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Abstract 
Rare copy number variants associated with increased risk for neurodevelopmental and 

psychiatric disorders (referred to as ND-CNVs) are characterized by heterogeneous phenotypes 

thought to share a considerable degree of overlap. Altered neural integration has often been 

linked to psychopathology and is a candidate marker for potential convergent mechanisms 

through which ND-CNVs modify risk; however, the rarity of ND-CNVs means that few studies 

have assessed their neural correlates. Here, we used magnetoencephalography (MEG) to 

investigate resting-state oscillatory connectivity in a cohort of 42 adults with ND-CNVs, 

including deletions or duplications at 22q11.2, 15q11.2, 15q13.3, 16p11.2, 17q12, 1q21.1, 

3q29, and 2p16.3, and 42 controls. We observed decreased connectivity between occipital, 

temporal and parietal areas in participants with ND-CNVs. This pattern was common across 

genotypes and not exclusively characteristic of 22q11.2 deletions, which were present in a third 

of our cohort. Furthermore, a data-driven graph theory framework enabled us to successfully 

distinguish participants with ND-CNVs from unaffected controls using differences in node 

centrality and network segregation. Together, our results point to alterations in 

electrophysiological connectivity as a putative common mechanism through which genetic 

factors confer increased risk for neurodevelopmental and psychiatric disorders. 
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Introduction 1 

A number of rare genetic variants occurring through the deletion or duplication of 2 

chromosomal segments are associated with significantly increased risk for a range of 3 

neurodevelopmental disorders (ND), including schizophrenia, autism spectrum disorder 4 

(ASD), and developmental delay1. Although the underlying mechanisms remain poorly 5 

understood, these copy number variants (referred to hereafter as ND-CNVs) are thought to 6 

increase the risk for psychopathology through alterations in neural structure and function. Thus, 7 

neuroimaging studies in participants with ND-CNVs provide a unique opportunity to study 8 

intermediate phenotypes of mental disorders.  9 

Furthermore, recent work suggests that CNV-specific phenotypic outcomes are limited, 10 

pointing instead to a large degree of similarity across phenotypes associated with different ND-11 

CNVs2,3. Focusing on convergent neural alterations across different genotypes can thus help 12 

elucidate the mechanisms linking ND-CNVs at different loci to a shared psychopathology and 13 

increase in neurodevelopmental risk.  14 

Failures of functional neural integration have long been considered a hallmark of 15 

neurodevelopmental disorders such as schizophrenia4,5. In recent years, evidence of disrupted 16 

connectivity has also emerged in ASD populations6,7 and has been shown to transcend 17 

diagnostic boundaries8. ND-CNVs are thought to increase disorder risk by acting on large-scale 18 

neural integration through molecular and cellular mechanisms9. Studying functional network 19 

alterations in participants with ND-CNVs could thus help establish their reliability as 20 

biomarkers of neurodevelopmental risk. Synchronous oscillatory activity thought to support 21 

communication between brain areas is of particular interest as a window into excitatory and 22 

inhibitory mechanisms, and can be measured at rest using electro- and magneto-23 

encephalography (EEG/MEG).  24 

However, the rarity of ND-CNVs means that evidence of their functional connectivity 25 

correlates is scarce. Of the genetic imaging studies conducted so far, most have focused on the 26 

22q11.2 deletion syndrome (also known as DiGeorge or velo-cardio-facial syndrome). This 27 

deletion is associated with a number of physical phenotype manifestations such as congenital 28 

cardiac malformations, as well as high risk for psychopathology, and has long been recognised 29 

as a discrete syndrome10–13. The presence of a 22q11.2 deletion has been linked to alterations 30 

in brain structure and function14–17, including disrupted structural connectivity18,19. Although 31 

fewer studies have investigated functional connectivity, they report similarly disrupted 32 

networks using functional MRI20–22 and EEG23. 33 

Despite emerging evidence of white matter alterations associated with other ND-CNVs24–26, 34 

very few studies have investigated their functional correlates. Recent electrophysiological 35 

research reported increased beta-band activity in participants with 15q11.2-q13.1 36 

duplications27,28 and 16p11.2 deletions29, as well as delayed evoked responses in the latter24,30. 37 

