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Evolving tumors accumulate thousands of mutations. Technological advances have enabled 24 

whole genome sequencing of these mutations in large cohorts, such as those from the Pancancer 25 

Analysis of Whole Genomes (PCAWG) Consortium. The resulting data explosion has led to 26 

many methods for detecting cancer drivers through mutational recurrence and deviation from 27 

background mutation rates. However, these methods require a large cohort and underperform 28 

when recurrence is low. An alternate approach involves harnessing the variant allele frequency 29 

(VAF) of mutations in the population of tumor cells in a single individual. Moreover, ultra-deep 30 

sequencing of tumors, which is now possible, allows for particularly accurate VAF 31 

measurements, and recent studies have begun to use these to determine evolutionary trajectories 32 

and quantify subclonal selection. Here, we developed a method that quantifies tumor growth and 33 

driver effects for individual samples based solely on the VAF spectrum. Drivers introduce a 34 

perturbation into this spectrum, and our method uses the frequency of "hitchhiking" mutations 35 

preceding a driver to measure this perturbation. Specifically, our method applies various growth 36 

models to identify periods of positive/negative growth, the genomic regions associated with 37 

them, and the presence and effect of putative drivers. To validate our method, we first used 38 

simulation models to successfully approximate the timing and size of a driver’s effect. Then, we 39 

tested our method on 993 linear tumors (i.e. those with linear subclonal expansion, where each 40 

parent-subclone has one child) from the PCAWG Consortium and found that the identified 41 

periods of positive growth are associated with drivers previously highlighted via recurrence by 42 

the PCAWG consortium. Finally, we applied our method to an ultra-deep sequenced AML tumor 43 

and identified known cancer genes and additional driver candidates. In summary, our method 44 

presents opportunities for personalized diagnosis using deep sequenced whole genome data from 45 

an individual.  46 
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 47 

Introduction 48 

Over the past several decades, researchers have proposed different models to explain tumor 49 

progression, including stochastic progression, the mutator phenotype, and clonal evolution1–3. 50 

Originally suggested about 40 years ago3, Navin and colleagues provided strong evidence that 51 

the ‘punctuated clonal evolution’ model constitutes a major force in cancer progression. 52 

According to this model, tumor progression is an evolving system subject to selective pressure 53 

while accumulating thousands of mutations4,5. 54 

 55 

Advances in technology have allowed scientists to sequence thousands of genomes, revealing 56 

millions of variants per individual6–8. In cancer genomics, The Cancer Genome Atlas (TCGA)4 57 

offers access to thousands of cases encompassing over 30 types of cancer. Similarly, the 58 

International Cancer Genome Consortium (ICGC) recently announced ‘data release 26’, which 59 

comprises data from more than 17,000 cancer donors and 21 tumor sites. Within ICGC, the 60 

Pancancer Analysis of Whole Genomes (PCAWG) study is an international collaboration to 61 

identify common patterns of mutations in over 2,800 sequenced whole cancer genomes9. As 62 

cancer databases continue to expand, the amount of fully sequenced genomes will continue to 63 

increase, with future plans setting goals for the storage of more than a million genomes10. 64 

Concurrently, deeper sequencing signifies less noise, more accurate variant allele frequencies 65 

(VAFs), and more accurate subclonal and single-nucleotide variant (SNV) identification, while 66 

increasing the detection of novel drivers11–13.  67 

  68 
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Recent studies have tackled the effect of selection in tumor progression in the context of clonal 69 

evolution, neutral evolution, and selection, providing valuable insights about the clonal 70 

progression of the disease5,14–16.  By considering tumor progression as an evolutionary process, 71 

cancer development follows the trajectory of different evolutionary pathways based on cell and 72 

population dynamics, optimization strategies and selective forces. These evolutionary trajectories 73 

have been shown to influence primary tumor growth17 and the timing of landmark events18. 74 

However, the evolutionary and selective mechanisms during tumor progression remain 75 

unexplored and strongly debated19–22.  76 

  77 

Accumulated SNVs have been characterized as drivers or passengers, depending on whether or 78 

not they provide a selective advantage for the tumor cells. If the selective advantage or their 79 

respective effect is weak, the mutations are known as mini-drivers, although the existence and 80 

detectability of mini-drivers has been debated23,24. Identifying SNV and gene drivers has been 81 

one of the focal points of cancer genomics, where different methods aim to detect driver 82 

mutations based on selection, recurrence or changes in mutational density23,25.  These methods 83 

rely on the deviation from our expectation of the underlying genomic mutation rates, often by 84 

considering additional covariates such as replication timing and gene expression26–28. Other 85 

methods, characterized as ratiometric, assess the composition of mutations, normalized by the 86 

total mutations in a gene23. This includes the proportion of inactivating mutations, recurrent 87 

missense mutations, functional impact bias, mutational composition, or clustering patterns29–32. 88 

