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Abstract 12 

Adaptation is mediated by phenotypic traits that are often near continuous, and undergo selective 13 

pressures that may change with the environment. The dynamics of allelic frequencies at underlying 14 

quantitative trait loci (QTL) depend on their own phenotypic effects, but also possibly on other 15 

polymorphic loci affecting the same trait, and on environmental change driving phenotypic selection. 16 

Most environments include a substantial component of random noise, characterized by both its 17 

magnitude and its temporal autocorrelation, which sets the timescale of environmental predictability. I 18 

investigate the dynamics of a mutation affecting a quantitative trait in an autocorrelated stochastic 19 

environment that causes random fluctuations of an optimum phenotype. The trait under selection may 20 

also exhibit background polygenic variance caused by many polymorphic loci of small effects elsewhere 21 

in the genome. In addition, the mutation at the QTL may affect phenotypic plasticity, the phenotypic 22 

response of given genotype to its environment of development or expression. Stochastic environmental 23 

fluctuations increases the variance of the evolutionary process, with consequences for the probability of 24 

a complete sweep at the QTL. Background polygenic variation critically alters this process, by setting 25 

an upper limit to stochastic variance of population genetics at the QTL. For a plasticity QTL, stochastic 26 

fluctuations also influences the expected selection coefficient, and alleles with the same expected 27 

trajectory can have very different stochastic variances. Finally, a mutation may be favored through its 28 

effect on plasticity despite causing a systematic mismatch with optimum, which is compensated by 29 

evolution of the mean background phenotype. 30 

 31 

Keywords: Fluctuating selection, stochastic environment, temporal autocorrelation, polygenic 32 

adaptation, phenotypic plasticity. 33 
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Introduction 35 

The advent of population genomics and next-generation sequencing has fostered the hope that the search 36 

for molecular signatures of adaptation would reach a new era, wherein the recent evolutionary history 37 

of a species would be inferred precisely and somewhat exhaustively, and fine details of the genetics of 38 

adaptation would be revealed (Stapley et al. 2010). Despite undisputable successes, the picture that has 39 

emerged in the last decade is more complex. First, the importance of polygenic variation in adaptation 40 

has been re-evaluated based on theoretical and empirical arguments (Chevin and Hospital 2008; Pavlidis 41 

et al. 2008; Pritchard et al. 2010; Rockman 2012; Jain and Stephan 2017; Stetter et al. 2018; Höllinger 42 

et al. 2019), and methods have been designed to detect subtle frequency changes at multiple loci that 43 

may jointly cause substantial phenotypic evolution (Turchin et al. 2012; Berg and Coop 2014; Stephan 44 

2016; Wellenreuther and Hansson 2016; Racimo et al. 2018; Josephs et al. 2019). Consistent with (but 45 

not limited to) polygenic adaptation is the idea that mutations contributing to adaptive evolution do not 46 

necessarily start sweeping when they arise in the population, but may instead segregate for some time 47 

in the population and contribute to standing genetic variation, before they become selected as the 48 

environment changes (Barrett and Schluter 2008; Kopp and Hermisson 2009; Matuszewski et al. 2015; 49 

Jain and Stephan 2017). After the factors governing such “soft sweeps” and their influence on neutral 50 

polymorphism have been characterized (Hermisson and Pennings 2005; Przeworski et al. 2005), the 51 

debate has shifted to their putative prevalence in molecular data, and perhaps more importantly to their 52 

contribution to adaptive evolution (Jensen 2014; Garud et al. 2015; Hermisson and Pennings 2017).  53 

 Another line of complexity in the search for molecular footprints of adaptation comes from temporal 54 

variation in selection. The classical hitchhiking model (Maynard-Smith and Haigh 1974; Stephan et al. 55 

1992) posits a constant selection coefficient without specifying its origin. Some models have gone a step 56 

further by explicitly including a phenotype under selection, and have shown that even in a constant 57 

environment, selection at a given locus may change over the course of a selective sweep, as the mean 58 

phenotype in the background evolves through the effects of other polymorphic loci, in a form of whole-59 

genome epistasis mediated by the phenotype (Lande 1983; Chevin and Hospital 2008; Matuszewski et 60 

al. 2015). In addition, selection is likely to vary in time because of a changing environment. Most 61 

environments exhibit substantial fluctuations over time, beyond any trend or large shifts (Stocker et al. 62 

2013). These fluctuations are likely to affect natural selection, which emerges from an interaction of the 63 

phenotype of an organism with its environment. Interestingly, one of the first attempts to measure 64 

selection through time in the wild revealed substantial fluctuations in strength and magnitude (Fisher 65 

and Ford 1947), spurring a heated debate about the relative importance of drift versus selection in 66 

evolution, and setting the stage for the neutralist-selectionist debate (Wright 1948; Kimura 1968; 67 

Yamazaki and Maruyama 1972; Gillespie 1977). Other iconic examples of adaptive evolution also show 68 

clear evidence for fluctuating selection (Lynch 1987; Grant and Grant 2002; Bell 2010; Bergland et al. 69 

2014; Nosil et al. 2018), suggesting that selection in natura is rarely purely directional, but instead often 70 
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includes some component of temporal fluctuations. Part of these fluctuations involve deterministic, 71 

periodic cycles, such as seasonal genomic changes in fruit flies (Bergland et al. 2014), but random 72 

environmental variation also certainly plays a substantial role. In fact, virtually all natural environments 73 

exhibit some stochastic noise, characterized not only by its magnitude but also by its temporal 74 

autocorrelation, which determines the average speed of fluctuations and the time scale of environmental 75 

predictability (Halley 1996; Vasseur and Yodzis 2004). The influence of such environmental noise on 76 

natural populations is attested notably by stochasticity in population dynamics (Lande et al. 2003; 77 

Ovaskainen and Meerson 2010), and natural selection at the phenotypic level has also been estimated as 78 

a stochastic process in a few case studies (Engen et al. 2012; Chevin et al. 2015; Gamelon et al. 2018).    79 

Population genetics theory has a long history of investigating randomly fluctuating selection. In 80 

particular, Wright (1948) used diffusion theory to derive the stationary distribution of allelic frequencies 81 

in a stochastic environment, which was later extended to find the probability of quasi-fixation in an 82 

infinite population (Kimura 1954), and of fixation in a finite population (Ohta 1972). This topic gained 83 

prominence during the neutralist-selection debate, where the relative influences of genetic drift vs a 84 

fluctuating environment as alternative sources of stochasticity in population genetics was strongly 85 

debated with respect to the maintenance of polymorphism and molecular heterozygosity (Nei 1971; 86 

Gillespie 1973, 1977, 1979, 1991; Nei and Yokoyama 1976; Takahata and Kimura 1979), a question 87 

that remains disputed in the genomics era (Mustonen and Lassig 2007, 2010; Miura et al. 2013). Another 88 

line of research has asked what is the expected relative fitness of a genotype/phenotype in a fluctuating 89 

environment, and whether Wright’s (1937) adaptive landscape could be extended to this context (Lande 90 

2007; Lande et al. 2009).  91 

However, this literature is mostly disconnected from the literature on adaptation of quantitative traits 92 

to a randomly changing environment (Bull 1987; Lande and Shannon 1996; Chevin 2013; Tufto 2015). 93 

Even in work that investigates fluctuating selection both at a single locus and on a quantitative trait (e.g. 94 

Lande 2007), the selection coefficient at the single locus is often postulated ad hoc, rather than stemming 95 

from its effect on a trait under selection. Connallon and Clark (2015) recently investigated the influence 96 

of a randomly fluctuating optimum phenotype on the distribution of fitness effects of mutations affecting 97 

a trait, but they assumed non-autocorrelated fluctuations, and did not derive the stochastic variance of 98 

the population genetic process, which is important driver of probabilities of (quasi-)fixation (Kimura 99 

1954; Ohta 1972). They also did not consider fitness epistasis caused by evolution of the mean 100 

background phenotype. Lastly, this work has largely overlooked possible mutation effects on phenotypic 101 

plasticity, the phenotypic response of a given genotype to its environment of development or expression 102 

(Schlichting and Pigliucci 1998; West-Eberhard 2003), which is expected to evolve in environments 103 

that fluctuate with some predictability (Gavrilets and Scheiner 1993a; Lande 2009; Tufto 2015). Instead, 104 

Connallon and Clark (2015) included a form of environmental noise in phenotypic expression that is 105 

similar to bet hedging (Svardal et al. 2011; Tufto 2015). 106 
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I here extend a model that combines population and quantitative genetics (Lande 1983; Chevin and 107 

Hospital 2008) to the context of an autocorrelated random environment causing movements of an 108 

optimum phenotype, to ask: What is the distribution of allelic frequencies at a QTL in a stochastic 109 

environment? How does it depend on whether a mutation is segregating alone, or instead affects a 110 

quantitative trait with polygenic background variation? How does environmental stochasticity affect the 111 

probability of a complete sweep at the QTL, and the resulting genetic architecture of the trait? And how 112 

are these effects altered when the mutation affects phenotypic plasticity?  113 

Model 114 

Fluctuating selection 115 

The core assumption of the model is that adaptation is mediated by a continuous, quantitative trait 116 

undergoing stabilizing selection towards an optimum phenotype that moves in response to the 117 

environment, as typical in models of adaptation to a changing environment  (reviewed by Kopp and 118 

Matuszewski 2014). More precisely, the expected number of offspring in the next generation (assuming 119 

discrete non-overlapping generations) of individuals with phenotype 𝑧𝑧 is 120 

 
𝑊𝑊𝑡𝑡(𝑧𝑧) = 𝑊𝑊maxexp�−

(𝑧𝑧 − 𝜃𝜃𝑡𝑡)2

2𝜔𝜔2 � 
(1) 

where 𝜃𝜃𝑡𝑡 is the optimum phenotype at generation 𝑡𝑡, and 𝜔𝜔 is the width of the fitness peak, which 121 

determines the strength of stabilizing selection. The height of the fitness peak 𝑊𝑊max may affect 122 

demography but not evolution, as it is independent of the phenotype. 123 

In line with other models of adaptation to changing environments (Kopp and Matuszewski 2014), I 124 

assume that the environment causes movement of the optimum phenotype, but does not affect the width 125 

of the fitness function. The environment undergoes stationary random fluctuations, which may be 126 

combined initially to a major, deterministic environmental shift of the mean environment. The stochastic 127 

component of variation in the optimum is assumed to be autocorrelated, in the form of a first-order 128 

autoregressive process (AR1) with stationary variance 𝜎𝜎𝜃𝜃2 and autocorrelation 𝜌𝜌 over unit time step (one 129 

generation). This is one of the simplest forms of autocorrelated continuous process: it is Markovian 130 

