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Abstract 30 

Multiscale Entropy (MSE) is increasingly used to characterize the temporal irregularity 31 
of neural time series patterns. Due to its’ presumed sensitivity to non-linear signal 32 
characteristics, MSE is typically considered a complementary measure of brain dynamics to 33 
signal variance and spectral power. However, the divergence between these measures is often 34 
unclear in application. Furthermore, it is commonly assumed (yet sparingly verified) that 35 
entropy estimated at specific time scales reflects signal irregularity at those precise time scales 36 
of brain function. We argue that such assumptions are not tenable. Using simulated and 37 
empirical electroencephalogram (EEG) data from 47 younger and 52 older adults, we indicate 38 
strong and previously underappreciated associations between MSE and spectral power, and 39 
highlight how these links preclude traditional interpretations of MSE time scales. Specifically, 40 
we show that the typical definition of temporal patterns via “similarity bounds” biases coarse 41 
MSE scales – that are thought to reflect slow dynamics – by high-frequency power. Moreover, 42 
we demonstrate that entropy at fine time scales – presumed to indicate fast dynamics – is highly 43 
sensitive to broadband spectral power, a measure dominated by low-frequency contributions. 44 
Jointly, these issues produce counterintuitive reflections of frequency-specific content on MSE 45 
time scales. We emphasize the resulting inferential problems in a conceptual replication of 46 
cross-sectional age differences at rest, in which scale-specific entropy age effects could be 47 
explained by spectral power differences at mismatched temporal scales. Furthermore, we 48 
demonstrate how such problems may be alleviated, resulting in the indication of scale-specific 49 
age differences in rhythmic irregularity. Finally, we recommend best practices that may better 50 
permit a valid estimation and interpretation of neural signal irregularity at time scales of 51 
interest. 52 

Author Summary 53 

Brain signals exhibit a wealth of dynamic patterns that that are thought to reflect 54 
ongoing neural computations. Multiscale sample entropy (MSE) intends to describe the 55 
temporal irregularity of such patterns at multiple time scales of brain function. However, the 56 
notion of time scales may often be unintuitive. In particular, traditional implementations of 57 
MSE are sensitive to slow fluctuations at fine time scales, and fast dynamics at coarse time 58 
scales. This conceptual divergence is often overlooked and may lead to difficulties in 59 
establishing the unique contribution of MSE to effects of interest over more established spectral 60 
power.  Using simulations and empirical data, we highlight these issues and provide evidence 61 
for their relevance for valid practical inferences. We further highlight that standard MSE and 62 
traditional spectral power are highly collinear in our example. Finally, our analyses indicate 63 
that spectral filtering can be used to estimate temporal signal irregularity at matching and 64 
intuitive time scales. To guide future studies, we make multiple recommendations based on our 65 
observations. We believe that following these suggestions may advance our understanding of 66 
the unique contributions of neural signal irregularity to neural and cognitive function across the 67 
lifespan.  68 
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 3 

Introduction 69 

Entropy as a measure of signal irregularity 70 

Neural times series exhibit a wealth of dynamic patterns that are thought to reflect 71 
ongoing neural computations. While some of these patterns consist of stereotypical deflections 72 
[e.g., periodic neural rhythms; 1, 2], the framework of nonlinear dynamics and complex systems 73 
increasingly emphasizes the importance of temporal irregularity (or variability) for healthy, 74 
efficient, and flexible neural function [3-6]. In parallel with such conceptual advances, 75 
multiscale entropy (MSE) [7, 8], an information-theoretic index that estimates sample entropy 76 
[9] at multiple time scales (Fig 1A), is increasingly applied to quantify the irregularity of neural 77 
time series across different brain states, the lifespan, and in relation to health and disease [10-78 
18].  79 

 80 

 81 
Fig 1. Traditional MSE estimation procedure. (A) Multi-scale entropy is an extension of sample entropy, an 82 
information-theoretic metric intended to describe the temporal irregularity of time series data. To estimate entropy 83 
for different time scales, the original signal is traditionally ‘coarse-grained’ using low-pass filters, followed by the 84 
calculation of the sample entropy. (B) Sample entropy estimation procedure. Sample entropy measures the 85 
conditional probability that two amplitude patterns of sequence length m (here, 2) remain similar (or matching) 86 
when the next sample m + 1 is included in the sequence. Hence, sample entropy increases with temporal 87 
irregularity, i.e., with the number of m-length patterns that do not remain similar at length m+1 (non-matches). To 88 
discretize temporal patterns from continuous amplitudes, similarity bounds (defined as a proportion r, here .5, of 89 
the signal variance) define amplitude ranges around each sample in a given template sequence, within which 90 
matching samples are identified in the rest of the time series. These are indicated by horizontal grey and green bars 91 
around the first three template samples. This procedure is applied to each template sequence in time, and the pattern 92 
counts are summed to estimate the signal’s entropy. The exemplary time series is a selected empirical EEG signal 93 
that was 40-Hz high-pass filtered with a 6th order Butterworth filter. 94 
 95 

In general, sample entropy quantifies the irregularity of temporal patterns in a given 96 
signal (for an example of its calculation, see Fig 1B). Whereas signals with a repetitive structure 97 
(like stationary signals or rhythmic fluctuations) are estimated as having low entropy, less 98 
predictable (or random) signals are ascribed high entropy. As an extension of this principle, 99 
MSE aims to describe temporal irregularity at different time scales – varying from fine (also 100 
referred to as ‘short’) to coarse (or ‘long’). In conventional Fourier analysis of time series data, 101 
time scales are quantified in terms of lower and higher frequencies present in the signal. This 102 
has been shown to be a principled time scale descriptor that relates at least in part to structural 103 
properties of the generating neural circuits [2, 19-22]. Given this meaningful definition of fast 104 
and slow events, it is a common assumption – including in guides to MSE’s interpretation in 105 
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 4 

neural applications [23] – that fine-to-coarse scales characterize the irregularity of high-to-low 106 
frequency dynamics, respectively. However, here we identify one methodological and one 107 
conceptual issue regarding the computation of MSE that challenge such a direct scale-to-108 
frequency mapping. First, we first show that the traditional definition of temporal patterns may 109 
lead to an influence of high frequencies on coarse entropy time scales (Issue 1). Second, we 110 
establish that the signal content at fine time scales renders entropy estimates sensitive to slow 111 
fluctuations (Issue 2).  112 

Due to its assessment of temporal patterns rather than oscillatory dynamics, MSE has 113 
been motivated as a complementary measure to spectral variance/power that is sensitive to non-114 
linear signal characteristics, such as phase shifts or cross-frequency coupling. [Note that we use 115 
the terms power and variance interchangeably, as a time domain signal’s broadband variance is 116 
proportional to the integral of its power spectral density, while narrowband variance in the time 117 
domain is identical to narrowband power in the spectral domain.] However, the overlap between 118 
these measures is often unclear in application because the mapping between spectral power and 119 
scale-wise entropy is ambiguous. Such ambiguity affects both the ability to compare individuals 120 
at any scale, and the ability to compare entropy levels across scales within person. We argue 121 
that a clarification of these issues is thus necessary for valid inferences of time scale-specific 122 
‘neural irregularity’ in a growing number of neuroscientific MSE applications. 123 

Issue 1: Global similarity bounds introduce a scale-dependent variance bias 124 

A principle assumption of sample entropy is that “the degree of irregularity of a complex 125 
signal […] cannot be entirely captured by the SD [i.e., standard deviation]” [24; i.e., square root 126 
of variance]. To ensure this, sample entropy is typically assessed relative to the standard 127 
deviation of the broadband signal to intuitively normalize the estimation of irregularity for 128 
overall distributional width [9, 10, see also 24]. In particular, the similarity bound – defined by 129 
a constant r, by which the signal SD is multiplied – reflects the tolerance for labeling time points 130 
as being similar or different, and thus, determines how liberal the algorithm is towards detecting 131 
‘matching patterns’ (Fig 2A-C). While wider bounds decrease entropy estimates, narrower 132 
bounds increase them [9, 25, 26] (S2 Figure). Crucially, the similarity bound is often not equally 133 
liberal across time scales, resulting in an entropy estimation bias. Specifically, to characterize 134 
temporal irregularity at coarser time scales, signals are typically successively low-pass filtered 135 
[or ‘coarse-grained’; 27] (Fig 2D), whereas the similarity bound typically (in its ‘Original’ 136 
implementation) is set only once – namely relative to the SD of the original unfiltered signal. 137 
Due to the progressive filtering, coarse-graining successively removes variance from the signal, 138 
yet a single global (i.e., scale-invariant) similarity bound remains based on the cumulative 139 
variance of all estimable frequencies (Fig 2D and E). As a result, the similarity bound becomes 140 
increasingly liberal towards pattern similarity at coarser scales, thereby reducing entropy 141 
estimates. This is most clearly illustrated by the observation that white noise signals, which 142 
should be characterized as equally random at each time scale, exhibit decreasing entropy values 143 
towards coarser scales when global similarity bounds are used [23, 25, 28]. This issue has been 144 
recognized previously [25], and provided a rationale for recomputing the similarity bound for 145 
each time scale [25, 29]. But despite the benefits of this refinement that was already proposed 146 
fifteen years ago, our review of the literature revealed that the use of global bounds remains 147 
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 5 

dominant in over 90% of neuroscientific MSE applications (see S1 File) and in previous 148 
validation work [23]. Thus, we argue that a comprehensive assessment of the resulting bias is 149 
needed to highlight this issue, both to clarify previous results and to guide future studies. 150 
  151 

  152 
Fig 2. Issue 1: Global similarity bounds systematically confound the entropy of coarse-scale signals with removed 153 
spectral power. (A, B) Similarity bounds constrain sample entropy as shown schematically for entropy estimation 154 
using narrower (A) and wider (B) similarity bounds. For clarity, only a subset of pattern matches (green ticks) and 155 
mismatches (red cross) are indicated for a sequence length m = 1(cf. Fig 1B). Wider, more liberal similarity bounds 156 
indicate more pattern matches than narrow, conservative bounds, thereby decreasing entropy. S2 Figure shows the 157 
empirical link between liberal similarity bounds and sample entropy estimates. (C-E) Divergence between global 158 
similarity bounds and scale-wise signal SD biases coarse-scale entropy. (C) Coarse-graining (see Figure 1A) 159 
progressively reduces variance from the original broadband signal (as shown in panel E). (D) At original sampling 160 
rates (i.e., time scale 1; marked red in panels DE and F), neural signal variance is usually composed of broadband 161 
1/f content and narrowband rhythmic peaks. Note that the x-axis plots decreasing frequencies to align with the 162 
traditional MSE low-pass filter direction. Towards coarser scales (e.g., scale 30; marked blue in CD and E), signal 163 
variance progressively decreases, as the signal becomes more specific to low frequencies. (E) Due to the systematic 164 
and cumulative reduction of variance in scale-wise signals, global similarity bounds become liberally biased 165 
(‘broad’). Critically, systematic differences in the magnitude of this bias (e.g., due to different spectral slopes) 166 
introduce systematic entropy differences at coarser scales.  167 

Issue 2: Traditional scale definitions lead to diffuse time scale reflections of spectral 168 
content 169 

While matched similarity bounds account for total signal variation at any specific time 170 
scale, sample entropy remains related to the variance structure (i.e., the power spectrum) of the 171 
signal as one indicator of its temporal irregularity [4]. Most neural signals exhibit a scale-free 172 
!