However, if only a small proportion of mutations within a genomic region (which is potentially 89 

under negative selection or functional restrictions) facilitates cancer progression, driver detection 90 

requires either a very large sample, a strong effect or otherwise the driver’s presence is 91 
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undetectable23.  Further, mutational heterogeneity in cancer poses an additional problem for large 92 

cohorts; as the sample size increases, so does the list of putatively significant genes, producing 93 

many false positive driver genes27. More importantly, only a minimal portion of driver mutations 94 

are, in fact, true drivers33. This is particularly important in a clinical context as assessing a cancer 95 

gene mutation as a true functional driver is a critical problem for drug selection33,34.     96 

  97 

According to recent studies35 and in agreement with past theories36, a few major genetic hits 98 

(strong drivers) can induce tumorigenesis. At the same time, a driver mutation may not actually 99 

be the cause of tumorigenesis, but instead only increase growth rate and therefore be under 100 

positive selection37. One of the most common and widely used lists of cancer genes is the 101 

"Vogelstein list"29, consisting of ~140 oncogenes and tumor-suppressor genes (TSGs). While 102 

high-impact mutations in TSGs might favor cancer progression by deactivating tumor 103 

suppression, oncogenes need altered expression levels to favor tumor growth. Thus, high-impact 104 

mutations such as nonsense mutations in oncogenes might decrease gene expression and burden 105 

tumor cells38. Less appreciated is the role of non-coding mutations in tumor progression37,39,40. 106 

Interestingly, in the case of TSGs, different studies have reported the role of non-coding intronic 107 

mutations that alter correct exon splicing, resulting in faulty tumor suppression41–44. Similarly, in 108 

the case of oncogenes different studies have reported the potential effect of synonymous 109 

mutations40,41,45. For example, Gartner and colleagues showed that the early synonymous 110 

mutation F17F in the BLC2-like 12 gene alters the binding affinity of regulatory hsa-miR-671–111 

5p, leading to changes in expression45.   112 

  113 
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In our study, we developed a framework to model tumor progression and the effect of drivers in 114 

individual deep-sequenced tumors. We successfully applied our model using 993 linear tumors 115 

(linear subclonal expansion, where each parent-subclone has one child-subclone) from the 116 

PCAWG consortium, and found that predicted drivers46 are associated with periods of positive 117 

growth. Our results suggest that mutations involved in biological processes such as cell 118 

development, cell differentiation, and multicellularity appear under strong positive or negative 119 

growth enrichment. Missense or nonsense mutations in TSGs were enriched during positive 120 

growth. We also identified significant positive enrichment for mutations in the promoter regions 121 

of both TSGs and oncogenes. Additionally, in the case of TSGs, we discovered a small but 122 

significant signal from intronic mutations. Finally, we applied our framework to a deep–123 

sequenced model AML tumor, where our predicted growth peaks aligned closely with three 124 

missense mutations from known cancer genes. Notably, our analysis suggests the potential 125 

presence of additional driver candidates.  126 

  127 

  128 

Method Overview: Clock-like Hitchhikers, Growth Rates, Local Re-optimization, and 129 

Driver Effects 130 

When sequencing a cell population or tumor bulk, each mutation is assigned a variant allele 131 

frequency (VAF), which corresponds to the mutation’s frequency in the resulting pool. 132 

According to the infinite sites model47, once a mutation occurs it will continue to exist within 133 

that cell and its descendants. Therefore, if we assume that there is no selection or chromosomal 134 

duplications, the VAF is associated with the time of occurrence and population growth rates. 135 

That is, in the presence of a driver (i.e., in cells with higher fitness), non-driver mutations within 136 
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that cell lineage will also have higher-than-expected VAF and are termed “hitchhikers”29 (Figure 137 

1, Supplement). Hitchhikers that initially occurred before the driver mutation but continue to 138 

exist within that cell lineage will have a VAF that is higher than or equal to the driver’s 139 

frequency. We call these hitchhikers “generational” (g-hitchhikers) because they essentially 140 

mark the different generations of an ever-increasing number of tumor cells and thus exhibit a 141 

clock-like behavior. Since any non-driver lineage derived from the division of earlier cells will 142 

result in a mutation having lower frequency, these pre-driver hitchhiking mutations will indicate 143 

generational growth (Figure 1). As the fitness mutation becomes more prevalent over time, so 144 

does the prevalence of pre-driver “g-hitchhikers”, but critically at a different pace, which we 145 

calculate (see Supplement).   146 

 147 

Our framework’s equations (which we dub “hitchhiker equations”, see Supplement) relate the 148 