(memory over one time step only), leading to an exponentially decaying autocorrelation function with 131 

half-time  𝑇𝑇half = −ln (2)/ln (𝜌𝜌) generations. 132 

Genetics  133 

For simplicity, I base the argument on a haploid model, but much of the findings extend to diploids, 134 

with a few additional complications such as over-dominance caused by selection towards an optimum 135 

(Barton 2001; Sellis et al. 2011). I focus on a mutation at a locus affecting the quantitative trait – i.e., a 136 

quantitative trait locus, or QTL -, with additive haploid effect 𝛼𝛼 on the trait. More precisely, I consider 137 

a bi-allelic QTL, with mean phenotype m for the wild-type (ancestral) allele, in frequency 𝑞𝑞 = 1 − 𝑝𝑝, 138 
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and m + 𝛼𝛼 for the mutant (derived) allele, in frequency p.  We are not interested here in the origin and 139 

initial spread of the mutation from initially very low, drift-dominated frequencies. Investigating this 140 

would require extending theory of fixation probabilities in changing environments (Uecker and 141 

Hermisson 2011) to include environmental stochasticity, which is beyond the scope of this work. 142 

Instead, the focus is here on adaptation from standing genetic variation, and the aim will be to track the 143 

evolutionary trajectory of a focal mutation at a bi-allelic locus, starting from a low initial frequency 𝑝𝑝0 144 

where most of frequency change can be attributed to selection. We will briefly address the influence of 145 

drift at the end of the analysis. 146 

Two types of genetic scenarios will be contrasted. In the “monomorphic background” scenario, no 147 

other polymorphic locus affects the quantitative trait when the focal mutation is segregating at the QTL. 148 

This corresponds to a form of strong selection weak mutation approximation (SSWM Gillespie 1983, 149 

1991). This scenario requires no further assumption about the reproduction system (sexual or asexual). 150 

In the opposite “polygenic background” scenario, variation in the trait is assumed to be caused by a large 151 

number of weak-effect loci (or “minor genes”), in addition to the effect of the QTL (or “major gene”). 152 

Sexual reproduction is assumed, with fertilization closely followed by meiosis over a short diploid phase 153 

where selection can be neglected. I further assume that minor genes are unlinked among themselves and 154 

with the major gene, such that the genotypic background has a similar distribution for all alleles at the 155 

major gene. Following standard quantitative genetics (Falconer and MacKay 1996; Lynch and Walsh 156 

1998), I assume that additive genetic values in the background are normally distributed, with mean 157 

phenotype m and additive genetic variance G, and that phenotypes also include a residual component of 158 

variation independent from genotype, with mean 0 and variance Ve. This model of major gene and 159 

polygenes, which takes its roots in Fisher’s (1918) foundational paper for quantitative genetics, has been 160 

analyzed for evolutionary genetics by Lande (1983), and later used to investigate selective sweeps at a 161 

QTL in constant environment or following an abrupt environmental shift by Chevin and Hospital (2008). 162 

I here extend this work to a randomly changing environment.  163 

Phenotypic plasticity 164 

I also investigate the case where both the mean background phenotype and the QTL effect may respond 165 

to the environment, via phenotypic plasticity. Let 𝜀𝜀 be a normally distributed environmental variable 166 

(e.g. temperature, humidity…) with mean 𝜀𝜀 ̅  and variance 𝜎𝜎𝜀𝜀2, which  affects the development or 167 

expression of the trait. Assuming a linear reaction norm for simplicity, the mean background phenotype 168 

is  169 

 𝑚𝑚 = 𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚𝜀𝜀, (2) 

where 𝑏𝑏𝑚𝑚 is the slope of reaction norm, which quantifies phenotypic plasticity, and the intercept 𝑎𝑎𝑚𝑚 is 170 

the trait value in a reference environment where 𝜀𝜀 = 0 by convention. I neglect evolution of plasticity 171 

in the background for simplicity, and therefore assume that 𝑏𝑏𝑚𝑚 is a constant, while 𝑎𝑎𝑚𝑚 is a polygenic 172 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/752873doi: bioRxiv preprint 

https://doi.org/10.1101/752873


7 
 

trait with additive genetic variance G as before. The additive effect of the mutation at the QTL is also 173 

phenotypically plastic, such that  174 

 𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀, (3) 

with 𝑏𝑏𝛼𝛼 the additive increase in plasticity caused by the mutation at the QTL, and 𝑎𝑎𝛼𝛼  the additive effect 175 

on the trait in the reference environment. 176 

The environment of development partly predicts changes of the optimum phenotype for selection, 177 

such that 178 

 𝜃𝜃 = 𝑎𝑎𝜃𝜃 + 𝑏𝑏𝜃𝜃𝜀𝜀 + 𝜉𝜉, (4) 

where 𝜉𝜉 is normal deviate independent from 𝜀𝜀, with mean 0 and variance 𝜎𝜎𝜉𝜉
2 = �𝜎𝜎𝜃𝜃2 − 𝑏𝑏𝜃𝜃2𝜎𝜎𝜀𝜀2, such that 179 

the variance of optimum remains 𝜎𝜎𝜃𝜃2. Note that eq. (4) does not necessarily imply a causal relationship 180 

between 𝜀𝜀 and 𝜃𝜃, because selection occurs after development/expression of the plastic phenotype and is 181 

thus likely to be influenced by a later environment (Gavrilets and Scheiner 1993a; Lande 2009). In fact, 182 

the optimum may even respond to other environmental variables than 𝜀𝜀, which jointly constitute the 183 

cause of selection (Wade and Kalisz 1990; MacColl 2011), but can be partly predicted by 𝜀𝜀 upon 184 

development. In this case 𝑏𝑏𝜃𝜃 is the product of the regression slope of the optimum on the causal 185 

environment for selection, times the regression slope of this causal environment on the environment of 186 

development 𝜀𝜀 (de Jong 1990; Gavrilets and Scheiner 1993a; Chevin and Lande 2015). When the same 187 

environmental variable affects development and selection but at different times, then the latter regression 188 

slope is simply the autocorrelation of the environment between development and selection within a 189 

generation (Lande 2009; Michel et al. 2014).  190 

Evolutionary dynamics 191 

Lande (1983) has shown that the joint dynamics of a major gene and normally distributed polygenes in 192 

response to selection are governed by a couple of equations that are remarkably identical to their 193 

counterpart without polygenes and without a major gene, respectively. In other words, Wright’s (1937) 194 

fitness landscape for genes and Lande’s (1976) fitness landscape for quantitative traits jointly apply in 195 

the context of major gene combined with polygene. For a haploid sexual population, the recursions for 196 

the allelic frequency p of the mutation at the major gene and for the mean phenotype m in the polygenic 197 

background are then 198 

 ∆𝑝𝑝 = 𝑝𝑝𝑞𝑞 𝜕𝜕𝜕𝜕𝜕𝜕𝑊𝑊�
𝜕𝜕𝜕𝜕

  (5) 

 ∆𝑚𝑚 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕𝑊𝑊�
𝜕𝜕𝑚𝑚

, (6) 

where the partial derivatives are selection gradients on allelic frequency and mean phenotype, 199 

respectively (Wright 1937; Lande 1976).  200 
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With selection towards an optimum as modeled in equation (1), and an overall phenotype distribution 201 

that is a mixtures of two Gaussians with same variance 𝐺𝐺 + 𝑉𝑉𝑒𝑒 and modes separated by the effect of the 202 

major gene 𝛼𝛼, the mean fitness in the population is 203 

 𝑊𝑊� = 𝑊𝑊max�𝑆𝑆𝜔𝜔2 �𝑝𝑝 exp �−
𝑆𝑆
2

(𝑚𝑚 + 𝛼𝛼 − 𝜃𝜃)2� + 𝑞𝑞 exp �−
𝑆𝑆
2

(𝑚𝑚 − 𝜃𝜃)2�� , 
(7) 

where 𝑆𝑆 = 1
𝜔𝜔2+𝐺𝐺+𝑉𝑉𝑒𝑒

 is the strength of stabilizing selection. Combining eqs (6) and (7), the selection 204 

gradient on the mean background phenotype is  205 

 𝜕𝜕𝜕𝜕𝜕𝜕𝑊𝑊�
𝜕𝜕𝑚𝑚

= −𝑆𝑆(𝑚𝑚 + 𝑝𝑝′𝛼𝛼 − 𝜃𝜃). 
(8) 

As in classical models of moving optimum for quantitative traits (Lande 1976; Kopp and Hermisson 206 

2007), directional selection on the trait is proportional to the deviation of the mean phenotype from the 207 

optimum, multiplied by the strength of stabilizing selection, which is larger when the fitness peak is 208 

narrower. However here, the overall mean phenotype depends on 𝑝𝑝′, the frequency after selection of the 209 

mutation at the QTL. This causes a coupling of dynamics in the background and at the QTL.  210 

For the dynamics at the QTL it will be convenient to focus on the logit allelic frequency of the 211 

mutation, 𝜓𝜓 = ln (𝑝𝑝/𝑞𝑞). With a constant selection coefficient s as assumed in classical models of 212 

selective sweeps, 𝜓𝜓 would increase linearly in time with slope s (Stephan et al. 1992), while 𝜓𝜓 changes 213 

non linearly in time even in a constant environment if the mutation is dominant/recessive (Teshima and 214 

Przeworski 2006), or if it affects a quantitative trait with polygenic background variation as assumed 215 

here (Chevin and Hospital 2008). Combining eqs. (5) and (7), after some simple algebra the recursion 216 

for 𝜓𝜓 over one generation of selection is 217 

 Δ𝜓𝜓 = ln �
𝑊𝑊𝐴𝐴

𝑊𝑊𝑎𝑎
� = −

𝑆𝑆𝛼𝛼
2

[𝛼𝛼 + 2(𝑚𝑚 − 𝜃𝜃)]. (9) 

Note that Δ𝜓𝜓 is a measure of the selection coefficient s for this generation (Chevin 2011). In a constant 218 

environment where 𝜃𝜃𝑡𝑡 = 𝜃𝜃 for all t, the system admits two stable equilibria with fixation at the QTL,  219 

 𝑝𝑝 = 0,  𝑚𝑚 = 𝜃𝜃 

𝑝𝑝 = 1,  𝑚𝑚 = 𝜃𝜃 − 𝛼𝛼 

 

