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Abstract 

Gene regulatory network inference is a standard technique for obtaining structured 

regulatory information from, among other data sources, gene expression measurements. 

Methods performing this task have been extensively evaluated on synthetic, and to a lesser 

extent real data sets. They are often applied to gene expression of human cancers. 

However, in contrast to the evaluations, these data sets often contain fewer samples, more 

potential regulatory links, and are biased by copy number aberrations as well as cell 

mixtures and sample impurities. Here, we take networks inferred from TCGA cohorts as an 

example to show that (1) transcription factor annotations are essential to obtaining reliable 

networks, and (2) even when taking these into account, we should expect between 20 and 

80% of edges to be caused by copy number changes and cell mixtures rather than 

transcription factor regulation. 

1. Introduction 

Gene Regulatory Network (GRN) inference describes the process of identifying 

regulator-target relationships from experimental molecular data. These data can be 

protein-protein interactions (often referred to as interaction networks) or protein-DNA binding 

(obtained by chromatin immunoprecipitation and sequencing, or ChIP-seq), but is most 

commonly gene expression data (obtained by microarrays or more recently RNA-seq). 

For gene expression data, the rationale behind the approach is that if a transcription factor 

(TF) is more highly expressed, it is also likely to be more active and mediate a higher 

downstream expression of its target genes (TGs). While this ignores potential 
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post-translational modifications that may also influence a transcription factor’s activity, as 

well as epigenetic marks at the enhancer and promoter sites of target genes, GRN inference 

methods have been shown to be useful in elucidating transcriptional programmes in a variety 

of contexts ​1–7​. 

 

There are different kinds of data that we can use to infer networks from. For instance, we 

can follow a perturbation over time (time-course networks), or take multiple snapshots of the 

same underlying system in different states. The latter is referred to as observational 

(meaning comparing different samples) steady-state networks ​8​, which often occur when we 

for instance measure gene expression in a yeast strain with different growth conditions or 

cancer patients across a cohort of the same tumor type. 

 

Each of these use cases require different assumptions and hence tools that are specialized 

for this kind of data. Here, we focus on steady-state observational networks. In this case, we 

assume the underlying regulatory structure to be the same or at least its differences small 

enough so we can ignore them. This is likely true when e.g. a mutation in a signaling 

molecule activates a certain part of a downstream GRN, but it will not be if a transcription 

factor loses its affinity to its target genes or a subset thereof. While previous studies have 

shown this to happen for some genes (reviewed in ​9​), observational GRN inference methods 

assume that this will not change the overall correlation structure across many samples. 

 

Methods that have been developed for observational GRNs can roughly be classified by the 

theoretical framework they use in order to infer regulatory relationships. The classical 

approaches come from information theory and employ some kind of mutual information, or 

correlation and regression-based approaches (classification and theoretical background 

have been reviewed before ​8​). These tools have been continuously developed, but more 

recently the focus has also shifted more to machine learning methods such as random forest 

and neural networks (recent overview of methods reviewed in ​10​). 

 

These network inference methods have been extensively evaluated e.g. in the Dialogue of 

Reverse Engineering and Assessment of Methods (DREAM) competitions ​11​ and many more 

comparisons on smaller scale ​12–18​. They have provided many biological insights, and have 

been particularly useful to elucidate mechanisms of pathogenicity in human diseases such 

as cancer ​1,2,19–24​. However, there is a disconnect between evaluation in often relatively 
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simple systems (synthetic networks or GRNs in ​E. coli​ and yeast) and their application to 

much more complex mammalian systems. 

 

One application where this disconnect is particularly striking is human cancer, because (a) 

individual patients harbor different chromosomal aberrations ​25​ that change the expression of 

many genes in a coordinated fashion ​26​, and (b) cancer cells attract different immune and 

stromal cells dilute gene expression measurements with their own regulatory programmes ​27​. 

 

Here, we aim to bridge this gap by investigating how well GRN inference methods perform in 

the context of cancer, and particularly how much they are influenced by specific confounding 

factors outside of TF-TG relationships such as aneuploidies and sample impurities. 

