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Abstract

In recent years, genome-scan methods have been extensively used to detect signatures of selection and

introgression. Here, we compare the latest genome-scan methods with non-parametric k-nearest neighbors

(kNN) anomaly detection algorithms, while incorporating pairwise Fixation Index (FST ) estimates and

pairwise nucleotide differences (dxy) as features. Simulations were performed for both positive directional

selection and introgression, with varying parameters, such as recombination rates, population background

histories, the proportion of introgression, and the time of gene flow. We find that kNN-based methods

perform remarkably well while yielding stable results almost over the entire range of k. Furthermore,

the weighted-kNN algorithm for detecting directional selection, and the INFLO (Influenced Outlierness)

algorithm for detecting introgression, outperform recently published methods. We provide a GitHub

repository (pievos101/kNN-Genome-Scans) containing R source code to demonstrate how to apply the

proposed methods to real-world genomic data using the population genomics R-package PopGenome.

Key words: genome scans, selection, introgression, adaptation, SNPs.

Introduction

The last years have seen great advances in whole

genome sequencing and population genomics

methods to detect DNA fragments affected by

natural selection. Genomic regions under selection

are assumed to be rare and thus can be considered

as anomalies which deviate from the overall

population structure. These anomalies are of great

interest as they may act as a major force in the

adaptation of populations to their environments

during evolution. One of the most widely applied

statistics to detect such regions is the Fixation

Index (FST ), which was originally proposed as a

measure of population differentiation under the

Wright-Fisher model (Wright, 1949).

Several variations of the FST are used by the

population genomics community (Hudson et al.,

1992; Weir, 1996; Weir and Cockerham, 1984).

In general, a high FST can be an indication of

positive directional selection. However, in cases

where the neutral population background history

(the neutral distribution of FST ) is not known,

hypothesis testing of neutral evolution is nearly

impossible. This especially applies in cases where
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the population history deviates from the Wright-

Fisher model, or when hierarchical structure is

introduced to the system. In such cases, results

based on FST are no longer reliable (Excoffier

et al., 2009; Foll and Gaggiotti, 2008).

Also, the FST estimate was introduced as a

model parameter in Bayesian approaches, and

inferred via computationally intensive Markov-

Chain-Monte-Carlo (MCMC) simulations. In such

approaches, a common migrant pool is modeled

as a Dirichlet distribution, and the genome-wide

neutral signal is captured in a logistic regression

model with a specific parameter shared by all

populations. One of the most prominent methods

is implemented in the BayeScan software (Foll and

Gaggiotti, 2008), which is built upon the works

of Beaumont and Nichols (1996) and Beaumont

and Balding (2004). It has been reported,

however, that these methods suffer from a high

False Discovery Rate (FDR) (De Villemereuil

and Gaggiotti, 2015; Duforet-Frebourg et al.,

2014, 2015). More recently, published approaches

based on Principal Component Analyses (PCA)

address some of these shortcomings (Duforet-

Frebourg et al., 2015; Luu et al., 2017), and

at the same time they are computationally less

demanding.

Another topic of great interest is the

investigation of hybridization and the detection

of the related introgressed regions in whole

genome scans. Hybridization between species is

increasingly recognized as an evolutionary force in

which species share genetic information across the

species boundary. There has been an explosion

of available methods in this area in recent years.

Currently, the most widely applied methods are

the ABBA-BABA family of methods which are

based on a four-taxon system (Durand et al.,

2011; Green et al., 2010; Martin et al., 2014;

Pfeifer and Kapan, 2019), where the fourth taxon

acts as the outgroup. Since an outgroup is not

always available, several other approaches based

on a three-taxon system were also introduced

(Hibbins and Hahn, 2019; Rosenzweig et al.,

2016).

We believe that the ability of techniques based

on k-nearest neighbors (kNN) to detect genomic

signatures of selection or introgression is widely

underestimated, and detailed investigations on the

use of these techniques are yet to be reported.

