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Abstract 31 
Many tools have been developed to extract functional and mechanistic insight from bulk 32 
transcriptome profiling data. With the advent of single-cell RNA sequencing (scRNA-seq), it is 33 
in principle possible to do such an analysis for single cells. However, scRNA-seq data has 34 
characteristics such as drop-out events, low library sizes and a comparatively large number 35 
of samples/cells. It is thus not clear if functional genomics tools established for bulk 36 
sequencing can be applied to scRNA-seq in a meaningful way. To address this question, we 37 
performed benchmark studies on in silico and in vitro single-cell RNA-seq data. We included 38 
the bulk-RNA tools PROGENy, GO enrichment and DoRothEA that estimate pathway and 39 
transcription factor (TF) activities, respectively, and compared them against the tools AUCell 40 
and metaVIPER, designed for scRNA-seq. For the in silico study we simulated single cells 41 
from TF/pathway perturbation bulk RNA-seq experiments. Our simulation strategy guarantees 42 
that the information of the original perturbation is preserved while resembling the 43 
characteristics of scRNA-seq data. We complemented the in silico data with in vitro scRNA-44 
seq data upon CRISPR-mediated knock-out. Our benchmarks on both the simulated and real 45 
data revealed comparable performance to the original bulk data. Additionally, we showed that 46 
the TF and pathway activities preserve cell-type specific variability by analysing a mixture 47 
sample sequenced with 13 scRNA-seq different protocols. Our analyses suggest that bulk 48 
functional genomics tools can be applied to scRNA-seq data, outperforming dedicated single 49 
cell tools. Furthermore we provide a benchmark for further methods development by the 50 
community.   51 
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Background 52 

Gene expression profiles provide a blueprint of the status of cells. Thanks to diverse high-53 
throughput techniques, such as microarrays and RNA-seq, expression profiles can be 54 
collected relatively easily, and are hence very common. To extract functional and mechanistic 55 
information from these profiles, many tools have been developed, that can, for example, 56 
estimate the status of molecular processes such as the activity of pathways or transcription 57 
factors (TFs). These functional genomics tools are broadly used and belong to the standard 58 
toolkit to analyze expression data [1–3]. 59 
 60 
Functional genomics tools typically combine prior knowledge with a statistical method to gain 61 
functional and mechanistic insights from omics data. In the case of transcriptomics, prior 62 
knowledge is typically rendered as gene sets containing genes belonging to, e.g., the same 63 
biological process or to the same Gene Ontology (GO) annotation. The Molecular Signature 64 
Database (MSigDB) is one of the largest collections of curated and annotated gene sets [4]. 65 
Statistical methods are as abundant as the different types of gene sets. Among them, the most 66 
commonly used are over-representation analysis (ORA) [5] and Gene Set Enrichment 67 
Analysis (GSEA) [6]. Still, there is a growing number of statistical methods spanning from 68 
simple linear models to advanced machine learning methods [7,8]. 69 

 70 
Recent technological advances in single-cell RNA-seq (scRNA-seq) enable the profiling of 71 
gene expression at the individual cell level [9]. Multiple methods have been developed, and 72 
they have experienced a dramatic improvement over recent years. However, they still have a 73 
number of limitations and biases, including low library size, and drop-outs. Bulk RNA-seq tools 74 
that focus on cell type identification and characterization as well as on inferring regulatory 75 
networks can be readily applied to scRNA-seq data [10]. This suggests that functional 76 
genomics tools should in principle be applicable to scRNA-seq data as well. However, it has 77 
not been investigated yet whether these limitations could distort and confound the results, 78 
rendering the tools not applicable to single-cell data.  79 

 80 
In this paper, we benchmarked the robustness and applicability of different functional 81 
genomics methods on simulated and real scRNA-seq data. We focused on three tools for bulk 82 
and two for single cell RNA data. The bulk tools are PROGENy [11], DoRothEA [12] and 83 
classical GO enrichment analysis combining GO gene sets [13] with GSEA. PROGENy 84 
estimates the activity of 14 signaling pathways by combining corresponding gene sets with a 85 
linear model. DoRothEA is a collection of resources of TF’s targets (regulons) that can serve 86 
as gene sets for TF activity inference. For this study we coupled DoRothEA with the method 87 
VIPER [14] as it incorporates the mode of regulation of each TF-target interaction. Both 88 
PROGENy’s and DoRothEA’s gene sets are based on observing the transcriptomic 89 
consequences (the ‘footprint’) of the processes of interest rather than the genes composing 90 
the process as gene sets [15]. This approach has been shown to be more accurate and 91 
informative in inferring the process’s activity [11,16]. The tools specifically designed for 92 
application on scRNA-seq data that we considered are AUCell [17] and metaVIPER [18]. We 93 
coupled AUCell with gene sets from DoRothEA and PROGENy that we hereafter refer to as 94 
D-AUCell and P-AUCell. Using DoRothEA with both VIPER and AUCell on scRNA-seq for TF 95 
activity inference allowed us to compare the underlying statistical methods more objectively. 96 
metaVIPER is an extension of VIPER which is based on the same statistical method, but relies 97 
on multiple TF-regulon resources such as tissue specific regulatory networks. 98 
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We first benchmarked the tools on simulated single cell transcriptome profiles. We found that 99 
on this in silico data the gene sets from DoRothEA and PROGENy can functionally 100 
characterize simulated single cells. We observed that the performance of the different tools is 101 
dependent on the used statistical method and properties of the data, such as library size or 102 
number of cells. We then used real scRNA-seq data upon CRISPR-mediated knock-103 
out/knock-down of TFs [19,20] to assess the performance of DoRothEA’s gene sets. The 104 
results of this benchmark further supported our finding that functional genomics tools can 105 
provide accurate mechanistic insights into single cells. We observed different performance by 106 
the different tool on this task dependent on the statistical approach used. Finally, we 107 
demonstrated the utility of the tools for pathway and TF activity estimation on recently 108 
published data profiling a complex sample with 13 different scRNA-seq technologies [21]. 109 
Here, we showed that summarizing gene expression into TF and pathway activities preserves 110 
cell type specific information. Collectively, our results suggest that the bulk based functional 111 
analysis tools DoRothEA and PROGENy outperform the single cell tools AUCell and 112 
metaVIPER. Although on scRNA-seq data DoRothEA and PROGENy were less accurate than 113 
on bulk RNA-seq, we were still able to extract relevant functional insights from scRNA-seq 114 
data. 115 

Results 116 

Robustness of bulk RNA based functional genomics tools against low gene coverage 117 