2. Network inference methods have been extensively evaluated 

on synthetic data sets 

2.1 Network inference methods 

For steady-state networks, the basic idea is that the same underlying regulatory structure 

(the network to be inferred) will be sampled at different states by measuring gene expression 

of e.g. multiple cancer patients. Genes that are up- or downregulated in a subset of samples 

compared to the rest will change their expression in accordance to the underlying regulatory 

network, which can in turn be inferred by looking at this correlation structure: If two genes 

are correlated across many samples, they are likely to either regulate each other or be 

regulated by a common third gene (albeit not always directly). 

 

Classic methods that infer networks from multiple samples of unperturbed gene expression 

can roughly be divided in correlation-based and information-theoretic models. These and 

more methods have been reviewed in detail ​8,10,28,29​ and hence we only provide a brief 

overview. Information-theoretic approaches started out with relevance networks ​12​, in which 

the pairwise mutual information (MI) is computed between all pairs of genes. Subsequently, 

all gene pairs above a certain threshold (that can be estimated from the data itself) are kept. 

ARACNe (algorithm for the reconstruction of accurate cellular networks) ​1,13​ added an 

additional filtering step where the authors eliminate the weakest link in all gene triplets (using 

the data processing inequality) unless they are protected by a transcription factor link. The 

recent ARACNe-AP ​30​ (for adaptive partitioning) implementation adds further performance 
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optimizations. By contrast, the PCIT ​31​ algorithm only removes edges in triplets if two genes 

are conditionally independent given the third. Other approaches were taken by CLR ​14 

(context likelihood of relatedness; using the z-score of the MI distribution) or C3NET ​15 

(conservative causal core networks; keeping only the strongest MI edge for each gene) and 

its extension BC3NET ​32​ (bagging of C3NET results). Yet another approach is taken by 

MRNET ​33​, which concurrently maximizes the relevance (MI) while minimizing redundancy 

(MRMR is a feature selection technique in supervised learning). For practical purposes, it 

should be noted that MI-based methods are nonparametric, i.e., these methods perform on 

the ranks of gene expression values rather than the gene expression values themselves. 

Many of these methods are implemented in the minet R package ​34​. 

 

Correlation- and regression-based models are another class of gene regulatory network 

inference methods. In their simplest form, these methods perform a regression or correlation 

test between two variables. As there are many gene interactions that need to be tested, 

feature selection is a common feature of these techniques. For instance, Least Angle 

Regression (LARS) ​35,36​ starts with the best correlated predictor and then iteratively adds 

other predictors based on their correlation with the residual. TIGRESS (Trustful Inference of 

Gene Regulation with Stability Selection) ​17​ adds the concept of stability selection to LARS. 

Instead of adding and removing individual predictors, the GeneNet package ​37​ estimates all 

predictors simultaneously by inverting the gene expression matrix. Another approach is to 

combine regression models with decision trees, finding sets of genes that best explain the 

expression of a target ​38–40​. GENIE3 (Gene Network Inference with Ensemble of trees) ​16 

integrates information of many such trees in order to make regulatory predictions. NIMEFI 

(Network Inference using Multiple Ensemble Feature Importance algorithms) ​18​ goes one 

step further and integrates the results of both TIGRESS and GENIE3 into a combined 

prediction method. 

2.2 Finding a reference set for method evaluation 

A challenge in evaluating network inference methods is that in order to score the 

performance of different methods, we need to compare the edges they infer to edges we 

know are correct vs. edges we know not to be correct. However, we often do not know the 

ground truth for real gene regulatory networks. While many interactions may be known, it is 

likely that only a small fraction of the relevant interactions has been discovered. An 

alternative approach is to simulate a GRN according to a known network structure and a set 

of rules about how the different nodes influence each other. Examples of such simulators are 
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SynTren ​41​ and GeneNetWeaver ​42​. The advantage of such a synthetic network is that the 

ground truth is known, but it may not exhibit all the properties of a real GRN. Method 

evaluation was often focused on synthetic or synthetic-like datasets. When evaluations on 

real data were done, they usually were small in scale owing to the limited amount of 

orthogonal data available. 