(10) 

and one unstable internal equilibrium 220 

 𝑝𝑝 =
1
2

,     𝑚𝑚 = 𝜃𝜃 −
𝛼𝛼
2

 , (11) 

in line with previous analysis of the diploid version of this model (Lande 1983). Note that the mean 221 

background phenotype evolves to compensate for the effect of the major gene, such that the overall 222 

mean phenotype is at the optimum in all three equilibria, 𝑚𝑚 + 𝑝𝑝𝛼𝛼 = 𝜃𝜃. 223 

Approximation for weak fluctuating selection at QTL 224 

The full model with coupled dynamics at the major gene and background polygenes can be used for 225 

numerical recursions, but to make further analytical progress, I rely on an approximation of this model 226 
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that neglects the influence of the QTL on the background mean phenotype, as in  previous analysis in a 227 

constant environment (Chevin and Hospital 2008). In a randomly fluctuating environment, this 228 

approximation consists of assuming that selection at the QTL is sufficiently weak that its contribution 229 

to fluctuating selection on the mean background phenotype can be neglected, such that variance in the 230 

directional selection gradient is proportional to 231 

 var(𝑚𝑚 + 𝑝𝑝′𝛼𝛼 − 𝜃𝜃) ≈ var(𝑚𝑚 − 𝜃𝜃), (12) 

and similarly for its covariance across generations.  232 

Simulations 233 

The mathematical analysis of this model is complemented by population-based simulations under a 234 

randomly fluctuating optimum. These simulations are based on recursions of equations (5-7), assuming 235 

a constant additive genetic variance G in the background. In each simulation, the optimum is initially 236 

drawn from an normal distribution with mean 0 and variance 𝜎𝜎𝜃𝜃2, and optima in subsequent generations 237 

are drawn using 𝜃𝜃𝑡𝑡 = 𝜌𝜌𝜃𝜃𝑡𝑡−1 + 𝜎𝜎𝜃𝜃�1− 𝜌𝜌2𝑋𝑋, where 𝑋𝑋 is a standard normal deviate, such that 𝜃𝜃 has 238 

stationary variance 𝜎𝜎𝜃𝜃2 and autocorrelation 𝜌𝜌 as required. In simulations with phenotypic plasticity, the 239 

environment of development is drawn retrospectively from the optimum, using 𝜀𝜀𝑡𝑡 = 𝜎𝜎𝜀𝜀2

𝜎𝜎𝜃𝜃
2 𝑏𝑏𝜃𝜃 𝜃𝜃𝑡𝑡 +240 

𝜎𝜎𝜀𝜀�1− �𝑏𝑏𝜃𝜃
𝜎𝜎𝜀𝜀
𝜎𝜎𝜃𝜃
�
2
𝑌𝑌, where 𝑌𝑌 is drawn from a standard normal, such that 𝜀𝜀 has variance 𝜎𝜎𝜀𝜀2 and the 241 

regression slope of 𝜃𝜃 on 𝜀𝜀 is 𝑏𝑏𝜃𝜃, as required (eq. 4). In simulations with background genetic variance, 242 

the system is left to evolve for 500 generations, to allow the mean background phenotype to reach a 243 

stationary distribution with respect to the fluctuating environment. The initial frequency at the QTL is 244 

set then to 𝑝𝑝0, and the mean optimum is shift by 𝑚𝑚0 relative to the expected background mean 245 

phenotype. To simulate random genetic drift, the allelic frequency at the QTL in the next generation is 246 

drawn randomly from a binomial distribution with parameters 𝑁𝑁𝑒𝑒 (the effective population size) and 𝑝𝑝′ 247 

(the expected frequency after selection in the current generation), consistent with a haploid Wright-248 

Fisher population (Crow and Kimura 1970). Similarly for the mean background, genetic drift was 249 

simulated by drawing the mean phenotype in the next generation from a normal distribution with mean 250 

the expected mean background phenotype after selection, and variance 𝐺𝐺/𝑁𝑁𝑒𝑒 (Lande 1976). 251 

Data availability 252 

A Mathematica notebook including code for simulations is available from a FigShare repository.  253 

Results  254 

We are interested in fluctuating selection at a gene affecting a quantitative trait (or QTL) exposed to a 255 

randomly moving optimum phenotype. The stochastic population genetics at the QTL will be analyzed 256 

on the logit scale 𝜓𝜓 = ln (𝑝𝑝/𝑞𝑞) for mathematical convenience (as in, e.g., Kimura 1954; Gillespie 1991), 257 

and also because this directly relates to empirical measurements (Chevin 2011; Gallet et al. 2012; see 258 
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also Discussion). From equation (9), t generations after starting from an initial logit frequency 𝜓𝜓0, we 259 

have  260 

 
𝜓𝜓𝑡𝑡 = 𝜓𝜓0 −

𝑆𝑆𝛼𝛼
2 �𝛼𝛼𝑡𝑡 + 2�(𝑚𝑚𝑖𝑖 − 𝜃𝜃𝑖𝑖)

𝑡𝑡−1

𝑖𝑖=0

�. 
(13) 

The first term in brackets increases linearly with time, and corresponds to a component of selection that 261 

only depends on the phenotypic effect of the mutation and the strength of selection on the trait, but not 262 

on the background phenotype or the environment. All the influence of the fluctuating environment and 263 

background phenotype arises through the sum (second term in brackets), which shows that the influences 264 

of all past maladaptations (deviations of the mean phenotype from the optimum) weigh equally in their 265 

contribution to population genetics over time. In a stochastic environment, this means that a chance 266 

event causing a large deviation from the optimum can have persistent effects on genetic change. This 267 

occurs here because selection is assumed to be frequency independent; with frequency-dependent 268 

selection, non-linear dynamics could instead rapidly erase memory of past environments and 269 

maladaptation, as occurs for population dynamics with density dependence (Chevin et al. 2017). 270 

The optimum phenotype is assumed to follow a Gaussian process. In most contexts we will 271 

investigate, this causes the population genetics at the QTL to also follow a Gaussian process on the logit 272 

scale, such that 𝜓𝜓 has a Gaussian distribution at any time. A Gaussian distribution of logit allelic 273 

frequency was also found in phenomenological models without an explicit phenotype, where selection 274 

coefficients were assumed to undergo a Gaussian process (Kimura 1954; Gillespie 1991, p.149). The 275 

reason for this correspondence is that 𝜓𝜓 is linear in phenotypic mismatches with optimum in eq. (13), 276 

and these mismatches themselves follow a Gaussian process (i) in the absence of background polygenic 277 

variation; and (ii) with background polygenic variation, as long as evolution of the mean background is 278 

little affected by the QTL, such that 𝑚𝑚 + 𝑝𝑝′𝛼𝛼 − 𝜃𝜃 ≈ 𝑚𝑚 − 𝜃𝜃. When these assumptions hold, the 279 

distribution of allelic frequencies in a stochastic environment can be summarized by their mean and 280 

variance on the logit scale, E𝜓𝜓 and σ𝜓𝜓2 . A simple transformation can then be used to retrieve the 281 

distribution of allelic frequencies, following Gillespie (1991, p.149),  282 

 𝑓𝑓(𝑝𝑝) =
1
𝑝𝑝𝑞𝑞

𝒩𝒩E𝜓𝜓,σ𝜓𝜓
2 �ln

𝑝𝑝
𝑞𝑞
�. (14) 

where 𝒩𝒩𝐸𝐸,𝑉𝑉(𝑥𝑥) is the density of a normal distribution with mean E and variance V evaluated at x. This 283 

transformation is illustrated in Figure 1.   284 

Non-plastic QTL 285 

We first focus on the situation where the phenotypic effect 𝛼𝛼 of the mutation at the QTL does not change 286 

in response to the environment. The environment is assumed to undergo a sudden shift at time 0 in 287 

addition to the stochastic fluctuations, such that the expected mean background phenotype initially 288 

deviates from the expected optimum by 𝑑𝑑 = E(𝑚𝑚0)− E(𝜃𝜃), and that a mutation approaching the mean 289 

phenotype from the average optimum is expected to be favored.  290 
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Monomorphic background: It is informative to first investigate the simplest case where the trait does 291 

not have background polygenic variation. The focal mutation at the QTL then segregates in a population 292 

that is otherwise monomorphic with respect to adaptation to the fluctuating environment. This context 293 

belongs to the weak-mutation limit often assumed in molecular evolution, for instance in Gillespie’s 294 

(1983, 1991) SSWM regime, and establishes the most direct connection with results from earlier models 295 

of fluctuating selection that do not include an explicit phenotype under selection (Wright 1948; Kimura 296 

1954; Nei 1971; Ohta 1972; Gillespie 1973, 1979, 1991; Nei and Yokoyama 1976; Takahata and Kimura 297 

1979). With monomorphic background, from eq. (13) the expected logit allelic frequency at time t 298 

starting from a known frequency 𝑝𝑝0 is 299 

 E𝜓𝜓,𝑡𝑡 = 𝜓𝜓0 −
𝑆𝑆𝛼𝛼
2

[𝛼𝛼 + 2 𝑑𝑑]𝑡𝑡.  (15) 

In this context, the expected logit allelic frequency thus increases linearly in time, with a slope given by 300 

the expected selection coefficient E(Δ𝜓𝜓) = −𝑆𝑆𝛼𝛼
2

[𝛼𝛼 + 2 𝑑𝑑]. This selection coefficient is not affected by 301 

random fluctuations in the optimum, and instead only depends on the constant mismatch 𝑑𝑑 between the 302 

background mean phenotype 𝑚𝑚 and the expected optimum E(𝜃𝜃). The mutation at the QTL is expected 303 

to spread in the population only if allows approaching the optimum, that is, if 𝛼𝛼2 + 2 𝛼𝛼𝑑𝑑 < 0. 304 

Even though fluctuations in the optimum do not affect the expected trajectory, they do increase the 305 

variance of the stochastic population genetic process. The variance of logit allelic frequency at time t, 306 

starting from a known frequency 𝑝𝑝0, is (from eq. 13), 307 

 
σ𝜓𝜓,𝑡𝑡
2 = (𝑆𝑆𝛼𝛼)2 �� var(𝜃𝜃𝑖𝑖)

𝑡𝑡−1

𝑖𝑖=0

 + 2� � cov�𝜃𝜃𝑖𝑖,𝜃𝜃𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑖𝑖+1

𝑡𝑡−2

𝑖𝑖=0

�. 
(16) 