Single-cell RNA-seq profiling is hampered by low gene coverage due to drop-out events [22]. 118 
In our first analysis we focused solely on the low gene coverage aspect and whether tools 119 
designed for bulk can deal with it. Specifically, We aimed to explore how DoRothEA, 120 
PROGENy and GO gene sets combined with GSEA (GO-GSEA) can handle low gene 121 
coverage in general, independently of other artefacts and characteristics from scRNA-seq 122 
protocols. Thus, we conducted this benchmark using bulk transcriptome benchmark data. In 123 
these studies, TFs and pathways are perturbed experimentally, and the transcriptome profile 124 
is measured before and after the perturbation. These experiments can be used to benchmark 125 
tools for TF/pathway activity estimation, as they should estimate correctly the change in the 126 
perturbed TF or pathway. The use of these datasets allowed us to systematically control for 127 
the gene coverage (see Methods). The workflow consisted in four steps (Fig. S1a). In the first 128 
step we summarized all perturbation experiments into a matrix of contrasts (with genes in rows 129 
and contrasts in columns) by differential gene expression analysis. Subsequently, we 130 
randomly replaced, independently for each contrast, logFC values with 0 so that we obtain a 131 
predefined number of “covered” genes with a logFC unequal to zero. Accordingly, a gene with 132 
a logFC = 0 was considered as missing/not covered. Afterwards we applied DoRothEA, 133 
PROGENy and GO-GSEA on the contrast matrix, subsetted only to those experiments which 134 
are suitable for the corresponding tool: TF perturbation for DoRothEA and pathway 135 
perturbation for PROGENy and GO-GSEA. We finally evaluate the global performance of the 136 
methods with Receiver operating characteristic (ROC) and precision recall (PR) curves (see 137 
Methods). This process was repeated 25 times to account for stochasticity effects during 138 
inserting zeros in the contrast matrix (see Methods). 139 
 140 
DoRothEA’s TFs are accompanied by an empirical confidence level indicating the confidence 141 
in their regulons, ranging from A (most confident) to E (less confident) (see Methods). For this 142 
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benchmark we included only TFs with confidence level A and B (denoted as DoRothEA (AB)) 143 
as this combination has a reasonable tradeoff between coverage and performance [12]. In 144 
general, the performance of DoRothEA dropped as gene coverage decreased. While it 145 
showed reasonable prediction power with all available genes (AUROC of 0.690), it 146 
approached almost the performance of a random model (AUROC of 0.5) when only 500 genes 147 
were covered (mean AUROC of 0.547; Fig. 1a, and similar trend with AUPRC, Fig. S1c). 148 
 149 
We next benchmarked pathway activities estimated by PROGENy and GO-GSEA. In the 150 
original PROGENy framework, 100 footprint genes are used per pathway to compute pathway 151 
activities by default, as it has been shown that this leads to the best performance on bulk 152 
samples [11]. However, one can extend the footprint size to cover more genes of the 153 
expression profiles. We reasoned that this might counteract low gene coverage, and 154 
implemented accordingly different PROGENy versions (see Methods). With the default 155 
PROGENy version (100 footprint genes per pathway) we observed a clear drop in 156 
performance with decreasing gene coverage, even though less drastic than for DoRothEA 157 
(from AUROC of 0.724 to 0.636; Fig. 1b; similar trends with AUPRC; Fig. S1d). As expected, 158 
PROGENy performed the best with 100 footprint genes per pathway when there is complete 159 
gene coverage. The performance differences between the various PROGENy versions shrank 160 
with decreasing gene coverage. This suggests that increasing the number of footprint genes 161 
can help to counteract low gene coverage. To provide a fair comparison between PROGENy 162 
and GO-GSEA we used only those 14 GO terms that match the 14 PROGENy pathways (Fig. 163 
S1b). In general GO-GSEA showed weaker performance than PROGENy. The decrease in 164 
performance was more prominent as gene coverage decreased (from AUROC of 0.662 to 165 
0.525; Fig. 1c and similar trend with AUPRC, Fig. S1e). With a gene coverage of less than 166 
2000 genes, GO-GSEA performance was no better than random.  167 
 168 
In summary, this first benchmark provided insight into the general robustness of the bulk based 169 
tools DoRothEA, PROGENy and GO-GSEA with respect to low gene coverage. DoRothEA 170 
performed reasonably well down to a gene coverage of 2000 genes. The performance of all 171 
different PROGENy versions were robust across the entire gene coverage range tested. GO-172 
GSEA showed a worse performance than PROGENy, especially in the low gene coverage 173 
range. Since DoRothEA and PROGENy showed promising performance in low gene coverage 174 
ranges, we decided to explore them on scRNA-seq data. Due to its poor performance, we did 175 
not include GO-GSEA in the subsequent analyses. 176 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2019. ; https://doi.org/10.1101/753319doi: bioRxiv preprint 

https://doi.org/10.1101/753319
http://creativecommons.org/licenses/by/4.0/


6 

 177 
Fig. 1: Testing the robustness of DoRothEA (AB), PROGENy and GO-GSEA against low gene 178 
coverage. a DoRothEA (AB) performance (Area under ROC curve, AUROC) versus gene coverage. b 179 
PROGENy performance (AUROC) for different number of footprint genes per pathway versus gene 180 
coverage. c Performance (AUROC) of GO-GSEA versus gene coverage. Dashed line indicates the 181 
performance of a random model. 182 
 183 

Benchmark of bulk and single-cell functional genomics tools on simulated scRNA-seq 184 
data 185 

