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1 Summary and Keywords

Background: Comorbidity network analysis (CNA) is an increasingly popular approach in systems
medicine, in which mathematical graphs encode epidemiological correlations (links) between diseases
(nodes) inferred from their occurrence in an underlying patient population. A variety of methods
have been used to infer properties of the constituent diseases or underlying populations from the
network structure, but few have been validated or reproduced.

Objectives: To test the robustness and sensitivity of several common CNA techniques to the source
of population health data and the method of link determination.

Methods: We obtained six sources of aggregated disease co-occurrence data, coded using varied
ontologies, most of which were provided by the authors of CNAs. We constructed families of
comorbidity networks from these data sets, in which links were determined using a range of
statistical thresholds and measures of association. We calculated degree distributions, single-value
statistics, and centrality rankings for these networks and evaluated their sensitivity to the source
of data and link determination parameters. From two open-access sources of patient-level data,
we constructed comorbidity networks using several multivariate models in addition to comparable
pairwise models and evaluated differences between correlation estimates and network structure.

Results: Global network statistics vary widely depending on the underlying population. Much
of this variation is due to network density, which for our six data sets ranged over three orders of
magnitude. The statistical threshold for link determination also had strong effects on global statistics,
though at any fixed threshold the same patterns distinguished our six populations. The association
measure used to quantify comorbid relations had smaller but discernible effects on global structure.
Co-occurrence rates estimated using multivariate models were increasingly negative-shifted as models
accounted for more effects. However, only associations between the most prevalent disorders were
consistent from model to model. Centrality rankings were likewise similar when based on the same
dataset using different constructions; but they were difficult to compare, and very different when
comparable, between data sets, especially those using different ontologies. The most central disease
codes were particular to the underlying populations and were often broad categories, injuries, or
non-specific symptoms.

Conclusions: CNAs can improve robustness and comparability by accounting for known limitations.
In particular, we urge comorbidity network analysts (a) to include, where permissible, disaggregated
disease occurrence data to allow more targeted reproduction and comparison of results; (b) to report
differences in results obtained using different association measures, including both one of relative
risk and one of correlation; (c) when identifying centrally located disorders, to carefully decide the
most suitable ontology for this purpose; and, (d) when relevant to the interpretation of results, to
compare them to those obtained using a multivariate model.
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2 Introduction

2.1 Background

The importance of comorbidity to medical research and practice is fundamental. Usually, the
term refers to morbidity that complicates an index condition for an individual patient, which
produces population-level associations in epidemiological studies and clinically relevant differences
in prognosis or response to treatment and which analyses must take into account (Akker et al. 1996;
Valderas et al. 2009). Recently, several research teams have taken a systems approach to population
comorbidity by analyzing “comorbidity networks” (also “disease networks”, “disease graphs”, and
maps of “disease space” or of the “diseasome”) aggregated from measures of co-occurrence between
pairs or among small groups of disorders (Emmert-Streib et al. 2013; Capobianco and Liò 2015).
Their investigations seek to uncover novel clinical associations, to stratify patient populations, and
to predict disease progression, among other aims (Brunson and Laubenbacher 2017).

In this section we review the recent comorbidity network analysis literature and articulate some
concerns with the methods used. In subsequent sections, we test how sensitive the network statistics
produced, and by extension the kinds of inferences drawn, in these studies are to the source of data
and the method of network construction. We conclude with a set of recommendations that we think
will strengthen the practical value of future comorbidity network analyses.

2.2 Conventional comorbidity network analysis

Systems medicine consists in the adoption into medical research of principles and techniques from
systems biology, which in turn are described as global, integrative, and holistic (Hood et al. 2013;
Ayers and Day 2015; Kirschner 2016). Networks are a prime illustration, having become a staple of
systems biology (Pavlopoulos et al. 2011) and seen extensive use in systems medicine (Gietzelt et
al. 2016). Since 2009, alongside an expansion of the scope and scale of social network analysis in
medicine, network analysis has accelerated the systems approach to human health (Brunson and
Laubenbacher 2017).

Any complex system can be conceptualized as a network, and a range of structures are called
network models, but network science rests predominantly on the theory of mathematical graphs,
and therefore on the discretization of underlying relations. Converting subject-level expression or
incidence data to (often unweighted) network models results in the loss of covariance, sign, and
magnitude information. This conversion makes the analysis of large data sets more tractable, as
network models occupy far less memory than incidence data and can be analyzed and simulated
using highly efficient algorithms. In most applications, however, network analysis relies on theoretical
assumptions that do not necessarily hold for association data (Brandes et al. 2013). As a consequence,
systems analyses of high-dimensional data may be presented as network analyses despite making
little or no use of graph theory, an observation made by Williams et al. (2014) of systems biology
and later by Brunson and Laubenbacher (2017) of systems medicine. For example, comorbidity
network studies are often strictly dyadic—focused on pairwise relations but not on dependencies
among these relations—as in the search for new or poorly understood associations between clinical
concepts such as diagnosed disorders (e.g. Hanauer et al. 2009; Hanauer and Ramakrishnan 2013).
Meanwhile, classical techniques such as hierarchical clustering (e.g. Roque et al. 2011) and ordination
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(e.g. Lyalina et al. 2013) preserve more information from association data than graph-tailored
alternatives like community detection and force-directed layouts.

There is also a conceptual mismatch between the tools designed to investigate actor-oriented networks
and the questions motivating variable-oriented association studies. Much of contemporary network
science appropriates graph-theoretic operationalizations of such sociological concepts as community,
centrality, and brokerage, which have natural and important applications in population health, health
economics, and other socio-structural research using relational data. However, these concepts have
also been applied to network models of association data, without the motivations and interpretations
that would attend a theoretical foundation independent of these social scientific roots, and health
informatics is no exception. This begins with the very concept of a relation, or link, which is
usually defined for pairs of clinical concepts by imposing an evidential or evaluative cutoff on a
measure of association between binary variables, e.g. rejecting a null hypothesis of no association at
p < .05 based on a chi-squared test (Davis and Chawla 2011) or having an odds ratio greater than 3
(Hanauer et al. 2009). The observations of Hidalgo et al. (2009), for example—that the lethality of
a disease correlates with its connectivity and that health states tend to progress from less to more
connected diseases—may depend on disease prevalences and other features of the population (c.f.
Chmiel et al. 2014) and in part be artifacts of sample size (c.f. Blair et al. 2013) or of patient-level
covariates (c.f. Rzhetsky et al. 2007).

We do not suggest that applications of graph theory to population comorbidity data are inherently
problematic. The aforementioned observations of Hidalgo et al. (2009) have been reproduced
(Glicksberg et al. 2016), the strengths of association between disorders are consistent across a range
of data sets (Blair et al. 2013), and several studies using graph-theoretic methods have yielded
interesting results. For example, Chen and Xu (2014) used a random walk–based notion of distance
to rank the comorbidities of different cancers, in an effort to identify targets for fruitful follow-up
laboratory research (Chen et al. 2015). Other studies have illustrated ways in which network
analysis complements geometric techniques: Lyalina et al. (2013) visualized co-occurrence data
using both principal component analysis biplots and co-occurrence network layouts, from which they
gained complementary insights to the problem of differentiating between distinct disorders with
shared symptoms. Nevertheless, the irrigidity with which links—the observational units of network
analysis—are determined and interpreted in this setting call for additional caution.

2.3 Objectives

We articulate four concerns with the conventional approach:1

1. Sources of disease incidence data differ in their conventions, completeness, and representa-
tiveness, and the consequent differences in comorbidity network structure have not been
explored.

2. The method of link determination, meaning the determination of whether to link two disorder
codes in the network model based on a statistical signal or strength measure on the co-
occurrence data, varies across studies. What effect does imposing an error rate correction
on the p-values obtained from pairwise χ2 tests, or using a binary correlation coefficient to

1These concerns apply to the analysis of disease co-occurrence data, not to their collection, with which a different
body of work continues to raise and address concerns.
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measure the strength of association instead of the odds ratio, have on the properties of the
resulting network?

3. A network model aggregated from pairwise correlations discards information about interactions
among larger subsets of variables, though these potential effects are important both to the
network perspective and to the systems paradigm.

4. The use of network statistics like connectivity, distance, and centrality to characterize networks
of disorders depends on correspondences between the definitions and values of these statistics
and the theoretical constructs they are being used to measure. Little theoretical guidance is
available for the study of networks representing statistical associations rather than directly
observed relations.

We address concerns 1 and 2 in a sensitivity analysis. In the following sections, we describe an
analysis pipeline to characterize a pairwise co-occurrence dataset using several single-valued network
summary statistics and node centrality. We evaluate the sensitivity of the results to the source of
data, the choice of association measure, and the strength of evidence and of association used to
determine links. We address concern 3 in a comparison of a typical pairwise construction to three
alternative constructions that control for progressively more factors when estimating co-occurrence
rates. For this analysis we focus on the effects of the modeling choice on these estimates. Finally,
we touch upon concern 4 in the Discussion section after reviewing the results of these analyses. Our
goal in the present study is to better understand any systematic biases built in to the comorbidity
network approach and how they might be addressed.

3 Summary of Analyses

We conducted robustness and sensitivity analyses of several network-analytic results of the kind
that have been reported in the CNA literature. See the full Methods and Results sections below for
detailed discussions and citations.
Six of our data sets, all used for pairwise analysis, were provided by the authors of previous CNAs;
one, the intensive care unit database MIMIC-III, is freely available for research use; and one, results
of the 2011 National Ambulatory Medical Care Survey (NAMCS), was obtained from the website of
the Centers for Disease Control and Prevention. Our pairwise study examined the effects of the
data source; the test-wise error rate (TWER) at which links were determined (evidential threshold);
how, if at all, TWERs were corrected for multiple comparisons; the binary association measure
(BAM) used to weight links; and the value of the BAM, if any, at which to prune links (evaluative
threshold). A second study compared the pairwise approach to multivariate network constructions
on the available incidence-level data sets. These comparisons held other parameters fixed and
examined correlation structures directly as well as their network models.
Comorbidity networks have been described as “scale-free” based on the power-law appearance of their
degree distributions. However, rigorous tests of this hypothesis, based on competing interpretations
of power-law fitting, agree that comorbidity network degree distributions do not follow power laws.
This held true across the range of pairwise constructions. (The degree distributions tended to more
closely follow log-normal distributions.)
CNAs often summarize networks in terms of global statistics such as degree assortativity, clustering
coefficient, and modularity, but the choices of summary statistics are evidently arbitrary. Regressions
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of several global network statistics on the construction parameters revealed that different data
sources yield highly distinct networks, though specific cases suggest that pre-processing choices can
be equally important. Most global statistics change as expected with graph density, whether due
to stricter evidential or evaluative cutoffs; the exception was the clustering coefficient, which may
depend on the interaction between these cutoffs due to indirect comorbidities such as common risk
factors. A principal components analysis demonstrated that variability was explained primarily
by graph density, followed by data source, and that networks from different sources were better
distinguished under stricter cutoffs.