Based on current evidence it is difficult to assess the extent and specificity of functional 38 

connectivity alterations, especially for rarer ND-CNVs. 39 

To address this, we investigated oscillatory connectivity measured with MEG in participants 40 

with ND-CNVs at nine different loci. Given the common phenotypic outcomes associated with 41 

ND-CNVs2, this approach can identify convergent endophenotypes of potentially higher 42 

clinical relevance. Because a third of participants had 22q11.2 deletions (a sample size twice 43 

as large as any other genotype in our cohort), we also assessed alterations in connectivity 44 
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separately in this subgroup and in the group of participants with other ND-CNVs. This allowed 45 

us to directly assess the specificity of the effects, especially considering previous findings of 46 

widespread neural alterations associated with 22q11.2 deletions.  47 

In both subgroups, we found evidence of disrupted alpha and beta-band oscillatory connectivity 48 

in posterior brain regions. Furthermore, using graph theory measures of network topology and 49 

information transfer, we were able to identify participants with ND-CNVs based on their 50 

individual connectivity maps. The two approaches highlighted common patterns of 51 

dysconnectivity in participants with ND-CNVs, as well as specific network features that might 52 

be linked to CNV pathogenicity. 53 

Methods 54 

Participants 55 

MEG data were acquired in 42 adults with ND-CNVs targeted for their high penetrance for 56 

neurodevelopmental disorders (22 female; mean age 38.5±12.5 years). ND-CNVs at nine 57 

different loci were represented in the cohort, with 14 (33%) participants carrying 22q11.2 58 

deletions. Demographic and clinical information for this cohort are provided in the 59 

Supplementary Information (Supplementary Table 1).  60 

Recruitment was performed through NHS genetics clinics and relevant support groups within 61 

the UK. Written consent was obtained in accordance with The Code of Ethics of the World 62 

Medical Association (Declaration of Helsinki), and all procedures were approved by the South 63 

East Wales Research Ethics Committee. 64 

Controls were selected among resting-state datasets acquired at CUBRIC as part of the “100 65 

Brains”’ and “UK MEG Partnership” projects. These cohorts included healthy participants 66 

aged 18-65 with no history of neurological or neuropsychiatric disorders, and 42 controls were 67 

chosen to match the gender and age of the ND-CNV carriers as closely as possible (22 female; 68 

mean age 33.3±9.6 years). These measurements were acquired under protocols approved by 69 

the Cardiff University School of Psychology Ethics Committee. 70 

Since a third of the ND-CNV cohort consisted of participants with 22q11.2 deletions, we 71 

assessed the impact of this subgroup by repeating all analyses on (1) participants with other 72 

ND-CNVs (except 22q11.2 deletions) and their matched controls (N = 56), and (2) participants 73 

with 22q11.2 deletions and their matched controls (N = 28).  74 

Genotyping 75 

Participants with ND-CNVs were genotyped using the Illumina HumanCoreExome whole 76 

genome SNP array, which contained an additional 27,000 genetic variants at loci previously 77 

linked to neurodevelopmental disorders, including CNVs. The raw intensity data was 78 

processed using Illumina Genome Studio software (version 2011.1). PennCNV (version 1.0.3) 79 

was used to perform CNV calling in order to confirm the presence of the ND-CNV in each 80 

case sample, with each CNV being required to span a minimum of 10 informative SNPs and to 81 

be at least 10 kb in length. CNV coordinates were specified according to genome version hg19, 82 

and the boundaries of each CNV were confirmed by manually inspecting the Log R ratio and 83 

B allele frequency plots at each of the genomic regions of interest (Supplementary Table 1). 84 

