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ABSTRACT: Recent developments in single-cell tran-
scriptomics have created an urgent need for similar ap-
proaches to map the proteome in samples from a mini-
mal number of cells. We optimized multiple steps in 
the mass spectrometry protocol to develop such a 
method, MinPut, with improved sensitivity to quantify 
proteins from as few as 1,000 mammalian cells. Min-
Put uses chemical peptide labeling and does not require 
specific equipment, antibodies, or other materials. 
MinPut quantifies >2,500 proteins with high reproduci-
bility. We established and validated the method by 
comparing mouse embryonic stem cells and in vitro 
differentiated motor neurons. MinPut correctly identi-
fies differentially expressed proteins with small fold-
changes, and a dynamic range in abundance similar to 
that of standard methods. Protein abundance measure-
ments obtained with MinPut compare well to corre-
sponding transcript abundance and to measurements 
using standard inputs. Therefore, MinPut offers a ro-
bust and accurate method to acquire proteomics data 
from minimal input samples.  

Introduction 
Typical proteomics experiments require a minimum 

of ~50,000 mammalian cells (ideally 500,000) to de-
rive enough sample to identify 2,000 to 5,000 proteins 
in a single-shot tandem mass spectrometry experiment, 
depending on instrumentation and setup (Figure 1a). 
To increase the number of identified proteins, more 
material is required to conduct extensive chromato-
graphic separation. Moreover, numerous biological 
systems, including biopsies and other rare and precious 
samples, yield much lower numbers of cells, in the or-
der of hundreds to thousands. Therefore, there remains 

a need for proteomic methods for minimal sample in-
put with optimized coverage and reproducibility1.  

Despite these challenges, recent years have seen sev-
eral advances in processing small samples. Some of 
these methods have made use of specialized systems 
such as custom designed platforms2–4 that enabled high 
resolution in tens of cells or even single cells. Other 
systems have employed specific antibodies, such as 
CyTOF5, CITE-seq6 and proximity ligation assays7, 
which create sensitive but limited measurements. Fur-
ther, some methods have relied on specific material 
such as paramagnetic beads8 or collection microreac-
tors9 to maximize yield from little starting material. 

A recently developed protocol, SCoPE-MS, analyzes 
proteins from single, hand-picked mammalian cells via 
Tandem Mass Tagging (TMT) coupled to conventional 
mass spectrometry10(Figure 1a). In a standard 10plex 
TMT experiment, peptides from 10 different samples 
are labeled with sample-specific mass tags and then 
pooled. During the subsequent tandem-mass spectrom-
etry experiment, the tags are indistinguishable by mass 
at the first ‘precursor’ level and therefore isolated to-
gether. In the subsequent second level of analysis, the 
peptides and tags are fragmented: the peptides can be 
sequenced and each tag’s channel is quantified through 
ion intensity measurements (Figure 1a). In SCoPE-
MS, one channel in the setup is dedicated to a ‘carrier’ 
with peptides at high abundance that produce enough 
signal for reliable peptide identification (Figure 1a). 
The remaining channels contain the experimental sam-
ples. Their peptides’ abundance is too low for identifi-
cation, but the intensities of mass tags are available for 
quantitation. The fundamental idea of the approach is 
therefore to separate peptide identification and quanti-
tation. However, single cell proteomics still struggles 
with proteome coverage and reproducibility (Figure 
1a).   
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Figure 1. Optimization of the minimal sample protocol - requirements, expectations, and areas of optimization. The 
panels describe testing of the need for carrier channel, carrier channel input size and position. a. The table provides an 
overview of requirements and expected results for standard proteomics protocols, a recently developed single-cell 
method, and MinPut. b. We optimized the buffer composition and cell lysis method; the graph shows the numbers of 
protein groups detected by label-free mass spectrometry using FACS-purified 5,000 ES cells. The error bars show 
standard deviation. c. The panel shows an overview of the cell numbers used for different purposes in the protocol and 
comparisons. d. We compared TMT setups for using 1,000 cells with and without carrier channel and using 60,000, 
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20,000, and 10,000 cells for the carrier channel. The graph shows the numbers of protein groups detected using the ex-
perimental setup below. The error bars show standard deviation. e. We show that the carrier channel affects neighbor-
ing channels at 1 Thompson distance using a 10plex TMT experiment with empty channels 2-8 and sample from 
10,000 cells in channels 1 and 10. ESC - embryonic stem cells, MN - motor neurons, FACS - fluorescence-activated 
cell sorting, TMT - tandem mass tag 
 

To address these challenges, we developed a 
straightforward and robust method for mass spectrome-
try analysis of samples from a small number of cells. 
The minimal input method, called MinPut, uses 1,000 
cells, does not require special tools or reagents and 
quantifies >2,500 proteins per sample (Figure 1a). 
Quantification accuracy and reproducibility as well as 
correlation with transcript abundances are comparable 
with those of standard proteomics. We established and 
validated the method in mouse embryonic stem cells 
and in vitro differentiated motor neurons.  