"#
 power distribution [30, 31], for which the exponent x indicates the prevalence of low-to-173 

high-frequency components in the signal. This ratio is also referred to as the power spectral 174 
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 6 

density (PSD) slope. Smaller exponents (indicating shallower PSD slopes) characterize signals 175 
with relatively strong high-frequency contributions (i.e., reduced temporal autocorrelations, 176 
and less predictability) compared to larger exponents indicating steeper slopes. This conceptual 177 
link between PSD slopes and sample entropy has been empirically observed both across 178 
subjects and wakefulness states [10, 13, 32]. However, the sensitivity of fine-scale entropy to 179 
PSD slopes – a multi-scale characteristic – highlights that the contribution of slow-to-fast signal 180 
content to fine-scale entropy is unclear. This ambiguity arises from the algorithm that derives 181 
scale-wise signals. In particular, ‘Original’ MSE implementations use low-pass filters to derive 182 
signals at coarser time scales, which increasingly constrains entropy estimates to slower 183 
fluctuations. However, the opposite is not true. Hence, finer time scales characterize the entire 184 
broadband signal (see Fig 3A) which represents a non-specific mixture of both low and high 185 
frequency elements [33, 34]. Crucially, the contribution of these elements to neural broadband 186 
signals is not equal. Rather, the variance of !

"#
 signals is dominated by the amplitude of low 187 

frequencies, which may thus disproportionally impact the assessment of pattern irregularity. As 188 
a result, broadband signal characterization challenges the assumption that fine-scale entropy 189 
mainly describes ‘fast’ events. More generally, this highlights large uncertainty regarding the 190 
frequencies that are represented at any particular time scale. 191 

 192 

 193 
Fig 3. Issue 2: Traditional scale derivation leads to diffuse time-scale reflections of spectral power. (A) Exemplary 194 
sample entropy estimation in the same empirical EEG signal shown in Fig 1B, but without application of a high-195 
pass filter, thus including dominant slow dynamics. See Figure 1B for a legend of the Figure elements. In brief, 196 
green elements indicate pattern matches at m+1, whereas red elements indicate pattern mismatches at m+1. In the 197 
presence of large low-frequency fluctuations, sample entropy at fine scales (here scale 1) may to a large extent 198 
characterize the temporal regularity of slow dynamics. Note that this is not a case of biased similarity bounds, but 199 
a desired adjustment to the large amplitude of slow fluctuations. The inset shows an extended segment (800 ms) 200 
of the same signal, allowing for an assessment of the slower signal dynamics. The red box indicates the 100 ms 201 
signal shown in the main plot. (B) A scale-wise filter implementation controls the scale-wise spectral content, as 202 
schematically shown here for the filter-dependent representation of spectral content at a time scale of 203 
approximately 10 Hz (for a note on the x-axis labeling, see methods: Calculation of multi-scale sample entropy). 204 
Traditionally, low-pass filters are used to derive coarser scales, which introduces a sensitivity to slower 205 
fluctuations. However, other filter implementations can be used to e.g., investigate the pattern irregularity of fast 206 
signal variations. No matter whether low or high pass filters are used, the spectral content influencing entropy 207 
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estimates is by definition not specific to any particular time scale; band-pass filters provide one viable solution 208 
permitting such specificity.   209 
 210 

Narrowband rhythmic structure projected into simulated noise signals [1, 30, 35] provides 211 
a well-controlled situation in which to study the mapping of neural irregularity to MSE time 212 
scales, due to their clearly defined time scale (i.e., period = inverse of frequency) and regularity 213 
(added rhythmic variance = more regular signal = decreased entropy). Moreover, rhythmic 214 
structure remains a dominant target signal in neuroscience for which entropy, as a 215 
complementary descriptor, should provide an anti-correlated reflection. However, previous 216 
simulations on the mapping of rhythms onto MSE time scales have produced puzzling results 217 
that have received little attention in the literature so far; while a linear mapping between 218 
rhythmic frequency and entropy time scales has been observed, added rhythmic regularity has 219 
been shown to increase entropy above baseline in previous work [4, 18, 36]. This notably 220 
contrasts with the intuition that added signal regularity should reduce observed entropy. Thus, 221 
additional simulations are necessary to assess the intuitive notion that rhythmicity should be 222 
anticorrelated with entropy, and to investigate whether this phenomenon indeed occurs at 223 
specific time scales, as previously assumed [4, 18, 36]. In particular, we probed the feasibility 224 
of using high-pass and band-pass filters (relative to standard low-pass options) to control the 225 
MSE time scales at which rhythmicity would be reflected (Fig 3B). 226 

In summary, Issue 1 suggests a coarse-scale bias introduced by global similarity bounds, 227 
and Issue 2 highlights broadband contributions to fine scales. In worst-case scenarios, a 228 
conjunction of these issues may lead to a reflection of fast dynamics in coarse entropy and a 229 
reflection of slow dynamics in fine entropy, thus paradoxically inverting the intuitive time scale 230 
interpretation. These issues have not been jointly assessed, however, and there is little evidence 231 
on the significance of these methodological issues for practical inferences.  232 

Impact of issues on practical inferences: age differences in neural irregularity at fast 233 
and slow time scales 234 

One principal application of multiscale entropy is in the domain of lifespan covariations 235 
between neural dynamics and structural brain network ontogeny [for a review see 37]. Within 236 
this line of inquiry, it has been proposed that structural brain alterations across the lifespan 237 
manifest as entropy differences at distinct time scales [12, 14, 32, 38]. Specifically, it has been 238 
suggested that coarse-scale entropy decreases and fine-scale entropy rises with increasing adult 239 
age as a reflection of senescent shifts from global to increasingly local information processing 240 
[12, 14]. Crucially, this mirrors observations based on spectral power, where age-related 241 
decreases in the magnitude of low-frequencies [39, 40] are accompanied by increases in high-242 
frequency activity, conceptualized also as a flattening of power spectral density (PSD) slopes 243 
[12, 14, 32, 41]. These results seemingly converge towards a joint decrease of low-frequency 244 
power and coarse-scale entropy in older adults (and an increase for both regarding fast 245 
dynamics). However, this correspondence is surprising upon closer inspection given the 246 
presumed anticorrelation between the magnitude of signal regularity (as indicated by spectral 247 
power) and entropy. Given concerns regarding the interpretation of entropy time scales, we 248 
assessed cross-sectional age effects on both MSE and spectral power as a test case for potential 249 
mismatches in scale-dependent inferences. 250 
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Current study 251 

Here, we aimed to address two issues of frequency-to-scale mapping and their relevance 252 
for empirical applications. First, we simulated variations in rhythmic power and frequency to 253 
probe the relationship between rhythmicity and MSE time scales. Primarily, our goal was to 254 
assess how global similarity bounds (Issue 1) and the scale-wise spectral content of the analyzed 255 
signal (Issue 2) influence the time scales at which added rhythmicity is observed. Then, we 256 
attempted to replicate reported cross-sectional age differences in human 257 
electroencephalography (EEG) signals recorded during rest. We assessed whether younger 258 
adults would show increased coarse scale and decreased fine-scale entropy compared to older 259 
adults, and we probed the extent to which such scale-specific results depend on mismatched 260 
spectral power via the issues above. Finally, we probed the possibility of deriving ‘frequency-261 
specific’ estimates of signal irregularity, and assessed age differences therein. We refer to 262 
traditional settings that use global bounds and low-pass filtering as ‘Original’ throughout the 263 
remainder of the manuscript (see methods for details). 264 

Results 265 

Simulations indicate a diffuse mapping between rhythmicity and MSE time scales as a 266 
function of global similarity bounds and spectral signal content 267 

Our first aim was to probe how scale-specific events, namely rhythms of a given frequency, 268 
modulate MSE time scales. For this purpose, we simulated 10 Hz (alpha) rhythms of varying 269 
power on top of pink noise and calculated the MSE of those signals. First, we probed the 270 
influence of global similarity bounds (as used in ‘Original’ implementations) on the time scale 271 
mapping (Issue 1). Crucially, as a result of using a global similarity bound for all time scales, 272 
strong rhythmic power decreased MSE estimates across a range of time scales, including time 273 
scales at which added 10 Hz rhythmicity did not contribute to the scale-wise signal (Fig 4A, 274 
upper panel). As highlighted in Issue 1, this can be explained by a general increase in the 275 
liberality of bounds (Fig 4A, lower panel) that introduced a bias on coarse-scale entropy below 276 
10 Hz. In contrast, when scale-dependent similarity bounds were used with low-pass filters (Fig 277 
4BC), strong rhythmicity systematically affected entropy only at finer time scales than the 278 
simulated frequency (i.e., to the left of the vertical line in Fig 4C, albeit in a diffuse manner, 279 
which we will examine next).  280 
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281 
Fig 4. Rhythmic power manifests at different time scales depending on filter choice and similarity bound. 282 
Simulations indicate at which time scales the addition of varying magnitudes of stereotypic narrowband 10 Hz 283 
rhythms (blue-to-red line gradient) modulate entropy compared to the baseline 1/f signal (black line). Simulations 284 
indicate that increases in rhythmicity strongly reduce entropy estimates alongside increases in the similarity bound. 285 
The affected scales vary as a function of global vs. scale-dependent similarity bounds and the spectral filtering 286 
used to derive coarser time scales. Crucially, in ‘Original’ implementations, added narrowband rhythmicity 287 
decreased entropy with low scale-specificity, in line with global increases in the similarity bound (A). In contrast, 288 
the use of scale-varying thresholds (B) and dedicated filtering (C-E) increased specificity regarding the time scales 289 
at which rhythmicity was reflected. Note that timescales are presented in Hz to facilitate the visual assessment of 290 
rhythmic modulation. For all versions except high pass, the scale represents the upper Nyquist bound of the 291 
embedding dimension. For the high pass variant, the scale represents the high pass frequency (see methods). Time 292 
scales are log-scaled. Spectral attenuation properties of the Butterworth filters are shown in S4 Figure.  293 