For the following analyses we expanded the set of tools by the methods AUCell [17] and 186 
metaVIPER [18]. Both methods were developed specifically for scRNA-seq analysis and thus 187 
allow the comparison of bulk vs. single-cell based tools on scRNA-seq data . AUCell is a 188 
statistical method that assesses whether gene sets are enriched in the top quantile of a ranked 189 
gene signature (see Methods). We combined AUCell with DoRothEA’s and PROGENy’s gene 190 
sets (referred to as D-AUCell and P-AUCell, respectively). metaVIPER is an extension of 191 
VIPER and requires multiple gene regulatory networks instead of a single network. In our study 192 
we coupled 27 tissue specific gene regulatory networks with metaVIPER, which provides a 193 
single TF consensus activity score estimated across all networks (see Methods). To 194 
benchmark all these methods on single cells, ideally we would have scRNA-seq datasets after 195 
perturbations of TFs and pathways. However, these datasets, especially for pathways, are 196 
currently very rare. To perform a comprehensive benchmark study, we developed a strategy 197 
to simulate samples of single cells using bulk RNA-seq samples from TF/pathway perturbation 198 
experiments.  199 
A major cause of drop-outs in single cell experiments is the abundance of transcripts in the 200 
process of reverse-transcription of mRNA to cDNA [22]. Thus, our simulation strategy was 201 
based on the assumption that genes with low expression are more likely to result in drop-out 202 
events. 203 
  204 
The simulation workflow started by transforming read counts of a single bulk RNA-seq sample 205 
to transcripts per million (TPM), normalizing for gene length and library size. Subsequently, 206 
for each gene, we assigned a sampling probability by dividing the individual TPM values with 207 
the sum of all TPM values. These probabilities are proportional to the likelihood for a given 208 
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gene not to “drop-out” when simulating a single cell from the bulk sample. We determined the 209 
library size by sampling from a normal distribution with mean equal to the desired library size. 210 
For every single cell, we sampled with replacement genes from the gene probability vector up 211 
to the determined library size. The number of individual gene samples denote the new gene 212 
count in the single cell. The number of simulated single cells from a bulk sample is a parameter 213 
of the simulation (Fig. 2a, see Methods). This simple workflow guaranteed that the information 214 
of the original bulk perturbation is preserved and scRNA-seq characteristics, such as, drop-215 
outs, low library size and high number of samples/cells are introduced.  216 
 217 
Our bulk RNA-seq samples comprised 97 single TF perturbation experiments targeting 52 TFs 218 
and 15 single pathway perturbation experiments targeting 7 pathways (Fig. S2a, S2b; see 219 
Methods). We repeated the simulation of numerous single cells from each bulk sample 220 
template to account for the stochasticity of the simulation procedure. We tested our simulation 221 
strategy by comparing the characteristics of the simulated cells to real single cells. We 222 
compared the count distribution (Fig. S3a and b), the relationship of mean and variance of 223 
gene expression (Fig. S3c and d) and the relationship of library size to number of detected 224 
genes (Fig. S3e and f). These comparisons suggested that our simulated single cells closely 225 
resemble real single cells and are thus suitable for benchmarking.  226 
 227 
Unlike in our first benchmark, we applied the functional genomics tools directly on single 228 
samples/cells and built the contrasts at the level of pathway and TF activities (see Methods). 229 
We compared the performance of all tools to recover the perturbed TFs/pathways. We also 230 
considered the performance of the bulk based tools DoRothEA and PROGENy on the 231 
template bulk data as a baseline for comparison to their respective performance on the single 232 
cell data. 233 
 234 
We show, as an example, the workflow of the performance evaluation for DoRothEA (Fig. 2b). 235 
As a first step we applied DoRothEA to single cells generated for one specific parameter 236 
combination (number of cells = 10, mean library size = 5000) and bulk samples, performed 237 
differential activity analysis (see Methods), and evaluated the performance with ROC and PR 238 
curves including only TFs with confidence level A. Each repetition of the simulation is depicted 239 
by an individual ROC curve, which shows the variance in performance of DoRothEA on 240 
simulated single cell data (Fig. 2b - 1. step). The variance decreases as the library size and 241 
the number of cells increase (which holds true for all tested tools; Fig. S4a-e). The shown ROC 242 
curves are summarized into a single AUROC value for bulk, and mean AUROC value for single 243 
cells. We performed this procedure also for different TF confidence level combinations and 244 
show the performance change in these values in relation to the TF coverage (Fig. 2b - 2. step). 245 
For both bulk and single cells, we observe a tradeoff between TF coverage and performance 246 
caused by including different TF confidence level combinations in the benchmark. This result 247 
is supported by both AUROC and AUPRC (Fig. S5a) and correspond to our previous findings 248 
[12]. The performance of DoRothEA on single cells does not reach the performance on bulk, 249 
though it can still recover TF perturbations on the simulated single cells reasonably well. This 250 
is especially true for the most confident TFs (AUROC of 0.690 for confidence level A and 0.682 251 
for the confidence level combination AB). Finally we explore the effect of the library size and 252 
the number of cells on the performance by performing the previously described analysis for all 253 
combinations of library sizes and cell numbers. We computed the mean difference between 254 
AUROC scores of single cell and bulk data for all confidence level combinations. We observed 255 
a gradually decreasing differences when the size of the library and the number of cells 256 
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increase (Fig. 2b - 3. step and Fig. S6a). Note, however, that the number of cells has a stronger 257 
impact on the performance than the mean library size. This analysis identified the best 258 
performing combination of DoRothEA’s TF confidence levels for different library sizes and 259 
number of single cells. Thus, the results can be used as recommendations for choosing the 260 
confidence levels on data from an experiment with comparable characteristics in terms of cell 261 
numbers and sequencing depths. 262 
 263 
Similarly to DoRothEA, we also observed for D-AUCell a tradeoff between TF coverage and 264 
performance for both single cells and bulk samples when using the same parameter 265 
combination (Fig. 2c; similar trend with AUPRC Fig. S5b). The summarized performance 266 
across all confidence level combinations of D-AUCell on single cells slightly outperformed its 267 
performance on bulk samples (AUROC of 0.601 on single cells and 0.597 on bulk). This trend 268 
becomes more evident with increasing library size and number of cells (Fig. S6b).  269 
For the benchmark of metaVIPER we assigned confidence levels to the tissue specific GTEx 270 
regulons based on DoRothEA’s gene set classification. This was done for consistency with 271 
DoRothEA and D-AUCell, even if there is no difference in confidence among them. Hence, for 272 
metaVIPER, we do not observe a tradeoff between TF coverage and performance (Fig. 2d; 273 
similar trend with AUPRC Fig. S5c). As opposed to D-AUCell, metaVIPER performed better 274 
on single cells than on bulk samples across all confidence level combinations (AUROC of 275 
0.584 on single cells and 0.531 on bulk). This trend increased with increasing library size and 276 
number of cells (Fig. S6c). However, the overall performance of metaVIPER is worse than the 277 
performance of DoRothEA and D-AUCell. In summary, the bulk based tool DoRothEA 278 
performed the best on the simulated single cells followed by D-AUCell. metaVIPER performed 279 
slightly better that a random model.  280 
For the benchmark of PROGENy we observed that it performed well across different number 281 
of footprint genes per pathway, with a peak at 500 footprint genes for both single cells and 282 
bulk (AUROC of 0.856 for bulk and 0.831 for single cells; Fig. 2e - similar trend with AUPRC 283 
Fig. S5d). A higher performance for single cell analysis with more than 100 footprint genes per 284 
pathway is in agreement with the previous general robustness study that suggested that a 285 
higher number of footprint genes can counteract low gene coverage. Increasing the library 286 
size and the number of cells improved the performance of PROGENy on single cells reaching 287 
almost the same performance as on bulk samples (Fig. S6d). For most parameter 288 
combinations, PROGENy with 500 or 1000 footprint genes per pathway yields the best 289 
performance. 290 
 291 
For P-AUCell we observed a different pattern than for PROGENy as it worked best with 100 292 
footprint genes per pathway for both single cells and bulk (AUROC of 0.788 for bulk and 0.712 293 
for single cells; Fig. 2f - similar trends with AUPRC Fig. S5e). Similar to PROGENy, increasing 294 
the library size and the number of cells improved the performance, but not to the extent of its 295 
performance on bulk (Fig. S6e). For most parameter combinations P-AUCell with 100 or 200 296 
footprint genes per pathway yielded the best performance. 297 
 298 
In summary, both PROGENy and P-AUCell performed well on the simulated single cells, and 299 
PROGENy performed slightly better. For the pathway analysis the P-AUCell did not perform 300 
better on scRNA-seq than on bulk data. We then went on to perform a benchmark analysis on 301 
real scRNA-seq datasets. 302 
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303 
Fig. 2: Benchmark result of various methods on simulated single cell data. a Simulation strategy 304 
of single cells from a RNA-seq bulk sample. b Example workflow of DoRothEA’s performance 305 
evaluation on simulated single cell. 1. step: ROC-curves of DoRothEA performance on simulated single 306 
cells (red lines) for 25 replicates of a specific parameter combination (number of cells = 10, mean library 307 
size = 5000) and on bulk data (blue line) including only TFs with confidence level A. Dashed line 308 
indicates the performance of a random model. 2. step: DoRothEA performance summarized as AUROC 309 
on simulated single cells (red lines) for a specific parameter combination (number of cells = 10, mean 310 
library size = 5000) and corresponding bulk data (blue line) vs TF coverage. Results are provided for 311 
different combinations of DoRothEA’s confidence levels (A,B,C,D,E). Error bars of AUROC values 312 
depict the standard deviation and correspond to different replicates of the given parameter combination. 313 
Dashed line indicates the performance of a random model. Step 3: Absolute difference across all 314 
confidence level combinations between AUROC of DoRothEA on single cells and AUROC of DoRothEA 315 
on bulk data for all parameter combinations. The letters within the tiles indicates which confidence level 316 
combination performs the best. The tile marked in red corresponds to the parameter setting used for 317 
previous plots (Step 1 and 2). c D-AUCell and d metaVIPER performance summarized as AUROC on 318 
simulated single cells (red lines) for a specific parameter combination (number of cells = 10, mean 319 
library size = 5000) and corresponding bulk data (blue line) vs TF coverage. Results are provided for 320 
different combinations of DoRothEA’s confidence levels (A,B,C,D,E). Error bars of AUROC values 321 
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correspond to different replicates of the given parameter combination. Dashed line indicates the 322 
performance of a random model. e and f Performance result of e PROGENy and f P-AUCell on 323 
simulated single cells for a specific parameter combination (number of cells = 10, mean library size = 324 
5000) and corresponding bulk in ROC space vs number of footprint genes per pathway. Error bars of 325 
AUROC values correspond to different replicates of the given parameter combination. Dashed line 326 
indicates the performance of a random model. c d e f Plots revealing the change in performance with 327 
varying simulation parameters (Step 3) are available in Supplementary Figure S6. 328 

Benchmark of bulk and single-cell functional genomics tools on real scRNA-seq data 329 

