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Abstract 

Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in 

response to cytokines. However, the cytokine responses in memory T cells remain largely 

understudied. We used quantitative proteomics, bulk RNA-seq and single-cell RNA-seq of 

over 40,000 human naïve and memory CD4+ T cells to generate a detailed map of cytokine-

regulated gene expression programs. We demonstrated that cytokine response differs 

substantially between naïve and memory T cells and showed that memory cells are unable to 

differentiate into the Th2 phenotype. Moreover, memory T cells acquire a Th17-like phenotype 

in response to iTreg polarization. At the single-cell level, we demonstrated that T cells form a 

continuum which progresses from naïve to effector memory T cells. This continuum is 

accompanied by a gradual increase in the expression levels of chemokines and cytokines and 

thus represents an effectorness gradient. Finally, we found that T cell cytokine responses are 

determined by where the cells lie in the effectorness gradient and identified genes whose 

expression is controlled by cytokines in an effectorness-dependent manner. Our results shed 

light on the heterogeneity of T cells and their responses to cytokines, provide insight into 

immune disease inflammation and could inform drug development.  
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Introduction 

A healthy immune system is characterized by efficient communication between cells, which 

facilitates a quick response to a wide variety of pathogens. This communication is mediated 

by cytokines. Upon binding to their receptors, cytokines trigger a signaling cascade which 

culminates with the induction of gene expression programs1,2. This promotes the differentiation 

of target cells into effector cell types. This process is particularly relevant for CD4+ T cells, 

which coordinate the downstream response of various immune cells (e.g. CD8+ T cells, 

macrophages and B cells)3. Triggering of the T cell receptor (TCR) and co-stimulatory 

molecules activates naïve CD4+ T cells, which are then directed by cytokines to polarize into 

various T helper (Th) phenotypes. These include Th1, Th2 and Th17, which secrete IFN-γ, IL-

4 and IL-17, respectively4–7. Moreover, in response to transforming growth factor beta (TGF-

β), naïve CD4+ T cells acquire regulatory potential (induced regulatory T cells, iTreg) and 

suppress effector T cell responses8. 

Previous in vitro studies investigated how cytokines modulate T cell function9–18, increasing 

our understanding of cytokine-induced polarization. Nonetheless, most studies have focused 

exclusively on naïve CD4+ T cells, altogether excluding memory cells. This is in part due to 

the premise that, once T cells undergo stimulation and respond to a cytokine, the phenotype 

acquired by CD4+ T cells remains mostly stable. Recent studies have challenged this idea, 

providing evidence that cytokines can reprogram the phenotypes of polarized T cells2,19,20. For 

example, IL-6 can convert Treg cells to a pathogenic Th17-like phenotype under arthritic 

conditions21. Furthermore, Th17 cells upregulate TBX21 and IFN-γ in response to Th1-

polarizing cytokines22, and infection-induced Th17 cells from the gut can secrete a variety of 

inflammatory cytokines, e.g. the Th1 cytokine IFNγ23. These observations highlight the 

remarkable plasticity of CD4+ T cells and suggest that memory cells retain the ability to 

respond to cytokines. However, understanding the effects of cytokines on memory T cells is 

challenging because circulating memory T cells are heterogeneous, comprised of multiple 

subpopulations such as central and effector memory cells24–26. 

Cytokines also play a central role in autoimmunity and are often tractable, and successful 

therapeutic targets. Twenty-five years ago, injectable IFN-β was approved as the first disease 

modifying therapy (DMT) for multiple sclerosis27, yet the therapeutic mechanism is still 

unknown. Another DMT for multiple sclerosis is an immune modulator which shifts the cytokine 

profile of pro-inflammatory Th1 cells to anti-inflammatory Th2 cells28. These observations are 

not yet fully understood and illustrate how increasing our understanding of cytokine responses 

is crucial for improved drug development. 
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Finally, genetic studies have implicated CD4+ T cells, and particularly memory T cells, in the 

biology of many common complex immune diseases29–31, suggesting that it is especially 

relevant to understand cytokine responses in memory T cells. Therefore, limiting the study of 

cytokines to the naïve T cell compartment could bias our understanding of the processes 

underlying pathologic inflammation. 

In this study, we characterized the response of naïve and memory CD4 T cells to five different 

cytokine conditions influencing inflammation and immune diseases. To account for the 

dynamic nature of cytokine responses, we profiled cells at two different time points following 

stimulation. We also examined cells in the resting state, resulting in a total of 12 distinct cell 

states. We used these profiles to generate a detailed map of gene and protein expression 

changes induced by cytokines. This map leverages information from quantitative proteomics, 

RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) of over 40,000 single T cells, 

thus providing a comprehensive resource with exceptional resolution. We found that naïve T 

cells responded differently to cytokines than memory T cells. At the single-cell level, we 

recapitulated previously described CD4+ T cell subpopulations and found that T cells did not 

form discrete groups of cells but instead formed a continuum characterized by a gradual 

increase in the expression level of chemokines, granzymes and other effector molecules. 

Importantly, this gradient was present in the resting state, persisted after stimulation and 

determined how cells respond to cytokines by modulating the magnitude of cytokine-induced 

gene expression changes. 

Results 

Study design 

To investigate the effects of cytokines on the two main subsets of human CD4+ T cells, we 

purified CD4+ CD25- CD45RA+ CD45RO- naïve T (TN) cells and CD4+ CD25- CD45RA- 

CD45RO+ memory T (TM) cells (Supplementary Figure 1A and Methods). We then 

stimulated the cells with anti-CD3/anti-CD28 coated beads in the presence of different 

cytokine cocktails (Figure 1A, Figure 1B and Supplementary Table 1). We selected cytokine 

cocktails to polarize TN and TM cells towards four major T helper phenotypes (Th1, Th2, Th17 

and iTreg). In addition, we included IFN-β due to its role as a therapy in multiple sclerosis32,33. 

In order to distinguish T cell responses to TCR/CD28-activation from responses induced 

specifically by cytokines, we stimulated cells with anti-CD3/anti-CD28 beads in the absence 

of any cytokines (Th0). Finally, we also cultured cells without neither stimulation nor cytokines 

(resting cells). We profiled gene expression (RNA-seq) for early transcriptional responses (16 

hours after stimulation, before cell proliferation) and late transcriptional responses (5 days 
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after stimulation, after cell proliferation), when cells are thought to acquire an effector 

phenotype. To comprehensively characterise cellular states at the late time point, we also 

profiled the whole proteome using isobaric labelling with two-dimensional liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), as well as the transcriptome at the 

single cell level (scRNA-seq) (Methods).  

 

 
Figure 1. TCR/CD28-activation induces cell type specific gene expression programs in CD4+ T 
cells. A) Overview of the experimental design. B) List of cytokine conditions. C) PCA plots from the 
whole transcriptome (upper panel) and proteome (lower panel) of TN and TM cells. Different colors 
correspond to cell types and different shades to stimulation time points. D) Gene expression changes 
at the RNA and protein levels by comparing TCR/CD28-activated (Th0) cells to resting cells. Up-
regulated genes are in red and down-regulated genes are in blue. Different shades indicate different 
fold-change thresholds. E) A selection of significantly enriched pathways (with enrichment scores > 0.7) 
from genes and proteins differentially expressed after five days of activation using the 1D enrichment 
method. 
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TCR/CD28-activation induces well-defined gene expression programs in naïve and 

memory T cells 

To understand TN and TM cell responses to T cell activation (TCR/CD28-activation), we 

compared the transcriptomes of activated and resting cells. We observed that the main source 

of variation across the full transcriptome and proteome was T cell activation, with resting cells 

clustering separately from activated cells (Figure 1C). Activated cells also clustered by 

duration of stimulation (16 hours and five days) and cell type (TN and TM), suggesting that the 

response to T cell stimulation is dynamic and cell type specific (Figure 1C). We then tested 

for differential RNA and protein expression between resting and activated (Th0-stimulated) TN 

and TM cells. We identified a large number of changes which develop in response to 

stimulation (Figure 1D, Supplementary Tables 2 and Supplementary Table 3). At the RNA 

level, 8,333 and 7,181 genes (corresponding to approximately 40% of the transcriptome) were 

differentially expressed after 16 hours of activation in TN and TM cells, respectively. This 

number was comparable after five days (7,705 and 7,544 in TN and TM cells). At the protein 

level, we identified 4,009 and 3,443 differentially expressed proteins (approximately 35% of 

the proteome data) after five days of activation in TN and TM cells, respectively. These genes 

formed a well-defined expression program characterized by upregulation of the cell cycle and 

targets of the E2F family of transcription factors, as well as the type I IFN response (Figure 
1E and Supplementary Table 4). Conversely, TN and TM cells downregulated components of 

the respiratory chain complex in response to activation (Figure 1E). This is in line with previous 

observations suggesting that T cell activation induces proliferation and profound metabolic 

changes to support effector responses34. Importantly, these conclusions were consistent 

between RNA and protein. 