Genetic information was not available for control participants; given the rarity of these 85 

genotypes in the general population, they were assumed to carry no ND-CNVs.  86 
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Data collection 87 

Five-minute resting-state MEG recordings were made using a 275-channel CTF radial 88 

gradiometer system (CTF, Vancouver, Canada) at a sampling rate of 1200 Hz. Three of the 89 

sensors were turned off due to excessive noise, and 29 reference channels were recorded to 90 

improve noise cancellation31. During the recordings, participants were seated upright and 91 

fixated their eyes on a red fixation point presented centrally on either a CRT monitor or LCD 92 

projector. Three electromagnetic coils were placed at fiducial locations (nasion and pre-93 

auricular) for head localization. 94 

To aid in source localization, structural T1-weighted MRI scans were also acquired using a 3T 95 

General Electric or Siemens MRI scanner with a 1 mm isotropic FSPGR/MPRAGE pulse 96 

sequence.  97 

Data analysis 98 

Pre-processing 99 

To remove muscle artifacts, a semi-automatic procedure was implemented using the FieldTrip 100 

toolbox32 and MATLAB R2015a. Sensor time-series were bandpass-filtered between 110 and 101 

140 Hz and z-transformed; segments exceeding a participant-specific z-score threshold were 102 

removed. Next, eye movement and cardiac artifacts were projected out of the data using 103 

Independent Component Analysis (ICA). Noisy channels exhibiting high variance were also 104 

removed from the data where necessary. There was no significant difference in recording 105 

duration after artifact rejection between the ND-CNV and control groups (t(81.8) = 1.61, P = 106 

0.11, mean duration 255.88±29.31 s and 245.33±30.86 s respectively). 107 

Head motion was monitored continuously in 18/42 ND-CNV datasets and 40/42 control 108 

datasets, and head localization was performed at the start and end of the recording in the 109 

remaining datasets. There was no significant difference between the ND-CNV and control 110 

groups in maximum head coil displacement between the beginning and end of the recording 111 

(t(79.8) = 0.85, P = 0.39, mean displacement 2.07±3.62 mm and 2.7±3.06 mm respectively). 112 

In datasets with continuous head localization, the maximum distance of the head coils from 113 

their average position across the entire recording did not significantly differ between groups 114 

(t(39.4) = 1.44, P = 0.16, mean distance 4.74±3.5 mm and 3.21±4.2 mm respectively).  115 

Prior to source localization, coregistration was performed by manually marking head coil 116 

locations on each participant's MRI using FieldTrip. The data were downsampled to 600 Hz 117 

and bandpass-filtered in six different frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-118 

13 Hz), beta (13-30 Hz), low gamma (40-60 Hz), and high gamma (60-90 Hz).   119 

Estimating functional connectivity 120 

To assess group differences in resting-state connectivity (Figure 1), we focused on amplitude-121 

amplitude coupling of source-localized oscillatory signals33. Continuous data in each of the six 122 

frequency bands were projected into source space using a Linearly Constrained Minimum 123 

Variance (LCMV) beamformer. Sources were reconstructed on a 6 mm template grid warped 124 

to each participant's MRI, using a multiple local-spheres forward model34. To alleviate the 125 

depth bias, beamformer weights were normalized by their vector norm35. 126 

Next, 90 nodes corresponding to cortical regions of interest (ROI) in the Automated 127 

Anatomical Labelling (AAL) atlas36 were identified by performing a frequency analysis on all 128 

sources within each ROI and selecting the source with the largest temporal standard deviation. 129 
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Continuous virtual sensor timecourses corresponding to the 90 nodes were then reconstructed 130 

and bandpass-filtered into the frequency bands of interest. 131 

To avoid spurious correlations, the node time-series were orthogonalized using a multivariate 132 

symmetric orthogonalization approach37. A Hilbert transform was used to calculate oscillatory 133 

amplitude envelopes, which were then despiked using a median filter, downsampled to 1 Hz, 134 