VAF of generational hitchhiker mutations to the fitness effect of the subclonal driver with which 149 

they are hitchhiking, mediated by various growth and population parameters (i.e. the base growth 150 

rate r, a scalar multiplier k corresponding to fitness effect of the mutation, the time t1 when the 151 

driver mutation is generated, Ntot the population size and NF the driver’s subclone size). The 152 

existence and fitness effects of subclonal drivers are not directly observable but are of primary 153 

biomedical importance. The VAF of hitchhiker mutations is directly observable, therefore we 154 

chose to use these VAFs to infer the presence of subclonal drivers and estimate their fitness 155 

effects. Our approach is to fit the known VAFs of the hitchhiker mutations in the hitchhiker 156 

equations to estimate the growth pattern and the fitness effect of subclonal drivers. This method 157 

requires to simultaneous estimate the various growth and population parameters, which we 158 

performed using non-linear least-squares optimization. To address the fact that real tumors differ 159 
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from idealized behavior, we make use of sliding windows and local timepoint re-optimizations in 160 

the parameter estimation to prevent departures from idealized behavior in one part of the VAF 161 

spectrum from interfering with parameter estimation in other parts of the VAF spectrum. The 162 

details of the growth and population parameters, their estimation, and the use of sliding windows 163 

are described in the Supplement. We derived our estimators for r and k through the 164 

implementation of a deterministic model to a stochastic process with a large final population 165 

Ntot.   166 

 167 

Modeling the frequency of g-hitchhikers using exponential models 168 

We assume a simple and neutral population of cancer cells that grows exponentially with rate r. 169 

For simplicity, we here assign each new daughter cell one new mutation (alternative mutation 170 

rates do not affect the derivation, see Supplement). At time t1, a mutation occurs that accelerates 171 

the growth rate of the specific subpopulation by a scalar multiplier k such that the new 172 

population expands with new rate k×r. At the time of biopsy T=t1+t2, where the fitness mutation 173 

occurs at t1 and expands for time t2, we expect the frequency of a generational g-hitchhiker 174 

mutation that occurred at time tm < t1 (see Figure 1, Supplement) to follow a frequency function 175 

𝑓# : 176 

 177 

𝑓#(T, t() = 	
N- + N/–	N-/

N121
 178 

or 179 

𝑓#(T, t() = 	
34567∗[	:6;6<=>(?,6@)	∗:6;6A	 B=>(?,6@)	∗:6;6

C 	]A=>(?,6@)	∗:6;6–	 B=>(?,6@)	∗:6;6
C

:6;6
 [1] ,  180 

 181 
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where 𝑓E(F,1@)	 is the frequency of the driver mutation occurring at t1 and expanding for t2=T- t1, 182 

The terms {	e<I17 ∗ J	N121 − 𝑓E(F,1@)	 ∗ N121L	} and 	{𝑓E(F,1@)	 ∗ N121		} correspond to the growth of 183 

regular N-	and fitness  N/ populations respectively, while extracting N-/ ={N𝑓E(F,1@)	 ∗ N121
C }  for 184 

not double-counting the hypothetical regular growth of fitness cells (see Figure 1, Supplement).   185 

 186 

Equation (1) for the m-th hitchhiker implicitly allows one to use the previous  m-1 potential 187 

hitchhikers to refine the estimates of growth rate r and scalar effect k. This estimation is achieved 188 

either through a non-linear-least-squares optimization, and/or through the independent 189 

calculation of growth r.  190 

 191 

The frequency of g-hitchhiking mutations follows the form of an exponential distribution. 192 

Theoretically, this further allows us to estimate growth rate r from consecutive g-hitchhiking 193 

mutations m1, m2, and m3, which occurred at times tm1, tm2, and tm3  (tm1, tm2, and tm3 < t1), 194 

according to 195 

 196 

𝑟 = ln R=S
(F,17@)<=S(F,17T)

=S(F,17T)<	=S(F,17U)
V  [2] 197 

 198 

In practice, to obtain more accurate estimates, our default algorithm estimates the growth rate r 199 

from three more distant time points t, t+n, and t+m (n<m and t+m< t1) with final frequencies 200 

𝑓#(T, t), 𝑓#(T, tW), and 𝑓#(T, t(), respectively, as described in the Supplement. 201 

   202 

 203 

Optimizing for generational time at any time point during tumor progression 204 
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 205 