After showing that the gene sets from DoRothEA and PROGENy can handle low gene 330 
coverage and work reasonably well on simulated scRNA-seq data with different statistical 331 
approaches, we performed a benchmark on real scRNA-seq data. However, single cell 332 
transcriptome profiles of TF and pathway perturbations are very rare. To our knowledge there 333 
are no datasets of pathway perturbations on single cell level comprehensive enough for a 334 
robust benchmark of pathway analysis tools. For tools inferring TF activities the situation is 335 
better: recent studies combined CRISPR knock-outs/knock-down of TFs with scRNA-seq 336 
technologies [19,20], that can serve as potential benchmark.  337 
The first dataset is based on the Perturb-seq technology, which contains 26 knock-out 338 
perturbations targeting 10 unique TFs after 7 and 13 days of perturbations (Fig. S7a) [19]. To 339 
explore the effect of perturbation time we divided the dataset into two sub datasets based on 340 
perturbation duration (Perturb-seq (7d) and Perturb-seq (13d)). The second dataset is based 341 
on CRISPRi protocol and contains 141 perturbation experiments targeting 50 unique TFs [20] 342 
(Fig. S7a). The datasets showed a variation in terms of drop-out rate, number of cells and 343 
sequencing depths (Fig. S7b). 344 
 345 
To exclude bad or unsuccessful perturbations in case of CRISPRi experiments, we discarded 346 
experiments when the logFC of the targeted gene/TF was greater than 0 (12 out of 141; Fig. 347 
S7c). This quality control is important only in the case of CRISPRi, as it works on the 348 
transcriptional level. Perturb-seq (CRISPR knock-out) acts on the genomic level, so we can 349 
not expect a clear relationship between KO efficacy and transcript level of the target. Note that 350 
the logFC’s of both Perturb-seq sub datasets are in a narrower range in comparison to the 351 
logFCs of the CRISPRi dataset (Fig. S7d). The perturbation experiments which passed this 352 
quality check were used in the following analyses. 353 
 354 
We evaluated the performance of DoRothEA, D-AUCell and metaVIPER on each benchmark 355 
dataset individually. We found that DoRothEA outperformed D-AUCell and metaVIPER across 356 
different combinations of DoRothEA confidence levels on Perturb-seq (7d) and CRISPRi 357 
dataset (Fig. 3a). metaVIPER did not perform better than a random model for these datasets. 358 
Interestingly, the performance of all three methods on the Perturb-seq (13d) dataset was very 359 
weak independently of DoRothEA’s confidence level (Fig. 3a). The captured trends are also 360 
reported in PR-space (Fig. S7e).  361 
In summary, these analyses suggested that DoRothEA is the best-performing method to 362 
recover TF perturbation at the single cell level on in vitro data.  363 
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364 
Fig. 3: Benchmark result of VIPER on real single cell data. DoRothEA, D-AUCell and metaVIPER 365 
performance on all sub benchmark datasets in ROC space vs TF coverage split up by combinations of 366 
DoRothEA’s confidence levels (A-E).  367 

Application of bulk and single-cell functional genomics tools to samples of 368 
heterogeneous cell type populations (PBMC+HEK293T)  369 

In our last analysis we wanted to test the performance of all tested tools in a more 370 
heterogeneous system that would illustrate a typical scRNA-seq data analysis scenario where 371 
multiple cell types are present. We used a dataset from the Human Cell Atlas project [23] that 372 
contains scRNA-seq profiles of human Peripheral blood mononuclear cells (PBMCs) and 373 
HEK293T with annotated cell types [21]. This dataset was analysed with 13 different scRNA-374 
seq protocols (see Methods). In this study no ground truth (in contrast to the previous 375 
perturbation experiments) for TF and pathway activities were available. To evaluate the 376 
performance of all methods, we assessed the potential of TF and pathway activity estimations 377 
to cluster cells from the same cell type together based on a priori annotated cell types. We 378 
performed our analysis for each scRNA-seq technology separately to identify protocol-specific 379 
and protocol-independent trends. We assumed that the cell-type information should be 380 
preserved also on the reduced dimension space of TF / pathway activities, if these 381 
meaningfully capture the corresponding functional processes. Hence, we assessed how well 382 
the individual clusters correspond to the annotated cell types by a two-step approach. First we 383 
applied UMAP on different input matrices e.g. TF/pathway activities or gene expression and 384 
then we evaluated how well cells from the same cell type cluster together. We considered 385 
silhouette widths as a metric of cluster purity (see Methods). Silhouette widths derived from a 386 
set of highly variable genes (HVGs) set the baseline for the silhouette widths derived from 387 
pathway/TF activities. We identified the top 2000 HVGs with Seurat [24] using the selection 388 
method “vst” as it worked the best in our hands (Fig. S8). For both TF and pathway activity 389 
matrices the number of features available for dimensionality reduction using UMAP was 390 
substantially less (113 TFs and 14 pathways, respectively) than for a gene expression matrix 391 
containing the top 2000 HVGs. The number of available features for dimensionality reduction 392 
is different between HVGs, TFs, and pathways. To compare the cluster purity among these 393 
input features, we used positive and negative controls. The ‘positive control’ is a gene 394 
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expression matrix with the top n HVGs and the negative control is a gene expression matrix 395 
with random n out of the 2000 HVGs (n equals 14 for pathway analysis and 113 for TF 396 
analysis). 397 
 398 
Intuitively, each cell type should form a distinct cluster. However, some cell types are closely 399 
related, such as different T cells (CD4 and CD8) or Monocytes (CD14+ and FCGR3A+). Thus, 400 
we decided to evaluate the cluster purity at different levels of the cell-type hierarchy from fine-401 
grained to coarse-grained. We start with the hierarchy level 0 where every cell type forms a 402 
distinct cluster and end with hierarchy level 4, where all PBMC cell types and all cell lines form 403 
a distinct cluster (Fig. 4a). 404 
 405 
To evaluate the performance of the TF activity inference methods and the utility of TF activity 406 
scores, we determined the cluster purity derived from TF activities (using only DoRothEA TFs 407 
with confidence level A and B), TF expression, positive and negative control. Both scRNA-seq 408 
protocols and matrices used for dimensionality reduction affected cluster purity significantly 409 
(2-way ANOVA p-values <2.2e-16 and 1.4e-10, respectively, p-values and estimations for 410 
corresponding linear model coefficients in Fig. S9a; see Methods). The cluster purity based 411 
on TF activities inferred using DoRothEA and D-AUCell did not differ significantly (Fig. 4b, 412 
corresponding plots for all hierarchy levels in Fig. S9b). In addition the cluster purity of both 413 
tools were not significantly worse that the purity based on all 2000 HVGs, though we observed 414 
a slight trend indicating a better cluster purity based on HVGs. This trend is expected due to 415 
the large difference of available features for dimensionality reduction. Instead a comparison 416 
to the positive and negative control is more appropriate. Both DoRothEA and D-AUCell 417 
performed comparably to the positive control but significantly better than the negative control 418 
across all scRNA-seq protocols (TukeyHSD post hoc test, adj. p-value of 1.05e-4 for 419 
DoRothEA and 5.7e-4 for D-AUCell). The cluster purity derived from metaVIPER was 420 
significantly worse than for DoRothEA (adj. p-value of 0.0423) and tend to be worse than D-421 
AUCell (TukeyHSD post hoc test, adj. p-value of 0.130) as well. Also metaVIPER wasn’t better 422 
than than the negative control. Regardless of the underlying TF activity inference method, the 423 
cluster purity derived from TF activities outperformed the purity derived from TF expression 424 
(adj. p-value of 5.42e-6 for DoRothEA, 3.33-e5 for D-AUCell and 0.146 for metaVIPER). This 425 
underlines the advantage and relevance of using TF activities over the expression of the TF 426 
itself (Fig. 4c). With a comparable performance to a similar number of HVG and also to 2000 427 
HVGs, we concluded that TF activities serve - independently of the underlying scRNA-seq 428 
protocol - as a complementary approach for cluster analysis that is based on generally more 429 
interpretable cell type marker. 430 
 431 
To evaluate the performance of pathway inference methods and the utility of pathway activity 432 
scores we determined cluster purity with pathway matrices generated with different methods. 433 
We used 200 and 500 footprint genes per pathway for PROGENy and P-AUCell, respectively, 434 
since they provided the best performance in the previous analyses. As observed already 435 
before, both scRNA-seq protocols and matrices used for dimensionality reduction affected 436 
cluster purity significantly (2-way ANOVA p-values of 2.84e-7 and 1.13e-13, respectively, p 437 
values and estimations for corresponding linear model coefficients in Fig.S10b; see Methods). 438 
The cluster purity derived from pathway activity matrices is not significantly different 439 
PROGENy and P-AUCell, while worse than all HVGs (adj. p-value of 4.07e-10 for PROGENy 440 
and 4.59e-9 for P-AUCell; Fig. 4d, corresponding plots for all hierarchy levels in Fig. S9b). 441 
This is expected due to the large difference in the number of available features for 442 
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dimensionality reduction (2000 HVGs vs 14 pathways). The cluster purity of both approaches 443 
was comparable to the positive control but significantly better than the negative control (adj. 444 
p-value of 0.077 for PROGENy and 0.013 for P-AUCell vs. negative control). In summary, this 445 
study indicated that the pathway activities contain relevant and cell-type specific information, 446 
even though they do not capture enough functional differences to be used for effective 447 
clustering analysis. Overall, the cluster purity of cells represented by the estimated pathway 448 
activities is worse than the cluster purity of cells represented by the estimated TF activities 449 
[21]. In addition we observed that input matrices derived from Quartz-Seq2 protocol yielded 450 
for hierarchy level 2 in significantly better cluster purity than all other protocols which is in 451 
agreement with the original study of of the PBMC + HEK293T data (Fig. S9a and S10a) [21]. 452 
 453 
TF and pathway activity scores are more interpretable than expression of single genes. Hence, 454 
we were interested to explore whether we could recover known cell-type specific TF and 455 
pathway activities from the PBMC data. We decided to focus on the dataset measured with 456 
Quartz-Seq2 as this protocol showed superior performance over all other platforms [21]. We 457 
calculated mean TF and pathway activity scores for each cell type using DoRothEA, D-AUCell, 458 
metaVIPER (all using only TFs with confidence levels A and B, Figure 4e, 4f and 459 
Supplementary Figure S11, respectively), PROGENy with 500 and P-AUCell with 200 footprint 460 
genes per pathway (Figure 4e-f). In agreement with the literature, we observed across both 461 
methods high activity of NFkB and TNFa in monocytes [25] and elevated Trail pathway activity 462 
in B cells (Fig. 4e-f) [26]. HEK cells, as expected from dividing cell lines, had higher activity of 463 
proliferative pathways (MAPK, EGFR and PI3K, Fig. 4e). These later pathway activity changes 464 
were only detected by PROGENy but not with AUCell, highlighting the importance of 465 
directionality information. Regarding TF activities, we observed high RFXAP, RFXANK and 466 
RFX5 activity (TFs responsible for MHCII expression) in monocytes, dendritic and B cells (the 467 
main antigen presenting cells of the investigated population [27]) (Fig. 4g-h). Myeloid lineage 468 
specific SPI1 activity [28] was observed in monocytes and dendritic cells. The high activity of 469 
repressor TF (where regulation directionality is important) FOXP1 in T lymphocytes [29] was 470 
only revealed by DoRothEA. Proliferative TFs like Myc and E2F4 had also high activity in HEK 471 
cells. 472 
 473 
In summary, the analysis of this mixture sample demonstrated that summarizing gene 474 
expression into TF activities can preserve cell type specific information while drastically 475 
reducing the number of features. Hence, TF activity matrices could be considered as an 476 
alternative to full gene expression matrix for clustering analysis. We also showed that pathway 477 
activity matrices contain cell-type specific information, too, although we do not recommend 478 
using them for clustering analysis as the number of features is too low. In addition, we 479 
recovered known pathway/TF cell-type associations showing the importance of directionality 480 
and supporting the utility and power of the functional genomics tools DoRothEA and 481 
PROGENy. 482 
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 483 
Fig. 4: Application of DoRothEA/D-AUCell and PROGENy/P-AUCell) on a representative scRNA-484 
seq dataset. a Dendrogram showing how cell lines/cell types are clustered together based on different 485 
hierarchy levels. Red dashed line marks the hierarchy level 2, where CD4 T cells, CD8 T cells and NK 486 
cells as well as CD14+ Monocytes, FCGR3A+ Monocytes and Dendritic cells are aggregated to a single 487 
cluster. b,d Comparison of cluster quality (clusters are defined by hierarchy level 2) between the top 488 
2000 highly variable genes and b TF activity and TF expression, d pathway activities c UMAP plots of 489 
TF activities calculated with DoRothEA and corresponding TF expression measured by SMART-Seq2 490 
protocol. e and f Pathway activities inferred from gene expression data (Quartz-Seq2) using e 491 
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PROGENy and f (PROGENy AUCell). Pathway activities are summarized for each cell type/cell line 492 
separately. g and h Union of top 30 variable TF activities inferred from gene expression (Quartz-Seq2) 493 
using g DoRothEA and h D-AUCell summarized for each cell type/cell line separately. 494 