and trimmed to avoid filter and edge effects. To obtain connectivity matrices, pairwise 135 

correlations were calculated between the 90 Hilbert envelopes. Next, a Fisher transform was 136 

applied to obtain z-scores with zero mean and unit variance across connections in each 137 

participant’s map. This procedure corrected for possible systematic differences across 138 

participants, for example due to differences in data quality38.  139 

Intracranial volume (ICV), quantified as the number of 1-mm isotropic voxels inside the brain, 140 

was smaller in the ND-CNV group than the control group (t(65.5) = -2.19, P = 0.03), in line 141 

with some previous reports39–41. The potential impact of this difference on the MEG results 142 

was alleviated through the source localization procedure and the z-scoring of the connectivity 143 

matrices.  144 

In addition to the six frequency bands listed above, a combined measure of connectivity was 145 

obtained by calculating the vector-sum of connectivity matrices across all frequency bands42.  146 

Group differences in resting-state connectivity 147 

To reduce the impact of noise, a conservative ranking procedure42 was used to threshold the 148 

connectivity maps for the purposes of between-group comparisons. This consisted of 149 

calculating the rank of each connection in participant-level connectivity matrices and averaging 150 

the resulting rank map across participants in each group. Only the top 20% edges in the average 151 

rank map were considered "valid" and selected for further analysis. To ensure that large 152 

differences in signal across cohorts were not discarded by this procedure, the rank-thresholding 153 

procedure was performed separately in each cohort, and connections determined as "valid" in 154 

either cohort were included in further analysis.  155 

To assess differences between groups, Welch’s t-tests were conducted at each valid edge. 156 

Significant edges were identified using an uncorrected α = 0.05. Correction for multiple 157 

comparisons was applied using a randomization procedure with 10000 sign-shuffling iterations 158 

and maximal statistic thresholding (omnibus α = 0.05)43.  159 

Furthermore, the robustness of cohort differences was evaluated through a resampling 160 

procedure. Increases and decreases in connectivity between groups were tabulated using 161 

random samples of half of each group. This was repeated across 10000 iterations, and edges 162 

showing a consistent effect direction across at least 95% of iterations were considered robust. 163 
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Figure 1. Overview of the analysis pipeline. Resting-state MEG data were preprocessed, filtered into six 

frequency bands, and projected into source space. Hilbert envelopes were calculated at 90 AAL-atlas-based virtual 

sensor locations, and correlated to obtain functional connectivity matrices. These were z -scored and rank-

thresholded at the group level for between-group analyses, and at the subject level for data-driven prediction of 

ND-CNV status using graph theory. See Supplementary Figure 1 for the full list of node labels corresponding to 

the circular plots in this paper. 

 

To control for potential confounds (for example, resulting from imperfect age matching 164 

between the ND-CNV and control groups), an additional multiple regression analysis was 165 

performed. Combined-frequency connectivity matrices were entered as response variables with 166 

a categorical predictor (ND-CNV presence) and three covariates (age, gender, and ICV). A 167 

resampling procedure as described above was performed to assess the robustness of  between-168 

group differences. The sign of the regression slope associated with the main predictor was 169 

tabulated across 1000 split-half cohort randomizations. Edges showing consistent effects 170 

across 95% of iterations were considered robust.  171 

Individual networks: identifying participants with ND-CNVs using graph theory 172 

Next, a data-driven graph theory approach was used to assess whether participants with ND-173 

CNVs could be distinguished from unaffected controls using functional connectivity features. 174 

To this aim, the cohort was divided into training and test sets using an iterated cross-validation 175 

procedure.  176 

This analysis focused on individual networks by selecting the top 20% of connections in each 177 

participant’s normalized connectivity map as the basis for undirected graphs. Networks were 178 
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then characterized using six nodal graph theory metrics chosen to capture node connectedness, 179 

network integration, and network modularity (Supplementary Table 2). All graph theory 180 

analyses were performed using MATLAB R2019a and the Brain Connectivity Toolbox44. 181 