The kNN-based approaches are among the

oldest unsupervised machine learning techniques

and have been widely applied in almost all

areas of data-driven research. In this paper,

we make use of kNN-based techniques while

incorporating pairwise FST estimates as features.

We study the ability of these approaches to

detect local signatures of directional selection and

introgression under a wide range of simulation

scenarios. In the case of introgression, we also use

pairwise nucleotide differences (dxy) as features

because it has been reported that FST estimates

produce inflated values when diversities within

populations are low, which may lead to false
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positives when searching for introgressed regions

within the genome (Cruickshank and Hahn, 2014).

We compare the accuracy of these approaches

with recently published genome-scan methods,

and finally showcase the use of the kNN

approaches to detect positively selected regions in

the human genomics data made available by the

1000 genomes project (Consortium et al., 2015).

New Approaches

kNN Techniques using FST as Features

The key idea of the kNN approach (Ramaswamy

et al., 2000) is to calculate the distances between a

given data point and its k nearest neighbors. Data

points at high distance from their neighborhood

are considered as outliers. In this work, we

use pairwise FST estimates, as proposed by

Hudson et al. (1992) and recommended by Bhatia

et al. (2013), and incorporate them as features

into kNN-based algorithms. Consequently, the

population pairwise FST estimates define a

genomic region as a data point embedded into

an m-dimensional numerical space, where m is

the total number of possible population pairwise

comparisons (m=np(np−1)/2), and np is the

total number of populations analyzed. Thus, each

genomic region is represented by an FST vector

of length m. The kNN score for a given genomic

region x is calculated as follows:

kNNk(x)=

∑
o∈Nk(x)

dk(x,o))

|Nk(x)|
, (1)

where Nk(x) is the k-nearest neighbor set of

the genomic region x, and dk(x,o) defines the

reachability distance between the genomic regions

x and o. It is calculated as the euclidean distance

between the pairwise FST vectors FST x and FST o:

dk(x,o)=
m∑
i=1

(FST xi−FST oi)
2. (2)

The basic kNN approach was slightly modified

by the weighted-kNN approach (Angiulli and

Pizzuti, 2002, 2005), which takes into account

the overall distance from a data point to its

neighborhood by calculating the sum of distances

instead of the arithmetic mean. Another way

of calculating the distances is implemented in

ODIN (Outlier Detection using Indegree Number)

(Hautamaki et al., 2004), which infers outliers

based on a kNN graph.

A wide range of methods have been developed to

also account for local outlierness. The best known

one is LOF (Local Outlier Factor) (Breunig

et al., 2000), which is based on the concept of

local reachability density (lrd) of the k-nearest

neighbors. In this context, a data point is

considered to be an outlier when its density is

much smaller than the densities of its neighbors.

The lrd is defined as

lrdk(x)=
1

kNNk(x)
, (3)
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and the LOF can be calculated as

LOFk(x)=
1

|Nk(x)|
∑

o∈Nk(x)

lrdk(o)

lrdk(x)
. (4)

The LOF algorithm and the corresponding lrd

concept was later modified in several ways. For

example, the simplified-LOF (Schubert et al.,

2014) uses the basic kNN distances instead of the

LOFs reachability distance. COF (Connectivity-

based Outlier Factor) (Tang et al., 2002) modifies

the density estimation of the simplified-LOF to

account for the connectedness of a neighborhood

via a minimum spanning tree (MST). Another

tool is called LoOP (Local Outlier Probabilities)

(Kriegel et al., 2009), which adopts normalized

local density scores based on the quadratic mean.

Therefore, the scores are strictly within the [0,1]

interval, and can be interpreted as p-values.