Studies often identify the disorders that occupy highly central positions (“hubs”) in comorbidity
networks, with the expectation that they are likely to be more fruitful targets of epidemiological,
biological, or clinical follow-up. We quantitatively compared full rankings of three common centrality
measures between networks constructed from data sets using the same ontology, and we described
and compared the several most central disorders within and between ontologies. Full rankings were
highly sensitive to the evidential cutoff (TWERs) and/or the BAM, and which parameter was more
determinative varied by data source. Networks constructed from regional EHR data had assorted and
often non-specific symptoms and disorders at their centers, including epilepsy, limb pain, respiratory
problems, vitamin deficiency, benign neoplasms, and tuberculosis. Other data sources produced
their own distinctive hubs. These were usually explained by sheer numbers of epidemiological
comorbidities, in part due to high prevalence consistent with their specific subpopulations. In both
settings the same disorders usually topped the rankings by different centrality measures.

Though comorbidity networks are aggregated from pairwise associations in incidence data, rigorous
tests of epidemiological comorbidity account for patient-level covariates as well as associations
with other population-level disorders. We compared pairwise constructions to two multivariate
constructions using partial correlations and joint distribution models (JDMs) on the NAMCS and
MIMIC-III data, separated into subpopulations by care unit. As expected, comorbidities between
less prevalent disorders were often indiscernible in the multivariate models, which controlled for
the effects of disorders outside each pair. Compared to pairwise correlations, which in all networks
were frequently strong and overwhelmingly positive, partial and JDM correlations were on average
negative-shifted, including many more negative associations. Consequently, the resulting network
models were much sparser and included many more negative links. At least for highly prevalent
disorders, JDM correlation estimates were better predicted by pairwise correlations than by partial
correlations. A centrality analysis yielded similar results to that of the pairwise constructions: Hubs
were robust to the choice of model, while overall centrality rankings were only weakly concordant
and no group two models produced similar rankings across all units.

4 Discussion

We summarize the results of our analyses in Section 6, with references to supporting figures and tables.
In this section, we discuss the implications of these results for the practice of comorbidity network
analysis and recommend an analytic workflow informed by these implications. CNA ranges widely
in motivations and methodologies, but we believe that a study that follows our recommendations
will arrive at more robust and interpretable results.
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4.1 Sensitivity of pairwise network structure

We explored the dependence of certain network properties on certain parameters of comorbidity
network construction. These parameters include the data source (usually an EHR or claims
database), the evidential threshold (p-value) used to discern links, the method of correcting for
multiple comparisons (if any), and the binary association measure (BAM) used to prune weak links
and/or to weight remaining links. The properties considered are network density; shape of the
degree sequence; several single-valued global statistics having to do with the degree sequence, local
link dependencies, and geodesic distances; and several measures of node centrality. These are a
fraction of the possible constructions and properties and may represent only a minority of those
that have so far been published. Nevertheless, our observations allow us to draw several provisional
but clear conclusions about the methodological robustness of CNA.

One observation, about the shapes of their degree sequences or distributions, is unequivocal. While
the proper way to define and detect power laws from empirical data is contested (Broido and Clauset
2018; Voitalov et al. 2018), proposed standards from both camps (Gillespie 2015; Voitalov 2018)
lead to the same conclusion, that the degree sequences of comorbidity networks do not follow power
laws. This runs counter to a frequent claim within the literature. While most CNA researchers have
inferred from supposed scale-freeness only the existence of highly-connected “hubs” (Steinhaeuser
and Chawla 2009; Ball and Botsis 2011; Divo et al. 2018), the assumption underpins some more
advanced analytic techniques used to prune weak associations prior to analysis (Jiang et al. 2018) or
to model network growth based on the accumulation of database records (Scott et al. 2014). Such
techniques may yet be useful, but the weaknesses at their foundations should not be overlooked.

A second observation concerns the structure of comorbidity networks more generally. While the
network architecture is sensitive to every parameter of construction, the underlying population is
far more determinative than the choices of link determination or of weighting scheme. This holds
true for all of the properties we evaluated. This is a favorable result for the genre, since the goal of
many recent comorbidity network applications has been to assess differences in the structures of
comorbidity networks derived from different populations (Warner et al. 2015; Feldman et al. 2016;
Glicksberg et al. 2016). For example, Divo et al. (2018) introduced a case–control study design
to CNA to compare network hubs between COPD and non-COPD patient populations, in order
to better identify potential targets for follow-up research or clinical intervention specific to COPD.
While our secondary use of processed data prevents us from separating the effects of population,
practice, and pre-processing, our analysis supports the premiss that it can be meaningful to identify
comorbidity network properties that are characteristic of certain populations.

While comorbidity networks constructed from different data sets are clearly discriminable by their
global properties, these differences are largely orthogonal to those due to changes in network density:
decreased density (increased sparsity), due to tightening of evidential or evaluative cutoffs, results in
more skewed degree distributions and less modular structure. Meanwhile the underlying populations
are better distinguished by rates of overall connectedness, assortative linking, and triad closure.
To characterize comorbidity networks from a moderate number of populations, then, it may be
more useful to report such statistics as connected component size distribution, assortativity, and
clustering coefficient than the average geodesic distance, Gini index, or modularity.

When comorbidity networks are weighted, on the other hand, the choice of weight may strongly
impact the results. This is based on three observations: First, the shape of the weight distribution
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differs substantially between relative risk–like BAMs (the Forbes coefficient and the odds ratio) and
correlation coefficients (the Pearson binary and the tetrachoric). Second, BAM cutoffs appear to be
more important determinants than p-value cutoffs. Third, node centrality can depend dramatically
and idiosyncratically on which BAM is used to measure and prune network links. Sensitivity to the
choice of weights has long been observed in the literature (Hidalgo et al. 2009), but the motivation
for selecting one measure over others for CNA often goes unstated. Comparisons are only possible
between some published comorbidity network studies because certain exploratory conventions, in
particular the combined use of F and φ, have been adopted by later investigators (see Section 5.1.2).

Finally, as mentioned above, node centralities are quite robust to the choice of evidential cutoff,
but less robust to the choice of BAM used to impose a evaluative cutoff. This is especially true for
“hubs”, the nodes in each network with the highest centrality. Different disorders may be identified
as hubs by different centrality measures, but the same small subset of hubs tends to appear in
networks constructed from any specific population.

4.2 Multivariate network models

We compared two multivariate network modeling approaches, partial correlation networks and joint
distribution networks, to the conventional pairwise correlation network approach. In this comparison,
all models were based on latent, normally-distributed risk factors and produced estimates of the
correlations among them. Both multivariate approaches had the intended and expected effects
of reducing both the estimated values of and the nominal statistical evidence for most pairwise
associations, which are interpreted as comorbidities. Models deeper into the systems paradigm
represented comorbidities as being less aligned with each other or with a single dimension of poor
health. As a result, more negative associations, particularly involving codes for depression and
cancer versus those for metabolic and cardiac disorders, emerged. Also as expected, associations
between more prevalent disorders were more robust to the choice of model and would therefore lead
to more consistent interpretations.

In addition to having fewer links, the multivariate models estimated consistently more negative
associations than the pairwise, at least among more prevalent disorders. Indeed, the overall reduction
in association estimates included some positive pairwise associations shaking out as negative in
the multivariate models. In this way the multivariate models appear to be preventing errors
both of magnitude and of sign (Gelman and Carlin 2014). Based on these patterns, we expect in
general that models that account for more sources of variation will discern strong evidence for fewer
epidemiological comorbidities but for more population-level disassociations.

The partial correlation and joint distribution models yielded radically different alternatives to the
pairwise model, the former large and sparse, the latter small and dense. The pairwise correlation
estimates among more prevalent disorders were roughly linearly related both to the partial correlation
estimates and to the joint distribution estimates. However, this relationship broke down among the
less prevalent disorders. Taking the joint distribution models to provide more realistic summaries,
this suggests that estimating pairwise disease associations from a larger diseaseome introduces
a uniform positive bias in the measured associations, which increases the apparent strengths of
the comorbid relations and mistakes some null relationships, and possibly some relationships of
mutual exclusion, as comorbidities. Moreover, introducing exogenous covariates into a multivariate
model yielded bimodally-distributed effect estimates, which indicate that much of the perceived
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interaction among disorders, in addition to their prevalence, can be accounted for by demography
and environment.

The linearity of some of these relationships stands in stark contrast to the non-linear relationships
observed between estimates obtained using joint distribution models and classical co-occurrence
indices not based on the same latent structure (Pollock et al. 2014). This reaffirms the importance
of comparing like with like, insofar as this is possible, even amidst fundamentally different modeling
approaches.

We emphasize that these multivariate models no more reveal “true” relationships than pairwise
models. Indeed, the inclusion or exclusion of certain patient-level predictors or other diseases has
the potential to again upend the results. Rather, as the authors of several comorbidity networks
have stressed, these “phenome-wide” analyses must be understood as exploratory; the interplay
between specific diseases is best understood through more narrowly-targeted research. Certainly far
more clinically relevant epidemiological comorbidities exist in critical care populations than were
captured by the partial correlation and joint distribution networks. Nevertheless, these networks
serve as valuable checks on conventional constructions, which are certain to contain many indirect
and spurious associations.

4.3 Interpretability of network statistics

Though we focus on the robustness of the calculations—the reliability of the numerical results—
equally important is the soundness of the interpretations—their validity. Networks are an increasingly
popular analysis tool for high-dimensional data sets. Though the ways in which their properties are
interpreted draws heavily from analyses of social networks and networks based on other relational
data (e.g. electrical signals, protein interactions), their construction is fundamentally different. The
conclusions we draw about complex systems from network models of their constituent interactions
must be informed by the process that converts the raw data to the network model.

The use of centrality measures is a case in point. The degree of a disorder, calculated as the
number of disorders it is comorbid with in a patient population, is sensible enough a measure of its
“total comorbidity” (Hidalgo et al. 2009) and a useful concept both epidemiologically and clinically.
The weights (using BAMs) associated with these comorbid disorders are also clearly useful for
discriminating between stronger and weaker co-occurrence rates, hence higher or lower risk factors
for patients with an index disorder. However, we found that the choice of disease ontology has
a significant impact on comorbidity rankings, so much so that the centralities of disorders before
crosswalking to a coarser ontology are not predictive of the centralities of their counterparts after
crosswalking. (See the Results section for more detail.)

Meanwhile, none of the weights commonly used to quantify the strengths of comorbidities are additive:
For example, using one typical network construction,2 amebiasis, a gastrointestinal infection rare in
the United States, and rheumatoid arthritis, a common chronic autoimmune disorder, have 5 and 67
comorbid relations, respectively. Though having very different etiologies and afflicting very different
patient populations, these disorders have approximately the same weighted degree (529 and 561).

2Construct a comorbidity network using the Rzhetsky data and ontology with a Bonferroni-corrected .05 evidential
cutoff and weighting the links by the Forbes coefficient F (and restricting to positive links).
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This does not translate to their being similarly severe in any recognized sense, or to their belonging
at a similar ranking amidst the other disorders in the ontology.