Second, we assessed the influence of the scale-wise filters (and hence, the spectral signal 294 
content) on frequency-to-scale mapping (see Issue 2, Fig 3B). In particular, we expected that 295 
low-pass filters (A-C) would lead to entropy decreases at finer time scales than the simulated 296 
frequency, whereas high-pass filters would lead to a rhythm representation at coarser time 297 
scales (Fig 3B). In line with these expectations, low-pass filters constrained the influence of 298 
narrowband rhythms to finer time scales (Fig 4C). As in previous work [29], Butterworth filters 299 
(Fig 4C) improved the removal of 10 Hz rhythms at coarser time scales and produced less 300 
aliasing compared with ‘Original’ point-averaging (see methods, Fig 4AB), with otherwise 301 
comparable results. Hence, low-pass filters rendered multiscale entropy sensitive to variance 302 
from low frequencies, suggesting that slow events (e.g. event-related potentials) are reflected 303 
in a diffuse manner across time scales. In contrast, high-pass filters constrained rhythm-induced 304 
entropy decreases to coarser time scales that included 10 Hz signal content, hence leading to 305 
estimates of high frequency entropy that were independent of low frequency power (Fig 4D). 306 
Finally, when band-pass filters were used (Fig 4E), rhythmicity decreased sample entropy at 307 
the target scales (despite producing edge artifacts surrounding the time scale of rhythmicity). 308 
In sum, these analyses highlight that rhythmic power increases will diffusely and non-309 
specifically modulate MSE time scales as a function of the coarse-graining filter choice, unless 310 
a narrowband filter is applied.  311 
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Such diffuse reflection of rhythms across MSE time scales is at odds with previous 312 
simulations suggesting a rather constrained, linear mapping between the frequency of simulated 313 
rhythms and entropy time scales [4, 18, 36]. Furthermore, those studies indicated entropy 314 
increases with added rhythmicity, in contrast with the marked (and expected) decreases in 315 
entropy observed here. Crucially, increased entropy relative to baseline runs counter to the idea 316 
that the addition of a stereotypic pattern should decrease rather than increase pattern 317 
irregularity. To assess whether these seemingly divergent results can be reconciled, we repeated 318 
our simulation for different frequencies. We focused on a comparatively low level of 319 
rhythmicity (amplitude level = 2; SNR ~ 1.3 (see methods); S3 Figure displays exemplary time 320 
series), for which Fig 4A-C suggested transient entropy increases above baseline. Similar to 321 
previous reports, we observed a positive association between simulated frequencies and peak 322 
entropy time scales (Fig 5) across implementations, such that rhythms of a given frequency 323 
increased entropy at slightly finer time scales (see increases in entropy above baseline to the 324 
left of the dotted vertical lines in Fig 5A-C). However, as shown in Fig 4A-C, such increases 325 
were counteracted when rhythmic strength increased, while global similarity bounds (Fig 5A) 326 
liberally biased, and thus decreased, entropy at coarser time scales (i.e., to the right of the dotted 327 
lines in Fig 5A) independent of rhythmic strength. While the mechanistic origin of entropy 328 
increases remains unclear, previous conclusions may thus have overemphasized the scale-329 
specificity of rhythmic influences. 330 

 331 

 332 
Fig 5. Influence of rhythmic frequency on MSE estimates and similarity bounds across different MSE 333 
variants. Simulations of different frequencies indicate a linear frequency-to-scale mapping of simulated sinusoids. 334 
Broken vertical lines indicate the simulated frequency. Low-pass MSE variants show increased entropy at time 335 
scales finer than the simulated frequency in combination with a global entropy decrease. Low-, high- and band-336 
pass variants exhibit the properties observed in the alpha case, with a reduction above/below or at the simulated 337 
frequency. Time scales are log-scaled. 338 

In sum, our simulations highlight that the choice of similarity bound and the signal’s spectral 339 
content grossly affect one’s ability to interpret MSE time scales. Our frequency-resolved 340 
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simulations suggest that a previously argued direct frequency-to-scale mapping is not tenable 341 
when typical estimation procedures are used.  342 

Probing the impact of spectral power on MSE in a cross-sectional age comparison 343 

Our simulations suggest profound influences of the choice of similarity bound (Issue 1) and 344 
spectral content (Issue 2) on scale-dependent MSE estimates. However, whether these issues 345 
affect inferences in empirical data remains unclear. Entropy differences across the lifespan are 346 
an important application [6], where ‘Original’ MSE implementations suggest that older adults 347 
exhibit higher entropy at finer time scales and lower entropy at coarser time scales compared 348 
to younger adults [for a review see 37]. Importantly, a shallowing of PSD slopes with age has 349 
also been reported, as represented by higher power at high frequencies and lower power at low 350 
frequencies [32, 41]. The raised issues of a potential (1) reflection of high frequency power on 351 
coarse scales and (2) diffuse reflection of slow spectral content thus question whether traditional 352 
MSE group differences reflect veridical differences in signal irregularity at matching time 353 
scales. Given those two issues, we specifically hypothesized that: 354 
 355 
(A) Adult age differences in coarse-scale MSE can be accounted for by group differences in 356 

high frequency power, due to the typical use of global similarity bounds (Issue 1). 357 
(B) Adult age differences in fine-scale MSE reflect differences in PSD slopes and thus depend 358 

on the contribution of low frequencies to broadband signals (Issue 2).  359 
 360 

To assess these hypotheses, we first attempted to replicate previously reported scale-wise 361 
age differences in MSE and spectral power during eyes open rest. ‘Original’ settings replicated 362 
scale-dependent entropy age differences (Fig 6A1). Specifically, compared with younger 363 
adults, older adults exhibited lower entropy at coarse scales, and higher entropy at fine scales 364 
(Fig 6A1). Mirroring these results in spectral power, older adults had lower parieto-occipital 365 
alpha power and increased frontal high frequency power (Fig 6A2) compared to younger adults. 366 
This was globally associated with a shift from steeper to shallower PSD slopes with increasing 367 
age (Fig 6D). At face value, this suggests joint shifts of both power and entropy, in the same 368 
direction and at matching time scales. Crucially, however, the spatial topography of entropy 369 
differences inverted the time scale of power differences (Fig 6B & C; cf., upper and lower 370 
topographies), such that frontal high frequency power topographies resembled coarse entropy 371 
topographies (Fig 6B), while parieto-occipital age differences in slow frequency power 372 
resembled fine-scale entropy differences (Fig 6D). This rather suggests scale-mismatched 373 
associations between entropy and power.  374 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/752808doi: bioRxiv preprint 

https://doi.org/10.1101/752808
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 375 
Fig 6. Timescale-dependent age differences in spectral power and entropy during eyes open rest. (A) MSE 376 
(A1) and power (A2) spectra for the two age groups. Error bars show standard errors of the mean. Note that in 377 
contrast to standard presentations of power, the log-scaled x-axis in A2 is sorted by decreasing frequency to enable 378 
a better visual comparison with entropy time scales (see also Fig 2D). T-values of power age contrast are shown 379 
in S5 Figure. (B, C) Topographies of age differences indicate mirrored age differences in fast entropy and low 380 
frequency power, as well as coarse entropy and high frequency power. Significant differences are indicated by 381 
asterisks. (D1) Spectral slopes across age groups. (D2) Age differences in spectral slopes. 382 

Next, we assessed the impact of scale-wise similarity bounds and different scale-wise filters 383 
on the indication of MSE age differences (Fig 7).  384 

 385 
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 386 
Fig 7. Multiscale entropy age differences depend on the specifics of the estimation method. Grand average 387 
traces of entropy (1st row) and similarity bounds (3rd row) alongside t-maps from statistical contrasts of age 388 
differences (2nd + 4th row). Age differences were assessed by means of cluster-based permutation tests and are 389 
indicated via opacity. Original MSE (A) replicated reported scale-dependent age differences, with older adults 390 
exhibiting higher entropy at fine scales and lower entropy at coarse scales, compared with younger adults. The 391 
coarse-scale difference was exclusively observed when using global similarity bounds, whereas the fine-scale age 392 
difference was indicated with all low-pass versions (A, B, C), but not when signals were constrained to high-393 
frequency or narrow-band ranges (D, E). In contrast, narrowband MSE indicated inverted age differences within 394 
the alpha and beta band (E). 395 

 396 
Briefly, we observed three main results that deserve highlighting:  397 
 398 

(A) The implementation of scale-wise similarity bounds affected MSE age differences (Fig 7; 399 
Hypothesis A; Issue 1). In particular, with global bounds, MSE indicated increased fine-400 
scale and decreased coarse-scale entropy for older compared to younger adults (Fig 7A1 401 
and A2), in the absence of group differences in the global similarity bound (Fig 7A3 and 402 
A4). In contrast, scale-varying bounds captured age differences in variance at finer scales 403 
(Fig 7B) and abolished age differences in coarse-scale entropy (effect size was significantly 404 
reduced from r = .58 to r = .07; p=6.8*10^-5; see Statistical analyses). 405 

(B) The chosen scale-wise filtering method also affected MSE age differences (Hypothesis B; 406 
Issue 2). Specifically, fine-scale entropy age differences were indicated when low-pass 407 
filters rendered those scales sensitive to low-frequency content (Fig 7B/C). Effect size did 408 
not significantly change with the adoption of scale-varying similarity bounds (from r = .44 409 
to r = .45; p=.934). In contrast, when high-pass filters constrained fine scales to high 410 
frequency signals (Fig 7D), no fine-scale age differences were observed and the age effect 411 
was significantly reduced to r = .09 (p = .008).  412 
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(C) Strikingly, the implementation of narrowband filters (Fig 7E) indicated two unique age 413 
effects not recoverable using other approaches: larger ’narrowband’ alpha-band entropy 414 
and lower beta-band entropy for older adults compared with younger adults.  415 