In addition to our independent estimate of growth rate r, and in order to avoid previous 206 

frequency perturbations in our sample and localize the effect timewise, we also include an extra 207 

parameter referred to as ‘generational time (tg)’, which allows us to calibrate an offset for the 208 

number of past generations until that point without considering previous mutations outside our 209 

sliding window. Thus, similar to eq. [1], we now have 210 

 211 

𝑓#XT, 𝐭𝐠, t[ − m] = 	
345X𝐭𝐠^	6_47]∗(:6;6<=>X?,6_]	∗:6;6A	 B=>X?,6_]	∗:6;6

C` )A	=>X?,6_]	∗:6;6–	 B=>X?,6_]	∗:6;6
C`

:6;6
 [3], 212 

where 𝑓E(T, t[) is the frequency of the putative driver i occurring at time t[.  213 

This approach allows us to re-optimize tg at any time t[	during tumor growth, independently of 214 

earlier or later calculations. 215 

 216 

 217 

Validating Our Model Using Simulations 218 

 219 

Birth and death model, Gillespie simulations 220 

 221 

First, we tested our algorithm on simulated data based on various growth models, including: a) 222 

exponential growth, b) exponential growth with delayed cell division, and c) logistic growth 223 

(birth and death model). We performed simulation models (a) and (c) using a stochastic Gillespie 224 

algorithm, whereas model (b) represents an exponential cell growth model with a lag time for 225 

cell division, which prevents a cell from re-dividing immediately. Briefly, for the “Birth and 226 

Death” Gillespie model, which is the workhorse of our simulations, we used a stepwise time-227 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2019. ; https://doi.org/10.1101/753871doi: bioRxiv preprint 

https://doi.org/10.1101/753871
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

branching process to model the growth of a single transformed cell into a tumor with a dominant 228 

subclone. At each time step, an event type is chosen with a probability proportional to the event’s 229 

prevalence (see supplement) Then, a cell of the eligible type is randomly chosen to undergo that 230 

event. In our logistic-growth simulations, the death rate of each cell climbs proportionally as 231 

carrying capacity is reached, whereas in our exponential simulations, the death rate of each cell 232 

is constant throughout the simulation. The simulation ends randomly, after the driver subclone 233 

reaches a critical prevalence (see supplement for more details). The Gillespie algorithm has been 234 

frequently used to simulate stochastically dividing cells48–54, although simulations with special 235 

attention to cell cycle have also been recommended55.  236 

 237 

During simulated growth, we assigned a “driver” mutation with additional propagating effects 238 

from nearly neutral to high (k=1.1, 2, 3, and 4), thus leading to faster growth for the respective 239 

subpopulation that contains the specific mutation. Using conservative assumptions, these scalar 240 

values represent a range of projected selection coefficients s* from 0.001 to 0.03 in biologically 241 

sized populations (see Supplement). For each simulation, we calculated each mutation’s 242 

frequency in the total population and ordered them based on that frequency. Then, by applying 243 

our method we calculated the ranking distance D (as the number of ordered mutations) between 244 

the true and our predicted driver (growth peak), as well as the driver’s scalar effect k.  245 

 246 

We tested our method’s performance in simulated tumors of lower coverage and different 247 

effects. Higher sequencing depth and scalar effect k provided more accurate results and improved 248 

our method’s implementation (Figure 2a,b). Lower coverage was associated with worse k 249 

calculations and driver predictions, as well as lower positive predictive values (PPVs). For weak 250 
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drivers, low sequencing coverage made their identification more difficult. Absolute median 251 

ranking distance |D|c  was 41 for coverage 100x/k=2, compared to 13 for coverage 1000x/k=2 and 252 

|D|c =11 for coverage 1000x/k=4 respectively. In general, driver identification required either a 253 

higher than 100x coverage, or a stronger effect (i.e. k>2, s* >0.01 for a projected cell population 254 

of 1,000,000 cells) (Figure 2i). 255 

 256 

Overall, we were able to well approximate the driver’s occurrence and effect (Figure 2). For the 257 

birth and death model with simulated coverage 1,000x, the median predicted estimation for 258 

simulated effects k=2, k=3, and k=4 was 2.3, 2.9, and 3.8, respectively (Figures 2ii, S6b). 259 

Moreover, the median ranking distance Dd between simulated and predicted drivers with effect 260 

k=1.1 (nearly neutral), k=2, and k=3 was 71, 3. 5, and 6, respectively. The corresponding median 261 

distances for random mutations were 73, 43, and 41 (Figure S1c). For our nearly neutral 262 

simulations (k = 1.1, s* ~ 0.001 for a projected cell population of 1,000,000 cells) the median 263 

distance Dd	in driver predictions and random predictions was very similar and not significant.  264 