Betweenness and closeness centrality rely on a different version of additivity that is equally problem-
atic. Take the same network, except invert the link weights3 to indicate distance rather than strength
of association. The geodesic distance between type 1 diabetes and breast cancer (in female patients)
is then the same as that between multiple epiphyseal dysplasia (MED) and hepatitis E (HepE),
approximately .30, though the former two disorders are significantly correlated (i.e. directly linked,
p < 10−27) while the latter two can only be reached from each other via three intermediate disorders:
multiple epiphyseal dysplasia ↔ Albright–Sternberg syndrome ↔ cerebral palsy ↔ hepatitis C ↔
HepE. Yet this indirect sequence of associations leading to HepE is does not have an established
clinical interpretation, nor does it imply a natural comparison to the relative risk of MED encoded
by the direct link. Indeed, controlling for covariates and subsetting populations may significantly
alter the magnitudes and signs of the associations in the sequence, with unpredictable effects on the
resulting indirect distance measure.

These limitations are better revealed by weighting schemes, but they arise from the network model
itself, which is premised on a principle of “guilt by association” that implicates one node in the
effects of another according to their proximity in the network. As Hou et al. (2014) point out in the
related field of genomics, this principle “does not reflect the dynamic nature of biological networks”.
The same may be said of epidemiological networks. As in genomics, comorbidity network centrality
analysis is demonstrably effective at prioritization, but without underlying theory or validation it
will be difficult to know what critical diagnoses it may fail to identify.

Such concerns are not specific to comorbidity network analysis. Inconsistency and uncertainty
over the interpretations of centrality measures in the study of human communication networks led
Freeman (1978) to propose the concise set of conceptualizations and measures discussed above:
degree, based on the idea of communication activity with other nodes; betweenness, based on the
control of communication among other actors, and closeness, based on either independence from the
control of others or efficiency of dissemination. These interpretations can be naturally extended to
other kinds of resource exchange, but they do not have straightforward interpretations on correlation
networks. Such interpretations are needed if disorders are to be characterized with respect to specific
types of centrality—for example, the betweenness centrality of acute posthemorrhagic anemia in the
MIMIC-III intensive care population—rather than merely being observed to be centrally located in
the network in a non-specific sense.

4.4 Recommendations

We enumerate here some recommendations for future comorbidity network studies. To pre-empt and
mitigate the aforeraised concerns, in light of our observations, we urge CNA researchers to include
in their analysis, according to their aims and methods, several steps:

• Make patient–diagnosis incidence data available for secondary use. This enables future
researchers to perform multivariate analyses that are essential for our understanding of
epidemiological comorbidity, as will be increasingly recognized as comorbidity network analysts

3To avoid infinities, replace each weight F with 1
F −1 + 1.
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leverage the gains already made by ecologists and psychologists. The release of such data
will require additional processing work, some of it entailed by privacy requirements, e.g. the
removal of low-frequency disorders or unique patient profiles; but, the sooner these tasks are
pioneered, the sooner they can be more widely adopted. If patient–diagnosis data cannot be
released, then at least pairwise frequency tables, which enabled our sensitivity analysis, should
be.

• Provide theoretical justification for the choice of disorder ontology. The clinical ontologies
used by CNA data sets were designed for different uses, e.g. treatment versus billing versus
research, and differences between them due to geography and time as well as purpose are
unavoidable. Global and local properties may vary dramatically between networks constructed
from the same incidence data before versus after crosswalking to an alternative ontology. If
a coarser ontology more accurately identifies patient cohorts that have a well-defined index
disorder, then the comorbidity network should be constructed after conversion from the original
ontology.

• Provide theoretical justifications for weighted CNAs. Indirect network relations such as those
underpinning most centrality measures are highly sensitive to the choice of association measure,
and the conventional interpretations of these measures at the pairwise level do not translate
naturally to the network setting. If weighting is important but no specific weight is entailed,
then obtain and report results obtained using multiple weight types—e.g. unit, relative risk–like,
or correlation.

• To summarize the global topology of a comorbidity network, report the size of its largest
component, its degree assortativity, and its global clustering coefficient, in addition to any
other desired summary statistics. These statistics are commonly calculated and effectually
discriminate between comorbidity networks. They are therefore especially appropriate to
include in comparisons of networks for different populations or disorders of interest.

• Provide theoretical justification for taking a pairwise versus a partial correlation approach.
Controlling for confounding effects among all disorders in an ontology can radically change
the structure of a comorbidity network, in particular revealing a large number of negative
associations. Since free software allows correlation matrices to be efficiently converted to
partial correlation matrices, this approach is not prohibitively more expensive.

• Use joint distribution or other multivariate models to validate associations among the most
common disorders or within small subsets of disorders. This modeling approach may be
too costly for whole-diseaseome analysis, and it may fail to recover comparatively weak but
highly discernible comorbidities outside a core set of more prevalent disorders, but it may help
distinguish and prioritize the associations of greatest importance to the interactions among a
subset of interest, for example the known risk factors and complications of an index disorder.

In addition to these methodological recommendations, we stress the importance of involving clinicians
in CNA, to assist both in formulating network-analytic goals or hypotheses that are meaningful
and relevant and in understanding the (usually administrative) data on which the analysis is
performed. Many CNA studies to date have been (co-)authored by clinicians, other physicians, or
medical researchers, and medical background knowledge is evident and crucial in the discussions of
several seminal analyses. For example, in one of the earliest CNAs, Hanauer et al. (2009) parse
the medical plausibility of different explanations for the novel associations they uncovered and
provide an essential discussion of likely sources of inconsistency. In a different type of example
altogether, Schafer et al. (2014) develop a novel network construction based on triads, motivated by
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a three-disease conception of multimorbidity, that eliminated much of the low-relevance periphery
of association networks but that has not to our knowledge been used elsewhere. As applications
proliferate, it will be increasingly important to ensure that clinical authors bring their training and
experience to bear on these projects.

4.5 Future work

While previous work has compared different false discovery rate corrections on network data at the
pairwise level (Koo et al. 2014), we are not aware of any research, theoretical or empirical, into
whether FWER- versus FDR-based corrections more faithfully or usefully recover network properties
such as centrality and clustering. Therefore, while we observe some dependence of these properties
on the choice of correction (if any), we cannot recommend any method over any other. To inform
this choice, future work should evaluate such corrections on the recovery of network properties based
on incidence data generated from realistic covariance matrices and on the ability to draw useful
inferences from network models of real-world incidence data.

The network analytic approaches used here represent only a subset of the broader range of systems
analytic techniques, which includes structural equation models and (discrete or continuous) dynamical
models. Few if any studies of disease incidence and co-occurrence have tested the agreement of
inferences drawn from such methods with respect to a common topic or question, whether applied
to the same or independently collected data. These more computationally intensive methods benefit
from the target-pruning of network analysis, and it is important to ensure that potentially important
targets are not missed.

5 Methods

5.1 Pairwise constructions

To address the first two concerns from Section 2.3, we test the dependence of degree distributions,
global network statistics, and node centrality rankings to the source of data, the method of link
determination, and the choice of network tools. Our results speak to the generalizability of such
properties.

5.1.1 Data sets

The data sets in Table 1 were pre-processed and made available by the authors of previous comorbidity
network studies (Rzhetsky et al. 2007; Hidalgo et al. 2009; Roque et al. 2011; Hanauer and
Ramakrishnan 2013; Bagley et al. 2016), except for MIMIC-III (which is freely available for research
use) (Johnson et al. 2016). The data sets vary widely in the underlying patient population, in the
collection of their data by healthcare institutions, and in the researchers’ pre-processing protocols;
variation along each of these dimensions contributes to overall variation due to the data source.
Disentangling these factors would require a more thorough study using several sources of patient-level
data, and we make no attempt to do so here.
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Table 1: Sources of pairwise disorder co-occurrence data used in this study, originally aggregated
from patient-level data for previous studies and made available by their authors (except MIMIC-III).

Source Time period Patients Ontology Terms
Columbia University Medical Center unreported 1.5 million custom ICD9 mapping 161
MedPAR 1990–1993 32 million ICD9 (level 3) 16,459

ICD9 (level 5) 657
Sct. Hans Hospital 1998–2008 5,543 ICD10 (level 3) 351
University of Michigan Health System unreported 1.62 million ICD9 (level 5) 14,489
STRIDE (Stanford University) 2008–2013 277,290 custom ICD9 mapping 161
MIMIC-III (Beth Israel Deaconess) 2001–2012 38,645 ICD9 (level 5) 113–273

5.1.2 Link determination

The majority of comorbidity networks in our surveyed literature (Brunson and Laubenbacher 2017)
have been aggregated from pairwise co-occurrence data, meaning that they can be constructed from
the entries a, b, c, d in the 2× 2 contingency tables for disorder pairs (D1, D2):

D2 ¬D2
D1 a b
¬D1 c d

We calculated pairwise p-values via Fisher’s exact test,4 optionally adjusting for multiple comparisons
using the family-wise error rate (FWER) Bonferroni correction or the false discovery rate (FDR)
Benjamini–Hochberg correction, both of which have been used in the CNA literature (Roque et al.
2011; Roitmann et al. 2014; Bhavnani et al. 2015; Bagley et al. 2016; Kim et al. 2018).

In addition to the option of leaving links unweighted (the “unit” measure) we adopted four measures
of binary association: two risk ratios and two correlation coefficients The odds ratio OR = a/b

c/d

(Kraemer 1995; Parzen et al. 2002); Pearson’s binary correlation coefficient φ = ad−bc√
(a+b)(a+c)(b+d)(c+d)

(Hubalek 1982), Forbes’ coefficient of association F = a/(a+b)
(a+c)/(a+b+c+d) (Hubalek 1982), and the

tetrachoric correlation coefficient rt calculated using a latent bivariate normal model (Drasgow
2006).

OR is recommended as a standard measure of epidemiological comorbidity (Kraemer 1995) and has
been used in several CNA studies (Hanauer et al. 2009; Hanauer and Ramakrishnan 2013; Kim
et al. 2016). Several other studies have used φ and F together, in part to check the robustness of
their results (Hidalgo et al. 2009; Folino and Pizzuti 2012; Chen and Xu 2014; Chmiel et al. 2014;
Lai 2015), though these misleadingly refer to F as “relative risk” (Zhang and Yu 1998). OR, φ,
and F have been used in previous CNA studies. rt complements the mix as a second correlation
coefficient and provides methodological continuity with the later multivariate models. Each measure
is symmetric, so that the roles of b and c in the above table are interchangeable.

Each comorbidity network was thus constructed based on five parameters: the source of data D;
the evidential cutoff (TWER) α; the choice of error rate correction C, if any; the BAM m; and
an optional evaluative (BAM) cutoff θ. We use the notation N(D,α,C,m, θ) to denote specific

4The χ2 test commonly used in CNAs is an approximation to Fisher’s exact test.
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networks and substitute bullets • for values to indicate families of networks taken over all values in
the following ranges:

• D: Columbia, MedPAR(3), MedPAR(5), Sct. Hans, Michigan, Stanford, Columbia*, MIMIC
• α: 10−p, p = 1, . . . , 6
• C: none (∅), Bonferroni (B), Benjamini–Hochberg (BH)
• m: 1 (unit), OR, φ, F , rt
• θ: each of four values specific to each measure:5 θOR = 1, 2, 6, 60, θφ = 0, 0.005, 0.05, 0.2,
θF = 1, 2, 6, 60, θrt = 0, 0.1, 0.4, 0.6

5.1.3 Power laws and scale-freeness

Like many other empirical networks, comorbidity networks have been described as following a power
law, and thereby being scale-free, usually based on visual inspections of their degree distributions
(Steinhaeuser and Chawla 2009; Ball and Botsis 2011; Divo et al. 2018). Other studies have taken
scale-freeness as the basis for using pre-processing steps designed for scale-free networks (Jiang et
al. 2018) or testing whether such networks are consistent with the preferential attachment growth
model (Scott et al. 2014). However, rigorous definitions of power-law behavior in empirical data are
contested (Broido and Clauset 2018; Voitalov et al. 2018), and neither the visual methods often used
to determine scale-freeness (Li et al. 2005; Clauset et al. 2009) nor the implications that power-law
degree sequences are often thought to have for the structural and generative properties of a network
(Willinger et al. 2004; Mitzenmacher 2004; Li et al. 2005) are reliable. (One CNA that applied
formal statistical methods to test for power-law degree sequences drew negative conclusions (Davis
and Chawla 2011).)