 416 
In the following sections, we assess these results more closely. 417 

Global similarity bounds bias coarse-scale entropy to reflect high-frequency power 418 

Scale-dependent entropy effects in the face of global similarity bounds (as observed in the 419 
‘Original’ implementation; Fig 7A) may intuitively suggest scale-specific variations in signal 420 
irregularity in the absence of variance differences. However, global similarity bounds 421 
increasingly diverge from the scale-wise signal variance towards coarser scales (Issue 1; Fig 422 
8A). This introduces a liberal bias that systematically varies as a function of the removed 423 
variance, thereby rendering coarse MSE scales sensitive to differences in higher frequency 424 
power (i.e., Issue 1), as observed in the case of aging (Fig 8A & B). 425 

 426 

 427 
Fig 8. Divergence of scale-specific signal variance from global similarity bounds accounts for age differences 428 
in coarse-scale entropy. (A, B) A global similarity bound does not reflect the spectral shape, thus leading to 429 
disproportionally liberal criteria at coarse scales following the successive removal of high-frequency variance (see 430 
Fig 2D-F for the schematic example). Scale-dependent variance is more quickly reduced in older compared to 431 
younger adults (A) due to the removal of more prevalent high-frequency variance in the older group (B). This 432 
leads to a differential bias across age groups, as reflected in the differentially mismatched distance between global 433 
and scale-dependent similarity bounds at coarser scales. (C) Removing this bias by adjusting the similarity bounds 434 
to the scale-dependent signal is associated with increases in coarse-scale entropy. This shift is more pronounced 435 
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in older adults following the removal of a more prevalent bias. (D) With global similarity bounds, coarse-scale 436 
entropy strongly reflects high frequency power due to the proportionally more liberal similarity threshold 437 
associated. Low frequency power < 8 Hz was not consistently related to coarse-scale entropy (log10-power as in 438 
D; YA: r = .12; p = .419; OA: r = .36, p = .009). Data in A and B are global averages, data in C and D are averages 439 
from frontal Original effect cluster (see Fig 4B) at entropy time scales below 6 Hz. 440 

 To assess whether global bounds introduced an association between high frequency 441 
power and coarse scale entropy in the case of aging, we probed changes in similarity bounds 442 
and MSE between the use of global and scale-varying bounds. As expected, we observed a 443 
strong anti-correlation between inter-individual changes in similarity bounds and MSE (Fig 444 
8C). That is, the more similarity bounds were re-adjusted to match the scale-wise variance, the 445 
more entropy estimates increased. Crucially, this difference was more pronounced for older 446 
adults (paired t-test; r: p = 5e-6; MSE: p = 3e-4). Due to their increased high frequency power, 447 
coarse-graining decreased older adults’ scale-wise variance more so than younger adults’ 448 
variance. Thus, global similarity bounds presented a more liberal threshold at coarser scales for 449 
older adults than for younger adults, in turn producing lower MSE estimates. In line with this 450 
assumed link between high frequency power and coarse scale entropy as a function of global 451 
bounds, individual high frequency power at frontal channels was anticorrelated with coarse-452 
scale entropy estimates when a global similarity bound was applied (Fig 8D), but was 453 
dramatically weaker when the similarity bound was recomputed for each scale (YA: r = -0.15; 454 
p = .302; OA: r = .20, p = .146). This is in line with our observation that coarse-scale age 455 
differences (Fig 7A) were not found when scale-wise bounds were used (Fig 7B). 456 

Taken together, these results indicate that increased high frequency power with age can 457 
account for entropy decreases at coarse time scales, whereas the pattern irregularity of slow 458 
dynamics per se was not modulated by age. 459 

Low-frequency contributions render fine-scale entropy a proxy measure of PSD slope 460 

A common observation in the MSE literature is that MSE is highly sensitive to task and 461 
behavioral differences at fine time scales, which are assumed to reflect fast dynamics. This is 462 
surprising given that high-frequency activity remains challenging to measure [42]. Moreover, 463 
previous studies suggest that fine-scale entropy reflects power spectral density (PSD) slopes 464 
[e.g., 10, 32]. Given that ‘Original’ MSE implementations contain both high- and low-465 
frequency components due to the assessment of broadband signals, we probed whether fine-466 
scale associations with PSD slopes depend on the presence of slow fluctuations and whether 467 
age-related slope variations can account for fine-scale entropy age differences (Hypothesis B).  468 

As expected, individual fine-scale entropy was strongly and positively related to PSD slopes 469 
(Fig 9A) in both younger and older adults. Notably, after high-pass filtering the signal, the 470 
positive relation of fine-scale entropy to PSD slopes disappeared in both age groups (Fig 9B, 471 
dotted lines), and turned negative in older adults (see S6 Figure), while age differences in fine-472 
scale entropy disappeared (Fig 7D). Relations between entropy and PSD slopes – and age 473 
differences – re-emerged once low-frequency content was included in the entropy estimation 474 
(Fig 9C, dashed lines), indicating that the presence of slow fluctuations was necessary for PSD 475 
slope relations. To assess whether varying PSD slopes accounted for fine-scale age differences 476 
in ‘Original’ MSE, we computed partial correlations between the measures. No significant 477 
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prediction of age group status by fine-scale entropy was observed when controlling for the high 478 
collinearity with PSD slopes (r = -.06, p = .59), whereas PSD slopes significantly predicted age 479 
group status when controlling for MSE (r = .38, p <.001).  480 

 481 
Fig 9. The presence of low- and high-frequency content renders fine entropy slopes sensitive to PSD slopes. 482 
A) Sample entropy at fine time scales represents the slope of power spectral density across age groups. The 7-13 483 
Hz range was excluded prior to the PSD slope fit to exclude the rhythmic alpha peak (see Fig 8B). (B) The presence 484 
of both slow and fast dynamics is required for positive associations with PSD slopes to emerge. The direction and 485 
magnitude of correlations of scale-wise entropy with PSD slopes depends on the choice of global vs. rescaled 486 
similarity bounds, as well as the choice of filtering. Original entropy inverts from a positive correlation with PSD 487 
slope at fine scales to a negative association at coarse scales. Rescaling of the similarity bound abolishes the 488 
negative correlation of coarse-scale entropy with PSD slopes. S6 Figure presents scatter plots of these 489 
relationships. The x-axis indicates the upper frequency bounds for the low-pass version. 490 

 491 
Finally, spectral slopes were anticorrelated with coarse-scale entropy when global similarity 492 

bounds were used (Fig 9C, solid lines), but not when criteria were scale-wise re-estimated (Fig 493 
9C, dashed and dotted lines). This again suggests a presence of the scale-wise bias noted in 494 
Issue 1 (i.e., scale-wise bound divergence); subjects with shallower slopes (more high 495 
frequency power) had increasingly liberally-biased thresholds at coarser scales, resulting in 496 
overly low entropy estimates. 497 

In sum, age differences in fine-scale entropy were conditional on the presence of both low- 498 
and high-frequency dynamics and reflected differences in PSD slopes; while the pattern 499 
irregularity of fast dynamics per se was not modulated by age.  500 

Narrowband MSE indicates age differences in signal irregularity in alpha and beta band 501 

The previous analyses highlighted how the spectral content of the signal can give rise to 502 
MSE time scale mismatches. However, our simulations also suggest a far more accurate 503 
mapping between entropy and power when scale-wise bandpass filters are used (Fig 4A). 504 
Concurrently, application of the band-pass implementation indicates a partial decoupling 505 
between entropy and variance (as reflected in the similarity bound) age differences (Fig 7E). 506 
Specifically, older adults exhibited higher parieto-occipital entropy at alpha time scales (˜8-12 507 
Hz) and lower central entropy at beta time scales (˜12-20 Hz) than in younger adults (Fig 7; Fig 508 
10AB). Whereas alpha-band entropy was moderately and inversely correlated with alpha power 509 
(Fig 10C) and the age difference was inversely reflected in the similarity bound in a 510 
topographically similar fashion (Fig 10E), the same was not observed for entropy in the beta 511 
range for both age groups (Fig 10DF). Promisingly, this indicates evidence for what many who 512 
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employ MSE measures in cognitive neuroscience presume – that power and entropy can be 513 
decoupled, providing complementary signatures of neural dynamics.   514 

 515 

 516 
Fig 10. Narrowband MSE reflects age differences in alpha- and beta-specific event (ir)regularity. (A, B) 517 
Narrowband MSE indicates age differences in the pattern complexity at alpha (A) and beta (B) frequencies. (C, 518 
D) Alpha, but not beta power consistently correlates negatively with individual narrowband entropy within clusters 519 
of age differences. (E, F) Similarly, alpha but not beta similarity bounds show an inverted age effect with similar 520 
topography. (G, H) Single-trial rhythm detection highlights a more transient appearance of beta compared with 521 
alpha events. (I, J) The rate of stereotypical single-trial alpha and beta events is anticorrelated with individual 522 
narrowband entropy. (K, L) The rate of spectral events exhibits age differences that mirror those observed for 523 
entropy. 524 

This divergence of entropy and power in the beta band is particularly interesting as beta 525 
events have been observed to exhibit a more transient waveform shape [43, 44], while 526 
occupying a lower total duration during rest than alpha rhythms [34]. Indeed, it should be the 527 
rate of stereotypic spectral events that reduces pattern irregularity rather than the overall power 528 
within a frequency band. To better test this assumption in our data, we applied single-trial 529 
rhythm detection to extract the individual rate of alpha (8-12 Hz) and beta (14-20 Hz) events. 530 
As predicted, alpha events had a more sustained appearance compared with beta events as 531 
shown in Fig 10G & H (events were time-locked to the trough of individual events; see 532 
methods). Importantly, both alpha and beta event rate were inversely and moderately correlated 533 
with entropy estimates (Fig 10IJ) at matching time scales in the band-pass version. Correlations 534 
were also numerically higher than between power and entropy (Fig 10C and D), suggesting that 535 
entropy captured the non-stationary character of the rhythmic episodes that are not captured by 536 
sustained power estimates. The relationships remained stable after controlling for individual 537 
event rate and entropy in the age effect cluster of the other frequency band (partial correlations: 538 
alpha for younger adults: r = -.52, p = 2e-4; alpha for older adults: r = -.71, p = 8e-9; beta for 539 
younger adults r = -.49, p = 6e-4; beta for older adults: r = -.56, p = 2e-5), indicating separable 540 
associations between event rate and entropy between the two frequency bands. This is 541 
important, as our simulations suggest increased entropy estimates around narrow-band filtered 542 
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rhythmicity (see Fig 4A). Furthermore, a permutation test indicated age differences in beta rate 543 
that were opposite in sign to the entropy age difference (see Fig 10L). In particular, older adults 544 
had a higher number of central beta events during the resting state compared with younger 545 
adults, thus rendering their beta-band dynamics more stereotypic. In sum, these results suggest 546 
that narrowband MSE estimates approximate the irregularity of non-stationary spectral events 547 
at matching time scales. 548 