 

More recently, the amount of available human TF-gene interactions has grown tremendously 

due to large-scale efforts like the ENCODE project ​43​, but also curation of individual ChIP 

binding experiments ​44​. These have produced consensus regulons for individual TFs, where 

binding was observed in a variety of tissues. The latter comprise 100 transcription factors 

that cover 16,500 target genes in a data set available from the Enrichr platform ​45​. Another 

option would be the UniBind database with 231 transcription factors ​46​. While these 

consensus interactions are still not proof of actual regulatory interactions, they provide a 

sufficient number of orthogonally derived relationships in order to use this set to identify 

large-scale biases of network inference algorithms with respect to copy number changes or 

sample impurities. 

2.3 Previously published method evaluations 

In terms of previous method evaluations, the most comprehensive benchmark studies are 

the Dialogue of Reverse Engineering and Assessment of Methods (DREAM) challenges ​11​. 

These are community-driven challenges where a panel of organizers designs competitions 

about, among other things, network inference. DREAM4 consisted of five synthetic networks 

with 100 genes and 100 samples. Each of the 100 genes could be a regulator of other 

genes. These networks were called “multifactorial”, as all nodes were perturbed 

simultaneously in the simulations. The expression matrices hence contained 100 different 

steady state realizations of the same underlying network. DREAM5 ​11​ provided three kinds of 

networks: a synthetic network, one derived from ​E. coli​, and one derived from ​S. cerevisiae​. 

The gene expression matrices were larger and ranged from 1600-5900 genes and 536-805 

samples, respectively. In contrast to DREAM4, all networks defined a subset of genes that 

could act as regulators (between 195 and 334; cf. Fig 1a-b). In addition, newly published 

methods often perform their own evaluation ​12–14,16–18​. 

 

Yet, research investigating gene regulatory networks is often applied to more complex 

systems like human cancers ​1,2,19​, and not only to simpler and better-defined synthetic 

networks or networks from microorganisms. In the context of cancer, a single TF was 
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validated using a set of 26 known targets or comparison between 11 known targets and 11 

negative targets ​1​. We are currently not aware of a large-scale study comparing GRN 

inference methods in the realistic setting of human cancer gene expression ​10​, which may be 

explained by the fact that it is difficult to obtain a reference network to compare to. 

3. Previous benchmarks do not accurately capture properties of 

cancer gene expression 

3.1 Evaluating inference methods on cancer gene expression data 

While the gene expression data sets that were used for evaluation have dramatically 

increased in size in DREAM 5 compared to DREAM 4, they are still very small in comparison 

to mammalian organisms (Fig. 1a, b). This starts from the number of genes and regulators 

present, but is also apparent by the number of confirmed regulatory interactions in the 

DREAM 5 networks. By contrast, the number of samples available is often not higher than in 

the much simpler benchmark data set (Fig. 1b). Hence, real cancer gene expression data 

offers a different kind of challenge for inference methods and may lead to different results 

compared to the previously published benchmarks. However, as the same methods are 

commonly employed to infer regulatory programmes in cancer, it is important to gain a better 

understanding of the opportunities and pitfalls that are specific to this kind of data and may 

not have been accurately covered in simulation studies or the other DREAM benchmarks. 

 

Here, we are not only interested in the more complex system as defined by the number of 

genes and regulators, but also in specific biases that cancer gene expression exhibits and 

that was not covered sufficiently by synthetic or micro-organism networks, like copy number 

alterations or sample mixtures due to stromal and invading immune cells. As the network 

simulators covered ​41,42​ do not allow for these kinds of biases, we aim to evaluate GRN 

inference methods on cancer patient gene expression from The Cancer Genome Atlas 

(TCGA) ​47​. 