 265 

Neutral and non-neutral simulations with added stochasticity in mutation rates 266 

 267 

To further test our model on a separate independent simulation dataset, we applied our method to 268 

a) neutral simulations of tumor progression and b) non-neutral simulations for various growth 269 

scenarios, as previously developed and described by Williams et al 2016 and Williams et al 2018 270 

(see Supplement). These simulations, although also based on the Gillespie growth model, 271 

included added stochasticity with varying mutation rates during tumor progression (�̅�=10 272 

mutations per cell division). For every simulation, both neutral and non-neutral, we identified our 273 
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model’s highest predicted effect peak, calculated the effect k and absolute median ranking 274 

distance |Dd|  between the simulated and predicted driver in number of ranked mutations. Various 275 

scenarios for non-neutral growth included a wide range of simulated selection coefficients s (0 to 276 

33, for a population size of 10,000 cells), categorized driver’s VAF (small 0.1-0.2 ; medium 0.2-277 

0.3 ; large 0.3-0.4) and larger cell population projections using population genetic models and 278 

method adjustments. Corresponding neutral simulations were also generated using the same 279 

population parameters. Overall, and in agreement with our previous analyses, our results suggest 280 

a small overlap between neutral and non-neutral peaks for weak drivers (figure 2c and S1f) and 281 

highly significant driver predictability when the predicted driver effect was larger than our 282 

(narrow) neutral-effect distribution (Figure 2c,d and S1g-i). For instance, for simulated 283 

populations of 10,000 cell without projection (0 < simulated s < 33) and 1000x coverage our 284 

method provided accurate driver detections when the predicted effect was larger than k=1.29 285 

with |D|c ~50 mutations compared to 444.5 for random. These results are directly comparable to 286 

our previous analyses, considering the new mutation rates. Similarly, for a projected cell 287 

population of 1,000,000 cells, our method provided accurate driver detection for projected 288 

selection coefficient s* > 0.05 (Figure 2d). Larger population projections typically decreased the 289 

predicted effect k* and selection coefficient s*, but did not affect our method’s ability to detect 290 

drivers (Figure S1k) as these projections also decreased the standard deviation of our neutral-291 

effect distribution (predicted k* for neutral effect peaks). When we combined 140 neutral with 292 

360 non-neutral simulations, drivers with medium final VAF showed the highest correlation 293 

between simulated selection coefficients and our method’s predicted scalar k effects (r=0.60, 294 

Figure 2c). Drivers with lower final VAFs (small~0.1-0.2) provided slightly lower correlation 295 

but had the highest driver detectability, with |D|c =46 mutations between the simulated and 296 
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predicted driver (Figure S1l), where random |D|c 	was	444.5	mutaions. A (tenfold) higher |Dc| 297 

here is expected since for these simulations we assumed 10 instead of 1 mutation per cell 298 

division.  299 

 300 

 301 

Synthetic results using coalescent-based model: estimator �̂� for non g-hitchikers  302 

 303 

We also tested the behavior of the estimator for 𝑟 (Eq. 6) on non-g-hitchhiking mutations (i.e. 304 

when the assumption that the mutations are generational hitchhikers is not satisfied).  For this 305 

purpose, we used coalescent theory to estimate the variation in density of mutations across the 306 

VAF spectrum for a variety of models (see Supplement).  We first analyzed the behavior in a 307 

constant-size population, and then in populations with increasing and decreasing exponential 308 

growth. Our analysis shows that the growth indicator does not qualitatively change its behavior 309 

in this context, so that negative values continue to represent periods of negative growth, and 310 

large positive values represent periods of positive growth. However, here we expect a small 311 

positive value in the case of zero growth (Figure 2e, S2). 312 

 313 

   314 

Growth Patterns and Biological Disruptions in 993 Linear Tumors from the PCAWG 315 

  316 

Using 993 linear tumors from the PCAWG consortium, we explored the different patterns and 317 

dynamics of tumor growth based on our model’s assigned growth rates. Tumor “linearity” 318 

(where no parental subclone has two or more children subclones) further ensures that tumor 319 
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subclones do not intermingle and that higher VAF is associated with earlier occurrence. We note 320 

that mutational frequency as described in our equations corresponds to 2*VAF, with correction 321 

for purity and copy-number variations. These VAF corrections were obtained from PCAWG and 322 

are not implemented in any way by our method, which only considers a final mutational 323 

frequency. Using our model, each mutation i from sample in our database is assigned a potential 324 

positive or negative growth value ri and a driver effect ki. Under ideal conditions, for each 325 

sample, a vector of effect-peaks ri-1 ×	ki corresponds to potential drivers at position i. However, 326 

noise, coverage, and growth stochasticity can cause these peaks to represent the potential 327 

presence of a nearby driver, especially in low coverage sequenced tumors (see Figure 3a,b).   328 