Discussion 549 

MSE aims to characterize the temporal irregularity of (neural) time series at multiple 550 
temporal scales. In the present study, we have highlighted two primary issues that may render 551 
the interpretation of time scales unintuitive in traditional applications: (Issue 1) biases from 552 
global similarity bounds, and; (Issue 2) the characterization of broadband, low-frequency 553 
dominated signals (see Fig 11A for a schematic summary). In the following, we discuss these 554 
effects and how they can impact traditional inferences regarding signal irregularity, in particular 555 
with regard to empirical age differences. Then, we discuss age effects in narrowband signal 556 
irregularity at interpretable temporal scales. Finally, we recommend procedures to improve 557 
scale-specific MSE inferences. 558 
 559 

 560 
Fig 11. Summary of the identified time-scale mismatches and recommendations for future studies. (A) We 561 
highlight two scale-dependent mismatches that run counter to the intuition that entropy at fine scales primarily 562 
refers to fast dynamics, and vice-versa: (1) Coarse-scale entropy is biased towards reflecting high-frequency 563 
content when signals of decreasing variance are compared to a global, and increasingly inadequate, similarity 564 
bound. (2) Fine-scale entropy characterizes scale-free 1/f slopes when broadband signals include slow frequency 565 
content. (B) Beyond time-scale mismatches, entropy and variance can often be collinear, in part due to their shared 566 
description of linear signal characteristics, such as rhythmicity. To identify complementary and unique relations 567 
of pattern complexity compared to more established measures of variance, explicit statistical control is required 568 
for the latter. (C) We propose multiple strategies to safeguard future applications against the highlighted issues. 569 

 570 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/752808doi: bioRxiv preprint 

https://doi.org/10.1101/752808
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Issue 1: Global similarity bounds bias coarse-scale entropy estimates  571 

Coarse scale entropy is commonly thought to represent the irregularity of slow dynamics. 572 
However, MSE’s traditionally global similarity bounds systematically bias coarse scale entropy 573 
estimates. Given that scale-wise variance decreases across scales, the liberality of global 574 
similarity bounds increases, causing entropy to decrease despite no ostensible shift in pattern 575 
irregularity. This bias is independent of the values of the global similarity bound – which did 576 
not differ across groups here – but rather depends on the removed variance at the time scale of 577 
interest. This issue has led to puzzling results in past work. For example, several papers using 578 
typical forms of (‘original’) MSE have shown that in white noise signals (which by definition 579 
should be equally irregular at all time scales), entropy appears to unintuitively decrease towards 580 
coarser scales, whereas pink noise signals undergo less entropy reduction across initial scales 581 
due to the removal of less high-frequency content [25]. Strikingly, such puzzling effects have 582 
been used to validate the most common implementation of MSE  [e.g., 23, 28] rather than to 583 
indicate the presence of a systematic bias in estimation. This appears motivated by the 584 
assumption that “changes of the variance due to the coarse-graining procedure are related to the 585 
temporal structure of the original time series, and should be accounted for by the entropy 586 
measure” [8]. We rather consider the similarity bound divergence as a clear bias for the intuitive 587 
interpretation of time scales in MSE applications.   588 

Importantly, this bias affects practical inferences. In the current resting-state EEG data, an 589 
age-related increase in high frequency power manifested unintuitively as a decrease in coarse-590 
scale entropy via systematic group differences in the divergence of similarity bounds. Note that 591 
we presume that this age difference arises from a relative bias. As such, variations in high-592 
frequency power suffice, even at low levels in 1/f scenarios, to systematically impact coarse-593 
scale estimates and to specifically explain variance in a third variable of interest (e.g., age; see 594 
Fig 11B). Given that global similarity bounds remain prevalent in applications (see S1 File), 595 
we hope that our practical example motivates the adoption of scale-varying parameters. Overall, 596 
we perceive little justification for the use of scale-invariant parameters in MSE estimation in 597 
future work. 598 

Issue 2: Fine-scale entropy relates to PSD slopes in the presence of slow frequency 599 
content 600 

While fine-scale entropy is often interpreted as a signature of “fast” temporal irregularity, 601 
it is typically estimated from broadband signals. As such, fine (or single) scale entropy has been 602 
proposed as a signature of desynchronized cortical states [32, 45] that feature a suppression of 603 
low-frequency power with concurrent increases in the magnitude of high frequency dynamics 604 
[46-48]. This synergy is thought to benefit local information processing by regulating cortical 605 
gain as a function of the local excitation-inhibition (E/I) balance. Spectral (PSD) slopes, 606 
characterizing the scale-free ‘background’ or ‘noise’ component of the total variance, and have 607 
been proposed as an index of such E/I balance [41, 49, 50]. By linking fine-scale entropy to 608 
PSD slopes, we replicated previous observations of increasing fine-scale entropy with 609 
shallower slopes [10, 13, 25, 32, 51] and shorter temporal autocorrelations [4, 23, 52]. However, 610 
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we qualify this association by highlighting that the joint presence of slow and fast dynamics in 611 
the signal is necessary to produce such effects.  612 

The association between broadband signal entropy and spectral slopes coheres with the 613 
notion that shallower slopes have a more ‘noisy’ or irregular appearance in the time domain. 614 
Thus, spectral slopes and temporal irregularity may be conceptualized – at least in part – as 615 
different perspectives on the same signal characteristics. Practically however, the 616 
correspondence between fine-scale entropy and 1/f slopes should nonetheless be tested, given 617 
that these scales are also sensitive to other signals characteristics, such as narrowband 618 
rhythmicity (as shown in our simulations). In sum, our analyses provide insights into the 619 
sensitivity of fine-scale entropy to desynchronized cortical states and highlight the surprising 620 
importance of slow fluctuations for such associations. 621 

Spectral power and entropy: What’s irregularity got to do with it? 622 

For entropy to be a practical and non-redundant measure in cognitive neuroscience, both its 623 
convergent and discriminant validity to known signal characteristics should be established. 624 
Multiple features can influence the temporal irregularity of neural time series. These include 625 
traditional ‘linear’ PSD features, (e.g., temporal autocorrelation, rhythmicity, etc.) as well as 626 
‘non-linear’ features (e.g., phase resets, cross-frequency coupling, etc.). It is therefore worth 627 
noting that associations between spectral power characteristics and entropy estimates are partly 628 
anticipated (Fig 11B). For example, as noted before, entropy should reduce with increased 629 
rhythmic irregularity, and increase with shallowing of PSD slopes (and hence, shortening of 630 
temporal autocorrelations). However, the use of MSE is often motivated by its perceived 631 
sensitivity to non-linear properties of brain dynamics that cannot be captured by traditional PSD 632 
analyses [e.g., 53, 54, 55]. In extreme cases, an independence between estimates may 633 
sometimes be erroneously inferred from the use of variance-based similarity bounds. Contrary 634 
to such orthogonality assumptions, our analyses highlight that differences in spectral variance 635 
(as captured by the similarity bound, which is typically neglected as a measure of interest when 636 
estimating MSE) may account for a large proportion of reported MSE effects [see also appendix 637 
in 23]. As such, non-linear characteristics per se may often do little to drive MSE estimates.  638 

Relevance of identified time scale mismatches to previous work 639 

Although the highlighted issues broadly apply to applications in which MSE is a measure 640 
of interest (e.g., assessment of clinical outcomes [e.g., 18]; prediction of cognitive performance 641 
[e.g., 38]), our results are also especially relevant for MSE differences across the lifespan. 642 
Previous applications indicated that older adults exhibit lower coarse-scale entropy and higher 643 
fine-scale entropy compared with younger adults [12, 14, 23]. In the power spectrum, these 644 
effects were inverted, with older subjects showing enhanced high-, and reduced low-frequency 645 
power. This was previously taken as evidence that older adults’ high-frequency dynamics were 646 
not only enhanced in magnitude, but also more unpredictable compared with younger adults’ 647 
dynamics. While we replicate similar results here when standard MSE implementation are 648 
applied, our analyses question the validity of previous interpretations. In particular, our results 649 
suggest that age-related increases in coarse-scale entropy do not reflect differences in the 650 
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irregularity of slow dynamics, but rather reflect differential high frequency power. An absence 651 
of age differences at coarse scales is in line with previous work with scale-wise similarity 652 
bounds [15]. Similarly, our analyses indicate that differences in fine-scale ‘pattern irregularity’ 653 
describe age-related changes in PSD slopes, which themselves reflect a shift from distributed 654 
to local processing. Taken together, our results suggest that entropy age differences dominantly 655 
arise from differences in the PSD spectrum, and appear at counterintuitive time scales. This is 656 
further in line with a previous application using surrogate data that highlighted that age group 657 
differences were mainly captured by linear auto-correlative properties [see appendix in 23]. 658 

Cross-sectional age differences in narrowband MSE 659 

Complementing traditional broadband applications, our use of narrowband MSE suggested 660 
age-related entropy increases in the posterior-occipital alpha band and decreases in central beta 661 
entropy that inversely tracked the regularity of alpha and beta events, respectively. Posterior-662 
occipital decreases in alpha power and frequency with age are fundamental findings in many 663 
age-comparative studies [56]. While age-related increases in beta power are not observed as 664 
consistently [see e.g., 56 for a review], age-related increases in their prevalence have been 665 
observed during eyes open rest [57]. In addition, beta power increases over contralateral motor 666 
cortex during rest may reflect greater GABAergic inhibition in healthy aging [58]. While our 667 
results are not hemisphere-specific, they may similarly reflect increased inhibition in older 668 
adults, potentially reflected in an increased number of stereotypical beta events [44]. As our 669 
aims were methods-focused in the present study, the functional interpretation of our observed 670 
age differences necessitates caution pending further research. Nevertheless, these results 671 
highlight that scale-specific narrowband filtering can provide novel, frequency-specific, 672 
insights into event/signal irregularity. 673 