 

Cytokines induce cell type specific gene expression programs in naïve and memory 
CD4+ T cells 

We next investigated how cytokines modulate gene expression in TN and TM cells. We first 

performed PCA on the full proteome and transcriptome, treating time points and cell types 

independently. While there were few cytokine effects at 16 hours (Supplementary Figure 
1B), we observed clear clustering by cytokine condition at five days (Figure 2A) that were 

consistent between transcriptome and proteome. To disentangle cytokine effects from those 

of T cell activation (TCR/CD28-activation), we compared stimulated cells exposed to cytokines 

to Th0-stimulated cells (Supplementary Table 2 and Supplementary Table 3). Most cytokine 

induced changes were only apparent after five days of stimulation (Figure 2B), with the 

exception of IFN-β. For example, Th17-stimulation induced only 42 differentially expressed 

genes after 16h in naïve cells at the RNA level, compared to 1,818 differential genes induced 
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after 5 days. This pattern was similar for other cytokine conditions. In contrast, IFN-β induced 

a large number of early transcriptional changes (357 genes at 16h and 329 after 5 days in TN 

cells), reflecting its’ role in the fast response to viruses. These results suggest that early 

changes in gene expression are dominated by the effects of T cell activation alone, while the 

expression programs characteristic of differentiated Th cells are apparent at the later stages 

of stimulation. This implies that cytokine polarization occurs not in parallel but after the 

initiation of T cell activation.  
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Figure 2. Cytokines induce cell type specific gene expression programs in CD4+ T cells. A) PCA 
plot from the full transcriptome and proteome of TN and TM cells following five days of cytokine 
stimulations. Only stimulated cells were included in this analysis. B) Gene expression changes at the 
RNA and protein levels from pairwise comparisons between cytokine-stimulated cells and Th0-
stimulated cells. Up-regulated genes are in red and down-regulated genes are in blue. Different shades 
indicate different fold-change thresholds. C) A selection of significantly enriched pathways (with 
enrichment scores > 0.7) from differentially expressed genes and proteins using the 1D enrichment 
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method. D) Volcano plots highlighting significant differences in gene and protein expression between 
Th17 and iTreg-stimulated TN and TM cells. Red indicates expression upregulation in iTreg with respect 
to Th17-stimulation, blue indicates expression upregulation in Th17 with respect to iTreg-stimulation. 
Labels were added to IL17, FOXP3 and the top 20 most differentially expressed genes. E) Cell state 
specific gene signatures defined using jointly RNA and protein expression. Colours encode normalized 
(Z-scored) gene and protein expression levels. Example genes for each signature are labeled. 

 

Since cytokine induced effects mainly manifested five days after stimulation, we subsequently 

focused on the late time point to further elucidate changes in gene and protein expression 

driven by different cytokines. We then compared these effects between TN and TM cells. In 

general, the number of cytokine-induced changes in RNA and protein expression was 

comparable between TN and TM cells (Figure 2B). However, Th2-stimulation clearly triggered 

different responses between the two cell types, resulting in differential expression of 944 

genes in TN cells compared to 49 in TM cells. We observed the same trend at the protein level, 

where 290 proteins were differentially expressed in TN cells but no differences were detected 

in TM cells in response to Th2-stimulation (Figure 2B). This was true despite TM cells 

expressing comparable levels of the IL-4 receptor than TN cells (Supplementary Figure 2A). 

This suggested that TM cells cannot be polarized towards the Th2 phenotype.  

We next sought to translate these observations to cellular functions and pathways. We 

observed that the genes and proteins differentially expressed upon cytokine stimulation 

formed well-defined expression programs and were enriched in relevant pathways (Figure 2C 

and Supplementary Table 4). As expected, stimulation with IFN-β induced upregulation of 

the type I IFN response in both TN and TM cells, while Th2-polarization of TN cells suppressed 

this pathway, likely reflecting that Th2-polarization involves IFN-γ blockade. Importantly, these 

effects were concordant between RNA and protein. Furthermore, we found that Th1-

stimulation of TN cells induced metabolic changes such as increased cholesterol and terpenoid 

synthesis, while Th2-stimulation increased the expression of genes involved in amino acid 

metabolism (Figure 2C). Interestingly, some pathways showed opposite effects between TN 

and TM cells upon cytokine stimulation. For example, while Th17-stimulation of TN cells 

induced downregulation of the type I IFN response, Th17-stimulation of TM cells increased the 

activity of this same pathway. We observed a similar pattern upon iTreg-stimulation, with the 

type I IFN response being upregulated in TM but not in TN cells (Figure 2C). These 

observations suggest that Th17 and iTreg-stimulation conditions induce different cell states in 

TN than in TM cells.  

 

Th17 and iTreg cells have been extensively linked to autoimmune inflammation and immune 

suppression. Polarization to both of these cell states requires the presence of TGF-β and there 

is evidence of interconversion between the two cell phenotypes21, suggesting that their 
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functions may be interrelated. Consistent with these observations, we found that Th17 and 

iTreg-stimulated TN and TM cells were more similar to each other than to any other cell state 

and formed a single cluster on the PCA plot (Figure 2A). This similarity was captured by both 

proteome and transcriptome. This was in sharp contrast with TN cells, where the two cytokine-

induced cell states formed separate groups. Importantly, both cell types expressed 

comparable levels of the TGF-β and IL2 receptors (Supplementary Figure 2B and 

Supplementary Figure 2C). To further test whether Th17 and iTreg-stimulation induced the 

same phenotype in TM cells, we compared the expression of genes between the two cell states 

(Figure 2D, Supplementary Table 2 and Supplementary Table 3). Only 42 genes and no 

proteins were differentially expressed between the two cytokine conditions in TM cells at the 

selected thresholds (LFC > 1 at 0.05 FDR for RNA-seq and LFC > 0.5 at 0.1 FDR for 

proteomics). In contrast, in TN cells 733 genes and 455 proteins were differentially expressed 

between iTreg and Th17-stimulated cells (Figure 2D). In particular, iTreg-stimulated TN cells 

expressed higher levels of FOXP3, IKZF4 and LGALS3, while Th17-stimulated TN cells 

expressed higher levels of IL17F, TNFRSF8 and PALLD. Therefore, while TN cells acquire 

different phenotypes upon Th17 and iTreg-polarization, both cytokine conditions polarize TM 

cells towards the same cell state.  

 

Cell state specific gene signatures from proteome and transcriptome  

Our results suggested that these cytokines act in a cell type specific manner to induce five 

well-defined cell states in TN cells (Th1, Th2, Th17, iTreg and IFN-β) and three well-defined 

cell states in TM cells (Th1, Th17/iTreg and IFN-β, while lack Th2 response). We next set out 

to identify the most specific genes characterizing these cell states. We confirmed that RNA 

and protein expression showed high correlation in our data, both at the sample and at the 

gene level (Supplementary Figure 1C and 1D). Thus, we applied a multi-omics approach 

which leveraged both layers of molecular information to derive robust cell state gene 

signatures (Methods). This approach allowed us to identify genes with concordant effects in 

the two assays, thus increasing our confidence that we captured true cytokine-induced effects. 