To discriminate between groups, a linear support vector machine (SVM) classifier45 was 182 

trained on each of the node metrics. Additionally, a pooled feature vector was created by 183 

combining the six metrics to maximize the amount of complementary information input to the 184 

classifier. This approach makes use of information across all nodes while avoiding the need for 185 

multiple testing. 186 

Classification was performed between the ND-CNV and control groups, as well as between the 187 

two ND-CNV subgroups (22q11.2 deletions and other ND-CNVs) and their matched controls. 188 

To avoid overfitting, model performance was evaluated using 100 iterations of stratified five-189 

fold cross-validation. This entailed iteratively leaving out a fifth of the data for testing and 190 

training the model on the remaining data, whilst ensuring balanced group representation in each 191 

fold. Performance was quantified using accuracy (proportion correctly classified observations), 192 

sensitivity (true positive rate) and specificity (true negative rate) in order to highlight any 193 

asymmetries in ND-CNV and control identification. Furthermore, significance was assessed 194 

by shuffling the true labels 5000 times and recomputing classifier accuracy to estimate the 195 

empirical chance level and calculate a one-tailed p-value43.  196 

Results 197 

Connectivity alterations associated with ND-CNVs 198 

The analysis of group differences in oscillatory connectivity revealed the largest number of 199 

valid connections in the alpha and beta bands (Figure 2). Most of the significantly different 200 

connections showed a decrease in oscillatory connectivity between posterior, parietal and 201 

temporal nodes in the ND-CNV group, with the exception of a few right-hemisphere edges. 202 

More extensive cohort effects were detected using the combined frequency maps (61 edges 203 

exceeded the uncorrected threshold, compared to 1, 28 and 42 in the theta, alpha and beta 204 

bands). These patterns were robust to random sub-sampling of the cohort, suggesting that they 205 

were not driven by individual subjects. A small number of left-hemisphere connections, 206 

including the precuneus, early visual cortex, and parietal regions, survived omnibus correction 207 

for multiple comparisons. 208 

Importantly, a similar pattern of hypoconnectivity was observed even after excluding 209 

participants with 22q11.2 deletions and their matched controls (Figure 2B-C). Both ND-CNV 210 

subgroups showed decreased posterior connectivity (Figure 3; Supplementary Figure 1), 211 

indicating that the overall pattern was not driven by the 22q11.2 deletion group. On the other 212 

hand, participants with 22q11.2 deletions exhibited more right-hemisphere hyperconnectivity 213 

compared to controls. These effects spanned the precuneus and parietal cortex, as well as 214 

frontal regions, suggesting some overlap with the default mode network (DMN).   215 

To ensure that these differences were not affected by potential confounds, the cohort 216 

resampling tests on combined frequency maps were repeated as a multiple linear regression 217 

with age, gender and ICV as covariates. This analysis revealed fewer connections (65 compared 218 

to the original 92 in the whole cohort analysis), but largely similar patterns of dysconnectivity 219 

(Figure 3). 220 
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Furthermore, although IQ scores could not be included in this analysis because they were not 221 

available for the control group, IQ scores in the ND-CNV group correlated with connectivity 222 

strength at only four edges (Supplementary Figure 2). 223 

 

 

 

Figure 2. A. Differences in resting-state connectivity (amplitude correlations) between participants with ND-

CNVs and controls. Connectivity increases and decreases in the ND-CNV group are shown in red and blue 

respectively. The rows show (top to bottom): valid connections after mean-rank thresholding in each frequency 

band; uncorrected (P<0.05) differences between groups; multiple comparison-corrected (omnibus P<0.05) 

differences between groups; and connections showing consistent increases/decreases in 95% of cohort resampling 

iterations. B. Frequency of deletions (del) and duplications (dup) at each locus in the  ND-CNV group. C. As in 