Discussion 495 

In this paper we tested the robustness and applicability of functional genomics tools on 496 
scRNA-seq data. We included both bulk- and single-cell-based functional genomics tools that 497 
estimate either TF or pathway activities from gene expression data and for which well-defined 498 
benchmark data exist. The bulk based tools were DoRothEA, PROGENy and GO gene sets 499 
analysed with GSEA (GO-GSEA). The functional genomics tools specifically designed for the 500 
application in single cells were the statistical method AUCell combined with DoRothEA (D-501 
AUCell) and PROGENy (P-AUCell) gene sets and metaVIPER. 502 
 503 
We first explored the effect of low gene coverage in bulk data on the performance of the bulk 504 
based tools DoRothEA, PROGENy and GO-GSEA. We found that for all tools the performance 505 
dropped with decreasing gene coverage but at a different rate. While PROGENy was robust 506 
down to 500 covered genes, DoRothEA’s performance dropped markedly at 2000 covered 507 
genes. In addition, the results related to PROGENy suggested that increasing the number of 508 
footprint genes per pathway counteracted low gene coverage. GO-GSEA showed the 509 
strongest drop and did not perform better than a random guess below 2000 covered genes. 510 
Comparing the performance of both pathway analysis tools suggests that footprint based gene 511 
sets are superior over gene sets containing pathway members (e.g. GO gene sets) in 512 
recovering perturbed pathways. This observation is in agreement with previous studies 513 
conducted by us and others [11,30]. Given this fact and that GO-GSEA cannot handle low 514 
gene coverage (in our hands) we concluded that this approach is not suitable for scRNA-seq 515 
analysis. Hence, we decided to focus only on PROGENy as bulk based pathway analysis tool 516 
for the following analyses. 517 
 518 
Afterwards, we benchmarked DoRothEA, PROGENy, D-AUCell, P-AUCell and metaVIPER 519 
on simulated single cells which we sampled from bulk pathway/TF perturbation samples. We 520 
showed that our simulated single cells possess characteristics comparable to real single cell 521 
data, supporting the relevance of this strategy. Different combinations of simulation 522 
parameters can be related to different scRNA-seq technologies. For each combination we 523 
provide a recommendation of how to use DoRothEA’s and PROGENy’s gene sets (in terms 524 
of confidence level combination or number of footprint genes per pathway) to yield the best 525 
performance. It should be noted that our simulation approach, as it is now, allows only the 526 
simulation of a homogenous cell population. This would correspond to a single cell experiment 527 
where the transcriptome of a cell line is profiled. In future work this simulation strategy could 528 
be adapted to account for a heterogeneous dataset which would resemble more realistic single 529 
cell datasets [31]. 530 
 531 
In terms of TF activity inference, DoRothEA performed best on the simulated single cells 532 
followed by D-AUCell and then metaVIPER. Both DoRothEA and D-AUCell shared 533 
DoRothEA’s gene set collection but applied different statistics. Thus, we concluded that, in our 534 
data, VIPER is more suitable to analyse scRNA-seq data than AUCell. The tool metaVIPER 535 
performed only slightly better than a random model and since it uses VIPER like DoRothEA 536 
the weak performance must be caused by the selection of the gene set resource. DoRothEA’s 537 
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gene sets/TF regulons were constructed by integrating different types of evidence spanning 538 
from literature curated to predicted TF-target interactions. For metaVIPER we used 27 tissue 539 
specific gene regulatory networks constructed with ARACNe [32] thus containing only 540 
predicted TF-target interactions. The finding that especially the high confidence TFs regulons 541 
from DoRothEA outperform pure ARACNe regulons is in agreement with previous 542 
observations [12,33] and emphasizes the importance of combining literature curated 543 
resources with in silico predicted resources. Moreover, we hypothesize based on the pairwise 544 
comparison that for functional genomics analysis the choice of gene sets is of higher relevance 545 
than the choice of the underlying statistical method. 546 
 547 
Related to pathway analysis, both PROGENy and P-AUCell performed well on the simulated 548 
single cells. The original framework of PROGENy uses a linear model that incorporates 549 
individual weights of the footprint genes, denoting the importance and also the sign of the 550 
contribution (positive/negative) to the pathway activity score. Those weights cannot be 551 
considered when applying AUCell with PROGENy gene sets. The slightly higher performance 552 
of PROGENy suggests that individual weights assigned to gene set members can improve 553 
the activity estimation of biological processes.  554 
Especially in the benchmark of both TF analysis methods we observed that the D-AUCell and 555 
metaVIPER performed better on single cells than on the original bulk samples. This trend 556 
becomes more pronounced with increasing library size and number of cells. However, the bulk 557 
based tools perform better on single cells than the scRNA specific tools for both benchmarks. 558 
 559 
Subsequently, we aimed to validate the aforementioned tools on real single cell data. While 560 
we could not find suitable benchmark data of pathway perturbations, we exploited two 561 
independent datasets of TF perturbations to benchmark the TF activity inference methods. 562 
These datasets combined CRISPR-mediated TF knock-out/knock-down (Perturb-Seq and 563 
CRISPRi) with scRNA-seq. It should be noted that pooled screenings of gene knock-outs with 564 
Perturb-seq suffer from an often faulty assignment of guide-RNA and single cell [34]. Those 565 
mislabeled data confound the benchmark as the groundtruth is not reliable. Nevertheless, we 566 
showed that DoRothEA’s gene sets were globally effective in inferring TF activity from single 567 
cell data with varying performance dependent on the used statistical method. As already 568 
shown in the in silico benchmark D-AUCell showed a weaker performance than DoRothEA, 569 
supporting that VIPER performs better than AUCell. Interestingly, metaVIPER’s performance 570 
was no better than random across all datasets. metaVIPER used the same statistical method 571 
as DoRothEA but different gene set resources. This further supports our hypothesis that the 572 
selection of gene sets is more important than the statistical method for functional genomics 573 
analysis. 574 
 575 
Furthermore, the perturbation time had a profound effect on the performance of the tools: while 576 
DoRothEA and D-AUCell worked well for a perturbation duration of 6 (CRISPRi) and 7 days 577 
(Perturb-Seq (7d)), the performance dropped markedly for 13 days.  578 
We reasoned that, within 13 days of perturbation, compensation effects are taking place at 579 
the molecular level that confound the prediction of TF activities. In addition, it is possible that 580 
cells without a gene edit outgrow cells with a successful knock-out after 13 days as the knock-581 
out typically yield in a lower fitness and thus proliferation rate. 582 
 583 
In summary, DoRothEA subsetted to confidence levels A and B performed the best on real 584 
scRNA-seq data but at the cost of the TF coverage. The results of the in silico and in vitro 585 
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benchmark are in agreement. Accordingly, we believe that it is reasonable to assume that also 586 
PROGENy works on real data given the positive benchmark results on simulated data. 587 
 588 
Finally, we applied our tools of interest to a mixture sample of PBMCs and HEK cells profiled 589 
with 13 different scRNA-seq protocols. We investigated to which extent pathway and TF 590 
matrices retain cell-type specific information, by evaluating how well cells belonging to the 591 
same cell type or cell type family cluster together in reduced dimensionality space. Given the 592 
lower numbers of features available for dimensionality reduction using TF and pathway 593 
activities, cell types could be recovered equally well as when using the same number of the 594 
top highly variable genes. In addition, we showed that cell types could be recovered more 595 
precisely using TF activities than TF expression, which is in agreement with previous studies 596 
[18]. This suggests that summarising gene expression as TF and pathway activities can lead 597 
to noise filtering, particularly relevant for scRNA-seq data. Though, TF activities performed 598 
better than pathway activities which is again attributed to the even lower number of pathways.  599 
 600 
Our analysis suggested at different points that the performance of functional genomics tools 601 
is more sensitive to the selection of gene sets than the statistical methods. This hypothesis 602 
could be tested in future by decoupling functional genomics tools into gene sets and statistics. 603 
Benchmarking all possible combinations of gene sets and statistic (i.e. DoRothEA gene sets 604 
with a linear model or PROGENy gene sets with VIPER) would shed light on this question 605 
which we believe if of high relevance for the community. 606 