In brief, we identified differentially expressed RNA-protein pairs and asked if any of these pairs 

were present at a higher level in one cell state compared to the rest. In this way, we derived a 

measurement of cell state specificity for each gene, where genes with higher specificity than 

expected by chance were included in a cell state specific proteogenomic signature (Methods). 

Because we derived these signatures jointly from transcriptome and proteome, our signatures 

were sensitive to relative changes in both RNA and protein levels.  
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In TN cells we identified 105 signature genes corresponding to one of the five different cell 

states (5 genes for Th1, 20 for Th2, 20 for Th17, 10 for iTreg, and 50 for IFN-β) (Figure 2E 

and Supplementary Table 5). The TN IFN-β signature contained well established antiviral 

genes involved in IFN-regulated functions such as RNAse L induction (OAS2, OAS3), GTPase 

activity (MX1, MX2) and cell lysis (GZMA, GZMB)35. Signatures of other TN cell states also 

included well known hallmark genes, such as GATA3 (Th2 signature), TBX21 (Th1 signature) 

and FOXP3 (iTreg signature) (Figure 2E). This illustrated that our approach accurately 

identified known markers of cytokine polarization. Moreover, we observed genes highly 

specific to Th1 (ANXA3), Th2 (MAOA, LIMA1, MRPS26), Th17 (TNFRSF8, RUNX1, PALLD) 

and iTreg (LMCD1, LGALS3, CCL5) cell states which have not been previously described in 

the context of cytokine polarization.  

We performed the same analysis for TM cells, where we identified 162 signature genes 

corresponding to one of the three cell states (three for Th1, 145 for Th17/iTreg and 14 for IFN-

β genes) (Figure 2E and Supplementary Table 5). Since Th17 and iTreg-stimulated TM cells 

overlapped on both the RNA and protein levels, we treated them as one phenotype in this 

analysis. We observed that the IFN-β signature was substantially different in TM compared to 

TN cells (only 6 genes overlapped between both signatures). Nonetheless, it contained well 

known antiviral genes such as HERC6 and GZMB. Several Th17/iTreg TM signature genes 

were also present in the iTreg and Th17 signatures derived from TN cells (CCL5, LGALS3, 

TNFRSF8) or had been previously linked to one of the two phenotypes in the literature 

(BACH2, BATF3, AHR), suggesting that Th17/iTreg TM cells might have overlapping functions 

with the Th17 and iTreg states in TN cells. The signature genes identified with our approach 

provide a valuable resource for future follow-up studies in specific biological contexts or 

disease settings.  

Single-cell transcriptomics reveals a CD4+ T cell effectorness gradient 

Our results showed that the gene expression programs induced in response to cytokines can 

differ substantially between TN and TM cells. While TN constitute a rather uniform cell 

population, TM cells are composed of multiple subpopulations including central (TCM) and 

effector (TEM) memory cells, as well as effector memory cells re-expressing CD45RA (TEMRA). 

Given this heterogeneity, we speculated that the observed differences in cytokine responses 

could be explained in two ways: i) TM cells, as a whole, are unresponsive to certain cytokines, 

or ii) specific subpopulations of TM
 cells respond to cytokines but the measured bulk gene 

expression profiles are dominated by a large proportion of unresponsive cells. To address this, 

we profiled single-cell gene expression in a total of 43,112 TN and TM cells, which included 

resting cells, as well as cells exposed to Th0, Th2, Th17 and iTreg-stimulation.  
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First, we isolated TN and TM cells from four healthy individuals and quantified gene expression 

in the resting state using droplet-based single-cell RNA-sequencing36 (Methods and 
Supplementary Figure 3A). In total, we profiled 5,269 resting T cells (2,159 TN and 3,110 TM 

cells respectively), with an average of 1,146 genes detected per cell. We identified 64 highly 

variable genes, which we used for dimensionality reduction and embedding with the uniform 

manifold approximation (UMAP)37, as well as for unsupervised cell clustering (Methods). We 

identified five distinct groups of cells (Figure 3A) which we annotated as TN, TCM, TEM, TEMRA 

and natural T regulatory (nTreg) cells based on the expression of well established cell type 

markers (Figure 3B and Supplementary Table 6). TEMRA cells showed a distinct 

transcriptional profile characterized by high expression of cytotoxic genes (eg. PRF1, CCL4, 

GZMA, GZMH), consistent with previous observations25. Importantly, these cells expressed 

comparable levels of CD4 and no CD8. The proportions of cells detected in each cell 

subpopulation were comparable across all biological replicates (Figure 3A). We observed that 

TN cells were mostly a homogeneous group of cells. However, a small percentage of TEMRA 

cells were originally isolated as TN cells (as they re-express the CD45RA marker) and could 

only be correctly identified at the single-cell level. 
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Figure 3. Effectorness gradient in resting CD4+ T cells. A) UMAP of single-cell RNA-seq data from 
resting T cells. Colors represent cells in the five clusters defined using top variable genes and 
unsupervised clustering. Bar plots represent the proportion of cells assigned to different clusters in each 
biological replicate. B) Gene markers of each cell cluster (Wilcoxon rank sum test) combined with well 
known markers from the literature. Colors encode the mean expression of each gene in each cluster. 
C) Branched pseudotime trajectory, each cell is colored by its pseudotime value (left panel) or its cluster 
label (right panel), as determined in panel A. D) Heatmap of genes variable along the pseudotime 
trajectory (from Monocle). The X axis represents cells ordered by pseudotime (from left to right) and 
different colors correspond to the scaled (Z-scored) expression of each gene in each cell. 
 
In addition, our results suggested that CD4+ T cells do not consist of discrete subpopulations. 

Instead, different subsets of T cells localized to different areas of the same population within 

the UMAP space (Figure 3A), suggesting that they form one population with multiple 

interrelated transcriptional states. To investigate the relationships between these states we 

applied pseudotime analysis38 to determine if the cells formed a continuous trajectory. We 

identified a clear trajectory, starting with TN cells and gradually progressing towards TM cells. 
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The cells at the beginning of this trajectory expressed high levels of naïve markers (e.g. 

CD62L, CCR7 and LRRN3). In contrast, the end of the trajectory was enriched in cells 

expressing high levels of cytotoxic molecules (e.g. GZMA, GZMB and PRF1). This approach 

confirmed that transcriptionally CD4+ cells formed a natural progression from the least effector 

(TN) to the most effector (TEMRA) cell subset (Figure 3C), with nTreg cells branching separately 

from the main trajectory. Furthermore, the expression of cytokines and chemokines, such as 

IL32, CCL4 and CCL5, gradually increased along the pseudotime axis (Figure 3D and 

Supplementary Table 7). Therefore, this pseudotime ordering corresponded to the levels of 

T cell effector functions, which formed a gradient. We refer to this as effectorness. Taken 

together, our results demonstrate that CD4+ T cells are a continuum of cells with varying 

effectorness, rather than a collection of discrete cell subsets.  
 