 Results  
Simplified protein extraction to maximize sample reten-
tion   

To develop the MinPut protocol and assess its perfor-
mance, we optimized the mass spectrometry workflow 
at several steps and employed an established in vitro 
differentiation paradigm to compare between mouse 
embryonic stem cells (ESC) and motor neurons (MN) 
(Figure 1b)11. First, we tested different sonicators and 
buffers for cell lysis using 5,000 mouse embryonic 
stem cells purified by fluorescence-activated cell sort-
ing (FACS) and label-free mass spectrometry (Figure 
1c). We compared the results to those from a standard 
input sample, which was prepared from ~10 µg of pro-
tein. This amount of protein can typically be derived 
from ~500,000 mammalian cells. The standard sample 
preparation included cell lysis with a phosphate buff-
ered saline-based buffer without detergent, using the 
Bioruptor sonicator and clean-up of peptides with re-
serve phase filters. For mass spectrometry analysis, we 
injected all of the peptides derived from the minimal 
input samples and 600 ng from the standard samples.  

In contrast with other methods for small-sample 
analysis4,10, the Bioruptor sonicator outperformed the 
Covaris sonicator with respect to protein identification 
(Figure 1b). Further, we omitted detergent from the ly-
sis buffer, as it did not improve protein identification. 
We also omitted peptide reduction and alkylation 
which is used in standard sample preparations, as the 
peptide loss outweighed the procedures’ benefits (not 
shown). The results are reproducible using peptide in-
stead of protein identifications (Suppl. Figure 1). For 
all cell lysis methods, protein abundances correlated 

well between technical replicates and more so than 
across methods (average R2 = 0.93, Suppl. Figure 2).  

Experimental design for protein quantitation with pep-
tide mass tags 

Next, we optimized the use of 10plex TMT labeling 
with a carrier channel for peptide quantitation. As a 
carrier, we used a pool of equal proportions of both cell 
types analyzed in the samples. First, we showed that 
the use of a carrier channel was essential to improve 
protein identification compared to a setup with mini-
mal input in all channels (“No carrier”, Figure 1d, first 
3 bars). Second, we showed that using samples as 
small as 1,000 cells per channel yielded comparable 
protein identifications and reproducibility to those us-
ing 5,000 cells (Suppl. Figure 3).  

Third, we showed that the carrier should ideally be 
placed in channel 10 with channel 8 empty as it pro-
duced erroneous signals in specific neighboring chan-
nels. To test this “leakiness”, we used a TMT setup 
with channels empty except for positions 1 and 10 
which both contained peptides prepared from 10,000 
cells (Figure 1e). The carrier in channel 1 produced 
signals in channels 2, 3 and 5. The carrier in channel 
10 did not affect channel 9 immediately adjacent to it. 
However, we observed a substantial signal at the -1 
Thompson distance to the carrier in channel 10, i.e. in 
channel 8, indicating contamination of the mass tag 
with the light isotope. Indeed, the observed intensity 
in channel 8 was about 3-4% of the total intensity in 
channel 10, consistent with the contamination with the 
light isotope as reported by the company. For this rea-
son, we placed the carrier into channel 10 and left 
channel 8 empty in all subsequent TMT experiments.  

Finally, we minimized the size of the carrier channel, 
as a low carrier-to-sample ratio is advantageous with 
respect to signal strength (Suppl. Figure 4). In addi-
tion, smaller carriers require less cell sorting. We tested 
carrier channels with peptides derived from 60,000, 
20,000, and 10,000 cells. We found that the carrier 
from 10,000 cells provided similar protein identifica-
tion and reproducibility similar to the larger carrier 
channels. We thus used this carrier size in subsequent 
experiments, resulting in a final carrier-to-sample ratio 
of 10,000:1,000 = 10:1 (Figure 1d, last 3 bars).
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Figure 2. MinPut’s protein abundance measurements are accurate and reproducible a. The flowchart illustrates the MinPut 
protocol with points of optimization. b. The first principal components of minimal and standard sample input data separate 
based on the protocol used as well as the two different cell types. The analysis was done using 1763 protein groups that were 
identified in both minimal and standard preparations. c. Protein abundances fold changes from minimal and standard sample 
input preparations correlate well (R2 = 0.78 and 0.77, respectively). The analysis was done using 1763 protein groups that 
were identified in both minimal and standard preparations. d. Differentially expressed proteins have similar function enrich-
ments between the MinPut and standard protocol (p-value<0.05). e. The MinPut and standard input protocols overlap in their 
results with respect to identification of proteins that are significantly differentially up- or down-regulated (p-value<0.05). 
There is significant overlap between the up- and down-regulated proteins from either preparation (p=2.070e-192 and 
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p=7.639e-164 for MN vs. ESC down-regulated and up-regulated, respectively, hypergeometric test). The proteins found in 
common in the opposing groups are not significant (p=0.221 and p=0.191, hypergeometric test). 