We began by testing whether comorbidity networks have power-law degree sequences, using two
methodologies that have come to represent the terms of the debate in the network literature.
Following the methodology of Clauset et al. (2009) and Gillespie (2015), we fit four pure models—
Poisson (expected of Bernoulli random graphs), power law, exponential, and log-normal—to the
degree sequence tails of the unweighted networks N(•, 0.05, •) and compare the goodnesses of fit
of the model families, statistically and visually. Then, following the methodology of Voitalov et al.
(2018) and Voitalov (2018), we assumed the degree sequences were drawn from regularly varying
distributions and compare several estimators of the power-law exponent for well-definedness and
consistency.

5.1.4 Global structure of comorbidity

To assess the effects of the construction parameters on the resulting network structure, we calculated
a battery of single-valued global statistics on the unweighted networks N(•, •, •): the proportion of
nodes in the largest connected component “LCP”, the graph density δ, the mean node degree k, the
Gini index G of the degree sequence (Badham 2013), the degree assortativity r (Newman 2003),
global triad closure C, the average internode distance `, the modularity Q based on a Walktrap

5The threshold ranges of θm for each BAM m were chosen so that the corresponding quantiles of pairs in each
data set are roughly equal (Figure S1). It should be noted, though, that the Pearson correlation thresholds are more
restrictive than those of the other correlation measure rt.
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node partition (Newman and Girvan 2004; Pons and Latapy 2006), and the maximum-likelihood
estimates of the parameters of the model family found to best fit the most degree sequence tails,
which turned out to be the parameter estimates µ̂ and σ̂ of the log-normal family.

For each statistic s, we fit two families of multiple linear regression models to its values si at the
networks Ni = N(Di, αi,∅,mi, θi). In each case we take as the response variable the difference
yi = si − s between si and the average value s on the networks N(•, •,∅). In this way, the
effects of both kinds of cutoff indicate the direction and magnitude of change in the statistic as
more strict evaluative cutoffs are imposed. The first model (Equation 1) regresses yi on the data
source di, treated as categorical, and log(αi), treated as continuous, using only data from networks
N(Di, αi,∅). We omit an intercept term, so that each dataset has an associated coefficient that
indicates the direction in which s deviates, on this population, from its values on the others. The
second model (Equation 2) additionally includes interaction terms between the BAMs and evaluative
cutoffs and is fit to the values on the networks N(•, •,∅, •, •). These terms encode the fact that
restricting cutoffs moves each BAM-specific family of networks away from a common origin.6

yi =
∑
d

βdI(di = d) + βα log(αi) + εi, εi ∼ N(0, σ2) (1)

yi =
∑
d

βdI(di = d) + βα log(αi) +
∑
m

βm,θI(mi = m)θi + εi, εi ∼ N(0, σ2) (2)

We complemented these regression models with a principal components analysis (PCA) on the values
of all 10 centered and scaled statistics measured across N(•, •,∅, •, •). A row-principal biplot of
the data points and variable axes along the first two principal components (PCs) characterizes the
dimensions of greatest variance in terms of the loadings of the global statistics.

5.1.5 Centrality rankings of disorders

Network models enable researchers to characterize the structural positions of individual nodes
(Brandes 2016). Analyses of comorbidity networks have usually invoked any of three standard
measures of centrality developed for the analysis of social networks (Freeman 1978): degree, the
number of actors linked to an index actor; betweenness, the proportion of geodesics (shortest paths)
connecting other actors that pass through an index actor; and closeness, the reciprocal sum of the
geodesic distances (lengths of shortest paths) to an index actor.

Several analyses have characterized disorders by their centrality in a comorbidity network: Hidalgo
et al. (2009) and Schafer et al. (2014) used (weighted and unweighted, respectively) degree centrality
to measure the connectedness of disorders, which we can think of as their “total” epidemiological
comorbidity; Schafer et al. (2014) also used betweenness centrality to measure the potential influence
of an index disorder on a patient’s comorbidities. Several other teams invoked degree, betweenness,
and closeness centrality as general indicators of a disorder’s importance to the larger diseaseome

6We also fit two families of hierarchical regression models to the same data, grouping by data source and by BAM
(Gelman et al. 2012). In terms of the Akaike information criterion (Burnham and Anderson 2004), these models were
consistently worse, with one exception, than the corresponding multiple regression models, so we do not report the
results here.

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752964doi: bioRxiv preprint 

https://doi.org/10.1101/752964
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Ball and Botsis 2011; Chen and Xu 2014; Liu et al. 2016). In terms of specific results, three studies
corroborated the exceptionally high centrality of hypertension in comorbidity networks (Chen and
Xu 2014; Schafer et al. 2014; Feldman et al. 2016), while another examined the centralities of
disorders comorbid with hypertension (Liu et al. 2016). An increasingly popular approach is to
examine differences in disease centrality across study populations: Feldman et al. (2016) compared
the betweenness centralities of central diagnoses between demographic subgroups such as low- and
high-income populations, and Divo et al. (2018) compared the degree centralities of disorders
between COPD and non-COPD populations in a case–control design.

Our sensitivity analysis concerns the effects of link determination on disease centralities and centrality
rankings. These effects may be qualitatively different from the effects on global statistics described in
the previous section. If changes in the thresholds have pronounced effects on global network statistics,
this might be understood primarily as an effect of changes in network density. Certainly, changes
in density—the loss or gain of a significant proportion of links—will affect node centralities, but
relative centralities could nevertheless remain stable. This has been tested in a few instances, with
significant changes in rankings being observed: Feldman et al. (2016) found that the betweenness
rankings of disorders were sensitive to their link pruning procedure, and Ball and Botsis (2011)
noted that the centralities of adverse events in their VAERS networks changed noticeably from
month to month.

To measure this affect systematically, we calculated degree, betweenness, and closeness centralities
in the networks N(•, 0.05, •, •,−∞). For the strength-based measure (degree), we weighted each
link by its BAM. For the path-based measures (betweenness and closeness), we weighted each link
by the reciprocal of its BAM, so that stronger associations yield shorter internode distances. We
imposed no evaluative threshold. For each fixed data source and centrality measure, we compared
the disorder rankings obtained using each p-value correction and each BAM using Kendall rank
correlations (Kendall 1938, 1945) as a test of the robustness of the approach. We analyzed the
rankings geometrically via eigendecompositions of the pseudo-correlation matrices of Kendall values.
We report the proportions of inertia explained by each construction parameter and summarize the
correlations among the rankings using biplots.7

It may be that overall centrality rankings are sensitive to network construction while the identification
of exceptionally central “hubs”, the focus of most applications, is robust: nodes on the periphery
tend to be structurally similar and of lower degree, so that the addition or removal of fewer links
would be needed to permute their ranks. It is also important, for the generalizability of CNA, to
know whether the high centrality of certain disorders is an artifact of the network construction, a
robust property of a specific patient population, or a generalizable epidemiological fact. To address
these “hubs” specifically, we inspected the several most central disorders from each network.

Any specific ontology was only used by two to four data sets. In order to test the robustness of
centrality rankings across data sets with different ontologies, we used many-to-one maps from finer
to coarser ontologies to identify groups of nodes in finer comorbidity networks with single nodes from
coarser networks. Where such mappings were available (level-5 to level-3 ICD9 and level-5 ICD9
to the ontology of Rzhetsky et al. (2007)), we compared group centrality measures for concepts in

7While a matrix of rank correlations may not be positive-semidefinite, it still admits an eigendecomposition. The
correlations between the rankings will equal the cosines between the unit vectors associated with the rankings in the
space of the eigenvectors. In most practical settings the first two eigenvalues will be positive, so correlations will be
well-represented visually by cosines between the vectors projected to a two-dimensional biplot. So it was in our cases.
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the finer ontology with node centralities for concepts in the coarser ontology (Everett and Borgatti
1999). Because group betweenness centrality was computationally prohibitive, we only considered
degree and closeness centrality.

5.2 Multiple and multivariate constructions

Our sensitivity analysis of pairwise comorbidity networks was enabled by the several research
teams who shared their pairwise data. With access to patient-level incidence data, advanced
statistical software, and adequate computational resources, a wider family of network models
becomes available. Multivariate models that incorporate all disease associations simultaneously can
address concerns of multiple comparisons and confounding without resort to post hoc corrections. In
this phase, we compare comorbidity relationships obtained from two publicly-available comorbidity
datasets using the conventional pairwise construction, a partial correlation construction that corrects
for confounding, and a recently-proposed multivariate model that also incorporates patient-level
covariates. The comparisons will reveal the effects of systems-level interactions on observed pairwise
relations.

5.2.1 Datasets

We draw from two data sets, one low-dimensional but high-volume, in the sense of covering the
incidence of a small number of disorders for a large number of patients, and one comparatively
high-dimensional and low-volume.

As a low-dimensional use case, we use data for the year 2011 from the National Ambulatory Medical
Care Survey (NAMCS), coordinated by the CDC and conducted by hundreds of physicians and
community health centers each year (https://www.cdc.gov/nchs/ahcd/index.htm). Each entry
describes a single encounter, and each physician collects data for two weeks out of the year, without
linking records for encounters with the same patient. Thus, the data does not contain long-term
data for any patient, and any multiple diagnoses were recorded at a single encounter. The survey
data include a range of patient demographics, provider characteristics, and clinical information such
as diagnoses and procedures pertaining to the encounter. While these diagnosis data are suitable
for certain study designs, e.g. cross-sectional descriptions of specialty- or location-specific patient
populations, they are inappropriate for comorbidity network analysis, which relies on the recovery
of comprehensive health profiles for all patients in a sample.

NAMCS asks providers to indicate whether each patient has each of several chronic disorders, includ-
ing thirteen that are reported in the Public Use Dataset: arthritis, asthma, cancer, cerebrovascular
disease, chronic obstructive pulmonary disease, congestive heart failure, ischemic heart disease,
depression, diabetes mellitus, hyperlipidemia, hypertension, obesity, and osteoporosis. These are
widely-recognized conditions that do not require specialized training to diagnose and that will
often already appear on patients’ records. Therefore, despite the limitations of NAMCS, we expect
that the data much more reliably reflect the actual distribution and co-occurrence of these chronic
disorders in the clinic-going population. To make fitting joint distribution models (see Section 5.2.3)
more computationally feasible, we took a 50% cluster sample from this year of NAMCS encounter
data, after restricting to cases for which all variables were recorded, clustered by participating
practices and weighted by number of encounters within the practice.
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As a contrast to NAMCS, we draw a second data sample from MIMIC-III, described previously.
MIMIC-III is similar to NAMCS in containing only one encounter for most patients, but dissimilar
in covering a narrow range of practice and therefore a limited population. To increase the clinical
homogeneity of our sample, we restrict our attention to patients admitted to specific units, which
include medical intensive care (MICU), surgical intensive care (SICU), the neonatal ward (NWARD),
neonatal intensive care (NICU), coronary care (CCU), cardiac surgery recovery (CSRU), and
trauma/surgical intensive care (TSICU). For computational feasibility, we grouped the ICD-9
diagnosis codes recorded in MIMIC-III according to the Clinical Classification Software (CCS)
ontology (Agency for Healthcare Research and Quality 2012). Care unit populations ranged in the
number of distinct recorded CCS categories from 113 (NICU) to 273 (MICU).