Single-cell transcriptomics separates cells by effectorness and cytokine-induced cell 

state 

Given the observed effectorness gradient we next assessed if this influenced cell responses 

to T cell activation and cytokine polarization. Therefore, we exposed TN and TM cells to Th0, 

Th2, Th17 and iTreg-stimulation and profiled single-cell gene expression five days following 

stimulation. We combined the data obtained from these four conditions into a single data set, 

which contained single cell transcriptomic profiles of 37,843 cells, of which 18,786 were TN 

and 19,057 were TM cells, respectively. We used these single-cell profiles to identify 220 highly 

variable genes, which were used for dimensionality reduction and UMAP embedding. We 

observed that TN and TM cells formed one single cluster of cells but separated into two different 

areas of the UMAP space (corresponding to UMAP1, Figure 4A), which is in agreement with 

our observations from resting T cells. We also found that cells exposed to different cytokines 

localized to different areas of the UMAP space (Figure 4B). This was confirmed by a high 

expression of literature markers associated with the respective cytokines (Figure 4C). For 

example, iTreg-stimulated TN cells localized to an area with high expression of CTLA4, while 

the area associated with Th17-stimulated TN cells showed high RORA expression. The area 

enriched in Th17-stimulated TM cells showed higher levels of IL17F (Figure 4C). Moreover, 

cells in these areas also showed higher expression of the corresponding genes identified from 

our proteogenomic signature analysis (Supplementary Figure 3B), confirming a high overlap 

between our bulk and single-cell observations. Importantly, while the response of TN cells to 

cytokines was homogeneous, TM cells exposed to cytokines fragmented into multiple groups 

(Figure 4B), suggesting the existence of different gene expression programs specific to TM 

subpopulations. 
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Figure 4. CD4+ T cells separate by effectorness and cytokine-induced cell state. A) UMAP 
embedding of single stimulated T cells into a two-dimensional space. Green corresponds to TN and 
purple to TM cells. B) Density plots highlighting cells based on the cytokines they were exposed to. C) 
Expression of cytokine markers described in the literature. Each dot represents a single cell and colors 
correspond to the expression level of a gene in each cell. D) UniFrac distances between TN and TM cells 
exposed to different cytokines summarized in a correlation plot. E) Th0-stimulated TN and TM cells 
ordered in a branched pseudotime trajectory. Each cell is colored by cell type (left panel) or pseudotime 
value (right panel). F) Heatmap of the most variable genes along the Th0 pseudotime trajectory (from 
Monocle). The X axis represents cells ordered by pseudotime (from left to right) and colors correspond 
to the scaled (Z-scored) expression of each gene in each cell. G) An overlay of the cells’ effectorness 
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values into the UMAP embedding described in panel A. Cells exposed to each cytokine condition were 
ordered in separate branched pseudotime trajectories using Monocle, these trajectories were 
subsequently combined into a single numeric variable called effectorness. 
 
Based on the observations from bulk gene expression, we asked whether the absence of 

response to Th2-stimulation in TM cells was characteristic of the entire population of cells or if 

a specific subpopulation responded to Th2-stimulation but was masked by a majority of 

unresponsive cells. Interestingly, Th0 and Th2-stimulated TM cells predominantly localized to 

the same UMAP areas (Figure 4B). We used UniFrac distances39, to formally test if Th0 and 

Th2-stimulated TM cells overlapped (i.e. localized to the same clusters) or formed different 

groups. The UniFrac method first groups cells in a dendrogram based on their transcriptome. 

Next, it compares the average position of cells from different samples in the dendrogram and 

summarizes these differences in a single distance metric40. A UniFrac distance of 0 indicates 

that cells from the two groups have exactly the same composition, while a distance of 1 

indicates that the groups form entirely separate clusters. We confirmed that Th0 and Th2-

stimulated TM cells nearly perfectly overlapped (UniFrac distance = 0.047) (Figure 4D) 

indicating that no individual subpopulations of TM cells were capable of responding to Th2-

stimulation. Instead, the observed lack of response was a uniform characteristic of all TM cells.  

 

Our observations from the bulk data also support that TM cells polarize to the same cell state 

in response to both Th17 and iTreg-stimulation. We confirmed this at the single cell level, 

where cells from these two conditions localized to the same UMAP areas. The UniFrac 

distance between these cell states was 0.015 in TM cells, compared to 0.164 in TN cells (Figure 
4D). Thus, we concluded that in response to Th17 and iTreg-stimulation TM cells converge on 

the same cell state. This is not driven by any subpopulation of TM cells and is rather a general 

characteristic of memory T cell biology. Interestingly this population expressed high levels of 

IL17F, suggesting that iTreg-stimulation in TM cells induces a Th17-like phenotype. 

 

We next assessed how the effectorness gradient affected cell response to stimulation in the 

presence of cytokines. We observed that the most widely used markers of central and effector 

memory T cells (i.e. CD62L and CCR7) significantly changed in expression patterns following 

activation (Supplementary Figure 3C), making the annotation of individual TM subpopulations 

challenging. To overcome this, we applied pseudotime ordering to infer the effectorness of 

each single cell. In brief, we ordered cells within each cytokine condition into branched 

pseudotime trajectories. This resulted in four cytokine-specific pseudotime trajectories (Th0, 

Th2, Th17 and iTreg). First, we analyzed Th0-stimulated cells and confirmed that the trajectory 

inferred for this cell state showed a similar pattern to that observed in resting cells (Figure 4E 
and Supplementary Table 7). We observed a gradual increase in the expression of cytokines 
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and effector molecules which progressed from TN to TM cells. A similar pattern was apparent 

in other cytokine stimulations, with TN cells localizing to the beginning and TM cells to the end 

of the respective trajectories (Supplementary Figure 4 and Supplementary Table 7). 

Furthermore, the end of these trajectories contained cells expressing high levels of genes 

specific to TEMRA cells (eg. GZMA, GZMB, PRF1). Thus, we concluded that pseudotime can 

correctly order cells by effectorness. Finally, we combined the pseudotime values inferred 

from the four trajectories into a single numeric variable corresponding to T cell effectorness 

(Methods). Interestingly, a large proportion of this variable was captured by the first UMAP 

component (Figure 4G). In conclusion, scRNA-seq enabled successful assignment of a 

cytokine-induced cell state and an effectorness value to each cell. Despite being separate 

biological variables, we hypothesized that these two axes of variation could interact to 

determine the transcriptional profile of each individual T cell. 
 

Effectorness determines the response of CD4+ T cells to cytokines 

Next, we used the combined single-cell transcriptomes from all cytokine conditions (i.e. 

merged data set) to perform unsupervised clustering. We identified 17 clusters of T cells 

(Figure 5A and Supplementary Table 6) and used the trajectory analyses results to uniquely 

annotate each of the clusters as T cells of a given effectorness exposed to a given cytokine 

condition. For instance, we identified clusters of Th0, Th2, Th17 and iTreg-stimulated TN cells, 

as well as a cluster formed of roughly equal numbers of Th17 and iTreg-stimulated TN cells, 

characterised by high expression of TNF-signaling molecules (eg. IL2, DUSP2, REL, TNF) 

(Figure 5A and Figure 5B). Moreover, we identified four clusters of Th0-stimulated TM cells, 

which we annotated as stimulated TM cells of low, medium and high effectorness, as well as 

stimulated TEMRA. The same was true for Th17/iTreg-stimulated TM cells, which localized into 

four groups with different effectorness (TM low, TM med, TM high and TEMRA cells). We also identified 

a group of nTreg cells, which expressed canonical markers such as FOXP3, CTLA4 and 

TNFRSF8. This cluster contained a comparable number of cells from all the profiled cytokine 

conditions, suggesting that cytokines do not modify the nTreg transcriptional program. Finally, 

we observed a small cluster formed of TN and TM cells expressing high levels of IFN-induced 

genes, as well as a cluster characterized by high expression of heat shock proteins (HSPs) 

and other markers of cellular stress (Figure 5A and Figure 5B).  
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Figure 5. Effectorness shapes the response of CD4+ T cells to cytokines. A) Annotation of 17 cell 
clusters identified from unsupervised clustering using the top variable genes. Each cluster is annotated 
based on either the genes with highest expression or the effectorness and cytokine condition of the 
cells contained in it. B) Heatmap of the top 10 markers of each cluster (Wilcoxon rank sum test). Colors 
encode the mean expression of each gene in each cluster. Labels were added to a number of example 
genes for each cluster. C) Schematic representation of the differential expression modelled as a 
function of cell effectorness and cytokine conditions. Effectorness and cytokine conditions were 
incorporated into a linear model with interaction term (Methods). Genes were assigned to four groups: 
genes induced by cytokine-stimulation regardless of effectorness (first panel), genes which correlate 
with effectorness regardless of cytokine-stimulation (second panel), and genes which correlate with 
both effectorness and cytokine-stimulation independently (third panel), or through interaction (fourth 
panel). D) Plots of gene expression (Y axis) as a function of effectorness (X axis), with cells stratified 
by cytokine condition. Two example genes significantly associated with effectorness regardless of 
cytokine conditions (top panel) and two example genes with a strong interaction between effectorness 
and Th17 or iTreg-stimulation (bottom panel). Each dot represents a single cell. E) Levels of IFNγ and 
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IL9 in Th0 and Th17-stimulated TN, TCM and TEM cells as assessed by flow cytometry. Representative 
cytometry histograms of IFNγ and IL-9 expression (upper panels) and percentages of cytokine-
expressing cells in four to six biological replicates (lower panel). The p-values were calculated using 
one-way ANOVA. 
 