 

We chose six TCGA cohorts with different numbers of samples available: ​Adrenocortical 

carcinoma (ACC), Breast invasive carcinoma (BRCA), Colon adenocarcinoma (COAD), 

Head and neck squamous carcinoma (HNSC), Prostate adenocarcinoma (PRAD), and Skin 

cutaneous melanoma (SKCM). These range from 77 (ACC) to 1087 (BRCA) samples per 

tumor type (cf. Fig. 1b). We filter all mapped genes to those with 5 or more reads on average 
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per sample, yielding approximately 20,000 genes for all cohorts. We define potential 

regulators as genes that are annotated with “Transcription factor activity” in Gene Ontology 
48​ (GO:0003700), leaving approximately 830 regulators per cohort. As a positive set, we 

used consensus regulons for 101 transcription factors covering 16,500 target genes from 

ChEA ​44​ and ENCODE ​43​ via the Enrichr platform ​45​. We did not use a negative set, as those 

are generally not available for transcriptional regulation. 

 

We ran the network inference algorithms ARACNe-AP ​30​, GeneNet ​37​, GENIE3 ​16​ , TIGRESS 
17​, and other methods available via the NetBenchmark R package ​49​ on each of our six 

cohorts using default options. We then evaluated how many known TF-TG pairs were 

recovered in the top ​N​ edges (Fig. 1c and 1d), prioritized by the score given to each 

interaction by each method. We found that GENIE3 has a slight edge over TIGRESS, which 

again performs slightly better than ARACNe-AP. The difference between these three 

methods and all others is that they take into account TF annotations, which the other 

methods do not. 

3.2 Incorporating prior knowledge is essential for method performance 

In terms of network size, the number of potential interactions with knowledge about 

regulators compared to without is particularly striking: If any gene can also act as a 

regulator, there are approximately 22,000 genes and 484 million binary interactions. By 

contrast, using 974 annotated TFs in Gene Ontology ​48​ and only taking them into account as 

potential regulators, we are left with only 21 million potential interactions to explore (a 22 fold 

decrease; cf. Fig. 1a). However, note that all the networks that we infer are undirected, 

hence these numbers should be halved when considering how well a method recovers 

known binding interactions. Also, we do not allow self-regulation, i.e. edges of a gene with 

itself. 

 

This decrease in potential interactions seems to drive a superior performance of methods 

that are able to incorporate TF annotations in the network they infer. No matter the 

background or the age of a method, looking naively at the number of links recovered from 

known ChIP binding, there is a substantial increase (Fig. 1c, d). This result should of course 

be regarded with respect to the number of potential interactions: sampling randomly from all 

gene-gene interactions will produce a much worse performance than sampling from known 

TFs (lower and upper dashed grey lines in Fig. 1c, d, respectively). Nevertheless, if we are 

interested in recovering true regulatory interactions, it stands to reason to use a method that 
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makes use of TF annotations. If not, no method ignoring these annotations performs 

anywhere close to randomly sampling from TF-TG interactions (upper dashed line in c, d). 

 

It should be noted that the performance of all methods are close to their respective random 

lines. This is likely explained both by the fact that our positive set likely contains many 

non-regulatory binding interactions, and the observation that none of the methods in DREAM 

5 performed much better than random for the ​S. cerevisiae​ network ​11​. However, for network 

sizes up to 200,000 nodes GENIE3, TIGRESS, and ARACNe-AP perform better than 

random sampling of TF-TG interactions (cf. Fig. 1d). 

 

Figure 1: Translating DREAM challenges to a cancer data set. (a) Comparison of potential 

interactions in the previous challenges vs. all binary interactions in a human genome with and 

without known regulators. (b) Number of genes, regulators, samples, and known interactions for the 

different challenges and TCGA cancer cohorts. (c) Number of known TF-TG pairs recovered by 

network inference algorithms (y axis) for six selected TCGA cohorts with size cutoff of the inferred 

network (x axis). Dashed lines indicate expected recovery if randomly sampling from all gene 
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interactions (lower line) or only from known regulators (upper line) (d) zoomed view of c for small 

sizes of the networks. 