LDOF (Local Distance-based Outlier Factor)

(Zhang et al., 2009) uses the relative distance from

a data point to its neighbours, measuring how

many data points deviate from their scattered

neighbourhood. The ABOD approach addresses

the so-called “curse of dimensionality” problem

by comparing the angles between pairs of distance

vectors. FastABOD (Fast Angle-Based Outlier

Detection) is a faster variant of ABOD (Kriegel

et al., 2008). LDF (Local Density Factor)

(Latecki et al., 2007) replaces LOF’s density

estimation by a variable-width Gaussian kernel

density estimation (KDE). INFLO (Influenced

Outlierness) (Jin et al., 2006) takes into account

also the reverse nearest neighborhood set when

calculating the local density scores.

The Selection of k

In classification problems, the parameter k can

be inferred, for instance, by cross-validation.

However, it is well known that the inference of

an appropriate k in a purely unsupervised setting

is a challenging task, and highly depends on the

data analyzed. This challenge especially arises in

studies where the goal is the detection of local

outliers. However, here we use the kNN-based

methods for global outlier detection, with the aim

to distinguish between signals of neutral evolving

genomic regions and outlier regions subject to

selection or introgression. Thus, the choice of k

may not have a big influence on the outcomes as

long as the value is not too small.

There are two main requirements that an

adequate k should fulfill. First, the scores of

the corresponding kNN methods need to be

reasonable, which we think is fulfilled when the

ranks of the kNN scores approximately align

with the findings of well established methods.

Second, the k should be settled in a stable k

region. We refer to a stable k region when the

ranks of the corresponding kNN scores within

that region are highly correlated. To address the

former requirement we simply use FST estimates

as features for the kNN-based methods. FST is
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successfully applied in genomic scans to detect

positive selection as well as introgression. In this

work, we use the FST estimate as proposed by

Hudson et al. (1992) and recommended by Bhatia

et al. (2013). To address the latter requirement

we propose the following approach:

First, calculate the kNN-scores (si) for nk =100

sequentially sampled ks from [2,nr−1], where nr

is total number of genomic regions:

si =kNNk(i)(X) ∀i=1,...,nk (5)

Second, calculate Kendalls tau (τ) correlation

coefficients

corri =median[τ(si−1,si),τ(si,si+1),τ(si−1,si+1)]

∀i=2,...,nk−1

(6)

where

τ=
(number of concordant pairs)−(number of discordant pairs)

nr(nr−1)/2

(7)

Third, from the correlation vector corr infer the

longest connected k region with corr>0.90, and

define the median of that region as the optimal k.

Inferring the Type of Selection

The kNN-based methods are reporting on

anomalies as strong deviations from the overall

population structure. Once the outlier are

detected from the kNN-based outlier scores we

suggest to remove the corresponding pairwise

FST vectors and to calculate the medoid based

on the remaining data points. We argue that

the medoid is the most informative data point

and sufficiently reflects the overall population

structure. Subtracting the medoid from the

outlier pairwise FST vectors will indicate which

population or population pairs are affected by

selection. We are pointing to these resulting

vectors as the ∆FST selection effects. Positive

entries of ∆FST are an indication for positive

directional selection, whereas negative values

point to introgression (reduced diversity due

to gene-flow) or other types of selection

which significantly reduce the diversity between

populations, such as balancing selection.

Results

On the Power to Detect Positive Directional
Selection

Simulations under positive directional selection

indicate that the kNN-based methods are almost

unaffected by the choice of k (fig. 1). Unstable

results are only observed for either small or high

values of k, with respect to the total number

of genomic regions analyzed. In comparison

with established methods, such as pcadapt, the

kNN-based methods do remarkably well. As

expected, the FST results are fully comparable

for star-like genealogies (fig. 1A). However, as

soon as hierarchical structure is introduced to

the population history, our proposed competing

methods show overall higher AUC values. In

fact, the kNN-based techniques remain almost
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FIG. 1. Positive directional selection: varying the coalescent time to the ancestral population (tanc). The results
for the kNN-based methods using FST as features are shown for 100 sequentially sampled ks (k=[1,10,...,990,1000]) and
in comparison to the accuracy of FST , pcadapt and BlockFeST. Recombination rate is set to r=0.001. A. The simulations

are based on a star formed genealogie (t12 =0.1= tanc). B. The coalescent time to the ancestral population is tanc=0.5Ne.
C. The coalescent time to the ancestral population is tanc=0.7Ne. D. The coalescent time to the ancestral population is
tanc=0.9Ne.

unaffected when varying the coalescent times to

the ancestral population Panc (fig. 2A).