 
The observed clustering of cells suggested that the nature of cytokine induced changes 

depends on T cell effectorness. To understand this in more detail, we modelled gene 

expression as a function of effectorness, cytokine stimulation and the interaction between 

them, where effectorness was represented as a continuous variable in the range from 0 to 1 

(Methods). In brief, our model accounted for four possible gene expression regulatory 

mechanisms (Figure 5C): i) gene expression modulation by the presence of a cytokine 

irrespective of cell effectorness, ii) gene expression modulation as a function of effectorness 

irrespective of the cytokine condition, and gene expression modulation as a result of 

effectorness and cytokine-stimulation acting iii) independently or iv) jointly (interaction effect). 

We identified 210 genes significantly associated with effectorness (Supplementary Table 8). 

Of these, the vast majority (203 genes) were further regulated by cytokines. In particular, 12 

genes showed independent effects of cytokine-stimulation and effectorness, while 191 

showed an interaction effect. Within the genes with interaction effects, 12 showed an 

effectorness dependency only in the presence of a given cytokine, while 179 showed 

effectorness dependency ubiquitously (across all cytokine conditions), with the strength of this 

effect regulated by cytokines.  

 

We next filtered genes by their effect sizes and identified 25 genes with a strong effectorness 

dependency, irrespective of cytokine stimulation. These included the costimulatory molecule 

TNFRSF4 (encoding for OX40), which is known to be critical in the maintenance of memory T 

cell responses41, as well as effector molecules involved in target cell killing such as granulysin 

(GNLY), GMZA, CCL3 and IFNG (Figure 5D). The expression of these genes increased 

proportionally to T cell effectorness. In addition, we identified 37 and 16 genes strongly 

associated with effectorness upon Th17 and iTreg-stimulation, respectively. These genes 

included cytokines like IL2 (which decreases proportionally to effectorness upon Th17 and 

iTreg-stimulation) and IL9 (which increases proportionally to effectorness for the same 

conditions) (Figure 5D). Moreover, genes induced by type I IFNs (eg. ISG15, IFIT1, IFIT2, 

IFIT3) also increased proportionally to effectorness upon iTreg and Th17-stimulation. This is 

in line with our observation from bulk RNA and protein expression, where we found that the 

type I IFN response was differentially regulated in TN and TM cells in response to Th17 and 

iTreg-stimulation (Figure 2C). To further validate these effects at the protein level, we isolated 

TN, TCM and TEM cells (Supplementary Figure 5). We then stimulated cells in the presence or 

absence of Th17 polarizing cytokines and quantified IFNγ and IL-9 expression upon 
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restimulation (Methods). Our results replicated the observations from single-cell RNA-seq. 

Namely, the levels of IFNγ increased proportionally to effectorness in both Th0 and Th17-

stimulated cells (Figure 5E). In contrast, the levels of IL9 only marginally correlated with 

effectorness in Th0 cells, but substantially increased with effectorness in Th17-stimulated cells 

(Figure 5E). This confirmed our observations from the transcriptome and suggested that key 

T cell functions such as cytokine secretion are under the control of both effectorness and 

environmental cues.  

 

In summary, we identified a gradient of T cell effectorness which is present both before (resting 

state) and after stimulation. We further showed that this effectorness determines the response 

of single T cells to cytokines in their environment. 

 

Discussion 

Cytokines have been extensively studied in the context of naïve T cell polarization, but the 

response of memory T cells to different cytokines remains understudied. Here we investigated 

the effects of T cell polarizing cytokines on TM cells by integrating cytokine-induced changes 

in the transcriptome and proteome and comparing these to the responses of TN cells. Our 

study expands our understanding of how cytokines modulate naïve and memory T cell 

functions. For example, we demonstrate that early changes in gene expression of both TN and 

TM cells are dominated by the response to T cell activation, while cytokine-induced changes 

are apparent only at the later stages of stimulation. This suggests that polarization to Th1, 

Th2, Th17 and iTreg occurs after the initiation of T cell activation and it fine-tunes the response 

of T cells. Using a combination of transcriptomic and proteomic data we defined 

proteogenomic gene signatures which captured well established hallmark genes induced by 

specific cytokines, as well as new marker genes. Both the identified genes and more broadly 

our dataset are valuable resources to researchers using in vitro cell models of cytokine 

polarization. 

 

Our multi-omic data show that the response to cytokines can be strikingly different between 

naïve and memory T cells. While TN cells respond to all cytokine polarizing conditions by 

acquiring a distinctive phenotype, we observed that TM cells do not respond to Th2 

polarization. Furthermore, we found that iTreg cells share a large proportion of their 

transcriptional program with Th17 cells, which is consistent with both cell states being 

generated in response to TGF-β6,8. This is in line with previous evidence that iTreg cells can 

convert to Th17 in inflammatory contexts21. However, unlike naïve T cells, which upon iTreg-
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stimulation induced hallmark Treg markers such as FOXP3 and CTLA4, memory T cells 

converge on the same cell state in response to Th17 and iTreg-stimulation. This cell state is 

characterized by high levels of IL17F, suggesting that iTreg-stimulation in memory T cells 

induces a Th17-like phenotype. As such, our study demonstrates that memory T cells do not 

acquire a regulatory phenotype upon iTreg polarization. This is particularly relevant in the 

context of disease, given that the number of memory T cells increases with age 42, potentially 

leading to a pro-inflammatory response to TGF-β.  

 

In contrast, the response to IFN-β was conserved between naïve and memory T cells and, 

unlike Th polarization, was apparent even within 16h of stimulation. This is in line with the role 

of type I interferons in antiviral responses, which need to be triggered fast in order to prevent 

viral replication. Both naïve and memory T cells upregulated genes involved in RNAse L 

induction (OAS2, OAS3) that serve to degrade viral transcripts43, GTPase activity (MX1, MX2) 

to inactivate viral capsids and ribonucleoprotein assembly44, as well as proteins involved in 

cell lysis (GZMA, GZMB)35.  

 

Using single cell transcriptomics, we show that CD4+ T cells form a natural progression from 

naïve to highly effector memory cells, which is accompanied by upregulation of chemokines 

and cytokines. We called this gradient, present both at the resting state and after stimulation, 

T cell effectorness. This suggests that, transcriptionally, memory T cell subpopulations (e.g. 

TCM, TEM and TEMRA) are better described as stages in a continuous trajectory rather than as 

separate cell populations, as they have been traditionally described based on protein 

expression and surface markers24. Our results are in line with a similar trajectory, which was 

reported using simultaneous targeted quantification of mRNA and protein expression in single 

T cells45. Interestingly, a similar gradient is also present in innate T cells, as shown by a 

previous study where higher expression levels of effector molecules were negatively 

associated with ribosome synthesis and proliferative capacity46.  

 

Importantly, the effectorness gradient described here closely recapitulates observations from 

immune cells isolated directly from tissues. Specifically, a previous study described the 

generation of memory T cells in the fetal intestine and profiled their transcriptome with single-

cell resolution47. Cells from this study formed an equivalent trajectory, characterized by a 

smooth progression from the naïve to the memory state, and were accompanied by 

downregulation of naïve markers like CCR7 and upregulation of cytokines like IL32. Thus, our 

results could begin to explain how memory cells in tissues adapt in response to inflammation.  
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Finally, we demonstrate that effectorness determines how CD4+ T cells respond to cytokines. 