3.3 Copy number changes and sample impurities are confounding gene 

expression measurements 

As gene regulatory networks are often inferred from gene expression, it is important to 

consider factors influencing gene expression outside of transcription factor-target gene 

relationships. This is why care needs to be taken when merging together multiple data sets 

from e.g. microarrays and RNA-seq, or different processing pipelines that can lead to 

technical batch effects. These batch effects have been abundantly discussed in literature 

before (reviewed in ​50​), and there are many approaches to correct for them ​51–53​. 

 

However, cancer cells also harbor biological variability influencing gene expression and 

hence correlation that has so far not been discussed in depth. For instance, cancer cells 

often harbor copy number changes ranging from small segments (focal CNAs) up to the 

level of whole chromosomes (aneuploidies) ​54​. Gene expression has been shown to follow 

these copy number changes ​26,55,56​, whereas protein expression is often compensated for ​57​. 

 

Another factor that influences cancer gene expression in particular is that samples obtained 

from patients will not only consist of a homogeneous population of cancer cells. Instead, 

samples will also contain stromal cells that have been co-opted in tumorigenesis, as well as 

immune cells ​27​ driving inflammation and/or contributing to  active clearing of tumor cells. 

Multiple methods have been developed to estimate cell fractions ​58–61​, including some that 

aim to reconstruct the cancer-specific transcriptome from a cell mixture ​62,63​. Another level of 

complexity is that cancer cells themselves often consist of multiple clones and lineages that 

may exhibit heterogeneous traits not visible in a bulk transcriptomics measurement. While 

these issues can be overcome with recent single-cell sequencing technologies, it will still 

take years until these data sets reach a level of comprehensiveness comparable to the 

TCGA. 

 

Here, we focus both on focal copy number changes and aneuploidies, as well as tumor 

purity defined as the fraction of cells in a sample estimated to be cancer cells. As focal copy 

number changes, we take recurrently altered regions (RACS) from the Genomics of Drug 

Sensitivity in Cancer (GDSC) project ​64​ as processed by ADMIRE ​65​. For different cancer 
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types in the TCGA, we observe a different number as well as different sizes for these 

regions (Fig. 2a). Glioblastoma multiforme (GBM) and Ovarian serous cystadenocarcinoma 

(OV) show the highest number of altered regions, with Breast invasive carcinoma (BRCA) 

and Lung squamous carcinoma (LUSC) showing the highest fraction of their genomes 

altered due to these local recurrent events. We calculate aneuploidy scores as the average 

absolute deviation from euploid over whole chromosomes according to copy number 

segments downloaded via TCGAbiolinks ​66​ (Fig. 2b), and use consensus purity estimates for 

different samples from the xCell publication ​59​. 

 

The cohorts we focus on in subsequent analyses show a heterogeneous level of focal copy 

number changes and aneuploidies, as well as for sample purity (Fig. 2a-c). Looking at 

individual samples, we can observe the variability in focal amplifications from an almost 

euploid cohort (PRAD) up to a very high level (BRCA; cf. Fig. 2d). Similarly, PRAD also 

shows a low and ACC a high level of aneuploidy (Fig. 2e). 

 

In terms of gene regulatory networks, it is unclear how these factors confounding gene 

expression influence the inferred edges for different methods. This is why in this study we 

evaluate the number of edges each of our methods infers that fall within (1) a CNA vs. 

outside and (2) genes whose expression strongly correlates with sample purity vs. those that 

do not. As a control, we check for the same enrichment in known transcription factor binding 

sites. 
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Figure 2: Abundance of focal amplifications and aneuploidies in the TCGA. (a) Number of 

recurrently altered focal segments (x axis) vs. the fraction of the genome that they cover (y axis) for 

different TCGA cohorts. (b) Distribution of aneuploidy scores for different TCGA cohorts with 

chosen cohorts highlighted in color. (c) Average sample purity by cohort, error bars are standard 
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deviation (d) Distribution of segment (left) and chromosome (right) copy numbers across samples 

of the six chosen cohorts. 