When the optimum undergoes a stationary AR1 process as assumed here, the variance of the population 308 

genetic process at the QTL becomes 309 

 
σ𝜓𝜓,𝑡𝑡
2 = (𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2 �

1 + 𝜌𝜌
1 − 𝜌𝜌

𝑡𝑡 −
2𝜌𝜌(1 − 𝜌𝜌𝑡𝑡)

(1 − 𝜌𝜌)2 �, 
(17) 

where 𝜎𝜎𝜃𝜃2 is the stationary variance of random fluctuations in the optimum, and 𝜌𝜌 is their autocorrelation 310 

over one generation. Note that in this scenario, 𝜌𝜌 is also the per-generation autocorrelation of selection 311 

coefficients 𝑠𝑠 = Δ𝜓𝜓, while the variance of selection coefficients is  Var(Δ𝜓𝜓) = (𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2. For large 312 

times 𝑡𝑡 ≫ − 1
ln𝜌𝜌

 , eq. (17) further simplifies as 313 

 σ𝜓𝜓,𝑡𝑡
2 ≈ (𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2 �1+𝜌𝜌

1−𝜌𝜌
𝑡𝑡 − 2𝜌𝜌

(1−𝜌𝜌)2�,  
(18) 

which shows that the variance in logit allelic frequency eventually increases near to linearly with time 314 

(Figure 3A), and converges more rapidly to this linear change under smaller autocorrelation in the 315 

optimum. Stochastic variance in the optimum increases faster under larger autocorrelation in the 316 

optimum. Figure 1 shows that the distribution of 𝜓𝜓 is well predicted by a Gaussian with mean and 317 

variance given by eqs. (15) and (17). Increasing environmental autocorrelation does not change the 318 
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expected evolutionary trajectory on the logit scale, but increases its variance (Figure 1A-B). When 319 

transforming to the scale of allelic frequencies, increased environmental autocorrelation causes a 320 

broadening of the time span over which selective sweeps occur in the population (Figure 1C-D). 321 

Polygenic background: With polygenic variation in the background, the mean background phenotype 322 

is no longer constant, but instead evolves in response to deterministic and stochastic components of 323 

environmental change. Away from the unstable equilibrium in eq. (11), the  expected evolutionary 324 

trajectory at the QTL is similar to that investigated without fluctuating selection (Lande 1983; Chevin 325 

and Hospital 2008). In particular, when the influence of the QTL on evolution of the background trait 326 

can be neglected, then combining eqs. (6) and (8) the expected mean background phenotype approaches 327 

the expected optimum geometrically, E(𝑚𝑚) − E(𝜃𝜃) = 𝑑𝑑(1 − 𝑆𝑆𝐺𝐺)𝑡𝑡 (Lande 1976; Gomulkiewicz and 328 

Holt 1995). Combining with eq. (13), the expected logit allelic frequency is 329 

 E𝜓𝜓,𝑡𝑡 ≈ 𝜓𝜓0 −
𝑆𝑆𝛼𝛼
2
�𝛼𝛼𝑡𝑡 + 2𝑑𝑑 1−(1−𝑆𝑆𝐺𝐺)𝑡𝑡

𝑆𝑆𝐺𝐺
�. (19) 

This shows that even when a mutation at the QTL is initially beneficial because it points towards the 330 

optimum, its dynamics slows down in time as the mean background approaches the optimum (Lande 331 

1983; Chevin and Hospital 2008). Equation (19) even predicts that an initially beneficial mutation 332 

eventually becomes deleterious, and starts declining in frequency when the mean background is 333 

sufficiently close to the optimum that the QTL causes an overshoot of the latter (Lande 1983; Chevin 334 

and Hospital 2008). This can be seen by noting that in the long run, the term in parenthesis in eq. (19) 335 

tends towards 𝛼𝛼𝑡𝑡 + 2𝑑𝑑/𝑆𝑆𝐺𝐺 and eventually becomes dominated by 𝛼𝛼𝑡𝑡, leading to an expected dynamics 336 

that declines linearly with slope −𝑆𝑆𝛼𝛼2𝑡𝑡/2. An initially beneficial mutation starts declining when its 337 

selection coefficient crosses 0. Applying the weak-effect approximation for evolution of the mean 338 

background (above eq. 19) to eq. (9), this occurs when  𝛼𝛼 + 2𝑑𝑑(1 − 𝑆𝑆𝐺𝐺)𝑡𝑡 = 0, that is, at time  339 

 
𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 =

ln(− 𝛼𝛼2𝑑𝑑)

ln (1−𝑆𝑆𝐺𝐺)
.  

(20) 

At this point, the expected logit allelic frequency of the mutation at the QTL reaches its maximum, 340 

which is (combining eqs. 20 and 19) 341 

 
𝜓𝜓max ≈ 𝜓𝜓0 −

𝑆𝑆𝛼𝛼
2
�𝛼𝛼

ln(− 𝛼𝛼2𝑑𝑑)

ln (1−𝑆𝑆𝐺𝐺) + 2𝑑𝑑+𝛼𝛼
𝑆𝑆𝐺𝐺

�.  
(21) 

However, this scenario may actually be avoided if the focal mutation reaches 𝑝𝑝 > 1/2 (𝜓𝜓 > 0) before 342 

𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 , such that the system gets beyond the unstable equilibrium in eq. (11). The mutation at the QTL 343 

then sweeps to fixation, and the mean background evolves away from the optimum to compensate for 344 

the QTL effect (Lande 1983; Chevin and Hospital 2008). We will investigate this scenario in more detail 345 

below, but let us first turn to the variance of the stochastic process. 346 

For the variance of the process, we rely on the weak-effect approximation in eq. (12), whereby 347 

fluctuating selection on the mean background phenotype is little affected by dynamics at the QTL. More 348 

broadly speaking, we assume the system is away from the unstable equilibrium in eq. (11). When this 349 
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holds, we can build upon previous evolutionary quantitative genetics results for the dynamics of the 350 

mean background phenotype in a fluctuating environment, to derive the dynamics at the QTL. For an 351 

AR1 process as modeled here, the stationary variance of mismatch of the mean background phenotype 352 

with the optimum is (Charlesworth 1993)  353 

 
𝜎𝜎𝑚𝑚−𝜃𝜃
2 =

2𝜎𝜎𝜃𝜃2(1 − 𝜌𝜌)
(2 − 𝑆𝑆𝐺𝐺)[1 − 𝜌𝜌(1 − 𝑆𝑆𝐺𝐺)]

 , 
(22) 

and its temporal autocorrelation function over τ generations is   354 

 
𝜌𝜌𝑚𝑚−𝜃𝜃(τ) =

𝜌𝜌 
𝜏𝜏 − 𝜅𝜅(1 − 𝑆𝑆𝐺𝐺)𝜏𝜏

1 − 𝜅𝜅
, 

(23) 

where 𝜅𝜅 = 𝑆𝑆𝐺𝐺 (1+𝜌𝜌)
2(1−𝜌𝜌)

 (Cotto and Chevin 2019; see also continuous-time approximation in Chevin and 355 

Haller 2014). Combining with eq. (16) leads, after some algebra, to the stochastic variance of logit allelic 356 

frequency, 357 

 
σ𝜓𝜓,𝑡𝑡
2 = 2(𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2

(1 − 𝑆𝑆𝐺𝐺)2 − 𝜌𝜌2 − (1 − 𝜌𝜌2)(1− 𝑆𝑆𝐺𝐺)𝑡𝑡+1 + (2 − 𝑆𝑆𝐺𝐺)𝑆𝑆𝐺𝐺𝜌𝜌1+𝑡𝑡

𝑆𝑆𝐺𝐺(2 − 𝑆𝑆𝐺𝐺)(1 − 𝜌𝜌 − 𝑆𝑆𝐺𝐺)[1− 𝜌𝜌(1 − 𝑆𝑆𝐺𝐺)]
. 

(24) 

Quite strikingly, contrary to the case of a monomorphic genetic background, σ𝜓𝜓,𝑡𝑡
2  does not increase 358 

indefinitely with polygenic background; instead, its dynamics slows down towards an asymptotic 359 

maximum,  360 

 σ𝜓𝜓,∞
2 = 2(𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2

1 + 𝜌𝜌 − 𝑆𝑆𝐺𝐺
(2 − 𝑆𝑆𝐺𝐺)𝑆𝑆𝐺𝐺[1 − 𝜌𝜌(1 − 𝑆𝑆𝐺𝐺)]

 , (25) 

which under weak rate of response to selection in the background 𝑆𝑆𝐺𝐺 can be approximated by  361 

 σ𝜓𝜓,∞
2 ≈ (𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2

1 + 𝜌𝜌
𝑆𝑆𝐺𝐺(1 − 𝜌𝜌) . (26) 

In other words, with a polygenic background, the distribution of logit allelic frequency 𝜓𝜓 at the QTL 362 

tends to a traveling wave, i.e. a Gaussian with moving mean but constant variance, as shown in Figure 363 

2. This property holds as long as the population is not near the unstable equilibrium in eq. (11), and 364 

frequencies at the QTL are sufficiently intermediate that drift is not the main source stochasticity 365 

(below).  366 

Inspection of eq. (24) indicates that the rate of approach to the asymptotic variance is determined by 367 

the smallest of (1 − 𝑆𝑆𝐺𝐺) and 𝜌𝜌. In realistic parameter ranges, the rate of response to selection in the 368 

background 𝑆𝑆𝐺𝐺 is small, while 𝜌𝜌 may be well below 1, so the time scale of approach to equilibrium for 369 

σ𝜓𝜓2  should scale in  (𝑆𝑆𝐺𝐺)−1. This is confirmed by the simulations, which show that σ𝜓𝜓,𝑡𝑡
2  converges faster 370 

to its asymptote under larger background genetic variance, while the rate of convergence is little affected 371 

by 𝜌𝜌 (Figure 3). The asymptotic variance may be well below that in the absence of polygenic 372 

background variation (compare panel A to B-C in Figure 3). As predicted by eqs. (25-26), the 373 

asymptotic variance σ𝜓𝜓,∞
2  decreases with increasing genetic variance 𝐺𝐺 in the background, and increases 374 

with increasing environmental autocorrelation 𝜌𝜌 (Figure 3). The influence of autocorrelation is highly 375 
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non-linear: in our example σ𝜓𝜓,∞
2  is approximately doubled from  𝜌𝜌 = 0.1 to 𝜌𝜌 = 0.5, but multiplied by 376 