Conclusions 607 

Our systematic and comprehensive benchmark study suggests that DoRothEA and 608 
PROGENy are effective in inferring TF and pathway activity from scRNA-seq data, 609 
outperforming tools specifically designed for scRNA-seq analysis. We showed the limits of 610 
both tools with respect to low gene coverage and also provided as part of the in silico 611 
benchmark recommendations on how to use DoRothEA’s and PROGENy’s gene sets in the 612 
best way dependent on the number of cells and mean library size. These two parameters are 613 
technology specific, so that our recommendations are transferable to various scRNA-seq 614 
protocols. Furthermore, we showed that TF and pathway activities are rich in cell type specific 615 
information with reduced amount of noise and provide an intuitive way of interpretation and 616 
hypothesis generation. We provide our benchmarks and code to the community for further 617 
assessment of methods for functional analysis. 618 

Methods 619 

PROGENy 620 

PROGENy is a functional genomics tool which infers pathway activity for 14 signaling 621 
pathways (Androgen, Estrogen, EGFR, Hypoxia, JAK-STAT, MAPK, NFkB, PI3K, p53, TGFb, 622 
TNFa, Trail, VEGF and WNT) from gene expression data [11,35]. Pathway activity inference 623 
is based on gene sets comprising the top 100 most responsive genes upon corresponding 624 
pathway perturbation, which we refer to as footprint genes of a pathway. 625 
 626 
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DoRothEA 627 

DoRothEA is a data resource containing signed transcription factor (TF) - target interactions 628 
[12]. Those interactions were curated and collected from different types of evidence such as 629 
literature curated resources, ChIP-seq peaks, TF binding site motifs and interactions inferred 630 
directly from gene expression. Based on the number of supporting evidences each interaction 631 
is accompanied with an interaction confidence score ranging from A-E, with A being the most 632 
confidence interactions. In addition a summary TF confidence score is assigned (also from A-633 
E) which is derived by and subsetted to the leading confidence level of its interactions. 634 
DoRothEA contains in total 470,711 interactions covering 1,396 TF targeting 20,238 unique 635 
genes. We use VIPER in combination with DoRothEA to estimate TF activities from gene 636 
expression data. 637 

VIPER 638 

VIPER is a statistical framework which was developed to estimate protein activity from gene 639 
expression data using enriched regulon analysis performed by the algorithm aREA [14]. It 640 
requires information about (if possibly) signed interactions between a protein and its functional 641 
targets. In the original workflow this regulatory network was inferred from gene expression by 642 
the algorithm ARACNe [32]. However, it can be replaced by any other data resource reporting 643 
protein target interactions. 644 

Simulation of single cells 645 

Let C be a vector representing counts per gene for a single bulk sample. C is normalized for 646 
gene length and library size resulting in vector B containing TPM values per gene. We assume 647 
that samples are obtained from homogenous cell populations and that the probability of a 648 
dropout event is proportional to the relative TPM of each measured gene in the bulk sample. 649 
Therefore, we define a discrete cumulative distribution function from the vector of gene 650 
frequencies 𝑃	 = $

|$|
. To simulate a single cell from this distribution, we draw and aggregate L 651 

samples by inverse transform sampling. L corresponds to the library size for the count vector 652 
of the simulated single cell. We draw L from a normal distribution 𝑁(𝜇, *

+
).  653 

To benchmark the robustness of the methods, we vary the number of cells sampled from a 654 
single bulk sample (1, 10, 20, 30, 50, 100) and the value of μ (1000, 2000, 5000, 10.000, 655 
20.000). To account for stochasticity effects during sampling we repeat this analysis 25 times 656 
for each parameter combination. 657 
Prior to normalization we discarded cells with a library size lower than 100. We normalized the 658 
count matrices of the simulated cells by using the R package scran (version 1.11.27) [36]. 659 
Contrast matrices were constructed by comparing cells originating from one of the perturbation 660 
bulk samples vs cells originating from one of the control bulk samples. 661 

Induction of artificial low gene coverage in bulk microarray data  662 

We induce the reduction of gene coverage with inserting zeros on the contrast level. In detail 663 
we insert for each contrast separately randomly zeros until we obtained a predefined number 664 
of genes with a logFC unequal zero which we consider as “covered”/”measured” genes. We 665 
perform this analysis for a gene coverage of 500, 1000, 2000, 3000, 5000, 7000, 8000 and as 666 
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reference all available genes. To account for stochasticity effects during inserting randomly 667 
zero we repeat this analysis 10 times for each gene coverage value. 668 