4. Network inference methods are biased towards copy number 

aberrations and sample purity 

4.1 Focal amplifications have strong local but weak genome-wide effect 

In order to test for the effect that focal amplifications have on the interactions inferred by 

different network inference methods, we used our selected methods and cohorts to 

investigate how many of the inferred edges can likely be explained by the focal 

amplifications and aneuploidy scores that we previously obtained (Fig. 2). Briefly, we 

assume that real TF-TG relationships (obtained from ChIP binding information) are equally 

likely to occur within focal CNAs or aneuploidies as they are between two genes anywhere 

on the genome. We then compare the edges obtained by the different inference methods to 

the number of edges theoretically possible within CNAs, and see if this fraction is different to 

the total number of edges inferred from the total number of possible edges. As a control, we 

do the same for known transcription factor binding associations to confirm our assumption of 

equally likely TF-TG relationships within and outside of CNAs. 

 

Because all of the methods we tested provided a score for each inferred edge, we could test 

different network sizes by setting different cutoffs on the edge scores. We then went on to 

show the number of expected false positive edges with different network sizes for our six 

highlighted cohorts (Fig. 3). As our positive set that we test with is likely incomplete, we can 

only estimate the fraction of these false positive links, and not if any individual link is indeed 

a false positive. 

 

First, we show the effect of focal amplification on the inferred edges (Fig. 3a). On the top 

row, we show the sum of observed links within each CNA over the number of possible links 

within those CNAs. We find that starting from very small networks (1000 edges), almost all of 

the within-CNA edges inferred by different methods in most cohorts are likely false positives 

(FPs), as we observe many more edges than we could expect given our null model (that 

edges within a CNA and outside are equally likely). These false positives, however, have got 

a relatively minor impact on all the edges inferred across the genome, as the number of 

genes in the identified recurrent focal amplifications is low (cf. top vs. bottom row in Fig 3a). 
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GeneNet is the method that shows the strongest enrichment of edges in CNAs, with up to 

10% of the total number of edges in a small network (1000 edges). Other methods stay 

under 5% of genome-wide false positive edges. As the size cutoff gets less stringent 

(100,000 to 1 million edges), the genome-wide FPR for most of the methods and cohorts 

drops under 2%. It should, however, be noted that the total number of possible within-CNA 

edges is low for all cohorts and incorporating all of them in a network will still result in a low 

genome-wide FPR (cf. Fig 2d). Hence, a more relaxed definition of recurrent focal CNAs 

(compared to the one defined by ADMIRE) would likely also yield a higher rate of 

genome-wide FP edges. 

 

Figure 3: Effect of (a) focal amplifications and (b) aneuploidies on inferred network edges. False 

positive rate (y axis) shown for different network size (x axis) either within the CNA (top row) or in 

comparison to the total number of edges between all genes (bottom row). Dots along lines are 

shown where this was quantified. 
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4.2 Aneuploidies have weaker local but strong genome-wide effect 

In contrast to the focal amplifications, aneuploidies show a smaller within-segment FPR (Fig. 

3, top rows). The effect of the genome-wide FPR, however, is much bigger for aneuploidies 

than for focal amplifications (Fig. 3, bottom rows). This makes sense intuitively, as the 

number of genes changed with each aneuploidy is much larger than the number of genes 

changed with a focal amplification (cf. Fig. 2c-d). Hence, a smaller fraction of incorrectly 

identified edges within each chromosome already has a large effect on the genome-wide 

false positive rate. We can observe this in the FP curves between focal amplifications (Fig. 

3a) and aneuploidies (Fig. 3b) that reach a much higher level of genome-wide FPR for 

aneuploidies (up to 85% of the total number of edges inferred, compared to under 10% for 

focal amplifications). 