In particular, we systematically identified genes which are regulated by cytokines in an 

effectorness-dependent manner, such as IFNG and IL9. Importantly, a number of these effects 

are also present at the protein level. Memory cells had previously been shown to upregulate 

IL-9 in response to TGF-β48, and it is known that this cytokine can also reprogram Th2 cells to 

an IL-9 secreting phenotype20. However, here we refined this observation to memory cells with 

high effectorness only (i.e. TEM or TEMRA cells). This is important given the role of TGF-β in 

Th17 cell biology, and especially since these cells show substantial diversity in vivo23. Our 

study suggests that cells with high effectorness that infiltrate tissues might start the strong 

responses to local cytokine environment. Future studies that use single-cell RNA-seq to profile 

inflamed tissues from immune disease patients will provide an opportunity to investigate these 

effects in greater detail directly in a disease context. 

 

Our results demonstrate that memory cells can continue to adapt their phenotypes in response 

to Th17 cytokines, thus suggesting a mechanism which could generate the observed diversity. 

Understanding this will be key in the development of drug targets for autoimmune disease, as 

IL-17 and other Th17-cytokines are known to promote inflammation, for example in MS 

patients and animal models of disease49–51.  
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derived from our single-cell RNA-seq data. The scripts for calculating proteogenomic 

signatures are available as an R package (https://github.com/eddiecg/proteogenomic). 

Methods 

Cell isolation and in vitro stimulation 

Blood samples were obtained from six individuals for the bulk assays (naïve and memory T 

cells were isolated from three independent individuals, respectively) and from four additional 

individuals for the single-cell RNA-seq. All individuals were healthy males of 56.4 years of age 

on average (sd = 12.41 years). All human biological samples were sourced ethically and their 

research use was in accord with the terms of the informed consents under an IRB/EC 

approved protocol (15/NW/0282). Peripheral blood mononuclear cells (PBMCs) were isolated 

using Ficoll-Paque PLUS (GE healthcare, Buckingham, UK) density gradient centrifugation. 

naïve and memory CD4+ T cells were isolated from PBMCs using EasySep® naïve CD4+ T 

cell isolation kit and memory CD4+ T cell enrichment kit (StemCell Technologies, Meylan, 

France) according to the manufacturer's instructions. T cells were then stimulated with anti-

CD3/anti-CD28 human T-Activator Dynabeads® (Invitrogen) at a 1:2 ratio of beads to T cells. 

Cytokines were added at the same time as the stimulus (see Supplementary Table 1 for a 

full list of the cytokines used with product details and exact concentrations). Cells were 

harvested after 16 hours and 5 days of stimulation. 

Bulk RNA-sequencing 

A total of 3 x 105 cells were resuspended in 500 μl of TRIzol™ and stored the material at -

80°C until further processing. After samples were thawed at 37°C, 100 μl chloroform were 

added and samples were centrifuged for 15 min at 4°C and 10,000g. The aqueous phase was 

collected and mixed at a 1:1 ratio with 70% ethanol (Qiagen). RNA was isolated from this 

mixture using the RNeasy MinElute Kit (Qiagen), and RNA quality was assessed using a 

Bioanalyzer RNA 6000 Nano Chip (Agilent Technologies). All samples had an RNA integrity 

number (RIN) above 8.5. Finally, sequencing libraries were prepared using the Illumina 

TruSeq protocol and sequenced on an Illumina HiSeq 2500 platform using V4 chemistry and 

standard 75 bp paired-end reads. 

Proteomics 

Pellets formed of up to 3 x 106 cells were isolated and washed twice with PBS, dried and 

stored at -20 ̊C until protein extraction. Cell pellets were then lysed in 150 μl 0.1 M 

triethylammonium bicarbonate (TEAB) buffer (Sigma Aldrich) supplemented with 0.1% SDS 

and Halt protease and phosphatase inhibitor cocktail (100X, Thermo #78442). Pulse probe 
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sonication (40% power, 4 ̊C and 20 seconds) was performed twice using EpiShear™, after 

which the samples were incubated for 10 minutes at 96 ̊C. Protein from cell lysates was 

quantified using the quick start Bradford protein assay (Bio-Rad) as specified by the 

manufacturer’s instructions. Protein samples were finally divided into aliquots of up to 100 μg. 

Protein aliquots were reduced with 5 mM tris-2-carboxymethyl phosphine (TCEP) buffer 

(Sigma Aldrich) and incubated for 1 hour at 60˚C to reduce disulfide bonds. Iodoacetamide 

(IAA) was added to a final concentration of 10 mM and samples were incubated for 30 minutes 

at room temperature in the dark. Pierce Trypsin (Thermo Scientific) was then added at a mass 

ratio of 1:30, and samples were incubated overnight for peptide digestion. Digested protein 

samples were diluted to a total volume of 100 μl in 0.1 M TEAB buffer. TMT reagents (Thermo 

Scientific) supplemented with 41 μl anhydrous acetonitrile were added to the corresponding 

protein samples. After 1 hour, the reaction was quenched using 8 μl 5% hydroxylamine. 

Samples were then combined into a single tube and dried using a speedvac concentrator. Dry 

samples were stored at -20˚C until fractionation. High pH Reverse Phase (RP) peptide 

fractionation was performed with the Waters XBridge C18 column (2.1 x 150 mm, 3.5 μm) on 

a Dionex™ UltiMate 3000 HPLC system. A 0.1% solution of ammonium hydroxide was used 

as mobile phase A, while mobile phase B was composed of acetonitrile with 0.1% ammonium 

hydroxide. The TMT-labelled samples were reconstituted in 100 μl mobile phase A, 

centrifuged and injected into the column, which operated at 0.2 ml/min. The fractions collected 

from the column were dried with the SpeedVac concentrator and stored at -20 ̊C until the MS 

analysis. 

 

Liquid Chromatography-Mass Spectrometry (LC-MS) was performed using a Dionex™ 

UltiMate 3000 HPLC system (Thermo Scientific) coupled with the Orbitrap Fusion Tribrid Mass 

Spectrometer (Thermo Scientific). Dried samples were reconstituted in 40 μl 0.1% formic acid, 

of which 7 μl were loaded to the Acclaim PepMap 100 trapping column (100 μm x 2 cm, C18, 

5 μm, 100Ӓ) at a flow rate of 10 μl/min. Multi-step gradient elution was performed at 45 ̊C 

using the Dionex™ Acclaim PepMap RSLC capillary column (75 μm x 50 cm, 2 μm, 100Ӓ). A 

0.1% solution of formic acid was used as mobile phase A, and a 80% acetonitrile, 0.1% formic 

acid solution as mobile phase B. Precursors were selected with mass resolution of 120k, AGC 

4 x 105 and IT 50 ms were isolated for CID fragmentation with quadrupole isolation width of 

0.7 Th. Collision energy was set at 35%. Furthermore, MS3 quantification spectra were 

acquired with 50k resolution via further fragmentation for the top 7 most abundant CID 

fragments in the Synchronous Precursor Selection (SPS) mode. Targeted precursor ions were 

dynamically excluded for 45 seconds.  
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Raw data were processed in Proteome Discoverer (v2.2) with SequestHT search engine 

(Thermo Scientific) using reviewed UniProt52 human protein entries for protein identification 

and quantification. The precursor mass tolerance was set at 20 ppm and the fragment ion 

mass tolerance was 0.02 Da. Spectra were searched for fully tryptic peptides with maximum 

2 miss-cleavages. TMT6plex at N-terminus/K and Carbamidomethyl at C were used as static 

modifications. Dynamic modifications included oxidation of M and deamidation of N/Q. Peptide 

confidence was estimated with the Percolator node. Peptide FDR was set at 0.01 and 

validation was based on q-value and decoy database search. The reporter ion quantifier node 

included a TMT10plex quantification method with an integration window tolerance of 15 ppm 

and integration method based on the most confident centroid peak at the MS3 level. Only 

unique peptides for the protein groups were used for quantification. Peptides with average 

reporter signal-to-noise less than 3 were excluded from protein quantification. 