5.2.2 Partial correlation networks

Conventional measures of comorbidity fail to account for an important source of variation in patient-
level incidence data: incidence rates of other disorders. Two disorders that are clinically unrelated
may be epidemiologically comorbid due to having risk factors or complications in common, and
CNA researchers have pointed out that these are important potential explanations for clustering
patterns observed in comorbidity networks (Hanauer et al. 2009). Partial correlations account for
these confounding effects by generalizing the calculation of correlations from regression coefficients:
the full partial correlation r′ij = β̂ij σ̂j/σ̂i between response variables yi and yj is a standardized
effect estimate from the regression model of yi on all other responses, including yj (Epskamp and
Fried 2017). This concept relies on the normality assumptions of classical regression; we use a
matrix formulation to obtain a matrix Rt′ of partial tetrachoric correlations rt′ from the matrix Rt
of tetrachoric correlations.

5.2.3 Joint distribution networks

Epidemiological comorbidities can also arise from patient-level covariates, as when clinically relevant
subpopulations (e.g. elderly or infirm patients) are at heightened risk of multiple, otherwise etiologi-
cally unrelated disorders. Several comorbidity network studies incorporated demographic predictors
into their binary association tests (Rzhetsky et al. 2007; Feldman et al. 2016; Glicksberg et al. 2016),
though this information was unavailable for our sensitivity analysis. To simultaneously account for
the endogenous effects of other disorders and the exogenous effects of patient-level covariates, we
adapted the joint distribution model (JDM) designed to incorporate both species interactions and
environmental factors into ecological models (Pollock et al. 2014).

In making this choice, we propose and appeal to an ecological–epidemiological analogy: Disorders
afflicting persons and communities are similar in many respects to species occupying geographical
sites. In the case of viral, bacterial, and fungal infections, the former is in fact a special case
of the latter. Insofar as the assumptions underlying an ecological analytic technique are met by
epidemiological data, the technique is an appropriate one. The analogy posits that this will frequently
be the case, or at least that ecological techniques will be no less appropriate than competing ones.
Indeed, association network analysis itself is rooted in ecology, which produced many if not most of
the measures commonly used to weight association networks (Johnston 1976; Podani 2000). More
recently, ecologists have honed several other methods to account for the same limitations of pairwise
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network construction discussed here (Ulrich and Gotelli 2007; Ovaskainen et al. 2010; Cazelles2016;
Morueta-Holme et al. 2016); see Elith and Leathwick (2009) and Kissling et al. (2012) for useful
reviews.

In the JDM, each patient’s distribution has the same covariance matrix, from which a correlation
matrix P = (ρij) is obtained, and is centered at a linear transformation B = (βki) of their q exogenous
variables (1 ≤ k ≤ q), which can be interpreted in the same way as classical regression coefficients.
The latent normality allows us to directly compare the estimated endogenous correlations P̂ to Rt
and Rt′, and the combined estimated effects of the patient-level covariates can be organized into a
matrix P̂ of exogenous components of correlation. We fit the JDM to the n×m patient–disorder
incidence matrices, using either of two matrices X of exogenous patient-level covariates: an n× 1
intercept matrix to encode only the baseline prevalence of each disorder, and an n × q matrix
augmented with demographic variables. The respective models are designated JDM0 and JDM1
and estimates indexed with 0 or 1 accordingly. See the SI Text for more details.

5.2.4 Correlation structure

We first examined the differences in correlation structure between models produced using these
three approaches to comorbidity, independently of link determination. From the NAMCS data, we
generated four correlation matrices for the 13 chronic disorders described in Section ref{sec:datasets-
multivar}: pairwise (Rt), full partial (Rt′), and joint distribution with prevalence-only and with
full demographic exogenous covariates (P̂0 and P̂1). In the last model, the exogenous variables
included decadal age groupings (0–14, 15–24, etc., to 65–74, with 75+ the baseline), gender (male,
with female the baseline), race/ethnicity (Asian, Black/African-American, American Indian/Alaska
Native/Pacific Islander, white, and Hispanic/Latinx, with unknown/other the baseline), insurance
status (Private, Medicare, and Medicaid, with others or none the baseline) region (Midwest, South,
West, with Northeast the baseline), and metropolitan status (Metropolitan Statistical Area, with
non-MSA the baseline). From the MIMIC data, we only considered the three endogenous models
(pairwise, full partial, and joint distribution without exogenous covariates), in part to reduce
computational cost and in part to limit the scope of the analysis. Each model included every CCS
code.

To assess the effect of moving from a pairwise to a systemic approach to comorbidity, we focused on
differences among Rt, Rt′, and P̂0. The additional effect of controlling for patient-level covariates
manifested in differences between P̂0 and P̂1. We compared the correlation matrices Rt, Rt′, P̂0, P̂1
among the 13 chronic disorders in NAMCS using correlation biplots. We visualized the relationships
among the point estimates of association strength rt, rt′, ρ̂0, ρ̂1, across all

(
m
2
)
pairs disorders from

each data source, using scatterplots.

5.2.5 Link determination

Differences in correlation structure translate into differences in network structure through the link
determination process. To evaluate these differences, we adopted a uniform evidential threshold
of α = 5% by which to categorize the pairwise associations in each model as discernibly positive,
discernibly negative, or indiscernible. We sought patterns of differences between the pairwise
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determinations using alluvial diagrams (Brunson 2018) and visualized the resulting networks using
a circular layout.

5.2.6 Centrality rankings of disorders

To evaluate differences in the resulting network structures, we compared centrality rankings as in
Section 5.1.5, using Kendall rank correlations between the different network models of a common
data set and visualizing them using pseudo-correlation biplots.

5.3 Software

We performed our analyses using the R statistical programming language (R Core Team 2016), unless
stated otherwise. We processed and analyzed data using packages from the tidyverse collection
(Grolemund 2016) and manipulated and visualized networks using the igraph (Csardi and Nepusz
2006), tidygraph (Pedersen 2018a), and ggraph (Pedersen 2018b) packages.

Depending on the application, we used the implementation of rt in the psych package (Revelle
2017) or implemented the approximation method of Bonett and Price (2005) in order to avoid
infinities and to calculate standard errors. We also used different implementations to compute partial
correlations R′ from pairwise correlations R: For high-volume, low-dimension data, we used psych
package implementation partial.r(), which uses squared multiple correlations. For low-volume,
high-dimension data, this became infeasible, and we first calculated shrinkage estimates (Schäfer
and Strimmer 2005) for R′ using cor.shrink(), together with the partial correlation function
cor2pcor(), from the corpcor package (Schäfer et al. 2017).

We organized effect estimates from regression models using the stargazer package (Hlavac 2015).
Biplots were rendered using the ordr package (Brunson 2019). English descriptions of codes from
the International Classification of Diseases, 9th and 10th Revisions, Clinical Modifications (ICD9
and ICD10), were obtained from and formatted using the icd package (Wasey 2017).

We adapted our JDM workflow from the tutorial provided by Pollock et al. (2014), using JAGS
(Plummer 2003) to perform Bayesian model fitting through the R2jags package (Su and Yajima
2015).

Full code to reproduce our analyses will be made available on Bitbucket upon acceptance for
publication.

5.4 Ethical considerations

This study did not involve human or other animal subjects. We conducted secondary analysis on
data sets collected and aggregated by other researchers, which are available either publicly or upon
request. Of these, patient-level data were only available in the MIMIC-III database, but our analysis
relied exclusively on aggregated data.
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6 Results

6.1 Pairwise analysis

6.1.1 Link determination

Table 2 presents network density for each dataset and each of several common TWERs. In most
cases the original authors provided co-occurrence data only for a subset of pairs, according to their
own study designs; the network density at the 100% TWER is the proportion of pairs they included.
Often among these were data on negative associations. In each case our 5% TWER cutoff excluded
many additional pairs, including all negative associations. The Bonferroni correction excludes the
vast majority of the remaining links from networks for which more pairs were originally available
(MedPAR(5), MIMIC) but fewer than one third from networks that had already been pruned of
weak associations (Sct. Hans, Stanford, Columbia*). For any fixed evidential cutoff, the networks
range in density over 1–3 orders of magnitude. Quintiles calculated for each BAM and data source
indicated that the evidence for a comorbid association may not be predictive of its strength, so that
some network properties may be more sensitive to an evaluative cutoff than to an evidential one
(see the SI Text).

Table 2: Densities (proportion of pairs of nodes that are linked) of comorbidity networks constructed
using different evidential thresholds. Family-wise error rate (FWER) correction uses the Bonferroni
procedure; false discovery rate (FDR) correction uses the Benjamini–Hochberg procedure.
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1 none 0.624 0.560 0.027 0.029 0.083 0.073 0.110 0.040
1 FWER 0.174 0.156 0.002 0.025 0.048 0.065 0.104 0.001
1 FDR 0.451 0.465 0.006 0.029 0.077 0.073 0.110 0.009
0.01 none 0.240 0.244 0.006 0.029 0.073 0.073 0.110 0.009
0.01 FWER 0.142 0.138 0.002 0.013 0.042 0.054 0.089 0.001
0.01 FDR 0.210 0.215 0.003 0.029 0.067 0.068 0.109 0.002
0.0001 none 0.175 0.181 0.003 0.029 0.063 0.064 0.102 0.003
0.0001 FWER 0.126 0.125 0.001 0.008 0.037 0.046 0.081 0.001
0.0001 FDR 0.161 0.168 0.002 0.015 0.057 0.057 0.093 0.001
0.000001 none 0.144 0.153 0.002 0.014 0.054 0.053 0.089 0.002
0.000001 FWER 0.113 0.115 0.001 0.006 0.033 0.040 0.073 0.001
0.000001 FDR 0.136 0.145 0.002 0.009 0.049 0.047 0.082 0.001

6.1.2 Degree sequence distributions

Almost all comorbidity networks were better-modeled by log-normal distributions, and then by
exponential distributions, than by power-law distributions. Based on our sample, this pattern was
not dependent on the construction parameters, except that the preference for log-normal versus
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exponential versus power-law distributions were less clear for networks constructed using stricter
evidential thresholds. Most regular variation–based power-law models failed to converge or else
were inconsistent, reaffirming that power-law models were inappropriate for these networks’ degree
sequences. See the SI Text for details.