A, for subgroups excluding participants with 22q11.2 deletions and their matched controls (left) or including only 

participants with 22q11.2 deletions and their matched controls (right). To facilitate comparison, “valid” 

connections were the same as in A. Only frequency bands with surviving “valid” connections are shown. 
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Network features as predictors of ND-CNV status  224 

A graph theory framework was employed to identify participants with ND-CNVs from their 225 

functional networks based on combined frequency maps. This approach has the advantage of 226 

reducing dimensionality and complements the edge-focused group testing approach described 227 

above. Despite methodological differences between the two analyses, a visualization of the 228 

nodal graph theory features shows overlap with the nodes highlighted in the group analysis 229 

(Supplementary Figures 3-6). 230 

Graph theory metrics were successful predictors of ND-CNV participants relative to unaffected 231 

controls. The best prediction accuracy was achieved by combining the 6 node features 232 

(Supplementary Table 3; Figure 4A; maximum accuracy 71%±3.44, P=0.0002). However, 233 

participants with 22q11.2 deletions were more consistently correctly classified than those with 234 

other ND-CNVs (Figure 4B).  235 

This was confirmed by subgroup classification analyses, which also pointed to subgroup 236 

differences. When excluding participants with 22q11.2 deletions, the best decoding accuracies 237 

were achieved using node eccentricities (65.62%±3.91, P=0.0016), node degrees, and the joint 238 

feature model. On the other hand, all node features were successful in discriminating 239 

participants with 22q11.2 deletions from their matched controls, with the best performance 240 

obtained using the clustering coefficient (87.61%±4.95, P=0.0002).  241 

These results point to commonalities in network features (such as decreased centrality) that 242 

allow for the successful classification of participants with ND-CNVs across distinct genotypes. 243 

On the other hand, the features are specific enough to allow successful discrimination between 244 

participants with 22q11.2 deletions and other ND-CNVs (Supplementary Table 3). Given the 245 

higher overall burden of 22q11.2 deletions in neurodevelopmental disorders1, this suggests that 246 

increased neurodevelopmental risk may be associated with more salient alterations in network 247 

function and may underpin specific genotype effects. 248 

 

 

Figure 3. Differences in connectivity are not driven by age, gender, and intracranial volume. Connections meeting 

the 95% confidence criterion in the cohort resampling test are displayed for all group tests (first three columns). 

The last column shows supra-threshold connections in both the 22q11.2 deletion group and the other ND-CNV 

group; they are shown in blue where they are decreased in both groups, and in red where they have opposite signs.  

Line width increases with effect robustness. A. Connections exhibiting robust differences based on the cohort 

resampling test of combined frequency matrices, plotted on the template brain. B. As in A, after including age, 

gender and intracranial volume as covariates in a multiple linear regression with “ND-CNV presence” as a main 

categorical predictor. 
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Figure 4. Classifying participants with ND-CNVs and unaffected controls from individual MEG functional 

networks using graph theory. A: Classification performance on the three groups, using different metrics to 

characterize the networks (eccentricity, degree, betweenness centrality, global and local efficiency, clustering 

coefficient, and the pooled model). Above-chance accuracies (permutation testing) are marked with 1, 2, and 3 

dots respectively for p<0.05,  p<0.01, and p<0.001. B. How well are different ND-CNVs classified? The plot 

shows the mean predicted label for each of the 42 participants with ND-CNVs across 100 cross-validation 

iterations using pooled node features. Participants with 22q11.2 deletions are most consistently correctly 

identified. Two participants with schizoaffective disorder diagnoses are marked with “S”. 
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Discussion 249 