 

Single-cell RNA-sequencing 

Cells were resuspended in RPMI media to obtain a single-cell suspension with high cell 

viability. Next, cells were stained with a live/death dye (DAPI) and dead cells were removed 

using fluorescence-activated cell sorting (FACS). Live cells were resuspended in PBS buffer 

and recounted using AOPI staining and the Nexcelom Cellometer Auto 2000 Cell Viability 

Counter. Finally, cells from four independent biological replicates were pooled in equal cell 

numbers into a single cell suspension for each condition. Cell suspensions were processed 

for single-cell RNA-sequencing using the 10X-Genomics 3’ v2 kit36, as specified by the 

manufacturer’s instructions. Namely, 1 x 104 cells from each condition were loaded in separate 

inlets of a 10X-Genomics Chromium controller in order to create GEM emulsions. The targeted 

recovery was 3,000 cells per condition. Emulsions were used to perform reverse transcription, 

cDNA amplification and RNA-sequencing library preparation. Libraries were sequenced on the 

Illumina HiSeq 4000 platform, using 75 bp paired-end reads and loading one sample per 

sequencing lane. 

Flow cytometry  

Cells were washed with FACS buffer (PBS buffer supplemented with 1% FCS and 1 mM 

EDTA) by centrifugation and stained with the respective antibodies. Reactions were incubated 

for 30 minutes at 4°C. Following two washes with FACS buffer, samples were resuspended in 

200 μl of FACS buffer and data was acquired using a Fortessa analyser (BD Bioscience). All 

data were processed with FlowJo (v9.9, TreeStar). 
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Intracellular cytokine staining 

CD4+ T cells were obtained from PBMCs using the EasySep human CD4+ T cell enrichment 

kit (StemCell Technologies, Meylan, France). Next, CD4+CCR7+CD45RA+ (TN), 

CD4+CCR7+CD45RA- (TCM) and CD4+CCR7-CD45RA- (TEM) cells were isolated from CD4+ 

T cells via fluorescence activated cell sorting (FACS) using a MoFlo XDP cell sorter (Beckman 

Coulter) (Supplementary Figure 5) and polarized to the Th0 and Th17 phenotypes as 

described above. After five days of stimulation, activated naive and memory T cells were 

restimulated with 50 ng/ml phorbol 12-myristate 13-acetate (PMA) (Sigma) and 1 μM 

Ionomycin (Sigma) for five hours in the presence of 10 μg/ml of Brefeldin A (Sigma) at 37°C. 

After five hours, cells were fixed and permeabilized using the eBioscience™ 

Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific), according to the 

manufacturer’s instructions. Cells were resuspended in 50 μl of permeabilization solution and 

stained for cytokines, and flow cytometry was performed. 

RNA-seq data analysis 

Sequencing reads were aligned to the reference human genome using STAR53 (v2.5.3) and 

annotated using the hg38 build of the genome (GRCh38) and Ensembl (v87). Next, the 

number of reads mapping to each gene was quantified using featureCounts54 (v1.22.2). After 

quantification, reads mapping to the Y chromosome and the major histocompatibility complex 

(HLA) region (chr6:25,000,000-47,825,000) were removed from the analysis. The final result 

from this process was a counts table of RNA expression in each sequenced sample. 

 

RNA counts were imported into R (v3.5.1) where normalization for library size and regularized-

logarithmic transformation of counts was performed using DESeq255 (v1.19.52). We identified 

and removed batch effects using limma56 (v3.35.15). Exploratory data analysis was performed 

using ggplot2 (v3.0.0) and the base R functions for principal component analysis. Differential 

expression analysis was performed with DESeq2. More specifically, pairwise combinations 

were performed between any two conditions of interest, usually setting either resting or Th0-

stimulated cells as controls. Differentially expressed genes were defined as any genes with 

absolute log-fold changes (LFC) larger than 1 at a false discovery rate (FDR) of 0.05.  

 

Proteomics data analysis 

After quantification, protein abundances were normalised in order to allow comparisons 

between samples and plexes (mass spectrometry batches). Namely, protein abundance 

values were normalized to the total abundance of the respective sample (sample-wise 

normalization) and then scaled to the maximum abundance of the respective protein (protein-
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wise scaling). Data were then imported into R, where principal component analysis was 

performed using all the proteins with no missing values (proteins detected in all batches and 

samples) with base R functions. Finally, differential protein expression was analyzed by 

performing pairwise comparisons between any two conditions of interest. This was done using 

the moderated T test implemented in limma’s eBayes function56. When testing for differential 

protein expression, only proteins detected in at least two biological replicates per condition 

were kept. Multiple testing correction was performed using the Benjamini-Hochberg 

procedure57. Finally, differentially expressed proteins were defined as any proteins with an 

absolute log-fold change larger than 0.5 at an FDR of 0.1. 

Pathway enrichment analysis 

Pathway enrichment analysis was performed using proteomics and RNA-seq data. To do so, 

genes detected at both the RNA and protein level were identified by matching gene names. 

Next, genes were ranked by differential gene or protein expression, respectively, compared to 

either resting or Th0-stimulated TN and TM cells. Finally, pathway enrichment analysis was 

performed independently in the RNA and protein data using the Perseus software58 (v1.6) and 

the 1D-annotation enrichment method59. The enrichment scores indicated whether the RNAs 

and proteins in a given pathway tended to be systematically up-regulated or down-regulated 

based on a Wilcoxon-Mann-Whitney test. A term was defined as differentially enriched if it had 

a Benjamini-Hochberg FDR < 0.05. Results were visualized in R using the pheatmap package 

(v1.0.10). For visualization, only unique pathways with an absolute enrichment score higher 

than 0.7, an FDR < 0.05 were kept. This was restricted to terms with biological relevance and 

that were included in either Reactome, KEGG or CORUM60–62.  

 

Identification of cell state signatures from RNA and protein expression 

The correlation between RNA and protein expression was evaluated by estimating log-fold 

changes (LFCs) with respect to the control (Th0) in each cytokine condition and computing 

the Pearson correlation between RNA and protein LFCs. This was done both sample-wise 

and gene-wise. Resting T cells were excluded from this analysis.  

 

Proteomics and RNA-seq data were used jointly to identify gene signature associated with 

each cytokine induced cell state. First, both data sets were matched by gene name to identify 

a common set of genes detected at both the RNA and protein level. Next, the f-divergence 

cut-off index (fCI) method63 was used to identify genes (RNA-protein pairs) with significant 

evidence of differential expression given their RNA counts and protein abundances. For any 

genes detected as significant by fCI, their normalized regularized-log (rlog) RNA counts55 and 
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scaled protein abundances were used to calculate specificity scores in RNA and protein 

datasets, respectively. To do so, replicates from each condition were first averaged. Next, the 

specificity of each gene in each cytokine induced cell state was defined by normalizing the 

expression of each gene or protein to the Euclidean mean across its different cell states, as 

described elsewhere29.  

 

RNA specificity was defined as: 

𝑆",$,%&' =
𝑋",$

*∑ 𝑋",$,-
$./

 

Protein specificity was defined as: 

𝑆",$,0123 =
𝑌",$

*∑ 𝑌",$,-
$./

 

Where Xi,j and Yi,j are the average RNA expression and protein abundance of gene i in 

cytokine condition j, respectively, and n is the number of cytokine conditions assessed. As the 

RNA expression and protein abundance are both non-negative values, Si,j,RNA and Si,j,prot are 

both ≥0. 

 

Proteogenomic specificity scores were defined as the weighted sum of RNA and protein 

specificities for each gene: 

𝑆",$ = 	𝑊%&'𝑆",$,%&' +		𝑊0123𝑆",$,0123 

Where Si,j is the specificity score of gene i in condition j. In order to give the same weight to 

proteomic and transcriptomic evidence, the RNA and protein weights (WRNA and Wprot) were 

set to 0.5. 

 

To test which genes were more specific to one cell state than expected by chance, sample 

labels were randomly permuted and the specificity score was recalculated. Empirical P values 

were computed as the proportion of times the observed specificity score of a gene in a given 

cell state was larger than the corresponding permuted value. P values were corrected for the 

number of genes tested using the Benjamini-Hochberg procedure57. A total of 10,000 

permutations were performed. Finally, proteogenomic signatures for each cytokine condition 

were defined as any genes with a specificity score larger than 0.7 and an FDR-adjusted P 

value lower than 0.1. This analysis was performed separately for naïve and memory T cells. 

