2017). 597 
Cortical EEG or hippocampal LFP signals were used for this analysis. For hippocampal LFPs, signals 598 
from two separate channels were subtracted to minimize volume conduction. To derive band-limited 599 
signals in different frequency bands, a Kaiser finite impulse response filter was used with sharp 600 
transition bandwidth of 1 Hz, pass-band ripple of 0.01 dB and stop-band attenuation of 50 dB. For 601 
filtering, MATLAB ‘filtfilt’ function was used. In the present study, the following bands were assessed: 602 
[2-4], [4-7], [7-10], [10-15], [15-20], [20-30], [30-50], [50-80], [80-110], and [110-150] Hz. The 603 
instantaneous phase of each band was estimated from the Hilbert transform and the phase of P-604 
wave occurrence was computed. To quantify the relationship between P-waves and EEG/LFP phase, 605 
the percentage of P-waves elicited in each phase bin was calculated. The phase modulation was 606 
defined as the percentage in the preferred bin (the bin with maximal percentage) minus that in the 607 
opposite bin (the bin 180° apart). Rayleigh’s test for non-uniformity of circular data was performed 608 
to assess the statistical significance (p < 0.01) of the non-uniformity of the P-wave vs EEG/LFP 609 
phase distribution using CircStats Toolbox (Berens, 2009).   610 

To detect ripples in the hippocampus, LFP signals from the channel which detected spiking activity 611 
were used. Band-limited signals at 140-250 Hz were computed by using a Kaiser finite impulse 612 
response filter (see above). Two sequences of RMS values were calculated with two different time 613 
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window: 2 sec (long RMS) and 8 ms (short RMS). If the short RMS exceeds 4 times larger long RMS 614 
for 8 ms, then signals were recognized as a ripple event.  615 

Statistical analysis 616 
Data was presented as mean ± SEM unless otherwise stated. Statistical analyses were performed 617 
with MATLAB. In Figs. 2G and 3A, one-way ANOVA with post-hoc Tukey’s Honest Significant 618 
Difference (HSD) criterion was performed. In Fig. 4C, repeated measures ANOVA was performed.  619 
In Fig. 5C, two-tailed t-test was performed. In Fig. 6C, Rayleigh’s test for non-uniformity was 620 
performed. To estimate effect size, Hedges’ g was computed using Measures of Effect Size Toolbox 621 
(Hentschke and Stuttgen, 2011).    622 

  623 
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