Recommendations for future applications 674 

The issues raised here suggest that additional steps need to be taken to achieve valid scale-675 
wise estimates of MSE, and to support the perceived complementary nature of MSE relative to 676 
more typical measures (such as spectral power, etc.): 677 
a) We see little motivation for the use of global similarity bounds as they introduce challenges 678 

rather than benefits. We therefore recommend the field abandons global similarity bounds 679 
in MSE applications. 680 

b) We recommend spectral filters to validate the scale-specificity of effects. For example, if 681 
effects are observed at fine temporal scales with a low-pass filter, additional high-pass 682 
filters may inform about the spectral extent of the effect. For entropy estimates of slow 683 
dynamics, traditional low-pass filter settings already apply this principle by becoming 684 
increasingly exclusive to slow fluctuations (if scale-dependent normalization is used). If the 685 
signal is filtered into dedicated frequency ranges, inferences regarding pattern irregularity 686 
become narrowband-specific. While this narrowband entropy by definition enforces a more 687 
rhythmic appearance than the raw signal may convey [59] and thus cannot capture multi-688 
scale properties at any single scale, it may nevertheless provide a complementary index of 689 
frequency-specific variability. 690 
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c) We regard statistical control as necessary to establish entropy effects that are not capturable 691 
by traditional linear indices (such as PSD characteristics). While some studies have shown 692 
joint effects of interest in MSE and (band-limited) spectral power [11, 12, 14, 15, 60-66], 693 
others identified unique MSE effects [18, 67-69]. However, the (mis)match between time-694 
scales and frequencies may not always be readily apparent, at least in part due to the various 695 
issues raised here. As shown here, controls should include both narrowband (‘rhythmic’) 696 
power and the arrhythmic signal background. As the scale-wise similarity bound is used for 697 
normalization, it should at the very least be controlled for. The choice of features may 698 
further be aided by comparing effect topographies of spectral power and entropy, as done 699 
in the present study. An important point to note is the relevance of statistical controls for 700 
relations to third variables (see Fig 11B). While some studies highlight scale-dependent 701 
associations of entropy with power, a large amount of shared variance (e.g., of coarse-scale 702 
entropy with slow frequency power) does not guarantee that a smaller portion of residual 703 
variance (e.g., shared with normalization biases) systematically does or does not relate to 704 
other effects of interest. This is equally relevant for identifying unique non-linear 705 
contributions. For example, while we observed moderate associations between band-706 
specific rhythm events and entropy here, this non-redundant association nevertheless leaves 707 
room for the two measures to diverge in relation to third variables. This is in line with prior 708 
work [23, 70] showing that despite a dominant influence of linear characteristics on entropy 709 
estimates, non-linear contributions can uniquely explain a (smaller) portion of entropy 710 
variance.  711 

d) Finally, a principled way to dissociate non-linear signal characteristics from linear signal 712 
variance is to use phase-shuffled surrogate data [5, 71-74]. Phase randomization effectively 713 
alters original time series patterns while preserving linear PSD characteristics and “is 714 
unavoidable if conclusions are to be drawn about the existence of nonlinear dynamics in the 715 
underlying system” [5]. While such surrogate approaches have been utilized in select 716 
entropy applications [4, e.g., appendix of 23] to highlight entropy’s non-linear sensitivity 717 
[e.g., 26, 28], it has not become common practice in application. Given that spectral power 718 
can impact MSE in many ways, of which some are shown here, we consider surrogate 719 
analyses as an optimal approach to verify the contribution of non-linear signal 720 
characteristics.  721 

 722 
In combination, such controls may go a long way toward establishing unique, complementary, 723 
and valid contributions of MSE in future work. 724 

Conclusions 725 

Many inferences regarding multiscale entropy in cognitive/clinical neuroscience rely on the 726 
assumption that estimates uniquely relate to pattern irregularity at specific temporal scales. Here 727 
we show that both assumptions may be invalid depending on the consideration of signal 728 
normalization and spectral content. Using simulations and empirical examples, we showed how 729 
spectral power differences can introduce entropy effects that are inversely mapped in time scale 730 
(i.e., differences in the high frequency power may be reflected in coarse entropy and vice versa; 731 
see Fig 11A). As these results suggest fundamental challenges to traditional MSE analysis 732 
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procedures and inferences, we highlight the need to test for unique entropy effects (Fig 11B) 733 
and recommend best practices and sanity checks (Fig 11C) to increase confidence in the 734 
complementary value of pattern irregularity for cognitive/clinical neuroscience. While the 735 
warranted claim has been made that “it would be unreasonable simply to reduce sample entropy 736 
to autocorrelation, spectral power, non-stationarity or any of their combinations” [4], this 737 
should not mean that we cannot test whether one or more of these contributors may sufficiently 738 
explain MSE effects of interest. We thus propose that MSE effects may be taken as a starting 739 
point to explore the linear and nonlinear features of brain signals [e.g., 76]. We believe that 740 
empirical identification of the unique predictive utility of MSE will advance the quest for 741 
reliable mechanistic indicators of flexible brain function across the lifespan, and in relation to 742 
cognition, health, and disease. 743 

Methods 744 

Simulations of relations between rhythmic frequency, amplitude, and MSE 745 

To assess the influence of rhythmicity on entropy estimates, we simulated varying 746 
amplitudes (0 to 7 arbitrary units in steps of 0.5) of 10 Hz (alpha) rhythms on a fixed 1/f 747 
background. This range varies from the absence to the clear presence of rhythmicity (see S3 748 
Figure for an example). The background consisted of !

"#
-filtered Gaussian white noise (mean = 749 

0; std = 1) with x = 1 that was generated using the function f_alpha_gaussian [77]. The 750 
background was additionally band-pass filtered between .5 and 70 Hz using 4th order 751 
Butterworth filters. Eight second segments (250 Hz sampling rate) were simulated for 100 752 
artificial, background-varying trials, and phase-locked 10 Hz sinusoids were superimposed. To 753 
analyze the reflection of rhythmic frequency on time scales and to replicate a previously 754 
observed linear frequency-to-timescale mapping between the spectral and entropy domains [4, 755 
18, 36], we repeated our simulations with sinusoids of different frequencies (5 Hz, 10 Hz, 20 756 
Hz, 40 Hz, 80 Hz), that covered the entire eight second-long segments. For a specified 757 
amplitude level, the magnitude of frequency-specific power increases (or narrowband signal-758 
to-noise ratio) increased alongside simulated frequencies due to the decreasing frequency power 759 
of pink noise, while the ratio of rhythmic-to-global signal variance (or global signal-to-noise 760 
ratio (SNR)) remained constant across simulated frequencies. We used the following definition: 761 

SNRglobal = $
%&'()*+,-

%&'+.)(/
0
1
, where 23456789 is the root mean square of the pink noise time series 762 

and 23487:5;<  characterizes the pink noise signal with added rhythmicity. 763 

Resting state data and preprocessing 764 

To investigate the influence of similarity bounds and filter ranges in empirical data, we used 765 
resting-state EEG data collected in the context of a larger assessment prior to task performance 766 
and immediately following electrode preparation. Following exclusion of three subjects due to 767 
recording errors, the final sample contained 47 younger (mean age = 25.8 years, SD = 4.6, range 768 
18 to 35 years; 25 women) and 52 older adults (mean age = 68.7 years, SD = 4.2, range 59 to 769 
78 years; 28 women) recruited from the participant database of the Max Planck Institute for 770 
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Human Development, Berlin, Germany (MPIB). Participants were right-handed, as assessed 771 
with a modified version of the Edinburgh Handedness Inventory [78],  and had normal or 772 
corrected-to-normal vision. Participants reported to be in good health with no known history of 773 
neurological or psychiatric incidences, and were paid for their participation (10 € per hour). All 774 
older adults had Mini Mental State Examination (MMSE) [79, 80] scores above 25. All 775 
participants gave written informed consent according to the institutional guidelines of the 776 
Deutsche Gesellschaft für Psychologie (DGPS) ethics board, which approved the study. 777 

Participants were seated at a distance of 80 cm in front of a 60 Hz LCD monitor in an 778 
acoustically and electrically shielded chamber. Following electrode placement, participants 779 
were instructed to rest for 3 minutes with their eyes open and closed, respectively. During the 780 
eyes open interval, subjects were instructed to fixate on a centrally presented fixation cross.  An 781 
auditory beep indicated to the subjects when to close their eyes. Only data from the eyes open 782 
resting state were analyzed here. EEG was continuously recorded from 64 active (Ag/AgCl) 783 
electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp 784 
electrodes were arranged within an elastic cap (EASYCAP GmbH, Herrsching, Germany) 785 
according to the 10% system [81], with the ground placed at AFz. To monitor eye movements, 786 
two electrodes were placed on the outer canthi (horizontal EOG) and one electrode below the 787 
left eye (vertical EOG). During recording, all electrodes were referenced to the right mastoid 788 
electrode, while the left mastoid electrode was recorded as an additional channel. Online, 789 
signals were digitized at a sampling rate of 1 kHz. 790 

Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox [82] 791 
and using custom-written MATLAB (The MathWorks Inc., Natick, MA, USA) code. Offline, 792 
EEG data were filtered using a 4th order Butterworth filter with a pass-band of 0.2 to 125 Hz. 793 
Subsequently, data were downsampled to 500 Hz and all channels were re-referenced to 794 
mathematically averaged mastoids. Blink, movement and heart-beat artifacts were identified 795 
using Independent Component Analysis [ICA; 83] and removed from the signal. Artifact-796 
contaminated channels (determined across epochs) were automatically detected using (a) the 797 
FASTER algorithm [84], and by (b) detecting outliers exceeding three standard deviations of 798 
the kurtosis of the distribution of power values in each epoch within low (0.2-2 Hz) or high (30-799 
100 Hz) frequency bands, respectively. Rejected channels were interpolated using spherical 800 
splines [85]. Subsequently, noisy epochs were likewise excluded based on FASTER and on 801 
recursive outlier detection. Finally, recordings were segmented to participant cues to open their 802 
eyes, and were epoched into non-overlapping 3 second pseudo-trials. To enhance spatial 803 
specificity, scalp current density estimates were derived via 4th order spherical splines [85] 804 
using a standard 10-05 channel layout (conductivity: 0.33 S/m; regularization: 1^-05; 14th 805 
degree polynomials). 806 