The weighted-kNN and simplified-LOF

methods are the strongest kNN-based methods,

both outperforming FST and pcadapt, and are

comparable to BlockFeST (fig. 1, fig. 2). However,

BlockFeST is based on computationally intensive

MCMC runs and for that reason might not be

generally applicable. Overall, the performance

of all methods under consideration decreases

with increasing recombination rates (fig. 4B).

This is expected because the signal of selection

gets eroded, which makes it harder to detect

these patterns. Based on our simulations, we

observed that the INFLO algorithm is the

weakest kNN-based method for the detection of

6
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FIG. 2. Detecting positive directional selection with
a computed k. The kNN methods using FST as features
compared to FST , pcadapt and BlockFeST.
A. Varying the coalescent time with the ancestral
population (tanc=[0.1,0.3,0.5,0.7,0.9]Ne generations ago).
The recombination rate is set to r=0.001. B. Varying
the recombination rates (r=[0.001,0.005,0.01,0.05]). The
coalescent time with the ancestral population is tanc=
0.7Ne generations ago.

positive directional selection, especially when the

recombination rates are high. Finally, INFLO

is the most sensitive to background population

histories as seen from fig. 2A.

On the Power to Detect Introgression

Simulations under uni-directional introgression

from the archaic population Panc to population P2

confirm that the kNN-based family of methods is

almost unaffected by the choice of k. Surprisingly,

we observed that in some cases FST outperforms

the other more specialized methods (fig. 3A).

However, we also report unstable results for FST

when varying the time of gene-flow (fig. 4B).

In fact, FST has been previously reported to

potentially lead to false positives when scanning

the genome for introgressed regions (Cruickshank

and Hahn, 2014; Rosenzweig et al., 2016). The

reason is that FST also takes into account the

within-population diversity and thus might has

inflated values at genomic locations with overall

low diversity. RNDmin is more stable in these

cases but not as powerful as the kNN-based

methods (fig. 4).

Interestingly, while INFLO is the weakest kNN-

based method for the detection of directional

selection, our simulations point at INFLO as

a potentially powerful algorithm to detect local

signatures of introgression (fig. 3). Increasing

the proportion of introgression has the same

effect on all kNN-based methods: the accuracy

increases and is nearly at 100% when f=0.5.

RNDmin has a much lower AUC value in that

case. Overall, similar as reported for the positive

directional selection cases, the weighted kNN

method and simplified-LOF show high accuracy

also in the introgression cases and provide stable
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FIG. 3. Varying the time of gene-flow (tGF ). The results for the kNN-based methods using FST as features shown

for 100 sequentially sampled kś (k=[1,10,...,990,1000]). Coalescent times are t12 =1Ne and tanc=2Ne generations ago.
Recombination rate is set to r=0.01 in all simulations. The outcome of the kNN-based methods are compared to FST and
RNDmin. The time of gene-flow is set to A. tGF =0.1Ne B. tGF =0.3Ne C. tGF =0.5Ne and D. tGF =0.8Ne generations
ago.

score rankings almost across the full range of k.

Also, in comparison to the other kNN approaches,

low and very high k values have the most negative

effect on ODIN and LDF. Using dxy as features

also give stable results for almost all choices

of k (Supplementary Fig. S1). However, in this

situation results are not as good as those of

kNN techniques with incorporated pairwise FST

estimates used as features. This is especially true

when the time of gene-flow is recent, and a low

fraction of introgression is shared by P2 and the

archaic population Panc (Supplementary Fig. S2).