Application of PROGENy on single samples and contrasts 669 

We applied PROGENy on matrices of single samples (genes in rows and either bulk samples 670 
or single cells in columns) containing normalized gene expression scores or on contrast 671 
matrices (genes in rows and summarized perturbation experiments into contrasts in columns) 672 
containing log fold changes. In case of single sample analysis the contrasts were built based 673 
on pathway activity matrices yielding the change in pathway activity (perturbed samples - 674 
control sample) summarized as logFC. Independent of input matrix we scaled each pathway 675 
to have a mean activity of 0 and a standard deviation of 1. 676 
We build different PROGENy versions by varying the number of footprint genes per pathway 677 
(100, 200, 300, 500, 1000 or all which corresponds to ~29,000 genes). 678 

Application of VIPER on single samples and contrasts 679 

We applied VIPER with DoRothEA as regulatory network resource on matrices of single 680 
samples (genes in rows and either bulk samples or single cells in columns) containing 681 
normalized gene expression scores scaled gene-wise to a mean value of 0 and standard 682 
deviation of 1 or on contrast matrices (genes in rows and summarized perturbation 683 
experiments into contrasts in columns) containing log fold changes. In case of single sample 684 
analysis the contrasts were built based on TF activity matrices yielding the change in TF 685 
activity (perturbed samples - control sample) summarized as logFC. TFs with less than 4 686 
targets listed in the corresponding input matrix were discarded from the analysis. VIPER 687 
provides a NES enrichment score for each TF which we consider as a metric for the activity. 688 
We used the R package viper (version 1.17.0) [14] to run VIPER in combination with 689 
DoRothEA. 690 
 691 

Application of GSEA with GO gene sets on contrasts 692 

We applied GSEA with gene sets on contrast matrices (genes in rows and summarized 693 
perturbation experiments into contrasts in columns) containing log fold changes that serve 694 
also a gene level statistic. We selected only those GO terms which map to PROGENy 695 
pathways in order to guarantee a fair comparison between both methods. For the enrichment 696 
analysis we used the R package fgsea (version 1.10.0) [37] with 1000 permutations per gene 697 
signature. 698 
 699 

Application of metaVIPER on single samples 700 

We ran metaVIPER with 27 tissue specific gene regulatory networks which we constructed 701 
before for one of our previous studies [12]. Those tissue specific gene regulatory networks 702 
were derived using ARACNe [32] taking the database GTEx [38] as tissue specific gene 703 
expression sample resource. We applied metaVIPER on matrices of single samples (genes in 704 
rows and single cells in columns) containing normalized gene expression scores scaled gene-705 
wise to a mean value of 0 and standard deviation of 1. Contrasts were built based on TF 706 
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activity matrices yielding the change in TF activity (perturbed samples - control sample) 707 
summarized as logFC. TFs with less than 4 targets listed in the corresponding input matrix 708 
were discarded from the analysis. metaVIPER provides a NES integrated across all regulatory 709 
networks for each TF which we consider as a metric for the activity. We used the R package 710 
viper (version 1.17.0) [14] to run metaVIPER  711 
 712 
 713 

Application of AUCell with either DoRothEA or PROGENy gene sets on single 714 
samples 715 

AUCell is a statistical method to determine specifically for single cells whether a given gene 716 
set is enriched at the top quantile of a ranked gene signature. Therefore AUCell determines 717 
the area under the recovery curve to compute the enrichment score. We defined the top 718 
quantile as the top 5 % of the ranked gene signature. We applied this method coupled with 719 
PROGENy and DoRothEA gene sets. Before applying this method with PROGENy gene sets 720 
we subsetted the footprint gene sets to contain only genes available in the provided gene 721 
signature. This guarantees a fair comparison as for the original PROGENy framework with a 722 
linear model the intersection of footprint (gene set) members and signature genes are 723 
considered. We applied AUCell with PROGENy and DoRothEA gene sets on matrices of 724 
single samples (genes in rows and single cells in columns) containing raw gene counts. 725 
Contrasts were built based on respective TF/pathway activity matrices yielding the change in 726 
TF/pathway activity (perturbed samples - control sample) summarized as logFC. For the 727 
AUCell analysis we used the R package AUCell (version 1.5.5) [17] 728 

Benchmarking process with ROC and PR metrics 729 

To transform the benchmark into a binary setup, all activity scores of experiments with 730 
negative perturbation effect (inhibition/knockdown) are multiplied by -1. This guarantees, that 731 
TFs/pathways belong to a binary class either deregulated or not regulated and that the 732 
perturbed pathway/TF has in the ideal case the highest activity. 733 
We performed the ROC and PR analysis with the R package yardstick (version 0.0.3; 734 
https://github.com/tidymodels/yardstick). For the construction of ROC and PR curves we 735 
calculated for each perturbation experiment pathway (or TF) activities using PROGENy (or 736 
VIPER). As each perturbation experiment targets either a single pathway (or TF) only the 737 
activity score of the perturbed pathway (or TF) is associated with the positive class (e.g. EGFR 738 
pathway activity score in an experiment where EGFR was perturbed). Accordingly the activity 739 
scores of all non-perturbed pathways (or TFs) belong to the negative class (e.g. EGFR 740 
pathway activity score in an experiment where JAK-STAT pathway was perturbed). Using 741 
these positive and negative classes Sensitivity / (1-Specificity) or Precision / Recall values 742 
were calculated at different thresholds of activity, producing the ROC / PRC curves.  743 

Collecting, curating and processing of microarray data 744 

We extracted single pathway and single TF perturbation data profiled with classical 745 
microarrays from a previous study conducted by us [35]. We followed the same procedure of 746 
collection, curating and processing the data as described in the previous study. 747 
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Collecting, curating and processing of bulk RNA-seq data 748 

For the simulation of single cells we collected, curated and processed single TF and single 749 
pathway perturbation data profiled with bulk RNA-seq. We downloaded meta data of single 750 
TF perturbation experiments from the ChEA3 web-server 751 
(https://amp.pharm.mssm.edu/chea3/) [33]. Meta data of single pathway perturbation 752 
experiments were manually extracted by us from Gene Expression Omnibus (GEO) [39]. 753 
Count matrices for all those experiments were downloaded from ARCHS4 754 
(https://amp.pharm.mssm.edu/archs4/) [40]. 755 
We normalized count matrices by first calculating normalization factors and second 756 
transforming count data to log2 counts per million (CPM) using the R packages edgeR (version 757 
3.25.8) [41] and limma (version 3.39.18) [42], respectively. 758 

Collecting, curating and processing of scRNA-seq data for benchmark 759 

To benchmark VIPER on real single cell data, we inspected related literature and identified 760 
two publications which systematically measure effects of transcription factors on gene 761 
expression in single cells: 762 
Dixit et al. introduced Perturb-seq and measured the knockout-effects of 10 transcription 763 
factors on K562 cells 7 and 13 days after transduction [19]. We downloaded the expression 764 
data from GEO (GSM2396858 and GSM2396859) and sgRNA-cell mappings made available 765 
by author upon request in the files promoters_concat_all.csv (for GSM2396858) and 766 
pt2_concat_all.csv (for GSM2396859) on github.com/asncd/MIMOSCA. We did not consider 767 
the High MOI dataset due to the expected high number of duplicate sgRNA assignments. Cells 768 
were quality filtered based on expression, keeping the upper half of cells for each dataset. 769 
Only sgRNAs detected in at least 30 cells were used. For the day 7 dataset, 16507, and for 770 
day 13 dataset, 9634 cells remained for benchmarking. 771 
Ryan at al. measured knockdown effects of 50 transcription factors implicated in human 772 
definitive endoderm differentiation using a CRISPRi variant of CROPseq in human embryonic 773 
stem cells 6 days after transduction [20]. We obtained data of both replicates from GEO 774 
(GSM3630200, GSM3630201), which include sgRNA counts next to the rest of the 775 
transcription. We refrained from using the targeted sequencing of the sgRNA in GSM3630202, 776 
GSM3630203 as it contained less clear mappings due to amplification noise. Expression data 777 
lacked information on mitochondrial genes and therefore no further quality filtering of cells was 778 
performed. From this dataset, only sgRNAs detected in at least 100 cells were used. A 779 
combined 5282 cells remained for benchmarking.  780 
Analysis was limited to the 10000 most expressed genes for all three datasets. 781 
We normalized the count matrices for each individual dataset (Perturb-Seq (7d), Perturb-Seq 782 
(13d) and CRISPRi) separately by using the R package scran (version 1.11.27) [36]. 783 