Calculation of (modified) multi-scale sample entropy (mMSE) 807 

MSE characterizes signal irregularity at multiple time scales by estimating sample 808 
entropy (SampEn) at each time scale of interest. A schematic of the estimation pipeline is shown 809 
in S1 Figure. The mMSE code is provided at https://github.com/LNDG/mMSE. A tutorial for 810 
computing mMSE has been published on the FieldTrip website 811 
(http://www.fieldtriptoolbox.org/example/entropy_analysis/). 812 
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Sample entropy estimation procedure. The estimation of SampEn involves counting how 813 
often patterns of m successive data points reoccur in time (=>) and assessing how many of 814 
those patterns remain similar when the next sample m+1 is added to the sequence (=>?@). Given 815 
that amplitude values are rarely exactly equal in physiological time series, a similarity bound 816 
defines which individual data points are considered similar. This step discretizes the data and 817 
allows to compare data patterns rather than exact data values. The similarity bound is defined 818 
as a proportion r of the time series standard deviation (SD; i.e., square root of signal variance) 819 
to normalize the estimation of sample entropy for total signal variation. That is, for any data 820 
point k, all data points within k ± r × SD are by definition equal to k, which forms the basis for 821 
assessing sequence patterns. SampEn is finally given as the natural log of =>(r)/	=>?@(r). 822 
Consequently, high SampEn values indicate low temporal regularity as many patterns of length 823 
m are not repeated at length m+1. In our applications, m was set to 2 and r was set to .5, in line 824 
with prior recommendations [9] and EEG applications [23, 38, 86].   825 

Multi-scale signal derivation procedure. To extend sample entropy to multiple time scales, 826 
MSE ‘coarse-grains’ the original time series for multiple scale factors B (here 1 to 42, where 1 827 
refers to the original signal). The ‘Original’ MSE method [7, 8] averages time points within 828 
non-overlapping time bins (i.e., ‘point averaging’). Such point averaging is equivalent to a low-829 
pass finite-impulse response (FIR) filter, which can introduce aliasing however [29, 87] and 830 
constrains the specificity towards increasingly slow signals, while not allowing specificity to 831 
fast dynamics or any particular frequency range of interest. To implement control over the 832 
scale-wise filter direction and to reduce aliasing, we applied either low- [27, 29, 87], high-, or 833 
band-pass filters at each scale factor. The low-pass cut-off was defined as LP = @

CDEFG
∗ IJKLMCN 834 

and was implemented using a 6th order Butterworth filter. Similarly, the high-pass cut-off was 835 
defined as HP = @

CDEFG?@
∗ IJKLMCN, implemented via 6th order Butterworth filters. Note that 836 

these cut-offs describe the upper and lower frequency bounds at each time scale, respectively. 837 
Finally, band-pass filters were applied to obtain narrowband estimates by sequentially applying 838 
Chebyshev Type I low- and high-pass filters (4th order with passband ripple of 1dB; chosen to 839 
achieve a fast filter roll-off), thus ensuring that each scale captured frequency-specific 840 
information. The passband was defined as BP = OP +- 0.05*QR. To avoid pronounced passband 841 
ripple for broad passbands, 10th order Butterworth filters replaced the Chebyshev filters at 842 
scales where the passband was larger than 0.5*Nyquist. At scale 1, only a high-pass 10th order 843 
Butterworth filter was applied as the sampling rate of the signal set the upper (Nyquist) 844 
frequency bound. These settings were chosen to optimize the pass-through of signals within the 845 
pass-band and the attenuation of signals outside the pass-band. Two-pass filtering using 846 
MATLAB’s filtfilt function was applied to achieve zero-phase delay. S4 Figure shows the 847 
spectral attenuation properties [88] of the filters. To avoid edge artefacts, input signals were 848 
symmetrically mean-padded with half the pseudo-trial duration (i.e., 1500 ms). After filtering, 849 
we implemented a point-skipping procedure to down-sample scale-wise signals (see S1 Figure). 850 
Since point-skipping allows for increasing starting point permutations k for increasing scale 851 
factors B, we counted patterns separately for each starting point k, summed the counts of pattern 852 
matches and non-matches across them, and computed sample entropy based on the summed 853 

counts as described above: STU(W, Y,Z, [) = FI(
∑ =>B
_`@

∑ =>a@B
_`@

). This implementation is equivalent 854 
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to “refined composite MSE” [89] and can improve the stability of entropy results for short or 855 
noisy signals [27, 89]. Note that no point skipping was performed in the ‘high-pass’ 856 
implementation to avoid low-pass filtering. As a result, the signals at increasing scale factors 857 
remained at the original sampling rate. To alleviate computational cost, scale factors were 858 
sampled in step sizes of 3 for empirical data (only for the ‘high-pass’ implementation) and later 859 
spline-interpolated. An adapted version of MSE calculations was used for all settings [90], in 860 
which scale-wise entropy was estimated across discontinuous data segments. The estimation of 861 
scale-wise entropy across trials allows for reliable estimation of coarse-scale entropy without 862 
requiring long, continuous signals, while quickly converging with estimates from continuous 863 
segments [90]. 864 

Multi-scale calculation of similarity bounds. Following scale-specific filtering, all 865 
implementations re-calculated sample entropy for the scale-specific signal. Crucially, in 866 
‘Original’ applications [7, 8], the similarity bound is calculated only once from the original 867 
broadband signal. As a result of filtering, the scale-wise signal SD decreases relative to the 868 
global, scale-invariant similarity bound [25]. To overcome this limitation, we recomputed the 869 
similarity bound for each scale factor, thereby normalizing MSE with respect to changes in 870 
overall time series variation at each scale (.5 x SD of scale-wise signal).  871 

Scale factor notation. As the interpretation of estimates at each scale is bound to the scale-872 
wise spectral content, our Figures indicate spectral bounds of the scale-wise signals alongside 873 
the scale factor as follows: for the low- and band-pass implementation, we indicate the low-874 
pass frequency as calculated above as the highest resolvable (i.e., Nyquist) frequency in the 875 
scale-specific signal. Likewise, for the high-pass implementation, we indicate the high-pass 876 
limit as the lowest resolvable frequency in the scale-specific signal. In the main text, we refer 877 
to higher scale factors as ‘coarser’ scales’ and lower scale factors as ‘finer’ scales, in line with 878 
the common use in the literature. Note that the sampling rate of the simulated data was 250 Hz, 879 
whereas the empirical data had a sampling rate of 500 Hz.  880 

Calculation of power spectral density (PSD) 881 

Power spectral density estimates were computed by means of a Fast Fourier Transform 882 
(FFT) over 3 second pseudo-trials for 41 logarithmically spaced frequencies between 2 and 64 883 
Hz (employing a Hanning-taper; segments zero-padded to 10 seconds) and subsequently 884 
averaged. Spectral power was log10-transformed to render power values more normally 885 
distributed across subjects. Power spectral density (PSD) slopes were derived by linearly 886 
regressing power values on log-transformed frequencies. The spectral range from 7-13 Hz was 887 
excluded from the background fit to exclude a bias by the narrowband alpha peak [32, 41]. 888 

Detection of single-trial spectral events 889 

Spectral power, even in the narrowband case, is unspecific to the occurrence of 890 
systematic rhythmic events as it also characterizes periods of absent rhythmicity [e.g., 91]. 891 
Specifically detecting rhythmic episodes in the ongoing signal alleviates this problem, as 892 
periods of absent rhythmicity are excluded. To investigate the potential relation between the 893 
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occurrence of stereotypic spectral events and narrowband entropy, we detected single-trial 894 
spectral events using the extended BOSC method [34, 92, 93] and probed their relation to 895 
individual entropy estimates. In short, this method identifies stereotypic ‘rhythmic’ events at 896 
the single-trial level, with the assumption that such events have significantly higher power than 897 
the 1/f background and occur for a minimum number of cycles at a particular frequency. This 898 
effectively dissociates narrowband spectral peaks from the arrhythmic background spectrum. 899 
Here, we used a one cycle threshold during detection, while defining the power threshold as the 900 
95th percentile above the individual background power. A 5-cycle wavelet was used to provide 901 
the time-frequency transformations for 49 logarithmically-spaced center frequencies between 902 
1 and 64 Hz. Rhythmic episodes were detected as described in [34]. Following the detection of 903 
spectral events, the rate of spectral episodes longer than 3 cycles was computed by counting the 904 
number of episodes with a mean frequency that fell in a moving window of 3 adjacent center 905 
frequencies. This produced a channel-by-frequency representation of spectral event rates, 906 
which were the basis for subsequent significance testing. Event rates and statistical results were 907 
averaged within frequency bins from 8-12 Hz (alpha) and 14-20 Hz (beta) to assess relations to 908 
narrowband entropy and for the visualization of topographies. To visualize the stereotypic 909 
depiction of single-trial alpha and beta events, the original time series were time-locked to the 910 
trough of individual spectral episodes and averaged across events [c.f., 43]. More specifically, 911 
the trough was chosen to be the local minimum during the spectral episode that was closest to 912 
the maximum power of the wavelet-transformed signal. To better estimate the local minimum, 913 
the signal was low-pass filtered at 25 Hz for alpha and bandpass-filtered between 10 and 25 Hz 914 
for beta using a 6th order Butterworth filter. A post-hoc duration threshold of one cycle was 915 
used for the visualization of beta events, whereas a three-cycle criterion was used to visualize 916 
alpha events. Alpha and beta events were visualized at channels POz and Cz, respectively.  917 

Statistical analyses 918 

Spectral power and entropy were compared across age groups within condition by 919 
means of independent samples t-tests; cluster-based permutation tests [94] were performed to 920 
control for multiple comparisons. Initially, a clustering algorithm formed clusters based on 921 
significant t-tests of individual data points (p <.05, two-sided; cluster entry threshold) with the 922 
spatial constraint of a cluster covering a minimum of three neighboring channels. Then, the 923 
significance of the observed cluster-level statistic, based on the summed t-values within the 924 
cluster, was assessed by comparison to the distribution of all permutation-based cluster-level 925 
statistics. The final cluster p-value that we report in all Figs was assessed as the proportion of 926 
1000 Monte Carlo iterations in which the cluster-level statistic was exceeded. Cluster 927 
significance was indicated by p-values below .025 (two-sided cluster significance threshold). 928 
Effect sizes for MSE age differences with different filter settings were computed on the basis 929 
of the cluster results in the ‘Original’ version. This was also the case for analyses of partial 930 
correlations. Raw MSE values were extracted from channels with indicated age differences at 931 
the initial three scales 1-3 (>65 Hz) for fine MSE and scales 39-41 (<6.5 Hz) for coarse MSE. 932 