Application to the 1000 Genomes Data

We also analyzed the 1000 Genomes Data

(Consortium et al., 2015) to demonstrate the

8
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FIG. 4. Detecting introgression with a computed k.
The accuracy of the kNN-methods using FST as features
compared to FST and RNDmin. Recombination rate is set
to r=0.01 in all simulations. A. Varying the fraction of
introgression (f=[0.1,0.2,0.3,0.5]) B. Varying the time of
gene-flow (tGF =[0.1,0.3,0.5,0.8]).

efficacy of our proposed kNN-based approaches

when processing real data. The employed dataset

is currently one of the largest publicly available

datasets, both in terms of number of samples

and number of SNPs, with 2,504 human samples

from 26 populations, and 77,832,252 SNPs in the

entire set of autosomes (phase 3). We applied

all implemented kNN-based techniques on a per-

autosome basis on the samples of the populations

CEU, CHB, and YRI, evaluating non-overlapping

sliding windows of size 100kb. Here, we summarize

the results for chromosome 2 by reporting the

windows all kNN tools agree on to be outlier

windows. We report on the nearest genes to

these outlier windows (Table 1). For each tool

we consider kNN scores within a conservative

0.005-quantile to define the outlier candidates.

Describing the properties and attributes of all

these genes may lead to the story-telling fallacy

(Pavlidis et al., 2012). We therefore report for

some of them what has been reported in literature.

The top-2 candidate genes for directional positive

selection are the protein coding genes EXOC6B

and EDAR (table 1, fig. 5). Baye et al.

(2009) report EXOC6B as a positively selected

gene. Intellectual disability and developmental

delay are associated with this gene. Our kNN

approaches suggest directional selection between

the YRI population and both the CEU and CHB

populations (table 1). Bryk et al. (2008) report

EDAR, which is a gene involved in ectodermal

development, increased in frequency in East Asia

due to positive selection 10,000 years ago. The

kNN-based approaches suggest the strongest effect

between CEU and CHB (table 1).

Another candidate gene is CNTNAP5 (outlier

window: 126.1-126.2Mb) and is confirmed by

all tools but ODIN. The selection effect is

∆FST = [CEU/CHB=0.39, CEU/YRI=0.01,

9
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FIG. 5. Genome scan plots of human chromosome 2. A-H. The kNN scores are shown along human chromosome 2
based on 100kb consecutive sliding windows. Red and Orange dots are the outliers found by that specific kNN tool (0.005-
quantile of the scores). Red dots indicate that all kNN tools agree on these outliers. I. A diagnostic plot is shown with the
pairwise rank correlations of the kNN scores while varying the parameter k.

CHB/YRI=0.25] suggesting directional selection

in the Asian population (CHB). An additional

candidate gene is FMNL2 (outlier window:

153.1-153.2Mb) and is exclusively reported by

the weighted-kNN and kNN algorithms with a

selection effect of ∆FST =[CEU/CHB=0.29,

CEU/YRI=0.11, CHB/YRI=0.33]). The

genomic region 104.7-104.8Mb is reported by

all tools but the weighted-kNN and kNN.

The nearest gene is LINC01127 and the

selection effect is ∆FST =[CEU/CHB=0.32,

CEU/YRI=0.21, CHB/YRI=-0.10]. Finally,

the ODIN method exclusively reports on the

ANTXR1 gene (outlier window: 69.2-69.3Mb) as

a candidate for selection with a selection effect

of ∆FST =[CEU/CHB=0.22, CEU/YRI=0.31,

CHB/YRI=-0.05] slightly pointing to positive

directional selection in the european population

(CEU) and a reduced diversity between CHB and
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Table 1. Human chromosome 2 outlier windows

Mb (start) Mb (end) Nearest genes FST ∆FST

[CEU/CHB,CEU/YRI,CHB/YRI] [CEU/CHB,CEU/YRI,CHB/YRI]