6.1.3 Single-valued summary statistics

Table 3 reports the effect estimates obtained by fitting Equation 2 to the various global network
statistics. The coefficients within each model (column) associated with the data sources can be
directly compared using differences, though the scale is interval, not ratio (i.e. the relative position of
0 is arbitrary). The evaluative cutoffs θm are included only as interaction effects with a categorical
variable encoding the measure m, because the range of values of θm varied across m. Roughly,
the effect estimates can be compared after scaling by the ranges of the θm (Section 5.1.2). For
example, the relative effect estimates of θ

ÔR
and θrt on average degree k were in proportion to

−1.14 × 59 : −125.11 × 0.6, or 9 : 10. The effect estimates obtained using Equation 1 were
qualitatively similar, for those predictors included in both models (Table S6).
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Table 3: LMs of network statistics on data source, test-wise error rate, and binary association measure.
Dependent variable:

LCP r G k µ̂ σ̂ ` Q C

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Columbia 0.24∗∗∗ 0.06∗ −0.19∗∗∗ −51.04∗∗∗ −0.001 −0.34∗∗∗ −0.68∗ −0.03 0.01

(0.03) (0.03) (0.02) (11.46) (0.18) (0.05) (0.27) (0.03) (0.02)

MedPAR(3) 0.31∗∗∗ 0.13∗∗∗ −0.18∗∗∗ −31.79∗∗ 0.31∗ −0.08 0.30 0.12∗∗∗ −0.09∗∗∗

(0.03) (0.03) (0.02) (11.46) (0.17) (0.05) (0.27) (0.03) (0.02)

MedPAR(5) 0.21∗∗∗ −0.12∗∗∗ 0.03∗ −39.54∗∗∗ 0.24 0.31∗∗∗ 1.38∗∗∗ 0.18∗∗∗ −0.28∗∗∗

(0.03) (0.03) (0.02) (11.46) (0.17) (0.05) (0.27) (0.03) (0.02)

Sct.Hans 0.13∗∗∗ 0.04 −0.11∗∗∗ −59.58∗∗∗ −1.16∗∗∗ 0.03 0.20 0.10∗∗ −0.22∗∗∗

(0.03) (0.03) (0.02) (11.46) (0.18) (0.05) (0.27) (0.03) (0.02)

Michigan 0.51∗∗∗ −0.18∗∗∗ −0.11∗∗∗ 158.43∗∗∗ 2.07∗∗∗ 0.23∗∗∗ 0.31 0.12∗∗∗ −0.12∗∗∗

(0.03) (0.03) (0.02) (11.46) (0.17) (0.05) (0.27) (0.03) (0.02)

Stanford −0.21∗∗∗ 0.39∗∗∗ −0.07∗∗∗ −60.66∗∗∗ −2.20∗∗∗ 0.23∗∗∗ −1.50∗∗∗ −0.13∗∗∗ 0.09∗∗∗

(0.03) (0.03) (0.02) (11.46) (0.19) (0.05) (0.27) (0.03) (0.02)

Columbia* −0.19∗∗∗ 0.07∗ −0.14∗∗∗ −58.96∗∗∗ −0.93∗∗∗ −0.45∗∗∗ −1.63∗∗∗ −0.14∗∗∗ 0.01
(0.03) (0.03) (0.02) (11.46) (0.19) (0.05) (0.27) (0.03) (0.02)

MIMIC 0.31∗∗∗ 0.02 −0.07∗∗∗ −37.21∗∗ −0.09 0.43∗∗∗ 1.62∗∗∗ 0.15∗∗∗ −0.21∗∗∗

(0.03) (0.03) (0.02) (11.46) (0.17) (0.05) (0.27) (0.03) (0.02)

log(p) 0.02∗∗∗ −0.003 −0.01∗∗∗ 1.95∗ 0.06∗∗∗ −0.01∗∗ −0.05∗∗ −0.01∗∗∗ −0.01∗∗∗

(0.002) (0.002) (0.001) (0.80) (0.01) (0.003) (0.02) (0.002) (0.001)

F × θF −0.01∗∗∗ 0.001∗ 0.002∗∗∗ −1.17∗∗∗ −0.04∗∗∗ −0.003∗ 0.02∗∗∗ 0.002∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.0003) (0.20) (0.004) (0.001) (0.005) (0.001) (0.0003)

ÔR× θ
ÔR

−0.01∗∗∗ 0.003∗∗∗ 0.002∗∗∗ −1.14∗∗∗ −0.03∗∗∗ −0.003∗∗ 0.02∗∗∗ 0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.0003) (0.20) (0.004) (0.001) (0.005) (0.001) (0.0003)

φ× θφ −3.24∗∗∗ 2.20∗∗∗ 1.46∗∗∗ −422.14∗∗∗ −19.35∗∗∗ 0.47 3.70∗∗ 0.57∗∗∗ 0.51∗∗∗

(0.15) (0.17) (0.09) (59.45) (1.08) (0.30) (1.38) (0.16) (0.11)

rt × θrt −0.63∗∗∗ 0.19∗∗∗ 0.19∗∗∗ −125.11∗∗∗ −4.50∗∗∗ −0.04 2.64∗∗∗ 0.34∗∗∗ −0.22∗∗∗

(0.05) (0.05) (0.03) (17.70) (0.30) (0.08) (0.41) (0.05) (0.03)

Observations 576 568 576 576 504 504 576 576 568
Adjusted R2 0.78 0.59 0.57 0.66 0.79 0.51 0.43 0.56 0.65

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001
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The vast majority of effect estimates in both tables are discernible with p < .001. This is expected
from variation in the evidential and evaluative thresholds (β̂α and β̂m,q), which correspond to
dramatic changes in the density of the graph. The data source effects β̂d are likewise discernible,
except in some cases with respect to degree distribution (δ, k, σ), indicating that none of the data
sets produces in any sense an “average” comorbidity network. Some of the data sets produce similar
networks, for example MedPAR(3) and Michigan, or Stanford and Columbia*. The latter use the
same ontology and were processed in the same way, though the former have no such similarities.
The MedPAR(3) and MedPAR(5) networks differ only in the resolution of their ontologies, and
their global properties are broadly similar; but the Columbia and Columbia* networks share these
background similarities (and the same ontology) yet exhibiting very different structure.

Each statistic varies widely (given the range of its possible values) across these comorbidity networks,
though much of this variation can be explained by network density, which is largely a product of
population or sample size. Increasing the number of links in a graph, whether by increasing α or by
decreasing θm, has the expected effect on LCP (more nodes in the largest component); on δ, k, and
µ (greater density); and on ` (shorter geodesics). It also tends to decrease the correlation between
the total comorbidities of comorbid disorders (r) and the modular structure of the network (Q).
Since these networks tend to be denser than other empirical networks to begin with, this suggests
that graphs obtained via more relaxed cutoffs are saturated with connections in a way that obscures
these hierarchical properties. Triad closure increases with stricter evidential cutoffs but decreases
with stricter evaluative cutoffs. This suggests that cliques of three or more associated disorders
often have strong evidential support while their pairwise associations vary widely in strength. This
may be understood as some comorbid relations being artifacts of others, i.e. “transitive correlations”
(Tao 2014).

Several patterns emerge from the PCA biplot (Figure 1): Judging from the variable loadings, PC1
captures a spectrum between highly connected and dense graphs with shorter internode distances,
in which communities are difficult to detect, and sparser, more modular graphs. This spectrum
aligns with the differences in density, encoded as the opacity of the plotting symbol, produced from
a single dataset by varying the evaluative cutoff. PC2 discriminates between more homogeneous
graphs, in terms of degree distribution (low scores), and those high in degree assortativity and triad
closure (high scores). Graphs on finer ontologies, such as the level-5 ICD9 codes used by Hidalgo et
al. (2009) and Hanauer and Ramakrishnan (2013), varied more widely across different choices of
BAM; while graphs on coarser ontologies, in particular the level-3 ICD9 codes used Hidalgo et al.
(2009) and the custom ICD9 mapping of Rzhetsky et al. (2007), varied less by BAM. Their values
were more distant from the average than those of the graphs on coarser ontologies, which indicates
that their stuctural properties were more idiosyncratic.

The networks constructed from a common dataset form subsets that emanate outward in clearly
different directions, indicating that comorbidity network structure depends crucially on the source
of data. These clusters have relatively consistent scores on PC2, which separates the clusters by
ontology size. In contrast, they vary widely along PC1, which is in most cases clearly correlated
with changes due to the evaluative cutoff. These observations are nearly exhaustive: together PC1
and PC2 account for more than 60% of the variance in the point cloud, with PC3 accounting for
less than 15% more.8

8We repeated the PCA after including the comorbidity network constructed from VAERS. This network does not
stand out from the rest, and indeed situates itself among those other networks constructed from larger data sets.
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Figure 1: Row-principal PCA biplot for the summary statistics with networks (cases) in principal
coordinates and statistics (variables) in standard coordinates. The values for graphs constructed
from a common dataset are summarized by 95% confidence ellipses. Symbol corresponds to BAM,
color indicates data source, and opacity is proportional to network density. Ellipse thicknesses are
proportional to the number of clinical concepts (nodes) in the ontology (graph).

6.1.4 Centrality rankings of disorders

From correlation biplots, we observed great variation in the disorder rankings within each data source
and centrality measure (Figure S9). Note that, for these comparisons, the p-value cutoff determined
the discrete network structure while the BAM determined the weighting scheme upon this structure.
While rankings were rarely discordant (the relative positions of more pairs of disorders reversed than
preserved), frequently two different constructions yielded weak correlations (r < .5). The rankings
were sensitive to both construction parameters, and no single choice of p-value correction or BAM
consistently produced rankings that were robust to the other parameter.

The data sets also range widely in terms of which construction parameter explains more of the
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Figure 2: Eigendecomposition biplots for the Kendall correlations among (left to right) degree,
betweenness, and closeness centrality rankings of disorders in networks constructed from the Michigan
data, using a 5% TWER with each error rate correction and each BAM. The linetype of each arrow
indicates the correction (solid for none, dotted for FWER, dashed for FDR) and its color and label
indicate the BAM.

variation in rankings. For an example taken at random, rankings of full ICD9 codes based on
Michigan data were sensitive to the BAM though robust to the correction (Figure 2). In other cases,
rankings were variably more sensitive to the BAM (MedPAR(3), Columbia*) or to the correction (Sct.
Hans, MIMIC). This is quantified in terms of the decomposition of inertia (Table 4). Comorbidity
networks based on Sct. Hans and MIMIC produced centrality rankings that were highly sensitive
to the p-value correction but robust to the BAM, while rankings of those based on MedPAR(3)
and Columbia* were more sensitive to the BAM. The underlying ontologies do not explain these
differences. However, the results reveal clear differences between the sensitivities of the rankings
based on different centrality measures, with degree centrality most sensitive to the p-value correction
and closeness centrality most sensitive to the BAM (though only slightly more than betweenness).
This is consistent with the theoretical distinctions between the measures, with betweenness and
closeness reliant on geodesic paths that vary more with differences in link weights, and may help
guide the choice of measure best suited to a particular application.