  329 

To identify growth patterns across individual tumors, we i) normalized each mutation’s growth 330 

rate based on the sample’s maximum growth value; ii) divided the ordered mutations into 20 331 

bins; and iii) applied K-means clustering to the average normalized value per bin. Our results 332 

highlighted three main clustering patterns (Figure 3c). As expected, most tumors (n=525) 333 

showed logistic growth with an increasingly higher growth rate at the beginning and a 334 

stabilization at the later stages. For many tumors (n=366), an early high growth period was 335 

followed by a stagnation and potential reduction in tumor size. This effect could also be 336 

artificially enhanced due to sampling errors for mutations with low VAF (during late tumor 337 

progression). The last group of tumors (n=102) showed relatively steady, continuous growth. 338 

However, it is uncertain whether this pattern represents tumors that were sequenced early. 339 

Further, some types of cancer seemed to prefer specific growth patterns (Figure 3c). 340 

 341 
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By modeling tumor growth, we can find mutations during positive or negative growth periods in 342 

single or multiple individual samples. Through positive “growth enrichment”, we characterized 343 

the degree to which one type of mutation (e.g., TSGs/TP53, nonsynonymous) or region (e.g., 344 

TP53) was significantly enriched and associated with periods of positive growth across multiple 345 

samples. We then compared each mutation type to random mutations from their respective 346 

samples (see Supplementary Methods for details). To confirm whether we could detect any 347 

signal of selection at the gene level, we compared positive growth enrichment for mutations 348 

between i) the Vogelstein gene list29; ii) a comparable list (in mutational numbers) of randomly 349 

selected genes; and iii) a list of assigned drivers from the PCAWG consortium33,56. As expected, 350 

PCAWG-assigned driver SNVs clearly showed the highest positive enrichment, followed by 351 

SNVs that were not individually called by PCAWG as drivers but that fall within the Vogelstein 352 

driver gene list (Figure 3d). We note, however, that our random gene list did show a small 353 

positive enrichment, as this list contains several often-mutated genes and potential drivers or 354 

mini-drivers. We obtained similar results when we repeated the comparison while considering 355 

the difference between additional mutational effect against a random distribution (Figure S3). 356 

 357 

In an effort to better understand the micro-environment of tumor dynamics, the selective forces, 358 

and the biological processes that are most keenly affected by tumor progression, we analyzed a 359 

list of 1,000 most mutated genes in the PCAWG samples where we identified 293 genes with 360 

significant overall association with positive growth (Suppl. Table 1). Then we further tested 361 

these genes for Gene Ontology (GO) enrichment. As expected, developmental and differentiation 362 

processes were highly enriched during periods of positive growth, showing signals for being 363 
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under positive selection. Interestingly, we found that genes related to multicellular processes 364 

showed the highest enrichment based on raw p-value (Figure 3e, Suppl. Table 2).  365 

 366 

Tumor-Suppressor Genes vs. Oncogenes 367 

  368 

Based on each mutation’s genomic properties (e.g., genomic position, coding vs. non-coding, 369 

TSG vs. oncogene, cancer type, and gene ontology annotation), we can examine whether the 370 

specific type of mutation (or “mutation element”) is statistically enriched during periods of 371 

positive growth when compared to random mutations from their respective samples (see 372 

supplementary methods). However, the more specifically that we defined a mutation type, the 373 

fewer mutations that corresponded to this category. For example, the Vogelstein TSGs in our 374 

dataset contain 321 missense and 103 nonsense mutations, whereas TP53 in our dataset contains 375 

71 nonsynonymous mutations and 13 nonsense mutations. Unfortunately, for many tumor genes 376 

and cancer types, we currently have a small number of mutations, precluding significance in the 377 

results.    378 

  379 

A recent study by Kumar et al. suggested that high-impact mutations should have more clear 380 

positive effects on tumor growth when they are located in TSGs versus oncogenes38. This is 381 

expected, as generally a “defected” oncogene with reduced expression should not favor cancer 382 

progression. To better understand the behavior of TSGs and oncogenes, we tested for positive 383 

enrichment of synonymous, non-synonymous, premature stop, promoter, and intronic mutations 384 