4-5 from  𝜌𝜌 = 0.5 to 𝜌𝜌 = 0.9 (Figure 3 B-C). 377 

 The variance of the stochastic population genetic process has consequences for the bistability of 378 

genetic architecture, and the likelihood of a complete sweep. In particular, when the expected trajectory 379 

in eq. (19) reaches the vicinity of the unstable equilibrium in eq. (11), the process variance may cause 380 

paths to split on each side of this equilibrium and reach alternative fixed equilibria, with either complete 381 

sweep or loss of the mutation at the QTL (eq. 10). This is illustrated in Figure 4. In this example, the 382 

expected trajectory involves a loss of the mutation at the QTL, which occurs for all sample paths shown 383 

in Figure 4A. However, increasing environmental autocorrelation causes some trajectories to sweep to 384 

high frequency (Figure 4B). This occurs because environmental autocorrelation increases the stochastic 385 

variance of the population genetic process (eqs. 24, 25), and thereby the probability that some 386 

trajectories cross the unstable equilibrium, reaching the basin of attraction of the high-frequency 387 

equilibrium. Based on this rationale, the proportion of trajectories that reach each alternative stable 388 

equilibrium (fixation or loss) may be approximated from the expected proportion of trajectories that are 389 

above and below the unstable equilibrium, based on the predicted Gaussian distribution of 𝜓𝜓 at time 390 

𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚, when the expected frequency is predicted to be highest based on the simplified model where the 391 

QTL does not affect evolution of the mean background (eq. 20). Figure 4C shows that this approach 392 

correctly predicts how the proportion of sweeps changes with environmental autocorrelation 𝜌𝜌. 393 

Importantly, since the expected trajectory does not depend on stochastic environmental fluctuations 394 

(neither 𝜎𝜎𝜃𝜃2 nor 𝜌𝜌 appear in eq. 19), all effects of environmental autocorrelation (or variance) on the 395 

probability of a sweep are mediated by the stochastic variance of the process. 396 

QTL for phenotypic plasticity 397 

Let us now turn to the case where the QTL influences not only the phenotype, but also how this 398 

phenotype responds to the environment. Phenotypic plasticity, the phenotypic response of a given 399 

genotype to its environment of development or expression, is a ubiquitous feature across the tree of life 400 

(Schlichting and Pigliucci 1998; West-Eberhard 2003). There is also massive evidence for  genetic 401 

variance in plasticity in the form of genotype-by-environment interactions, one of the oldest and most 402 

widespread observations in genetic studies  (Falconer 1952; Via and Lande 1985; Scheiner 1993; Gerke 403 

et al. 2010; Des Marais et al. 2013), with molecular mechanisms that are increasingly understood 404 

(Angers et al. 2010; Beldade et al. 2011; Ghalambor et al. 2015; Gibert et al. 2016). For simplicity I 405 

here assume linear reaction norms, where the slope quantifies plasticity. Although this is necessarily a 406 

simplification of reality, it is generally a good description over relevant environmental ranges for 407 

phenological traits, a major class of phenotypic responses to climate change (e.g., Charmantier et al. 408 

2008). This also allows comparing our results to the large body of theoretical literature also based on 409 

the assumption of linear reaction norms (Gavrilets and Scheiner 1993b; Scheiner 1998; Lande 2009; 410 

Chevin and Lande 2015; Tufto 2015). Such models likely capture the broad evolutionary effects of 411 
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plasticity for monotonic reaction norms. More complex monotonic reaction norm shapes can be modeled 412 

to focus on more specific scenarios such as threshold traits with a bounded range of expression (Chevin 413 

and Lande 2013), while non-monotonic reaction norms with an optimum are more appropriate for fitness 414 

or performance traits (Lynch and Gabriel 1987; Huey and Kingsolver 1989), which are not the focus 415 

here. I also assume for simplicity that the background has constant plasticity, such that all genetic 416 

variance in plasticity comes from the major gene. A final assumption in this section will be to focus on 417 

stationary environmental fluctuations with no major shift (𝑑𝑑 = 0). Such purely stationary fluctuations 418 

are expected to counter-select any mutation at the major gene in the absence of plasticity (eqs. 15 and 419 

19), so it is a good benchmark on which to assess selection on a plasticity QTL. 420 

Monomorphic background: In the low mutation limit where the background mean phenotype does 421 

not evolve while the mutation is segregating at the QTL, but has still evolved on a longer time scale to 422 

match the expected optimum at the onset of selection at the QTL, the expected logit allelic frequency 423 

increases linearly in time as in eq. (15), with expected selection coefficient (Appendix) 424 

 E(Δ𝜓𝜓) = −
𝑆𝑆
2

{𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼[(𝑏𝑏𝛼𝛼 − 2(𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚)]𝜎𝜎𝜀𝜀2}. (27) 

The first term in curly brackets is a component of selection that does not depend on the pattern of 425 

environmental fluctuations, and is similar to the expected selection coefficient without plasticity (15) 426 

and without a major environmental shift. This component reduces the expected selection coefficient, as 427 

it increases the mismatch with the expected optimum phenotype. The second term is a component of 428 

selection caused by the effect of the QTL on phenotypic plasticity. This term shows that the plastic effect 429 

𝑏𝑏𝛼𝛼  of the mutation at the QTL is favored by selection if it allows approaching the optimal response to 430 

the environment of development 𝑏𝑏𝜃𝜃, that is if 𝑏𝑏𝛼𝛼[(𝑏𝑏𝛼𝛼 − 2(𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚)] < 0. The expected selection 431 

coefficient is maximum for 𝑏𝑏𝛼𝛼� = 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚, regardless of 𝑎𝑎𝛼𝛼. Importantly, whereas the expected 432 

selection coefficient on a non-plastic mutation does not depend on the variance of fluctuations (eq. 15), 433 

the component of the expected selection coefficient caused by plasticity is stronger under larger variance 434 

𝜎𝜎𝜀𝜀2 of the environment of development, and thus depends on fluctuations in the optimum (from eq. 4). 435 

This reflects the fact that, in a stationary environment, selection on phenotypic plasticity stems from its 436 

effect on the variance of phenotypic mismatch with the optimum, rather than on the average mismatch 437 

(Lande 2009; Ashander et al. 2016). As the variance of the environment of development 𝜎𝜎𝜀𝜀2 increases, 438 

a mutation with a given beneficial effect on phenotypic plasticity becomes increasingly likely to spread 439 

even if it causes a systematic mismatch with the optimum in the mean environment, with a deleterious 440 

side-effect −𝑆𝑆
2
𝑎𝑎𝛼𝛼2 . In the absence of background genetic variation, the expected selection at the plasticity 441 

QTL does not depend directly on autocorrelation in the environment, but only on the dependence of the 442 

optimum on the environment of development, through the parameter 𝑏𝑏𝜃𝜃. Note however that if 443 

phenotypic development/expression and movements of the optimum respond to the same environmental 444 
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variable (e.g. temperature), but at different times in a generation, then 𝑏𝑏𝜃𝜃 is directly related to the 445 

autocorrelation 𝜌𝜌 of the optimum (Lande 2009; Michel et al. 2014).  446 

The variance of selection coefficients with plasticity but no background genetic variation is 447 

 Var(Δ𝜓𝜓) = 𝑆𝑆2

2
(2𝜎𝜎𝜉𝜉

2𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼2[𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2𝜎𝜎𝜀𝜀4 + 2[𝑎𝑎𝛼𝛼2(𝑏𝑏𝛼𝛼 + 𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)2 +

𝜎𝜎𝜉𝜉
2𝑏𝑏𝛼𝛼2]𝜎𝜎𝜀𝜀2). 

(28) 

Equation (28) implies that mutations that have the same expected selection coefficient, because they 448 

cause the same deviation from the optimal plasticity 𝑏𝑏𝛼𝛼�, can have different variances in allelic frequency 449 

change. This is illustrated in Figure 5, which shows that a mutation that leads to hyper-optimal plasticity 450 

has more stochastic variance than a mutation that cause equally sub-optimal plasticity, because the 451 

former causes overshoots of the optimum while the latter causes undershoots. This difference in 452 

stochastic variance between mutations with the same expected selection coefficient, which should 453 

impact their relative probabilities of quasi-fixation (Kimura 1954), is stronger for larger deviation from 454 

the optimal plasticity (Figure 5B).  455 

Polygenic background: When the mean background phenotype also evolves via polygenic variation, 456 

the expected dynamics at the QTL are modified in two main ways. First, background genetic variance 457 

contributes to adaptive tracking of the mean phenotype via genetic evolution, thus reducing the benefit 458 

of phenotypic plasticity, as in pure quantitative genetic models (Tufto 2015). The level of plasticity that 459 

maximizes the expected selection coefficient then becomes (Appendix) 460 

  𝑏𝑏𝛼𝛼� ≈ 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚 − 𝑆𝑆𝐺𝐺(𝑏𝑏𝜃𝜃−𝑏𝑏𝑚𝑚)
𝑆𝑆𝐺𝐺−ln (𝜌𝜌)

 (29) 

where the last term is the regression slope of the background mean reaction norm intercept on the 461 

environment of development, caused by evolution of the mean background in response to the fluctuating 462 

environment. Figure 6A illustrates how selection via the QTL effect on plasticity is reduced by adaptive 463 

tracking of the optimum by evolution of the mean background.  464 

Second, when the benefit of plasticity allows the mutation at the QTL to spread despite a pleiotropic 465 

effect 𝑎𝑎𝛼𝛼 on the intercept of the reaction norm, the expected mean background phenotype can evolve 466 

away from the optimum in the average environment to compensate for the associated cost, that is, it 467 

evolves to 𝑎𝑎𝑚𝑚 = 𝑎𝑎𝛼𝛼 (Figure 6D). Intriguingly, after this has occurred the mutation at the QTL becomes 468 

more strongly selected than if it did not have a pleiotropic effect on the reaction norm intercept (Figure 469 

6B). This occurs because the QTL effect on reaction norm intercept now allows compensating for 470 

maladaptation in the background, which adds a positive component 𝑆𝑆𝑎𝑎𝛼𝛼2/2 to the benefit via the QTL 471 

effect on phenotypic plasticity. In other words, what initially caused a displacement from the mean 472 

optimum allows approaching the mean optimum after the mean background has been displaced. 473 

Furthermore, the spread of the mutation at the plasticity QTL reduces the effective magnitude of 474 

fluctuating selection on background mean reaction norm intercept, resulting in smaller evolutionary 475 

fluctuations in the background (Figure 6C, D).  476 
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Drift versus fluctuating selection 477 

All the analytical results above neglect the influence of random genetic drift, and simulations were run 478 

under large 𝑁𝑁𝑒𝑒 to single out the influence of fluctuating selection as a source of stochasticity. However, 479 

it is useful to delineate more precisely the conditions under which drift can be neglected relative to 480 

environmental stochasticity. The overall variance in allelic frequency change, accounting for both 481 

fluctuating selection and random genetic drift in a Wright-Fisher population, can be obtained from the 482 

law of total variance, and was previously shown (Ohta 1972) to be  483 

  V(∆𝑝𝑝) = 𝑝𝑝𝑞𝑞 � 1
𝑁𝑁𝑒𝑒

+ V𝑠𝑠𝑝𝑝𝑞𝑞�, (30) 

where V𝑠𝑠 = V(∆𝜓𝜓) is the variance of selection coefficients caused by fluctuating selection. From this it 484 

entails that fluctuation selection dominates drift as a source of stochasticity when V𝑠𝑠𝑝𝑝𝑞𝑞 > 1
𝑁𝑁𝑒𝑒

, that is for  485 

 
 �

𝑁𝑁𝑒𝑒V𝑠𝑠 > 4

𝑝𝑝 ∈ �1
2
− �𝑁𝑁𝑒𝑒V𝑠𝑠−4

4𝑁𝑁𝑒𝑒V𝑠𝑠
, 1
2

+ �𝑁𝑁𝑒𝑒V𝑠𝑠−4
4𝑁𝑁𝑒𝑒V𝑠𝑠

� . 
 