 

These results suggest that aneuploidies are likely a major source of bias in the total number 

of inferred edges for most methods, especially for smaller network sizes. Therefore, caution 

should be taken when applying these methods to biological samples that may harbor 

large-scale copy number changes. For the methods that performed well in recovering TF-TG 

interactions (cf. Fig. 1c-d), we see that TIGRESS is most influenced by aneuploidies, 

followed by GENIE3 (although the effect is reversed in melanoma). Both methods show a 

larger FP enrichment with smaller network size, suggesting that they are prone to assigning 

high scores to genes co-regulated by aneuploidies instead of TF-TG interactions. ARACNe 

is remarkably stable in the fraction with varying network size, always showing approximately 

10-20% of FPs due to aneuploidy. All methods using TF annotations behave equally in the 

range of 100,000 to 1 million edges. Actual TF binding interactions from ChEA (black line in 

Fig. 3) are equally likely to be inside and outside of CNAs. 

4.3 Networks are biased due to sample composition 

Apart from the copy number aberrations, we also investigated the number of false positive 

edges with sample impurities. The rationale is the same as above: we assume that genes 

whose expression level is changing with tumor purity are not more likely to be transcription 

factor and target gene compared to the genes whose expression does not follow that trend. 

A difference to the analysis before, however, is that there is no clear set of genes that are 

influenced by sample purity vs. genes that are not. In order to address this, we selected 

either the top 1,000 or top 5,000 genes that correlated the most with tumor purity in each 
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cancer type we highlight, and then performed the same enrichment analysis as we did with 

the focal copy number changes and aneuploidies. 

 

Figure 4: Effect of sample purity on inferred network edges. For (a) 1000 or (b) 5000 genes most 

correlated with sample purity, expected false positive rate (y axis) is shown for different network 

sizes (x axis) in the chosen cohorts. 

For the methods that performed well in recovering TF-TG interactions, we see that GENIE3 

is more susceptible to wrongly inferring links due to samples mixtures than TIGRESS, with 

more FPs in smaller networks (10-40% vs. 10-20%, respectively). ARACNe shows a stable 

FPR of 10-15% irrespective of network size. From 100,000 to 1 million links, the methods 

largely equalize. Again, we do not observe an enrichment of TF binding with 

purity-correlated genes (black line in Fig. 4). As with the results we find for the CNAs, there 

is a trade-off between the within-chromosome FPR vs. the genome-wide FPR depending on 

the cutoff for selecting the purity-correlated genes (albeit less pronounced). 
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5 Conclusion 
When inferring gene networks in the context of cancer, it is important to not only keep in 

mind the potential technical variability between batches that may induce false positive 

correlations and hence edges when using network inference methods, but also the 

biologically intrinsic confounding factors of gene expression, like the one induced by DNA 

copy number changes ​26,55​ or a mixture of different proportions of different cell types ​60,61​. 

 

We have shown that for recovering an accurate network of TF-TG interactions in cancer, 

methods that incorporate TF annotations should be preferred to those that are not. However, 

even these methods are largely susceptible to inferring false positive links due to 

confounding factors. Combined, aneuploidies and sample impurities can be expected to 

contribute approximately 20-30% of false positive edges for networks with 100,000 to 1 

million edges, and a larger fraction for smaller networks. 

 

If we are interested in accurately inferring true regulatory interactions, there is a need to 

correct for these biases. Previous methods have been proposed to correct for confounding 

factors in gene networks in general (like Principal Component Analysis ​67​ and multivariate 

linear models ​68​), but they have not investigated how well their methods adjust for biological 

influences like the ones we discussed here. In addition, future method development in this 

area could address these biases more directly by also modeling aneuploidies and sample 

impurities explicitly. 
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Online methods 

Gene expression and copy number data from the TCGA 

We have downloaded the raw read counts for gene expression as well as the inferred 

continuous regions of the same DNA copy number (copy number segments) from the 

harmonized TCGA data obtained through the R package TCGAbiolinks ​66​. We chose the 

cohorts (ACC, BRCA, COAD, HNSC, PRAD, and SKCM) because they represented a wide 

range of sample sizes, ploidy, and purity values (cf. Fig 2). 