The betweenness centrality scores, like those for degree but unlike those for closeness, yield clear hubs,
dominated by non-specific symptoms and disorders. For the regional EHR data sets, these include
epilepsy (Columbia), limb pain, unclassified respiratory problems (Michigan), vitamin deficiency
(Stanford), benign neoplasms, and tuberculosis (Columbia*). While the rankings differ, most of
the same disorders fill the top slots according to degree centrality. These include gram-negative
bacteria, carcinoma in situ, lipid metabolism disorders (Columbia), unclassified respiratory disorders,
unspecified chest pain, unspecified pneumonia (Michigan), acidosis, mineral metabolism of calcium
and magnesium (Stanford), and Hepititis C (Columbia*).

The more specific populations covered by the other data sets yield their own characteristic hubs:
non-specific diagnoses of fluid and electrolyte imbalances, urinary tract disorders, and bacterial
infections (MedPAR), which may be associated with increased hospital and nursing home care as well
as with aging itself; gait and mobility disorders, which are strongly associated with nervous disorders
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Table 4: Proportion of variance in rank correlations accounted for by the choice(s) of p-value
correction, of binary association measure, and of both. Kendall rank correlations were calculated
among all combinations of network construction parameters within each data source and centrality
measure.

Dataset Ontology Centrality Correction Measure Both
Columbia Rzhetsky degree 0.055 0.883 0.939
Columbia Rzhetsky betweenness 0.435 0.469 0.903
Columbia Rzhetsky closeness 0.141 0.772 0.913
MedPAR(3) ICD9-3 degree 0.082 0.819 0.901
MedPAR(3) ICD9-3 betweenness 0.198 0.700 0.899
MedPAR(3) ICD9-3 closeness 0.096 0.816 0.912
MedPAR(5) ICD9-5 degree 0.490 0.365 0.855
MedPAR(5) ICD9-5 betweenness 0.680 0.223 0.902
MedPAR(5) ICD9-5 closeness 0.532 0.311 0.843
Sct.Hans ICD10-3 degree 0.240 0.606 0.846
Sct.Hans ICD10-3 betweenness 0.870 0.092 0.962
Sct.Hans ICD10-3 closeness 0.877 0.090 0.967
Michigan ICD9-5 degree 0.009 0.978 0.987
Michigan ICD9-5 betweenness 0.010 0.978 0.988
Michigan ICD9-5 closeness 0.009 0.975 0.984
Stanford Rzhetsky degree 0.007 0.987 0.994
Stanford Rzhetsky betweenness 0.434 0.496 0.930
Stanford Rzhetsky closeness 0.031 0.911 0.941
Columbia* Rzhetsky degree 0.003 0.995 0.998
Columbia* Rzhetsky betweenness 0.225 0.726 0.951
Columbia* Rzhetsky closeness 0.024 0.954 0.978
MIMIC ICD9-5 degree 0.533 0.256 0.789
MIMIC ICD9-5 betweenness 0.795 0.094 0.889
MIMIC ICD9-5 closeness 0.713 0.110 0.824

(Sct. Hans); and acute posthemorrhagic anemia (APHA), a common symptom of injury-induced
blood loss (MIMIC). The high betweenness of these disorders can be largely explained by their
high degree; they are associated with a variety of comorbidities each. Indeed, in the first two cases
(Medicare and psychiatric patients), the same disorders are identified as hubs according to degree
centrality. In the third case (intensive care patients), though, despite its more than two-fold lead
in betweenness centrality, APHA has lower degree centrality than unspecified acute kidney failure,
acute respiratory failure, severe sepsis, unspecified urinary tract infection, acidosis, and unspecified
congestive heart failure. This discrepancy may reflect that APHA is a common result of several
otherwise ontologically distinct types of injury and trauma.
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Table 5: Most betweenness-central disorders in each comorbidity network, subject to Benjamini-
Hochberg-corrected 5% FDR.

Dataset Code Description Centrality
Columbia Tuberculosis 639
Columbia Epilepsy 566
Columbia Gram-negative bacteria 558
Columbia Cerebral palsy 516
Columbia Mineral met. (Ca) 400
Columbia Lipid metabolism d. 352
Columbia Benign neoplasms 322
Columbia Hypoosmolality 307
MedPAR(3) 599 Other disorders of urethra and urinary tract 12002
MedPAR(3) 276 Disorders of fluid, electrolyte, and acid-base balance 10502
MedPAR(3) 041 Bacterialinfectioninconditionsclassifiedelsewhereandofunspecifiedsite 8292
MedPAR(3) 285 Other and unspecified anemias 6052
MedPAR(3) 038 Septicemia 5775
MedPAR(3) 707 Chronic ulcer of skin 5336
MedPAR(3) 787 Symptoms involving digestive system 5167
MedPAR(3) 290 Dementias 4294
MedPAR(5) 276.5 Volume depletion 4874557
MedPAR(5) 285.9 Anemia NOS 3668696
MedPAR(5) 276.1 Hyposmolality 2053550
MedPAR(5) 285.1 Ac posthemorrhag anemia 2004756
MedPAR(5) 263.9 Protein-cal malnutr NOS 1934968
MedPAR(5) 276.8 Hypopotassemia 1670143
MedPAR(5) 298.9 Psychosis NOS 1528328
MedPAR(5) 290.0 Senile dementia uncomp 1495068
Sct.Hans R26 Abnormalities of gait and mobility 3669
Sct.Hans R41 Oth symptoms and signs w cognitive functions and awareness 2473
Sct.Hans R60 Edema, not elsewhere classified 2094
Sct.Hans R05 Cough 1995
Sct.Hans L30 Other and unspecified dermatitis 1878
Sct.Hans K77 Liver disorders in diseases classified elsewhere 1312
Sct.Hans F13 Sedative, hypnotic, or anxiolytic related disorders 1283
Sct.Hans L29 Pruritus 1280
Michigan 786.09 Respiratory abnorm NEC 931497
Michigan 427.9 Cardiac dysrhythmia NOS 870524
Michigan 729.5 Pain in limb 848033
Michigan 786.50 Chest pain NOS 831397
Michigan 780.6 Fever and other physiologic disturbances of temperature regulation 711650
Michigan 518.3 Pulmonary eosinophilia 695321
Michigan 789.00 Abdmnal pain unspcf site 666145
Michigan 786.2 Cough 593591
Stanford Vitamin deficiency 117
Stanford Acidosis 92
Stanford Virus 71
Stanford Systemic lupus erythematosus 63
Stanford Carcinoma in situ 47
Stanford Hemivertebra 45
Stanford Bundle branch block 40
Stanford Keratoderma 38
Columbia* Benign neoplasms 52
Columbia* Epilepsy 43
Columbia* Tuberculosis 39
Columbia* Gram-negative bacteria 27
Columbia* Virus 26
Columbia* Hepatitis C 25
Columbia* Attention deficit 24
Columbia* Aplastic anemia 23
MIMIC 2851 Ac posthemorrhag anemia 1221392
MIMIC 5185 Pulmonary insufficiency following trauma and surgery 427288
MIMIC 51881 Acute respiratry failure 339917
MIMIC 5849 Acute kidney failure NOS 289019
MIMIC 9584 Traumatic shock 283261
MIMIC 86121 Lung contusion-closed 282917
MIMIC 2762 Acidosis 265249
MIMIC 311 Depressive disorder NEC 262202
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Notably, centrality rankings of the disorders in a common ontology, but based on node versus
group centralities calculated in different network models, were generally not concordant: in some
case the concordance was weak, in others negative. The limitations of our data and methodology
prevented us from determining how much of this discordance was attributable to the data (i.e. the
patient populations and collection protocols) versus to the effect of using group centralities versus
crosswalking the incidence data before constructing the network. See the SI Text for more details.

6.2 Multiple and multivariate analysis

6.2.1 Correlation structure and link determination for NAMCS encounters

The four correlation matrices Rt, Rt′, P̂0, P̂1 exhibited both clear similarities and clear differences
(Figure S18). Most notably, in the pairwise and full partial correlation matrices Rt and Rt′, all 13
disorders loaded positively onto the first eigenvector, consistent with most comorbidity (controlling
for prevalence) being explained by a one-dimensional spectrum between good and poor health. This
spectrum was most closely aligned, under both models, with hypertension (HT), hyperlipidemia
(HLD), and ischemic heart disease (IHD). The matrices differed starkly, though, in the proportion
of variance captured by this first eigenvector—64% (pairwise) versus 22% (partial). The joint
distribution estimates P̂0 and P̂1 attributed only about 30–40% of variance to the first eigenvector,
and this dimension was again most aligned with HT, HLD, and IHD. In contrast, though, these
models more clearly oriented some disorders, particularly depression and cancer, in opposition to
the majority of others, including diabetes and obesity in addition to the aforementioned cardiac
disorders.

Figure 3 presents four networks on the node set of NAMCS chronic diseases, using the conventional,
partial correlation, and two JDM constructions. Most of the residual interactions in JDM1 were
weaker than in JDM0—for example, the associations of HT with arthritis and with cerebrovascular
disease (CVD). From the conventional to the multivariate models, some pairs switched from positive
to indiscernible (chronic obstructive pulmonary disease (COPD) with osteoporosis (OP), arthritis
with IHD), negative to indiscernible (IHD with obesity), or indiscernible to negative (CVD with
obesity). Notably, all three negative associations observed in the pairwise analysis were negative
in every analysis, and every positive association observed under the strictest model (JDM1) was
positive under the pairwise model. See the SI Text for a quantitative comparison of the correlation
estimates from each of the models.

6.2.2 Correlation structure and link determination for MIMIC-III units

Results for the care unit populations from MIMIC-III were in several respects dissimilar to those
for NAMCS. Network diagrams showed similar behavior across the units but were less informative
due to the number of nodes in each; they are included for each unit and each model as supporting
figures.

Table 6 reports, for each care unit and each network model, the proportions of positive, negative, and
indiscernible links, based on whether the confidence (resp. credible) interval of radius two standard
errors (resp. standard deviations) about each correlation estimate contains zero. The clear patterns
across most units are that (a) in the pairwise network, vastly more links are positive than negative,
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Figure 3: Four comorbidity networks constructed from the NAMCS chronic disease incidence data.
From left to right, then top to bottom: conventional comorbidity network with links determined from
a 5partial correlation comorbidity network adapted from the conventional network; JDM network
controlling only for disease prevalence, with links weighted by P̂; JDM network also controlling for
patient-level demographics. Black (respectively, grey) links indicate positive (negative) associations.

30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/752964doi: bioRxiv preprint 

https://doi.org/10.1101/752964
http://creativecommons.org/licenses/by-nc-nd/4.0/


and more negative than missing; (b) in the partial correlation network, links are positive, negative,
and missing in roughly equal proportions; and (c) in the joint distribution network, vastly more
links are missing than positive, and more positive than negative. For the neonatal units (NWARD
and NICU), which used smaller ontologies, the majority types (the positive links in the pairwise
network and the missing links in the joint distribution network) were still more dominant, and much
more of the links in the pairwise correlation network were missing.

Table 6: Link determinations for each MIMIC-III care unit using each model, with a consistent
evidential threshold of 2 standard deviations.