(31) 

This can be translated into a condition for the logit allelic frequency 𝜓𝜓,  486 

   

⎩
⎪
⎨

⎪
⎧

𝑁𝑁𝑒𝑒V𝑠𝑠 > 4

|𝜓𝜓| < ln

⎝

⎛
1 + �𝑁𝑁𝑒𝑒V𝑠𝑠 − 4

𝑁𝑁𝑒𝑒V𝑠𝑠

1 −�𝑁𝑁𝑒𝑒V𝑠𝑠 − 4
𝑁𝑁𝑒𝑒V𝑠𝑠 ⎠

⎞ . 

 

 

(32) 

Very similar results are obtained (not shown) if the criterion is based on the stochastic variance of 𝜓𝜓, 487 

for which the fluctuating selection component is independent of 𝜓𝜓 (as derived in the main text), but the 488 

drift component is not. Equation (32) shows that an absolute condition for fluctuating selection to be the 489 

dominant source of stochasticity is 𝑁𝑁𝑒𝑒V𝑠𝑠 > 4. When this holds, fluctuating selection dominates over a 490 

range of intermediate allelic frequencies, while drift dominates at extreme frequencies outside of this 491 

range. The bounds of this range are entirely determined by the compound parameter 𝑁𝑁𝑒𝑒V𝑠𝑠, as shown by 492 

eqs. (31-32) and Figure 7A. Figure 7 further illustrates that for small 𝑁𝑁𝑒𝑒V𝑠𝑠, small initial frequencies 493 

and/or large final frequencies result in inflated variance relative to the expectation under pure fluctuating 494 

selection (panels B-C), as well as fixation events by drift (panel B). As 𝑁𝑁𝑒𝑒V𝑠𝑠 increases from panel B to 495 

D, the predictions under pure fluctuating selection become increasingly accurate, all the more so as the 496 

initial allelic frequency is within the range defined by eq. (32). 497 

Discussion 498 

Analysis of a simple model combining population and quantitative genetics has revealed a number of 499 

interesting properties about fluctuating selection at a gene affecting a quantitative trait (or QTL), when 500 

this trait undergoes randomly fluctuating selection caused by a moving optimum phenotype. The first 501 

important observation is that, when assessed on the logit scale - a natural scale for allelic frequencies 502 
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(Kimura 1954; Gillespie 1991; Chevin 2011; Gallet et al. 2012) -, the dynamics at the QTL has a simple 503 

connection to movements of the optimum, since the selection coefficient depends linearly on the 504 

mismatch between the mean background phenotype and the optimum (eq. 9;  see also Martin and 505 

Lenormand 2006). For a QTL that has the same phenotypic effect in all environments (no phenotypic 506 

plasticity), the expected trajectory only depends on the expected phenotypic mismatch with the 507 

optimum, not on the pattern of fluctuations in this optimum. However the variance of trajectories, an 508 

important determinant of probabilities of quasi-fixation (Kimura 1954), is strongly affected not only by 509 

the magnitude of fluctuations in the optimum, but also by their autocorrelation (eq. 17, Figure 1). When 510 

the focal QTL is the only polymorphic gene undergoing fluctuating selection, this stochastic variance 511 

increases linearly over time (Figure 3A), at a rate that is faster under larger positive autocorrelation in 512 

the optimum. In contrast, when polygenic variation elsewhere in the genome allows for evolution of the 513 

mean background phenotype, stochastic variance at the QTL is bounded by a maximum asymptotic 514 

value, which is lower under higher genetic variance in the background (eqs. 24-25 and Figure 3 B-C). 515 

This stochastic variance caused by fluctuating selection interacts with the inherent bi-stability of genetic 516 

architecture in this system (Lande 1983; Chevin and Hospital 2008), and may increase the probability 517 

that the mutation at the QTL reaches fixation at the expense of the background mean phenotype (as 518 

illustrated in Figure 4), or the reverse.  519 

When the mutation at the QTL also affects phenotypic plasticity via the slope of a linear reaction 520 

norm, then even its expected trajectory depends on the pattern of fluctuations, with stronger selection 521 

under large fluctuations (eq. 27), contrary to the case of a non-plastic QTL. Interestingly, mutations with 522 

the same expected selection coefficient - because they cause the same deviation from the optimal 523 

plasticity – may have very different variances in allelic trajectories, depending on whether they tend to 524 

cause overshoots or undershoots of the fluctuating optimum (Figure 5). Finally, a mutation that is 525 

sufficiently strongly selected via its effect on phenotypic plasticity can spread despite causing a 526 

systematic mismatch with the optimum in the average environment. When the mean background 527 

phenotype can evolve by polygenic variation, it can compensate for this pleiotropic effect on reaction 528 

norm intercept. Quite strikingly, this increases selection at the plasticity QTL, causing the mutation to 529 

spread faster than if it only affected plasticity (Figure 6B).  530 

 Consistent with previous uses of this model with a major gene and polygenes (Lande 1983; Agrawal 531 

et al. 2001; Chevin and Hospital 2008; Gomulkiewicz et al. 2010), I did not model explicitly the 532 

maintenance of genetic variance in the background, instead assuming that it had reached an equilibrium 533 

between mutation and stabilizing/fluctuating selection. This has provided simple and robust analytical 534 

insights about the interplay of selection at a major gene with background polygenic variation. Although 535 

environmental fluctuations should affect the expected additive genetic variance G to some extent 536 

(Burger and Gimelfarb 2004; Svardal et al. 2011), this does not necessarily affect our results because 537 

they are conditioned on G, rather than on mutational variance for instance, which is less directly 538 

amenable to empirical measurement. More critical is the fact that the background additive genetic 539 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/752873doi: bioRxiv preprint 

https://doi.org/10.1101/752873


19 
 

variance should itself fluctuate in time as alleles in the background change in frequency, especially in a 540 

finite population (Bürger and Lande 1994; Höllinger et al. 2019). This should increase temporal 541 

variation in the evolutionary process, so that results about stochastic variance here may be considered 542 

as lower bounds, if the long-term mean G is used in formula. Modeling explicitly the dynamics of 543 

background quantitative genetic variance in a random environment would require using individual-544 

based simulations, as done for instance by Bürger and Gimelfarb (2002). Previous work based on a 545 

similar environmental context as modeled here proved that most results are little affected in regimes 546 

where substantial genetic variation can be maintained for a quantitative trait (Chevin and Haller 2014; 547 

Chevin et al. 2017), as assumed here.  548 

 Although the simulations included random genetic drift, all the analytical results were derived by 549 

neglecting the influence of drift. These analytical results are therefore valid over a range of allelic 550 

frequencies that is entirely determined by the product of the effective size by the variance of selection 551 

coefficients, as shown in eqs. (31-32) and Figure 7. In most simulations, I have assumed that the 552 

mutation at the QTL is initially at low frequency, but still common enough to be within the range defined 553 

by eqs. (31-32), where frequency change is entirely driven by selection. It would be worthwhile 554 

investigating in future work the probability of establishment of a mutation that starts in one copy and 555 

affects a trait exposed to randomly fluctuating selection, but this requires developments that are beyond 556 

the scope of the present study. For our purpose, we can consider that the initial frequency p0 stems either 557 

from the trajectory of a newly arisen mutation conditional on non-extinction, which is expected to 558 

rapidly rise away from 0 (Barton 1998; Martin and Lambert 2015), or from a distribution at mutation-559 

selection drift equilibrium (Wright 1937; Barton 1989; Höllinger et al. 2019).  560 

 Our analytical results about the distribution of logit allelic frequency lend themselves well to 561 

comparisons with empirical measurements. Indeed the logit of allelic frequencies is readily obtained 562 

from number of copies of each type, since 𝜓𝜓 = ln �𝜕𝜕
𝑞𝑞
� = ln𝑁𝑁𝑚𝑚 − ln𝑁𝑁𝑤𝑤, where 𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑤𝑤 are the copy 563 

numbers of the mutant (derived) and wild-type (ancestral) allele, respectively. In fact, when frequencies 564 

are estimated on a subsample from the population, the strength of selection on genotypes is generally 565 

estimated using logistic regression (Gallet et al. 2012), a generalized linear (mixed) model that uses the 566 

logit as link function. Our theoretical predictions therefore apply directly to the linear predictor of such 567 

a GLMM, without requiring any transformation. For instance if we consider an experiment where 568 

multiple lines undergo independent times series of a stochastic environment (i.e., different paths of the 569 

same process), the stochastic variance among replicates can be estimated as a random effect in a logistic 570 

GLMM. If multiple loci are available, this random effect should strongly covary among loci within an 571 

environmental time series, because they share the same history of environments, in contrast to frequency 572 

changes caused by drift, which should only be similar between tightly linked loci. 573 

 The results here are based on a model of fluctuating optimum for a quantitative trait, similar to  574 

previous theory by Connallon and Clark (2015), but extend this theory by allowing for environmental 575 
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autocorrelation, and by deriving the stochastic variance of the population genetic process. Importantly, 576 

most of the present results should also be relevant to cases where an explicit phenotype under selection 577 

is not identified or measured, but the relationship between fitness and the environment has the form of 578 

a function with an optimum, which can be approximated as Gaussian (Lynch and Gabriel 1987; Gabriel 579 

and Lynch 1992; Gilchrist 1995). For many organisms, especially microbes, measuring individual 580 

phenotypes can be challenging, and it may prove difficult to identify most traits involved in adaptation 581 

to a particular type of environmental change (ie temperature, salinity…). A common solution is to 582 

directly measure fitness or its life-history components (survival, fecundity) across environments, to 583 

produce an environmental tolerance curve (Deutsch et al. 2008; Thomas et al. 2012; Foray et al. 2014). 584 