(Figure 4). As expected, our results showed significant enrichment of missense and nonsense 385 

mutations in TSG regions. During periods of positive growth, 45 nonsense and 128 missense 386 
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mutations corresponded to an average of 37.4 and 117.96 random mutations, respectively (100 387 

bootstraps replicates, p values=7.823348e-30 and 1.632649e-23). Interestingly, promoter and 388 

intronic regions also showed a significant positive effect on tumor growth, suggesting that some 389 

non-coding mutations in TSGs might favor positive growth (Figure 4a).  390 

  391 

In the case of oncogenes, we did not find significant enrichment of missense mutations, but we 392 

did find significant association between their promoter regions and positive growth (Figures 4b). 393 

This might be due to many reasons including the pancancer nature of our analysis, lack of power 394 

and small sample size, our modeling assumptions, or the noise due to low sequencing coverage 395 

per tumor sample. However, many genes including oncogenes might be under negative selection, 396 

with only a small subset of their respective mutations being favorable to cancer growth. 397 

Moreover, high-impact mutations in oncogenic regions do not necessarily favor tumor growth. 398 

Indeed, our data contain only four nonsense mutations in oncogenic regions. Some oncogenes 399 

such as MET and CTNNB1 showed slight overall negative enrichment, but their nonsynonymous 400 

mutations, especially in specific cancers, showed enrichment during periods of positive growth 401 

(Figure S4).   402 

  403 

To detect mutations during positive growth periods, we applied our model to individual types of 404 

mutations (i.e., missense, synonymous, intronic, nonsense, and promoter) for each Vogelstein 405 

gene. Overall, our results identified various mutation elements including promoters, nonsense, 406 

and missense with significant effects (Figure 4c). Interestingly, synonymous BLC2 mutations 407 

that occurred near an early positioned mutational hotspot were significantly associated with 408 

positive growth (Figures 4c and S5). Synonymous mutations are not generally considered to be 409 
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important in cancer; however, previous studies have reported recurrent synonymous F17F 410 

mutations in BLC2-like 12, where regulatory hsa-miR-671–5p alters the gene’s expression45.         411 

  412 

Predicting Growth Peaks and Driver Effects on a Model Ultra-Deeply-Sequenced AML 413 

Tumor 414 

  415 

In addition to the 993 PCAWG low-coverage tumor samples, we implemented our model on an 416 

ultra-deeply-sequenced AML (>250x) liquid tumor. A ultra-deeply-sequenced tumor provides 417 

more accurate global variant allele frequencies, which should in turn allow for better estimation 418 

of model parameters12  419 

  420 

In general, the predicted peaks of our model mapped very closely to mutations from known 421 

cancer genes (Figure 5). Deep valleys followed by the highest growth peaks corresponded with 422 

close approximation to the three missense mutations from known cancer genes (IDH1, IDH2, 423 

and FLT3, p-value < 2.2e-16). Thus, in agreement with previous studies35,36, the derived growth 424 

patterns suggested three to five major genetic hits from cancer mutations in order to render tumor 425 

growth permanent.  426 

 427 

Additionally, we used all the mutations in our previous database to evaluate those in the deeply 428 

sequenced AML in order to identify new candidates associated with positive growth. As a result, 429 

we further identified five additional candidates from the ultra-deep AML sample that belong to 430 

genomic elements associated with positive growth (Figure 5d). These additional candidates 431 

consist of four missense mutations (SRCAP, CPS1, GLI1, and COL18A1) and one intronic 432 
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mutation (MAP3K1), which appeared to align near observed, previously unexplained periods of 433 

initial growth. Previous recent studies have also linked CPS1 and GLI1 to various cancers57–60. 434 

Finally, based on our PCAWG database, for each driver candidate we detected possible positive 435 

enrichment across varying effect ranges [0.9, 1.1, 1.3, 1.5, 1.7, 1.9, and 2.1] (Figure S6). 436 

Indicatively, our independent estimation of mutational effect suggested a high correlation when 437 

compared to the calculated effect using the deep sequenced model AML tumor (Figure S6).   438 

 439 

 440 

Discussion 441 

Most approaches to identify driver candidates are based on recurrent mutations and large 442 

cohorts23. More recently, studies have probed tumor selection either through deviation from 443 

background metrics or by using VAF distribution to quantify the subclonal effect16,19,22,61,62. 444 

Here, we present a framework that models tumor progression using generational hitchhikers and 445 

localized time re-optimizations using mutational frequencies from individual samples to i) 446 

determine periods of positive or negative growth, ii) suggest the presence of candidate drivers 447 

and estimate their effect on tumor progression, and iii) detect genomic regions or mutation 448 

elements that are associated with positive or negative growth periods. Overall, our work 449 

highlights the importance of whole genome deep sequencing for modelling tumor progression.  450 