Collecting, curating and processing of scRNA-seq data from cell atlas project 784 

This scRNA-seq dataset originates from a benchmark study of the Human Cell Atlas project 785 
[21]. At the time of writing this dataset is not publicly available but will be accessible from Gene 786 
Expression Omnibus in the near future (GSE133549). The dataset consists of a PBMC’s and 787 
a HEK293T sample which was analyzed with 13 different scRNA-seq technologies (CEL-788 
Seq2, MARS-Seq, Quartz-Seq2, gmcSCRB-Seq, ddSEQ, ICELL8, C1HT-Small, C1HT-789 
Medium, Chromium, Chromium(sn), Drop-seq, inDrop). Most cells are annotated with a 790 
specific cell type/cell line (CD4 T cells, CD8 T cells, NK cells, B cells, CD14+ Monocytes, 791 
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FCGR3A+ Monocytes, Dendritic cells, Megakaryocytes, HEK cells). Cells without annotation 792 
were discarded for this analysis. 793 
We normalized the count matrices for each technology separately by using the R package 794 
scran (version 1.11.27) [36]. 795 

Dimensionality reduction with UMAP and assessment of cluster quality 796 

We used the R package umap (version 0.2.0.0) calling the Python implementation of Uniform 797 
Manifold Approximation and Projection (UMAP) with the argument “method = ‘umap-learn’” to 798 
perform dimensionality reduction on various input input matrices (gene expression matrix, 799 
pathway/TF activity matrix, etc.). We assume that the dimensionality reduction will result in 800 
clustering of cells that corresponds well to the cell type/cell type family. To assess the validity 801 
of this assumption, we assigned a cell-type/cell family specific cluster id to each point in the 802 
low-dimensional space. We then defined a global cluster purity measure based on silhouette 803 
widths [43], which is a well known clustering quality measure. 804 
Given the cluster assignments, in the low-dimensional space, for each cell the average 805 
distance (a) to the cells that belong to the same cluster is calculated. Then the smallest 806 
average distance (b) to all cells belonging to the newest foreign cluster is calculated. The 807 
difference, between the latter and the former indicates the width of the silhouette for that cell, 808 
i.e. how well the cell is embedded in the assigned cluster. To make the silhouette widths 809 
comparable, they are normalized by dividing the difference with the larger of the two average 810 
distances 𝑠 = ./0

102(0,.)
. Therefore, the possible values for the silhouette widths lie in the range 811 

-1 to 1, where higher values indicate good cluster assignment, while lower values close to 0 812 
indicate poor cluster assignment. Finally, the average silhouette width for every cluster is 813 
calculated, and averages are aggregated to obtain a measure of the global purity of clusters. 814 
For the silhouette analysis we used the R package cluster (version 2.0.8). 815 
For statistical analysis of cluster quality, we fitted a linear model score=f(scRNA-seq protocol 816 
+ input matrix), where score corresponds to average silhouette width for a given scRNA-seq 817 
protocol - input matrix pair. Protocol and input matrix are factors, with reference level Quartz-818 
Seq2 and positive control, respectively. We fitted two separate linear model for transcription 819 
factor and pathway activity inference methods. We report the estimates and p values for the 820 
different coefficients of these linear models. Based on these linear models, we performed a 2-821 
way ANOVA, and pairwise comparisons using Tukey HSD post hoc test.  822 
 823 
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Supplemental information 998 

Supplemental figures 999 

1000 
Fig. S1: a Workflow to induce low gene coverage with subsequent benchmark. b Mapping table 1001 
between PROGENy pathways and GO/GO IDs. c,d,e Scatterplot showing how well AUROC and 1002 
AUPRC of c DoRothEA (AB) d PROGENy with 100 footprint genes per pathway and e GO-GSEA 1003 
correspond to each other with respect to gene coverage.  1004 
 1005 
 1006 
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 1007 
Fig. S2: Overview of benchmark dataset for a TF activity and b Pathway activity inference tools. 1008 
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1009 
Fig. S3: Comparison of single cell specific properties between real and simulated single cells. 1010 
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Count distribution of a representative gene for a a real and b simulated single cell. Relationship of 1011 
mean to variance of a representative data set for a c real and d simulated single cell. Relationship of 1012 
library size to number of detected genes for a e real and f simulated single cell. 1013 
 1014 
 1015 
 1016 

1017 
Fig. S4: Variance of multiple performance evaluations (AUROC) of a DoRothEA, b D-AUCell, c 1018 
metaVIPER, d PROGENy and e P-AUCell on single cells for different simulation parameter 1019 
combinations.  1020 
 1021 
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 1022 
Fig. S5: Scatterplot showing how well AUROC and AUPRC of a DoRothEA, b D-AUCell, c metaVIPER, 1023 
d PROGENy and e P-AUCell performance on single cells and bulk correspond to each other with 1024 
respect to different combinations of DoRothEA’s confidence levels or different number of footprint genes 1025 
per pathway. 1026 
 1027 

 1028 
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Fig. S6: Distance heatmaps showing the performance difference of a DoRothEA, b D-AUCell, c 1029 
metaVIPER, d PROGENy and e P-AUCell on single cells and corresponding bulk samples across all 1030 
confidence level combinations or different number of footprint genes per pathway. The letters/numbers 1031 
within the tiles indicates which confidence level combination/number of footprint genes per pathway 1032 
performs the best. The tile marked in red corresponds to the parameter setting used for previous plots 1033 
(Fig. 2 and Fig. S5) 1034 
 1035 
 1036 
 1037 

1038 
Fig. S7: a Overview of benchmark dataset. b Relationship of library size to number of detected genes 1039 
for all benchmark sub datasets. Number of corresponding cells are displayed as well. c logFC of 1040 
perturbed target/TF for the corresponding perturbation experiment for all benchmark sub datasets. d 1041 
Distribution of logFC for all genes and benchmark sub datasets. e Relationship between AUROC and 1042 
AUPRC for all three methods with respect to different combinations of DoRothEA’s confidence levels 1043 
for each sub benchmark dataset. 1044 
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 1045 
Fig. 8. Identification of the best method to determine highly variable genes across single 1046 
cells. We tested three different selection methods related to Seurat (disp = dispersion, mvp = 1047 
mean.var.plot, vst). In addition we included CV (squared coefficient of variation - (sd/mean) 1048 
**2) and MVG (most variable genes - genes with the highest variance). 1049 
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1050 
Fig. S9: a Statistical analysis to evaluate two properties of the cluster purity analysis: i) whether different 1051 
input matrices yield in better cluster purity than the positive control and ii) whether different scRNA-seq 1052 
protocol yield in better cluster purity than Quartz-Seq2 for pathway activity inference tools. This analysis 1053 
was performed independently for all hierarchy levels (Hrchy. Lvl.). Dashed line indicates a p-value of 1054 
0.05. b Comparison of cluster quality between HVGs and TF activity inference tool for all hierarchy 1055 
levels (Hrchy. Lvl.). 1056 

 1057 
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1058 
Fig. S10: a Statistical analysis to evaluate two properties of the cluster purity analysis: i) whether 1059 
different input matrices yield in better cluster purity than the positive control and ii) whether different 1060 
scRNA-seq protocol yield in better cluster purity than Quartz-Seq2 for TF activity inference tools. This 1061 
analysis was performed independently for all hierarchy levels (Hrchy. Lvl.). Dashed line indicates a p-1062 
value of 0.05. b Comparison of cluster quality between HVGs and pathway activity inference tools for 1063 
all hierarchy levels (Hrchy. Lvl.). 1064 
 1065 

 1066 
 1067 
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1068 
Fig. S11: TF activities inferred from gene expression (Quartz-Seq2) using metaVIPER summarized for 1069 
each cell type/cell line separately. 1070 
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