To our knowledge, the present study provides the first insight into oscillatory connectivity 250 

alterations in people with rare ND-CNVs. Using both an established group analysis pipeline 251 

and a data-driven graph theory framework, we uncovered a pattern of functional 252 

dysconnectivity affecting posterior regions in participants with ND-CNVs. These patterns were 253 

robust to effects of age, gender, and intracranial volume, and emerged despite a conservative 254 

thresholding approach restricted to the most reproducible connections.  255 

Effects originated in low frequency bands, particularly alpha and beta, which rely on 256 

excitatory-inhibitory balance and are thought to underpin long-range communication between 257 

brain areas46. Connections linking parietal, temporal, and occipital areas were most consistently 258 

affected in both the 22q11.2 deletion group and the other ND-CNV group. Similar patterns 259 

have been previously reported in schizophrenia patients47, including alpha-band parietal 260 

hypoconnectivity in first-episode schizophrenia48. Furthermore, posterior structural network 261 

alterations have been identified as an early marker of ASD49, suggesting a link between such 262 

alterations and increased neurodevelopmental risk. 263 

Similar connectivity changes in the visual processing system and the default mode network 264 

have been shown in people with 22q11.2 deletions using structural and functional MRI50–52. 265 

Here, we found that these effects are not restricted to the 22q11.2 deletion group, suggesting 266 

that long-range connectivity could act as a common marker across genetic variants. Although 267 

non-invasive measurements cannot provide direct mechanistic insight, this is consistent with 268 

alterations in excitatory-inhibitory balance as a mechanism for pleiotropic genetic effects 269 

underlying neurodevelopmental disorders53–55. This is thought to occur through increased 270 

excitation or disinhibition caused by gene haploinsufficiency and mediated by impaired GABA 271 

and NMDA receptor function56,57. 272 

Despite sample size limitations, differences between the two subgroups also point to effects 273 

specific to the highly penetrant 22q11.2 deletions. Hypoconnectivity was more extensive in 274 

people with other ND-CNVs, while the 22q11.2 deletion group exhibited more focused 275 

patterns; these were robust to cohort resampling, suggesting that they are unlikely to be driven 276 

by individual cases. These differences were reflected in the graph theory analysis. Although all 277 

network features were altered in the 22q11.2 deletion group, their increased modularity was 278 

particularly discriminative, in line with previous reports of increased structural network 279 

segregation in people with 22q11.2 deletions18,22,58. For other ND-CNVs, the only predictive 280 

features were centrality measures (specifically the node eccentricity and degree), reflecting 281 

hypoconnectivity in the ND-CNV cohort. Between and within-group classification results 282 

(Supplementary Table 3) highlight the ability of graph theory metrics to capture both 283 

convergent and specific network alterations, which could help elucidate the link between CNV 284 

pathogenicity and neural system function.  285 

Although the present study was able to evaluate ND-CNV effects independently of the 286 

contribution of highly penetrant 22q11.2 deletions, the limited sample size remains a concern 287 

common in CNV imaging research. The high genotype variability within the cohort makes the 288 

specificity of these effects difficult to assess, particularly with regard to differences between 289 

the 22q11.2 deletion group and other ND-CNVs. To overcome this, the generalizability of the 290 

“fingerprint” obtained by combining graph theory metrics in a machine learning framework 291 

could be verified in studies recruiting larger samples of participants with ND-CNVs, for 292 

example through large multi-site collaborations. 293 
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In summary, the present study assessed oscillatory long-range connectivity as a potential 294 

marker of pathogenic genetic effects across a range of rare ND-CNVs. Occipital, parietal and 295 

temporal brain areas were characterized by consistent hypoconnectivity across genotypes, 296 

which was not exclusively driven by the presence of a large number of participants with highly-297 

penetrant 22q11.2 deletions. Functional networks in the ND-CNV group exhibited decreased 298 

node centrality and alterations in network efficiency and structure. Furthermore, features 299 

specific to highly penetrant variants were present alongside convergent network alterations and 300 

enabled successful ND-CNV classification. These results are consistent with a common 301 

mechanism for genetic risk, based on an altered balance between excitatory and inhibitory 302 

synaptic processes and leading to network dysfunction. We propose that these functional 303 

connectivity alterations are an intermediate phenotype on the pathway from synaptic molecular 304 

changes to disruption of cognitive function and psychotic illness. 305 
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