Model Determination NWARD MICU SICU NICU CCU CSRU TSICU
Pairwise Positive 90.9% 60.6% 66.5% 91.3% 73.9% 77.2% 69.0%
Pairwise Negative 6.8% 31.2% 24.1% 6.6% 16.9% 15.7% 22.1%
Pairwise Indiscernible 2.3% 8.2% 9.4% 2.1% 9.2% 7.1% 9.0%
Partial Positive 17.2% 39.6% 35.2% 26.2% 36.4% 37.7% 33.2%
Partial Negative 10.0% 36.2% 32.2% 20.3% 33.4% 34.1% 30.2%
Partial Indiscernible 72.8% 24.2% 32.6% 53.6% 30.2% 28.2% 36.6%
JDM Positive 0.4% 40.0% 20.8% 0.8% 13.6% 15.4% 15.6%
JDM Negative 0.4% 0.0% 0.0% 0.4% 0.2% 0.4% 0.0%
JDM Indiscernible 99.2% 60.0% 79.2% 98.8% 86.2% 84.3% 84.4%

Scatterplots of correlation estimates from the different models are included as supporting figures. In
contrast to NAMCS, in this case the partial estimates were more correlated than the JDM estimates
with the pairwise estimates. Though the correlation was strong between estimates in the conventional
model and the JDM among the most prevalent disorders, those for the least prevalent were essentially
uncorrelated. Meanwhile, the relationship between the pairwise and partial correlations was roughly
a scaling one: For this and other non-neonatal units, the relationship was noisy but compatible with
the constraint of passing through the origin.

6.2.3 Centrality rankings of disorders

As in our comparisons of pairwise constructions, centrality rankings of disorders within each MIMIC
unit varied greatly by network model, and overall patterns were not evident (Figure S29). Pairwise
network rankings consistently stood apart from those of the multivariate model–based networks
based on the medical intensive care unit (MICU) data; joint distribution network rankings tended
to be more distinctive for the neonatal ward (NWARD), full partial network rankings were more
distinctive for the neonatal intensive care unit (NICU), and for other units no two models consistently
produced similar rankings.
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8 Supporting tables and figures

Most supporting figures and one supporting table are made available as separate files. The remainder
appear in the SI Text. LATEXlabels correspond to file paths.

Table S1: Quintiles of binary association measures for pairs in each dataset for different evidential
thresholds. “B” indicates Bonferroni correction.

Table S2: Quintiles of binary association measures for pairs in each dataset for different evidential
thresholds. “B” indicates Bonferroni correction.

Figure S1: For each data source (row), evaluative cutoff (column), and BAM (abscissa), a box-and-
whisker plot of the quantiles at which the links of each comorbidity network were trimmed by the
cutoff. The networks were constructed over the range of evidential (p-value) cutoffs 10−i, i = 1, . . . , 6
and for each p-value correction (none, FWER, FDR).

Figure S2: Network diagram (hairball plot) of the comorbidity network constructed from the
Columbia data, using the evidential cutoff α < 5% with Bonferroni correction and the evaluative
cutoff OR ≥ 6. Clusters identified using the Walktrap algorithm are color-coded.

Figure S3: Network diagram (hairball plot) of the comorbidity network constructed from the
MedPAR data on level-3 ICD9 codes, using the evidential cutoff α < 5% with Bonferroni correction
and the evaluative cutoff OR ≥ 6. Clusters identified using the Walktrap algorithm are color-coded.

Figure S4: Network diagram (hairball plot) of the comorbidity network constructed from the Sct.
Hans data, using the evidential cutoff α < 5% with Bonferroni correction and the evaluative cutoff
OR ≥ 6. Clusters identified using the Walktrap algorithm are color-coded.

Figure S5: Network diagram (hairball plot) of the comorbidity network constructed from the
Stanford data, using the evidential cutoff α < 5% with Bonferroni correction and the evaluative
cutoff OR ≥ 6. Clusters identified using the Walktrap algorithm are color-coded.

Figure S6: Network diagram (hairball plot) of the comorbidity network constructed from the
Columbia data, using the evidential cutoff α < 5% with Bonferroni correction and the evaluative
cutoff OR ≥ 6. Clusters identified using the Walktrap algorithm are color-coded.
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Table S3: Log-likelihood ratios R and two-sided p-values p from likelihood-ratio tests between four
families of models to degree sequence tails. LRTs were performed for graphs constructed from each
dataset using two p-value significance thresholds and corrections for family-wise error rate and for
false discovery rate. Family 1 is preferred when R > 0, Family 2 when R < 0.

Figure S7: Diverging-color tilings of log-likelihood ratios R from likelihood-ratio tests (LRT)
between fits of different families of models to degree sequence tails. LRTs were performed for graphs
constructed from each dataset using evidential cutoff α < 0.05 and both corrections. Family 1 is
preferred when R > 0, Family 2 when R < 0. The boundary color of each tile indicates whether R
is positive or negative. The p-value from the LRT is printed on each tile.

Table S4: Tail index (ξ) and tail exponent (γ) estimators that were successfully estimated on
comorbidity networks.

Table S5: Values of several global statistics calculated on comorbidity networks constructed over a
range of data sets and parameter settings. See Section 5.1.4 in the main text.

Figure S8: Mean values of several global statistics calculated on comorbidity networks constructed
over a range of data sets and parameter settings, plotted against several measures of network size.
See Section 5.1.4 in the main text.

Table S6: LMs of network statistics on data source and test-wise error rate.

Table S7: Hierarchical models of network statistics on test-wise error rate, grouped by data source.

Table S8: Hierarchical models of network statistics on test-wise error rate and binary association
measure, grouped by data source.

Table S9: Variance decomposition for hierarchical models of network statistics on test-wise error
rate, grouped by data source.

Table S10: Variance decomposition for hierarchical models of network statistics on test-wise error
rate and binary association measure, grouped by data source.

Table S11: Akaike information criteria for each model fitted to the values taken by each network
statistic.
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Figure S9: For each data source and centrality measure, a correlation biplot of Kendall correlations
between centrality rankings of disorders based on comorbidity networks constructed using the
evidential cutoff α < 0.05, each of three corrections (none, FWER, FDR), and each of five BAMs
(unit, odds ratio, Pearson correlation, Forbes coefficient, and tetrachoric). In this and other biplots,
first and second eigenvectors are reversed if necessary so that each centroid lies in the first quadrant.

Table S12: Most degree-central disorders in each comorbidity network, subject to Benjamini-
Hochberg-corrected 5% FDR.

Table S13: Most closeness-central disorders in each comorbidity network, subject to Benjamini-
Hochberg-corrected 5% FDR.

Table S14: Most prevalent disorders in each comorbidity network.

Figure S10: Scatterplots of prevalences of disorders in the ICD9 ontology in different data sets
using this ontology. Note the effect of the restriction, in the Michigan dataset, to disorders that
appeared on at least 30 patient records.

Figure S11: Scatterplots of prevalences of disorders in the Rzhetsky ontology in different data sets
using this ontology. Note that the disorders included in the Columbia dataset exactly match their
prevalences in the Columbia dataset.

Figure S12: For each p-value correction and centrality measure, a correlation biplot of Kendall
correlations between centrality rankings of disorders based on comorbidity networks constructed
from each data set that uses or could be crosswalked to the Rzhetsky ontology. Centrality measures
are node-based for data encoded using this ontology and group-based for data crosswalked to this
ontology.

Figure S13: For each p-value correction and centrality measure, a correlation biplot of Kendall
correlations between centrality rankings of disorders based on comorbidity networks constructed
from each data set that uses or could be crosswalked to the level-3 ICD9 ontology. Centrality
measures are node-based for data encoded using this ontology and group-based for data crosswalked
to this ontology.

Figure S14: For each p-value correction and centrality measure, a correlation biplot of Kendall
correlations between centrality rankings of disorders based on comorbidity networks constructed
from each data set that uses the level-5 ICD9 ontology.
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Table S15: Most degree-central disorders in comorbidity networks using the ICD9-3 ontology, subject
to Benjamini-Hochberg-corrected 5% FDR.

Table S16: Most degree-central disorders in comorbidity networks using the Rzhetsky ontology,
subject to Benjamini-Hochberg-corrected 5% FDR.

Table S17: Most closeness-central disorders in comorbidity networks using the ICD9-3 ontology,
subject to Benjamini-Hochberg-corrected 5% FDR.

Table S18: Most closeness-central disorders in comorbidity networks using the Rzhetsky ontology,
subject to Benjamini-Hochberg-corrected 5% FDR.

Figure S15: Frequency–rank plot for the 13 chronic disorders recorded in the NAMCS sample.

Figure S16: Alluvial diagram of discernible signs of the population-level associations between NAMCS
chronic disorders, using each of 4 network models: pairwise correlation, full partial correlation,
endogenous joint distribution, and joint distribution controlling for exogenous predictors.

Table S19: Estimated effects of demographic predictors on the incidence of chronic disorders in
Model 1. Each value indicates the effect of the predictor on the mean of the normal distribution
from which the latent variable is sampled (see the text). Estimates whose 95% credible intervals
contain zero are excluded.

Table S20: Histograms of estimates from the joint distribution model with exogenous (patient-level)
predictors. Left: Exogenous effects on disorder prevalence. Right: Correlation (epidemiological
comorbidity) accounted for by exogenous effects.

Figure S17: Alluvial diagram of discernible signs of the population-level associations between NAMCS
chronic disorders, using each of 4 network models: pairwise correlation, full partial correlation,
endogenous joint distribution, and joint distribution controlling for exogenous predictors.

Figure S18: For each of four models, a correlation biplot of estimated latent correlations between
13 chronic disorders in the NAMCS sample.

Figure S19: For each critical care unit in the MIMIC-III database, a frequency–rank plot for the
recorded diagnoses, crosswalked to CCS codes.

Akker M van den, Buntinx F, Knottnerus JA (1996) Comorbidity or multimorbidity: what’s
in a name? A review of literature. European Journal of General Practice 2:65–70. doi:
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Figure S20: Scatterplots between the pairwise tetrachoric correlations rt, the full partial correlations
rt
′, and the correlation estimates ρ̂0 from the endogenous JDM for the CSRU population.

Figure S21: Alluvial diagrams of discernible signs of the population-level associations between
MIMIC diagnoses within each admission unit cohort, using each of 3 network models: pairwise
correlation, full partial correlation, and endogenous joint distribution.

Figure S22: Three comorbidity networks constructed from the CCU population. From left to right:
Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation estimates ρ̂0
from the endogenous JDM.

Figure S23: Three comorbidity networks constructed from the CSRU population. From left to right:
Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation estimates ρ̂0
from the endogenous JDM.

Figure S24: Three comorbidity networks constructed from the MICU population. From left to right:
Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation estimates ρ̂0
from the endogenous JDM.

Figure S25: Three comorbidity networks constructed from the NICU population. From left to right:
Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation estimates ρ̂0
from the endogenous JDM.

Figure S26: Three comorbidity networks constructed from the NWARD population. From left
to right: Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation
estimates ρ̂0 from the endogenous JDM.

Figure S27: Three comorbidity networks constructed from the SICU population. From left to right:
Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation estimates ρ̂0
from the endogenous JDM.

Figure S28: Three comorbidity networks constructed from the TSICU population. From left
to right: Sample tetrachoric correlations rt, partial tetrachoric correlations rt′, and correlation
estimates ρ̂0 from the endogenous JDM.

Figure S29: For each care unit and centrality measure, a correlation biplot of Kendall correlations
between centrality rankings of disorders based on each of four comorbidity network models: pairwise
correlations, full partial correlations, and a joint distribution model without exogenous effects.
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