R1	was calculated based on the t-values of an unpaired t-test: R1 = cd

cd?e"
 [95]. The measure 933 

describes the variance in the age difference explained by the measure of interest, with the square 934 
root being identical to Pearson’s correlation coefficient between continuous individual values 935 
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and binary age group. Effect sizes were compared using the r-to-z-transform and a successive 936 
comparison of the z-value difference against zero: fg7"" = 	

h!ih1

8jkc(
l

mlno
?

l
mdno

)
 [96]. Unmasked t-937 

values are presented in support of the assessment of raw statistics in our data [97]. 938 
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S1 File.  Systematic literature search assessing the prevalence of global similarity bounds.  942 

 943 
S1 Figure. Overview of modified (mMSE) adaptations. First, mMSE uses data aggregation across (here: 944 
pseudo-) trials to allow the estimation of coarse scales also from sparse neuroimaging data [90]. These aggregated 945 
signals are then filtered at each scale prior to sample entropy calculation. The ‘Original’ implementation uses 946 
‘point averaging’ for different scale factors, which is equivalent to a FIR low-pass filter. In adapted applications, 947 
we used a two-step implementation, which we refer to as ‘filt-skip’, which first applies a scale-wise low-, high- or 948 
band-pass filter, and then performs point skipping to down-sample the resulting signals. Finally, the sample 949 
entropy of these signals is similarly assessed using the sample entropy algorithm, which results in multiscale 950 
entropy estimates. Figure adapted with permission from [70]. 951 

 952 
S2 Figure. Liberal similarity bounds reduce sample entropy in simulations. (A) The plot shows the sample 953 
entropy of simulated white noise signals with constant signal standard deviation (SD) of 1, but varying similarity 954 
bounds. We denote this as a function of a scaling factor (SF) to highlight that such variation may arise from either 955 
variation in r, SD or both. Note that the r parameter is usually fixed and the SD matches the signal SD (gray line), 956 
thus normalizing total signal variance. However, when the similarity bound systematically increases relative to the 957 
signal SD, entropy estimates progressively decrease (black line). (B) A similar scenario applies when fixed and 958 
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large bounds are applied to signals of decreasing variance, as is the case across MSE time scales due to scale-wise 959 
filtering (Fig 2). Whereas no bias is observed when scale-wise signal SD is used for the calculation of similarity 960 
bounds (grey line), entropy estimates systematically decrease when the SD of the original signal are used (black 961 
line). Hence, the mismatched similarity bounds introduced entropy decreases although no changes to the structure 962 
of the (here white noise) signals were introduced. 963 

 964 
S3 Figure. Examples of simulated rhythmicity projected into pink noise. (A) Top-down view of time-series 965 
from an exemplary simulated trial for a pure 1/f signal pink noise signal and at different magnitudes of added alpha 966 
rhythmicity. (B) Exemplary time series in 2D view. The red time series indicates an example time series for the 967 
level of rhythmicity shown in Fig 5. (C) Simulated SNR as a function of amplitude level. The dots indicate SNR 968 
for the levels depicted in panel B. 969 

 970 
S4 Figure. Filter magnitude responses. (A) Filter magnitude responses at 10 Hz. Note that magnitude responses 971 
have been squared due to two-pass filtering to achieve zero-phase offsets. (B) Filter magnitudes of Bandpass filters 972 
(3rd order type I Chebyshev filter with 1dB passband ripple) at different time scales (red-to-orange indicating fine-973 
to-coarse time scales). Note that only a high-pass filter (6th order Butterworth filter) is applied at the first scale. 974 

 975 
S5 Figure. T-values for age group differences in spectral power (OA > YA). Statistical significance (p < .05) 976 
was assessed by means of cluster-based permutation tests and is indicated via opacity. 977 
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 978 
S6 Figure. Methods- and scale-dependent associations between sample entropy and PSD slopes. ‘Original’ 979 
settings indicate a strong positive association at fine scales (A1) that turns negative at coarse scales (A2), likely 980 
due to coarse-scale biases by the scale-invariant similarity criterion. In line with this notion, scale-wise adaptation 981 
of thresholds retains the fine-scale effect (B1), while abolishing the coarse-scale inversion (B2). Crucially, the 982 
entropy of exclusively high-frequency signals does not positively relate to PSD slopes (C1), whereas the 983 
association reemerges once slow fluctuations are added into the signal (C2).  984 
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Additional Information 985 

Data availability 986 

Raw empirical data is provided at https://osf.io/q3vxm/. Code used to produce simulations, 987 
empirical analyses and figures is provided at https://git.mpib-988 
berlin.mpg.de/LNDG/rhythms_entropy. The code implementing the mMSE algorithm is 989 
available from https://github.com/LNDG/mMSE. 990 
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S1 Text. Systematic literature search assessing the prevalence of global similarity bounds. We 
performed a systematic literature search to assess the prevalence of global similarity bounds in current 
neuroscientific applications (heart rate variability applications are specifically marked). We searched 
Pubmed (https://www.ncbi.nlm.nih.gov/pubmed) with the following terms: (MSE AND sample entropy 
AND EEG) OR (MSE AND brain AND variability) OR (MSE AND EEG AND variability) OR (multiscale 
entropy AND EEG AND variability). We excluded any studies that did not assess multiscale entropy, 
including studies that were restricted to sample entropy at scale 1. In addition, we added references 
from the main text that were not captured by the systematic search (highlighted in grey). For MSE 
applications, we checked the text for a notion of how similarity bounds were computed, i.e., whether it 
was calculated as r*SD of the original time series or the coarse-grained time series. The following 
sections list the results of this qualitative review and is purely intended to characterize the prevalence 
of global similarity bounds, not as a qualitative judgement on the claims made in any particular paper. 
Our literature search revealed the following papers. The relative amount of studies with presumably 
global similarity bounds was as follows (39+13)/(39+13+4) = 0,928; i.e., > 90%. 
 
Scale-invariant similarity bounds (r x global SD) 
We chose this category, when the article contained the specific information that r was calculated 
from the original signal (i.e., scale-invariant). 
 
Azami, Fernandez, and Escudero (2017) 
Azami, Rostaghi, Abasolo, and Escudero (2017) 
Carpentier et al. (2019) 
Escudero, Abasolo, Hornero, Espino, and Lopez (2006) [but they note the issue] 
Grandy, Garrett, Schmiedek, and Werkle-Bergner (2016) 
Hadoush, Alafeef, and Abdulhay (2019) 
Kaur et al. (2019) 
M. Liu, Song, Liang, Knopfel, and Zhou (2019) 
H. Liu et al. (2017) [HRV] 
Lu et al. (2015) 
McIntosh, Kovacevic, and Itier (2008) 
Mizuno et al. (2010) 
Weng et al. (2015) 
 
#: 13 
 
Unclear, assumed scale-invariant similarity bounds (r x global SD) 
We chose this category, when the article did not contain any information about how r was calculated, 
or no reference was made to scale-specific adaptations. For many papers, Costa, Goldberger, and Peng 
(2002, 2005) or Richman and Moorman (2000) were cited, which use scale-invariant implementations.  
 
Raja Beharelle, Kovacevic, McIntosh, and Levine (2012) 
Bertrand et al. (2016) 
Catarino, Churches, Baron-Cohen, Andrade, and Ring (2011) 
Chen et al. (2015)(HRV) 
Chen et al. (2018) (HRV) 
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Li, Chen, Li, Wang, and Liu (2016) 
Chiu et al. (2015) (HRV) 
Courtiol et al. (2016) 
Gao, Hu, Liu, and Cao (2015) 
Harati, Crowell, Huang, Mayberg, and Nemati (2019) 
Harati, Crowell, Mayberg, Jun, and Nemati (2016) 
Hasegawa et al. (2018) 
Heisz and McIntosh (2013) 
Heisz, Shedden, and McIntosh (2012) 
Hu and Liang (2012) [RM] 
Hussain, Saeed, Awan, and Idris (2018) 
Hussain, Aziz, et al. (2018) 
Jaworska et al. (2018) 
Kuntzelman, Jack Rhodes, Harrington, and Miskovic (2018) 
Lin et al. (2019) [BOLD] 
H. Liu et al. (2018) 
H. Y. Liu et al. (2018) 
Q. Liu, Chen, Fan, Abbod, and Shieh (2015) 
Q. Liu, Chen, Fan, Abbod, and Shieh (2017) 
McIntosh et al. (2014) 
Misic et al. (2015) 
Misic, Vakorin, Paus, and McIntosh (2011) 
Miskovic, Owens, Kuntzelman, and Gibb (2016) 
Park, Kim, Kim, Cichocki, and Kim (2007) 
Roldan, Molina-Pico, Cuesta-Frau, Martinez, and Crespo (2011) 
Szostakiwskyj, Willatt, Cortese, and Protzner (2017) 
Takahashi et al. (2009) 
Takahashi et al. (2010) 
Takahashi et al. (2016) 
Ueno et al. (2015) 
Yang et al. (2013) 
H. Y. Wang, McIntosh, Kovacevic, Karachalios, and Protzner (2016) 
H. Wang, Pexman, Turner, Cortese, and Protzner (2018) 
Wei et al. (2014) 
 
#: 39 
 
Scale-wise similarity bounds (r x scale-wise SD) 
We chose this category, when the article either specified that scale-wise recalculation of r parameters 
was performed, or when the description could allow that inference. 
 
Fabris et al. (2014) [but with unclear variations in r] 
Sleimen-Malkoun et al. (2015) 
Valencia et al. (2009) [HRV] 
Zavala-Yoe, Ramirez-Mendoza, and Cordero (2015) 
 
#: 4 
 
Not applicable 
We chose this category, when multi-scale entropy was not used in the study (i.e., erroneous listing of 
paper). 
 
El-Gohary, McNames, and Elsas (2008) 
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Erdogan, Yucel, and Akin (2014) 
Fernandez, Gomez, Hornero, and Lopez-Ibor (2013) 
Heunis, Aldrich, and de Vries (2016) 
Hier, Jao, and Brint (1994) 
Kielar et al. (2016) [BOLD MSE, single scale] 
Nazari et al. (2019) 
Puce, Berkovic, Cadusch, and Bladin (1994) 
Sinai, Phillips, Chertkow, and Kabani (2010) 
Verhaeghe, Gravel, and Reader (2010) 
Xu, Cui, Hong, and Liang (2015) 
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