The functions used to derive proteogenomic signatures are publicly available as an R package 

on GitHub (https://github.com/eddiecg/proteogenomic). 
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Single-cell RNA-seq data analysis 

Single-cell RNA-sequencing data were processed using the Cell Ranger Single-Cell Software 

Suite36 (v2.2.0, 10X-Genomics). Namely, reads were first assigned to cells and then aligned 

to the human genome using STAR53, using the hg38 build of the human genome (GRCh38). 

Reads were annotated using Ensembl (v87). Gene expression was then quantified using 

reads assigned to cells and confidently mapped to the genome.  

 

Because each of the samples consisted of a pool of four individuals, natural genetic variation 

was used to identify which cells corresponded to which person. A list of common genetic 

variants was collected, defined as any SNP included in gnomAD64 with a minor allele 

frequency higher than 1% in the Non-Finish European (NFE) population. Next, cellSNP 

Cardelino v0.99)65 was used to generate pileups at these SNPs, resulting in one VCF file per 

sample. This information was then used by Cardelino65 (v0.99) to infer which cells belong to 

the same individual. Any cells which remained unassigned (with less than 0.9 posterior 

probability of belonging to any individual) or were flagged as doublets were discarded. In 

general, over 85% of cells were unambiguously assigned to an individual (Supplementary 
Figure 3A). This analysis was performed separately for each sample. To identify which 

individual from a given sample corresponded to an individual in a different sample, results 

from Cardelino were hierarchically clustered by genotypic distances between individuals. 

Clustering separated genotypes into four distinct groups, each group corresponding to one of 

the profiled individuals. 

 

Results from RNA quantification and genotype deconvolution were imported into R and 

analysed using Seurat (v2.3.4)66. Cells with less than 500 genes detected or with more than 

7.5% mitochondrial genes were removed from the data set. Counts were normalized for library 

size and log-transformed using Seurat’s default normalization parameters. Next, a publicly 

available list of cell cycle genes67 was used to perform cell cycle scoring and assign cells to 

their respective stage of the cell cycle. Cell cycle, as well as any known sources of unwanted 

variation (mitochondrial content, cell size as reflected by UMI content, biological replicate and 

library preparation batch) were regressed using Seurat’s built-in regression model. Highly 

variable genes were identified using Seurat and used to perform principal component analysis. 

The first 30 principal components were used as an input for SNN clustering and for embedding 

using the uniform manifold approximation and projection (UMAP)37. Marker genes for each 

cluster were identified computationally using the Wilcoxon rank sum test implemented in 

Seurat. Multiple testing correction was performed using FDR. Cell cycle genes were excluded 

from this analysis. Moreover, marker genes were required to be expressed by at least 10% of 
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the cells in the cluster at a minimum fold change of 0.25. A total of 5 clusters were identified 

in resting cells and 17 clusters were found in stimulated cells. Clusters were manually 

annotated according to their gene expression pattern, the cytokine which cells in the cluster 

were exposed to and the presence or absence of hallmark genes compiled from the literature. 

 

UniFrac distance analysis39 was used to test if cells exposed to two different cytokine 

conditions tended to form the same clusters. Pairwise UniFrac distances were computed for 

all combinations of cytokine conditions using all the cells captured for the respective 

conditions. The R package scUnifrac (v0.9.6)40 was used as it was specifically adapted to deal 

with scRNA-seq data. All parameters were set to the default values (1,000 permutations, nDim 

= 4, ncluster = 10).  

Pseudotime ordering and effectorness analysis 

Cells were ordered into a branched pseudotime trajectory using Monocle (v2.12.0) and 

restricting the analysis to the highly variable genes identified by Seurat. This was done 

separately for each cytokine condition (resting, Th0, Th2, Th17 and iTreg), including both TN 

and TM cells. This resulted in five cytokine-specific pseudotime trajectories. Monocle was used 

to test for a significant correlation between gene expression and pseudotime in each trajectory. 

A gene was defined as significantly associated with pseudotime if its estimated q value was 

lower than 0.01.  

 

The four pseudotime trajectories derived from cytokine-stimulated T cells (Th0, Th2, Th17 and 

iTreg) were combined into a single numeric variable. To do this, he pseudotime values of cells 

within each condition were scaled to the range [0,1] and combined the cells into a single data 

set. Finally, the association between gene expression, effectorness and cytokine-stimulation 

was tested with the lm() function from base R. The expression of each gene was modelled as 

a linear function of T cell effectorness (a numeric variable in the [0,1] range) and cytokine-

stimulation (a categorical variable with levels Th0, Th2, Th17 and iTreg). An additional term 

was incorporated which accounted for potential interactions between these two variables, as 

specified in the following equation: 

𝑋",$ = 	𝛼𝐸$ + 	𝛽𝐶$ + 	𝛾𝐸$ ∗ 𝐶$ + 	𝜀	 

Where X is the expression of gene i in cell j (log2 of normalized UMIs), E the effectorness of 

cell j, C the cytokine cocktail cell j was exposed to and ε a random error term, which was 

assumed to follow a normal distribution with a mean of zero. The regression coefficients for 

effectorness, cytokine stimulation and the effectorness-cytokine interaction were represented, 

respectively, by α, β and γ. An estimate and a P value were derived for each of these 
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coefficients in each tested gene. P values were corrected for the number of genes tested using 

the Benjamini-Hochberg procedure57. This analysis was restricted to the top variable genes 

identified by Seurat. All cells with zero-expression for a given gene were omitted. A coefficient 

was defined as significant if its corresponding FDR-adjusted P value was lower than 0.05. 
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Supplementary Figures 

 
Supplementary Figure 1. PCA and correlation between RNA and protein expression. A) 
Representative flow cytometry plots from three biologically independent samples. B) PCA plots from 
the full transcriptome and proteome of TN and TM cells following 16 hours of cytokine stimulations. Only 
stimulated cells were included in this analysis. C) Pearson correlations between RNA and protein log-
fold changes for all genes within each cytokine condition in TN and TM cells. D) Pearson correlations 
between RNA and protein log-fold changes for each gene across all cytokine conditions and cell types. 
Resting cells were excluded from this analysis. 
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Supplementary Figure 2. Expression of cytokine receptors. RNA levels and protein abundances of 
cytokine receptor components in resting and stimulated TN and TM cells. Subunits of the A) IL-4, B) 
TGF-β and C) IL-2 receptors. 
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Supplementary Figure 3. Single-cell expression of signature genes and markers in stimulated 
CD4+ T cells. A) Percentage of cells uniquely assigned to one individual (left panel), unassigned 
because of low posterior probability (central panel) or containing DNA from more than one genotype 
(doublets, right panel). B) UMAP embedding of stimulated TN and TM cells from all cytokine conditions. 
Colors represent the average expression of all genes in the cell state specific signatures defined from 
RNA and protein data C) UMAP embedding of stimulated TN and TM cells from all cytokine conditions. 
Colors represent the expression of SELL and CCR7. 
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Supplementary Figure 4. Cytokine-specific pseudotime trajectories. TN and TM cells ordered in 
branched pseudotime trajectories. Plots are colored by pseudotime value (right panels) and 
accompanied by a heatmap of the most variable genes along the pseudotime trajectories (right panels). 
Heatmap colors correspond to the scaled (Z-scored) expression of each gene in each cell. Panels 
correspond to four independent trajectories from A) Th2, B) Th17 and C) iTreg-stimulation. Labels were 
added to a number of example genes. 
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Supplementary Figure 5. Sorting and gating strategy for cytokine staining. A) 
CD4+CCR7+CD45RA+ (TN), CD4+CCR7+CD45RA- (TCM) and CD4+CCR7-CD45RA- (TEM) cells were 
isolated from CD4+ T cells via FACS using a MoFlo XDP cell sorter. Representative flow cytometry 
plots of six biologically independent samples. B) Representative flow cytometry plots of six biologically 
independent samples show the gating strategy for live cell isolation after restimulation. 
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