 
We evaluated MinPut’s ability to reveal differential 

protein expression using an established in vitro motor 
neuron differentiation protocol from mouse embryonic 
stem cells11. The system is well-established with 
known markers of successful differentiation. While re-
quiring only 1/50 of the number of cells, MinPut’s pro-
teome coverage reached almost 90% of what we de-
tected in single-shot standard proteome analysis, i.e. 
2,483 compared to 2,828 proteins, Figure 1d). Repli-
cate experiments correlated with an average of 
R2=0.99 in log-log abundance plots (Suppl. Figure 5), 
indicating high reproducibility.  
 Validating accuracy of measured protein abundance 

Figure 2a shows an overview of the final MinPut 
protocol which uses 1,000 cells in experimental sample 
channels and 10,000 cells in the carrier channel. We 
validated MinPut’s protein quantitation accuracy in 
samples from mouse embryonic stem cells and differ-
entiated motor neurons in several ways. First, we com-
pared the protein abundances analyzing samples from 
the standard and minimal input preparations. The first 
two principal components of the respective experi-
ments explained a total of 77% of the variation in the 
data (Figure 2b). The first component separated the 
two experiments according to the number of cells used 
as input. The second component separated the two cell 
types providing a first indication of MinPut’s ability to 
produce biologically meaningful protein quantitation.  

Second, we confirmed the consistency between the 
MinPut and standard protocol by direct correlation of 
the measured protein abundances in the two cell types: 
the correlation coefficient ranged between 0.81 and 
0.77 between the two protocols (Figure 2c). Third, 
both minimal and standard input preparations showed 
similar correlation with corresponding transcript abun-
dances as taken from bulk RNA sequencing samples 
from the same differentiation paradigm12, with coeffi-
cients ranging from 0.39 to 0.43 (Suppl. Figure 6).  

Finally, we validated MinPut’s ability to identify dif-
ferentially expressed proteins. To do so, we selected 
229 and 195 proteins from the MinPut experiments 
with significant up- and down-regulation in motor neu-
rons compared to stem cells, respectively (q-
value<0.01, Student’s t-test, Figure 2d). The proteins 
up-regulated in motor neurons were significantly en-
riched in several biological functions such as axo-den-
dritic transport and neuron projection morphogenesis 
(p-value<0.05, Fisher’s exact test, Figure 2d, Suppl. 
Figure 7). For example, the neuron marker genes 
AINX13, MAP1B14, RABP114,15, STMN216 and 
TBB317 are all up-regulated in motor neurons (Suppl. 
Figure 9). In addition, the differentially expressed pro-
teins are significantly enriched in plasma membrane 

proteins (p-value<0.01), some of which are the known 
neuron markers MAP1B and STMN2.  

We also compared significantly differentially ex-
pressed proteins between the MinPut and standard 
sample preparations (Figure 2e). While more proteins 
were identified using the standard preparation and 
more proteins were differentially expressed between 
the two cell types (Suppl. Figure 8), the up- and 
down-regulated proteins from either preparation over-
lapped significantly (p<0.0001 for MN vs. ESC down-
regulated and up-regulated, hypergeometric test). 
There are virtually no proteins in the opposing groups 
(p=0.22 and p=0.19, hypergeometric test). Combined, 
these results support MinPut’s ability to quantify pro-
teins correctly and to identify significantly differen-
tially expressed proteins.  

Discussion 

We present a straightforward and robust protocol, 
MinPut, for use of minimal input (1,000 cells) for pro-
teomics analysis. The method quantifies ~2,500 pro-
teins in mammalian cells and sensitively identifies dif-
ferential expression. Further, we show that protein 
abundances measured by MinPut correlate well with 
transcript abundances of similar samples, and have 
high reproducibility across replicates. The correlation 
coefficients are similar to those reported for other cell 
systems18.  

In sum, we provide a protocol that uses sample 
amounts achievable by, for example, dissection of spe-
cific cell types or tissues in vivo or FACS purification 
of rare cell populations, enabling analysis of highly 
specific cell populations. MinPut achieves quantitation 
accuracy and reproducibility similar to that of standard 
proteomics. In addition, MinPut does not require spe-
cific equipment or reagents. Therefore, it enables anal-
ysis of systems in which it is very difficult to obtain 
large numbers of cells.  

Data availability 
The mass spectrometry data including the MaxQuant 

output files have been deposited to the Proteo-
meXchange Consortium via the PRIDE19 partner re-
pository with the dataset identifier PXD015123. 
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