17.3 17.4 VSNL1, AC010880.1 [0.55,0.16,0.34] [0.46,0.02,0.19]

72.5 72.6 EXOC6B* [0.15,0.45,0.69] [0.06,0.31,0.54]

72.6 72.7 EXOC6B* [0.13,0.43,0.65] [0.03,0.29,0.50]

72.8 72.9 EXOC6B* [0.13,0.34,0.57] [0.03,0.20,0.42]

74.7 74.8 CCDC142*, M1AP* [0.53,0.37,0.22] [0.43,0.23,0.07]

104.1 104.2 LINC01127 [0.42,0.10,0.52] [0.37,-0.04,0.36]

109.1 109.2 GCC2*,LIMS1* [0.43,0.09,0.58] [0.33,-0.05,0.43]

109.2 109.3 LIMS1* [0.40,0.09,0.55] [0.30,-0.04,0.40]

109.5 109.6 EDAR* [0.63,0.32,0.34] [0.53,0.18,0.19]

195.6 195.7 LINC01790* [0.03,0.50,0.42] [-0.07,0.36,0.27]

NOTE.—Shown are the 0.005-quantile outlier 100kb windows all kNN-based methods agree with and the nearest genes to these windows. The

medoid FST vector is FST-medoid= [CEU/CHB=0.09, CEU/YRI=0.14, CEU/YRI=0.15]. The top-3 outlier windows are highlighted in bold.

*The outlier window overlaps with the gene

YRI.

Discussion

In this paper, we have investigated the usage of

the kNN-based algorithms to detect signatures of

selection and introgression in whole-genome scans.

Coalescent simulations under positive directional

selection and introgression show that the kNN-

based methods using FST as features perform

remarkably well, and are almost unaffected

by the choice of k. Furthermore, in contrast

to other genome-scan approaches, the kNN-

based approaches are based on simple concepts

while at the same time do not depend on

specific assumptions about the distributions of

the underlying data. The algorithm implemented

in the R-package pcadapt, for example, uses

a principal component transformation of the

data in combination with a linear regression

model, and thus assumes linear relationships

between populations. We have demonstrated

that the evaluated kNN-based methods achieve

qualitatively comparable performance with the

Bayesian approach implemented in the R-package

BlockFeST when detecting positive directional

selection, while being considerably less compute-

intensive. We showcased the capacity of the kNN-

based methods to analyze real-world data by

scanning the second chromosome of the human

genome (data available by the 1000 Genomes

project). We confirm known genes under positive

selection, like EDAR and EXOC6B, but also

report a set of new candidate genes, like LIMS1

and CNTNAP5. Outlier loci with significantly

reduced diversity, and thus potentially pointing

to gene-flow or balancing selection cannot be

reported for human chromosome 2. The only

candidate genes showing that type of signal are

the LINC01127 and ANTXR1 genes, with slightly

reduced diversity between the CHB and YRI

populations.

We have also discussed certain challenges that

arise when employing kNN-based techniques. A

widely known complication with the kNN-based
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FIG. 6. A sketched graphical illustration of positive
directional selection. A three population genealogy
with positive directional selection introduced at tsNe
generations ago in population P1.

methods is the choice of k, for which the optimal

value highly depends on the data. This problem

is not fully solved with our approaches. We

have shown, however, that under coalescent

simulations and a convincing set of population

models, the parameter k does not greatly

affect the accuracy of our approaches. Future

investigations will analyze the power of the kNN

techniques, both analytically as well as through

additional simulations over a wide range of

population models.