 

We further filtered the samples set to only contain primary tumors (TCGA sample type of 

“01A”). We filtered the genes to only contain genes on human chromosomes 1 to 21 

(excluding X, Y, and MT) and to have more than 20% of the samples with 10 or more reads. 

We then used the DESeq2 R package ​69​ to estimate library size factors and get variance 

stabilized gene expression values. 

 

Finally, we mapped Ensembl IDs to HGNC gene symbols using Ensembl 96 and removed all 

genes that did not have a valid gene symbol or were duplicated. 

Focal and chromosome copy numbers 

For regions with recurrent copy number alterations for both our cohorts, we downloaded 

Table S2D from ​https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/​ ​64​. 

 

To get copy numbers of either these segments or whole chromosomes, we calculated the 

average copy number along the respective regions for each sample in our cohorts. 

Sample purity and purity-correlated genes 

We obtained consensus purity estimate from xCell ​59​ using their “estimate” field in their 

Additional File 6. 

 

We then, for the primary samples of each of our cohorts, calculated differential expression 

along this estimate (using a likelihood ratio test over the intercept using the DESeq2 

package), and selected the top  genes by lowest p-value.N  
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Transcription factor annotations and binding data 

For genes that may act as transcription factors, we downloaded all HGNC symbols 

associated with GO:0003700 (DNA-binding transcription factor activity) from Ensembl 96 ​70​. 

 

For our positive set of real transcriptional regulation, we downloaded the 

“ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X” HGNC symbols from the Enrichr 

platform ​45​, encompassing 16,500 different target genes of 100 transcription factors. 

Network inference 

For inferring our networks, we used the following methods: ARACNe-AP ​30​, which is a Java 

implementation that extends the original ARACNe method; the GeneNet R package ​37​;  the 

GENIE3 R package ​16​ , the TIGRESS R package ​17​, and other methods available in the 

NetBenchmark R package ​49​. 

 

We infer one network per cohort per method, and look for enrichment of edges that are likely 

due to copy number changes or sample mixtures. As not all of these methods provide a 

significance measure, we instead look at the order of edges inferred, from the highest score 

to the lowest. 

Quantifying possible TF-TG interactions 

To quantify enrichment of real (obtained from ChIP binding experiments) TF-TG interactions 

within the top  genes of a given network, we first need to enumerate the possible numberN  

of edges given how many genes and transcription factors we have, and whether a GRN 

inference method knows the difference between regulators and targets. 

 

In particular, if there are no known regulators we consider the number of possible edges to 

be: 

 

.5 (ng ) ng0 ×  − 1 ×   

 

And if they are known instead: 

 

ng tf ) ntf  0.5 (ntf ) ntf( − n ×  +  ×  − 1 ×   
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Where  is the total number of genes and  is the number of potential regulators. Notegn tfn  

that if every gene can be a regulator, the lower formula simplifies into the upper. 

Enrichment of edges within gene sets 

We quantify bias by copy number changes or purity by assuming that the genes in a set 

(focal regions, chromosomes, or purity-associated genes) are equally likely to form links 

within the respective set as they are with genes outside the set. When then look for 

enrichment of edges within a given region over the total number of edges. 

 

In particular, we first compute the odds ratio of a method obtaining links in a segment vs. the 

overall number of edges: 

 

R  O = inferred network size
inferred edges in segment ÷  possible edges in genome

possible edges in segment  

 

Then, the local false positive rate (FPR) is defined as: 

 

PR  / ORF segment = 1 − 1  

 

While the genome-wide FPR is the number of expected FP links divided by the size of the 

inferred network: 

 

PR PRF genome = F segment × inferred network size
inferred edges in segment  

Code availability 

The analysis code of this manuscript, including code to generate all figures is available at 

https://github.com/mschubert/GRN-aneup-purity​, licensed under GNU GPL version 3 or later. 
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