An influence of the history of previous environments on these tolerance curves can also be included, via 585 

plasticity-mediated acclimation effects (Calosi et al. 2008; Gunderson and Stillman 2015; Nougué et al. 586 

2016). It has been highlighted previously that tolerance curves can be thought of as emerging from a 587 

moving optimum phenotype on unmeasured, possibly plastic, underlying traits (Chevin et al. 2010; 588 

Lande 2014), so that a simple re-parameterization can translate all the results above in terms of evolution 589 

of tolerance breadth and environmental optimum. Such a connection has recently been  invoked to 590 

analyze population dynamics in a stochastic environment (Chevin et al. 2017; Rescan et al. 2019), 591 

suggesting that results from the current study are not restricted to cases where relevant quantitative traits 592 

under fluctuating selection can be measured, but may instead apply to a broad range of organisms 593 

exposed to randomly changing environments.  594 
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 845 

Figures 846 

 847 

 848 
 849 

Figure 1: Fluctuating selection at a QTL in a monomorphic genetic background. The dynamics of 850 

logit allelic frequency ψ  (A-B) and allelic frequency p (C-D) are shown as gray lines for 50 simulations 851 

with low (𝜌𝜌 = 0.1, left) or high (𝜌𝜌 = 0.7, right) positive autocorrelation in the optimum. Panels A-B 852 

also show percentiles from the predicted normal distribution with mean and variance provided by eqs. 853 

(15) and (17), respectively: 50% (median) in thick, 5% and 95% in thin, and 1% and 99% in dashed 854 

lines. Insets show distributions at generation 150, where histograms are computed from 1000 855 

simulations, while the solid black line is the predicted density based on the moments in eqs. (15) and 856 

(17) for A-B, and their transformation using eq. (14) for C-D. Parameters were E(𝜃𝜃) = 0, 𝜎𝜎𝜃𝜃2 = 10, 𝜔𝜔 =857 

5,  𝑚𝑚 = −𝜔𝜔/2, 𝛼𝛼 = −𝑚𝑚/5, and 𝑝𝑝0 = 10−3, and 𝑁𝑁𝑒𝑒 = 106. 858 
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 861 
 862 

Figure 2: Fluctuating selection at a QTL with a polygenic genetic background. A: The dynamics of 863 

logit allelic frequency ψ are shown as gray lines for 50 simulations. Also shown are percentiles from 864 

the predicted normal distribution, with mean and variance given by eqs. (19) and (24), respectively: 50% 865 

(median) in thick, 5% and 95% in thin, and 1% and 99% in dashed lines. B: Histograms show 866 

distributions of ψ along time for 500 simulations, while the solid black lines are the predicted normal 867 

densities based on eqs. (19) and (24). Note how the distribution reaches a stationary variance with a 868 

moving mean, that is, a traveling wave with direction given by the arrow in B. Note also that in this 869 

example, the sweep at the QTL is interrupted by the mean background evolving towards the optimum, 870 

as investigated in detail in Figure 4. Parameters were E(𝜃𝜃) = 0, 𝜎𝜎𝜃𝜃2 = 10, 𝜌𝜌 = 0.1, 𝜔𝜔 = 5,  𝑚𝑚0 =871 

−𝜔𝜔/2, 𝛼𝛼 = −𝑚𝑚0/2, 𝐺𝐺 = 0.5, 𝑝𝑝0 = 10−2, and 𝑁𝑁𝑒𝑒 = 106. 872 

.  873 
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 875 

 876 
 877 

Figure 3: Stochastic variance at the QTL with or without a polygenic background. The variance 878 

across replicates of logit allelic frequency ψ, starting from a known frequency 𝑝𝑝0, is represented along 879 

time in simulations without (A) or with (B, C) background polygenic variance for the trait. Also shown 880 

in dashed are the predicted dynamics based on equation (17) in A, and eq. (24) in B-C. Note the 881 

qualitative difference between the near linear increase in the absence of background genetic variance, 882 

versus the saturating dynamics with background genetic variance, for which the maximum asymptotic 883 

value from eq. (25) is also plotted as horizontal solid line. The autocorrelation of the optimum is 𝜌𝜌 =884 

0.1 (gray), 𝜌𝜌 = 0.5 (dark gray) or 𝜌𝜌 = 0.9 (black), additive genetic variance in the background is 𝐺𝐺 = 0 885 

(A)  𝐺𝐺 = 0.5 (B) or 𝐺𝐺 = 2 (C), effective population size is 𝑁𝑁𝑒𝑒 = 108, and other parameters are as in 886 

Figure 1.  887 

  888 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/752873doi: bioRxiv preprint 

https://doi.org/10.1101/752873


31 
 

 889 
 890 

 891 

Figure 4: Environmental autocorrelation and probability of a full sweep. The bistability of genetic 892 

architecture between major gene and polygenes in this system (eqs. 10-11) is amplified by stochastic 893 

fluctuations in the environment. A-B: Joint evolutionary trajectories of logit allelic frequency 𝜓𝜓 at the 894 

major locus and background mean phenotypic deviation from the optimum 𝑚𝑚− 𝜃𝜃 are represented for 895 

10 sampled simulations (dark gray line). The thick black line represents the expected trajectory, 896 

neglecting the influence of the QTL on the mean background, obtained by combining eq. (19) with the 897 

geometric decline for 𝑚𝑚− 𝜃𝜃. Shadings represent the fitness landscape in the mean environment, using 898 

eq. (7). The dashed line is where the overall mean phenotype is at the optimum, 𝑚𝑚 + 𝑝𝑝𝑎𝑎 = 𝜃𝜃.  All 899 

equilibria lie on this line; the unstable equilibrium in eq. (11) is shown as a dot, while the fixed equilibria 900 

in eq. 10 cannot be represented on the logit scale. C: The proportion of simulations where the mutation 901 

at the QTL eventually reaches frequency higher than 0.95 (dots) is well predicted (lines) using a 902 

Gaussian distribution for 𝜓𝜓, with equilibrium variance from eq. (25), and mean provided by the expected 903 

trajectory at its maximum (eq. 21, black), or the actual maximum frequency in deterministic recursions 904 

without environmental fluctuations (gray). For each autocorrelation 𝜌𝜌 (ranging from 0 to 0.95 by 905 

increments of 0.05), 1000 simulations were run, and the proportion of simulations with 𝑝𝑝 > 0.95 at 906 

generation 2000 was recorded. The parameters for these simulations were 𝐺𝐺 = 0.5, E(𝜃𝜃) = 0, 𝜎𝜎𝜃𝜃2 = 5, 907 

𝜔𝜔 = 5,  𝑚𝑚0 = −𝜔𝜔, 𝛼𝛼 = −0.15 𝑚𝑚0, and 𝑝𝑝0 = 10−3, and 𝑁𝑁𝑒𝑒 = 106 . 908 
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 911 

 912 
 913 

Figure 5: Mean and variance of selection at a QTL for plasticity. A: The dynamics of logit allelic 914 

frequency 𝜓𝜓 at the QTL are represented for simulations where the mutation at the QTL has a small 915 

(𝑏𝑏𝛼𝛼 = 0.4(𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚), dark gray) or large (𝑏𝑏𝛼𝛼 = 1.6(𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚), light gray) effect on phenotypic 916 

plasticity, with same expected selection coefficient materialized by the thick black line (based on eq. 917 

27). B: The mean (dashed line: eq. (27); squares: simulations) and variance (continuous line: eq. (28); 918 

dots: simulations) of selection coefficients ∆𝜓𝜓 are shown as a function of the relative increment 𝑥𝑥 in 919 

plasticity caused by the mutation at the QTL, such that 𝑏𝑏𝛼𝛼 = (1 + 𝑥𝑥)(𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚). This shows that 920 

mutations with same expected selection coefficient may have different variances in selection, and more 921 

so as they deviate more from the optimal plasticity 𝑏𝑏𝛼𝛼� = 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚 (that is, from 𝑥𝑥 = 0). Parameters are 922 

𝜎𝜎𝜃𝜃2 = 5, 𝜌𝜌 = 0.7, 𝜎𝜎𝜀𝜀2 = 2, 𝑏𝑏𝜃𝜃 = 1.4, 𝑏𝑏𝑚𝑚 = 0.2𝑏𝑏𝜃𝜃, 𝑎𝑎𝜃𝜃 = 𝑎𝑎𝑚𝑚 = 𝑎𝑎𝛼𝛼 = 0; other parameters are as in 923 

Figure 1. 924 
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 926 
 927 

 928 

Figure 6: Selection at a QTL for plasticity with background polygenic variation. The dynamics of 929 

logit allelic frequency 𝜓𝜓 at the QTL (A, B) and of the background mean reaction norm elevation 𝑎𝑎𝑚𝑚 (C, 930 

D) are represented for the cases where the QTL affects only plasticity (with effect 𝑏𝑏𝛼𝛼 on reaction norm 931 

slope, A, C), or also the reaction norm intercept (with effect 𝑎𝑎𝛼𝛼, B, D). In all cases, the gray line show 932 

100 simulations under a randomly changing environment. In panel A, the continuous black line 933 

represents the expected dynamics with the selection coefficient in eq. (29), while the dashed line is the 934 

prediction that neglects the influence of adaptive tracking of the optimum by the mean background (eq. 935 

27). In panel B, the continuous black line represents the selection coefficient that includes the pleiotropic 936 

fitness cost of reaction norm intercept (−𝑆𝑆𝑎𝑎𝛼𝛼2/2), the dashed line represents the selection coefficient that 937 

includes a reciprocal benefit +𝑆𝑆𝑎𝑎𝛼𝛼2/2, and the dotted line neglect the pleiotropic effect altogether (as in 938 

A), after time 𝑡𝑡𝑐𝑐 = ln[(1 − 𝑝𝑝0) /𝑝𝑝0]/E(Δ𝜓𝜓). The higher stochastic variance in panel B relative to A is 939 

a consequence of the additional effect of the QTL on the reaction norm intercept, consistent with eq 940 

(28). In panel D, the black line represents the mean background reaction norm intercept after it has 941 

evolved to compensate for the pleiotropic effect of the QTL in the mean environment, such that 𝑎𝑎𝑚𝑚 =942 