Materials and Methods

Simulation of Positive Directional Selection

We generated 950 neutral regions and 50 regions

under positive directional selection (fig. 6) with

the MSMS software tool (Ewing and Hermisson,

2010). The main calls to the MSMS program are

as follows:

Neutral model:

msms 300 950 -s 50 -N 10000 -I 3 100

100 100 0 -ej 0.1 2 1 -ej 0.3 3 1 -r 100

10000

Alternative model:

msms 300 50 -s 50 -N 10000 -I 3 100 100

100 0 -ej 0.1 2 1 -ej 0.3 3 1 -r 100

10000 -SAA 2000 -SaA 0 -SI 0.1 3 0.01 0 0

-SFC

The above calls generate three populations,

each comprising 100 samples (-I). The number of

SNPs per each region is 50 (-s), and the effective

population size is Ne =10000 (-N). The first

coalescent event of population P1 and P2 is fixed

at t12 =0.1Ne, and the second coalescent event is

set to t13 =0.2Ne generations ago. The selection

strength for homozygotes is s=0.1 (-SAA), where

selection starts at ts =0.1Ne generations ago

(-SI) in population P1. The recombination

rate is r=0.01 (-r). We varied recombination

rates (r=[0,0.001,0.005,0.01,0.05]) and the time

of coalescence with the ancestral population

(tanc =[0.1,0.3,0.5,0.7,0.9]). In each of these

simulations, we made use of the SFC parameter in

order to drop simulations when the selected allele

gets lost.

Simulation of Introgression

To generate introgression events (fig. 7) we follow

the simulation set-up of Martin et al. (2014). The

below calls to the MS software (Hudson, 2002)

generate the topologies:
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FIG. 7. A sketched graphical illustration of
introgression. A three population species tree with an
uni-directional introgression event from the ancestral
population Panc to population P2 introduced tGFNe
generations ago. The proportion of introgression is
indicated by f .

Neutral model:

ms 32 950 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3

1 -ej 3 4 1 -r 10 1000

Alternative model:

ms 32 50 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1

-ej 3 4 1 -es 0.1 2 0.7 -ej 0.1 5 3 -r 10

1000

These calls simulate 950 neutral regions

and 50 regions under introgression with four

populations including 8 samples each (-I). The

coalescent times are t12 =1Ne, t13 =2Ne and

t14 =3Ne generations ago. We introduced P3→P2

introgression tGF =0.1Ne generations ago (-es)

with a fraction of introgression f=0.3 (-es 0.1

2 [1-f]). The recombination rate was set to

r=0.01 in all simulations.

Finally, the nucleotide sequences were generated

using the seq-gen (Rambaut and Grass, 1997)

software with the following call:

seq-gen -mHKY -I 1000 -s 0.01

This generates 1kB sequences under the

Hasegawa-Kishino-Yano (-mHKY) substitution

model with a branch scaling factor of s=0.01

(-s). We varied the proportion of introgression

(f=[0.1,0.2,0.3,0.5]) and the time of gene-flow

(tGF =[0.1,0.3,0.5,0.8]).

Comparison with Other Methods

We selected a set of kNN-based techniques similar

to Campos et al. (2016), and compare them

with well established genome-scan methods.

For the selection cases, we contrast the kNN-

based algorithms to the method implemented

in the R-package pcadapt (Luu et al., 2017).

We computed the sum of log-p-values to label

a region to make it comparable to the other

methods under consideration. The number

of principal components was set to K=2. In

addition, we report the accuracy of the recently

published method implemented in the R-package

BlockFeST (Pfeifer and Lercher, 2018) using the

default parameters. In the introgression cases we

compare the kNN-based methods to the RNDmin

approach (Rosenzweig et al., 2016). In addition,

this method is compared to the kNN-based

techniques using dxy as features. Finally, we

relate all of these methods to the FST estimate

(Hudson et al., 1992) as a baseline approach.

Accuracy is measured by the Area Under the

Curve (AUC), as implemented in the R-package
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pROC (Robin et al., 2011).

Code Availability

We provide R scripts to perform kNN-based

whole genome scans, available at the GitHub

repository pievos101/kNN-Genome-Scans. The

code interfaces with the powerful genomics

R-package PopGenome (Pfeifer et al., 2014),

and enables flexible genomic scans with sliding

windows as well as genomic scans based on

genomic features such as genes, UTRs or exons.
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