𝑎𝑎𝛼𝛼. Parameters are 𝐺𝐺 = 1, 𝑎𝑎𝑚𝑚0 = 0, 𝑎𝑎𝛼𝛼 = 0 (A, C) or 𝑎𝑎𝛼𝛼 = 1 (B, D), 𝑏𝑏𝛼𝛼 = 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚, 𝑝𝑝0 = 10−2 and 943 

other parameters are as in Figure 5.  944 
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 945 
Figure 7: Drift versus fluctuating selection. A: The threshold logit frequency beyond which drift 946 

dominates fluctuating selection as a source of stochasticity (from eq. 32, full line) is plotted against the 947 

compound parameter 𝑁𝑁𝑒𝑒V𝑠𝑠. The dashed line represents the hard threshold at 𝑁𝑁𝑒𝑒V𝑠𝑠 = 4. B-D: The 948 

dynamics of logit allelic frequency 𝜓𝜓 is plotted over time for 50 simulations with selection and drift, 949 

and without plasticity or background genetic variation, similarly to Figure 1. The continuous lines show 950 

the predicted quantile of the distribution, as in Figure 1. The shaded region indicates the range of 𝜓𝜓 951 

over which fluctuating selection is expected to dominate, using eq. (32) with V𝑠𝑠 = (𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃)2. The dashed 952 

lines show the fixation threshold at ± ln𝑁𝑁𝑒𝑒. The effective population sizes are indicated in each panel, 953 

and other parameters are as in Figure 1. 954 
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Appendix: Details of plasticity model 956 

In the model with plasticity, the environment is assumed to undergo stationary fluctuations, before and 957 

after the appearance and spread of the mutation at the QTL. Before the mutation at the QTL reaches 958 

appreciable frequency, the recursion for the mean background phenotype is (combining eqs. (2), (4), (6) 959 

and (8))  960 

∆𝑚𝑚 = ∆𝑎𝑎𝑚𝑚 = −𝐺𝐺𝑆𝑆[𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚𝜀𝜀 − (𝑎𝑎𝜃𝜃 + 𝑏𝑏𝜃𝜃𝜀𝜀 + 𝜉𝜉)]. 961 

Integrating over the distribution of environments of development 𝜀𝜀 and residual component of variance 962 

in the optimum 𝜉𝜉, the expected mean reaction norm intercept at equilibrium in a stationary environment, 963 

before the mutation at the QTL establishes and starts spreading, is  964 

E(𝑎𝑎𝑚𝑚) = 𝑎𝑎𝜃𝜃 + (𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚)𝜀𝜀̅ = �̅�𝜃 − 𝑏𝑏𝑚𝑚𝜀𝜀.̅ 965 

This shows that the mean reaction norm intercept evolves so as to compensate for the effect of plasticity, 966 

such that the overall mean background phenotype E(𝑚𝑚) = E(𝑎𝑎𝑚𝑚) + 𝑏𝑏𝑚𝑚𝜀𝜀 ̅ is at the expected optimum 967 

�̅�𝜃. However, the intercept of a reaction norm has no meaning per se, as it depends on the arbitrary choice 968 

of a reference environment where 𝜀𝜀 = 0. We thus choose to set as reference the stationary mean of the 969 

environment of development, de facto setting 𝜀𝜀̅ = 0. This is just a way of parameterizing the model such 970 

that the intercept for the optimum is simply the stationary mean optimum, 𝑎𝑎𝜃𝜃 = �̅�𝜃, which is also equal 971 

to the expected reaction norm intercept E(𝑎𝑎𝑚𝑚) in the absence of any influence from the QTL. 972 

The recursion for the change in logit allelic frequency over a generation can be obtained by 973 

combining equations (9) and (2-4), leading to  974 

Δ𝜓𝜓 = −
𝑆𝑆
2

[(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)2 + 2(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)(𝑎𝑎𝑚𝑚 − 𝑎𝑎𝜃𝜃 + (𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)𝜀𝜀 − 𝜉𝜉)] 975 

which can be expanded to yield 976 

−
2Δ𝜓𝜓
𝑆𝑆

= 𝑎𝑎𝛼𝛼[𝑎𝑎𝛼𝛼 + 2(𝑎𝑎𝑚𝑚 − 𝑎𝑎𝜃𝜃)] 977 

+[𝑏𝑏𝛼𝛼2 + 2𝑏𝑏𝛼𝛼(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]𝜀𝜀2 978 

+2[𝑎𝑎𝛼𝛼𝑏𝑏𝛼𝛼 + 𝑎𝑎𝛼𝛼(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃) + 𝑏𝑏𝛼𝛼(𝑎𝑎𝑚𝑚 − 𝑎𝑎𝜃𝜃)]𝜀𝜀 979 

−2𝑏𝑏𝛼𝛼𝜀𝜀𝜉𝜉 − 2𝑎𝑎𝛼𝛼𝜉𝜉. 980 

Integrating over the distribution of environments of development 𝜀𝜀 and residual component of variance 981 

in the optimum 𝜉𝜉 yields 982 

−2E(Δ𝜓𝜓)
𝑆𝑆

= 𝑎𝑎𝛼𝛼[𝑎𝑎𝛼𝛼 + 2(E(𝑎𝑎𝑚𝑚)− �̅�𝜃)] + 𝑏𝑏𝛼𝛼{[(𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]𝜎𝜎𝜀𝜀2 + 2cov(𝑎𝑎𝑚𝑚, 𝜀𝜀)}, 983 

where the covariance cov(𝑎𝑎𝑚𝑚, 𝜀𝜀) is caused by adaptive tracking of the moving optimum phenotype by 984 

evolution of the mean background phenotype. In the absence of polygenic variation during the sweep, 985 

we have cov(𝑎𝑎𝑚𝑚, 𝜀𝜀) = 0, and E(𝑎𝑎𝑚𝑚) − �̅�𝜃 in the long run in a stationary environment, leading to eq. (27) 986 

in the main text. With polygenic variance in the background, we have, from Michel et al.  (2014),  987 

cov(𝑎𝑎𝑚𝑚, 𝜀𝜀) ≈ 𝑆𝑆𝐺𝐺(𝑏𝑏𝜃𝜃−𝑏𝑏𝑚𝑚)𝜎𝜎𝜀𝜀2

𝑆𝑆𝐺𝐺−ln (𝜌𝜌)
. 988 
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 990 

The stochastic variance of logit frequency change is 991 

Var(Δ𝜓𝜓) =
𝑆𝑆2

4
Var[(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)2 + 2(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)(𝑎𝑎𝑚𝑚 − 𝑎𝑎𝜃𝜃 + (𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)𝜀𝜀 − 𝜉𝜉)] 992 

In the absence of background genetic variance, we have 993 
4
𝑆𝑆2

Var(Δ𝜓𝜓) = Var[(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)2 + 2(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)𝜀𝜀 − 2(𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀)𝜉𝜉] 994 

= Var[𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼[𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]𝜀𝜀2 + 2𝑎𝑎𝛼𝛼[𝑏𝑏𝛼𝛼 + 𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃]𝜀𝜀 − 2𝑏𝑏𝛼𝛼𝜉𝜉𝜀𝜀 − 2𝑎𝑎𝛼𝛼𝜉𝜉]. 995 

Integrating over the distribution of environments of development 𝜀𝜀 and residual component of variance 996 

in the optimum 𝜉𝜉, this yields 997 
4
𝑆𝑆2

Var(Δ𝜓𝜓) = 𝑏𝑏𝛼𝛼2[𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2Var[𝜀𝜀2] + 4𝑎𝑎𝛼𝛼2 [𝑏𝑏𝛼𝛼 + (𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2Var[𝜀𝜀] + 4𝑏𝑏𝛼𝛼2Var[𝜉𝜉𝜀𝜀] +998 

4𝑎𝑎𝛼𝛼2Var[𝜉𝜉], 999 

where we have used the fact that, when 𝜀𝜀 and 𝜉𝜉 are independent and with mean 0, 1000 

Cov(𝜀𝜀2, 𝜀𝜀) = Cov(𝜀𝜀2, 𝜉𝜉𝜀𝜀) = Cov(𝜀𝜀2, 𝜉𝜉) = Cov(𝜀𝜀, 𝜉𝜉𝜀𝜀) = Cov(𝜀𝜀, 𝜉𝜉) = Cov(𝜉𝜉𝜀𝜀, 𝜉𝜉) = 0. 1001 

We can also use 1002 

Var[𝜉𝜉] = 1 1003 

Var[𝜀𝜀2] = 2𝜎𝜎𝜀𝜀4 1004 

Var[𝜉𝜉𝜀𝜀] = E[(𝜉𝜉𝜀𝜀)2] − E[𝜉𝜉𝜀𝜀]2 = E[𝜉𝜉2𝜀𝜀2] = Var[𝜉𝜉]Var[𝜀𝜀] = 𝜎𝜎𝜉𝜉
2𝜎𝜎𝜀𝜀2 1005 

To get 1006 
4
𝑆𝑆2

Var(Δ𝜓𝜓) = 2𝑏𝑏𝛼𝛼2[𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2𝜎𝜎𝜀𝜀4 + 4𝑎𝑎𝛼𝛼2 [𝑏𝑏𝛼𝛼 + (𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2𝜎𝜎𝜀𝜀2 + 4𝜎𝜎𝜉𝜉
2(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼2𝜎𝜎𝜀𝜀2) 1007 

such that 1008 

Var(Δ𝜓𝜓) =
𝑆𝑆2

2
(𝑏𝑏𝛼𝛼2[𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2𝜎𝜎𝜀𝜀4 + 2[𝑎𝑎𝛼𝛼2(𝑏𝑏𝛼𝛼 + 𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)2 + 𝜎𝜎𝜉𝜉

2𝑏𝑏𝛼𝛼2]𝜎𝜎𝜀𝜀2 + 2𝜎𝜎𝜉𝜉
2𝑎𝑎𝛼𝛼2)  1009 

In the simpler case where the mutation only affects plasticity, but not the reaction norm intercept, this 1010 

simplifies as 1011 

Var(Δ𝜓𝜓) =
𝑆𝑆2

2
(𝑏𝑏𝛼𝛼2[𝑏𝑏𝛼𝛼 + 2(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝜃𝜃)]2𝜎𝜎𝜀𝜀4 + 2𝑏𝑏𝛼𝛼2𝜎𝜎𝜉𝜉

2𝜎𝜎𝜀𝜀2) 1012 
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