 451 

When we applied our framework to 993 individual tumors from the PCAWG consortium, our 452 

growth analysis indicated different growth patterns across cancer types, including steady growth, 453 

sigmoidal growth, and modes of stagnation. Determining tumor progression can be useful in 454 

understanding each tumor’s historic aggressiveness, and the effect of driver mutations on tumor 455 
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progression (VAFs used by our method typically represent past growth, as latest mutations tend 456 

to have undetected frequency in our sample). Additionally, we identified several biological 457 

processes significantly affected by tumor progression, including genes involved in 458 

multicellularity. These results might indicate an evolutionary transition during tumor progression 459 

from multi-cell functionality to single-cell selection.  460 

 461 

As expected, we found significant enrichment of known PCAWG drivers, Vogelstein cancer 462 

genes, and nonsense and missense mutation TSGs during periods of positive growth. In 463 

accordance with some previous studies41–44, our results also suggested that a small proportion of 464 

intronic mutations could affect TSGs (but not oncogenes), whereas some synonymous mutations 465 

could affect oncogene (but not TSG) expression. Even though defective splicing in TSGs or 466 

changes in the negative regulation of oncogenes are not entirely unexpected45, non-coding 467 

mutations are not generally considered to be major driver events in tumor progression. Thus, it is 468 

possible that our results are subject to analytical (e.g., model parametrization, initial parameters, 469 

window size selection, low sequencing coverage, sample size) and biological (e,g, hitchhiking) 470 

error.  471 

 472 

Using variant allele frequency to quantify driver effects and tumor progression can be 473 

challenging. Our analysis might be subject to different types of bias, including sequencing noise, 474 

growth stochasticity, model parameterization, low sequencing coverage, tumor ploidy, 475 

subclonality, and a low number of tumor samples per cancer or mutational element. Under a 476 

neutral model, our method would still detect some growth peaks or suggest the presence of weak 477 

drivers. These are false positive predictions, possibly due to noise which results in various signal 478 
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perturbations in the VAF spectrum, or potential genetic drift. Moreover, our model does not 479 

consider the potential effects from deleterious passenger mutations or sequencing errors on the 480 

VAF spectrum. However, we consider that -if not depleted- most deleterious mutations should 481 

have a small VAF in our sequenced sample. Similarly, we expect that sequencing errors tend to 482 

produce spurious mutations of extremely low VAF, which are ignored by our framework. 483 

Although some researchers are skeptical of the plausibility of “VAF quantification”20,63, recent 484 

analyses have also confirmed that it can be achieved even at low sequencing coverage16.  At the 485 

same time, as sequencing cost decreases exponentially, ultra-deep whole genome sequencing for 486 

a larger number of samples will become trivially within reach. This is critical for the 487 

personalized assessment and parametrization of single samples.  488 

 489 

Similar to previous Darwinian, bacterial, and viral evolution analyses, modeling the variations of 490 

cell populations allows us to associate these variations with specific events, even at a single 491 

sample level. Our work contributes to our understanding of cancer evolution by directly 492 

assessing tumor sample progression at the time of the driver event. This assessment can be very 493 

critical for therapeutic strategies and drug selection33,34. Our framework presents opportunities 494 

for personalized diagnosis via modeling the tumor’s progression using deep sequenced whole 495 

genome data from one single individual.  496 

 497 
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 522 
 523 
Figure 1. Generational (g-)hitchhikers have increased frequency, which in turn is 524 

dependent on the effect of the fitness mutation in the population. We consider a simple 525 
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population of cancer cells that grows exponentially N(t) = eI1; for simplicity, we assign one mutation 526 

per cell division. At the time of biopsy T, the frequency of a mutation occurring at time tn would be equal 527 

to 𝑓n(T, tn) = 	
er(T−tn)

erT
							 = 	 e−rtn 		. At time t1, a mutation occurs that increases the growth rate r of the 528 

specific subpopulation by a scalar multiplier k, such that the new population is now expanding as NF =529 

esI1T. Thus, at the time of biopsy T=t1+t2, we expect a generational (g-) “hitchhiking” mutation that 530 

occurred at time tm < t1 to have a frequency equal to 𝑓g(T, tm) = 	
er(T−tm)	+	NF–	ert2

Ntot
 , where Ntot is the total 531 

number of cells (or mutations) and NF is the number of cells that contain the fitness mutation that 532 

occurred at t1 and expanded for t2. Therefore NF = 𝑒krt2 . In a) we show the mutational frequencies at 533 

the time of biopsy T for two growth models; one neutral and one with a fitness mutation 534 

occurring at time t1=tfg . Hitchhiking mutations ‘b’ (“blue”), ‘r’ (“red”), as well as passenger 535 

mutations ‘g’ (“green”) and ‘y’ (“yellow”), also occur at different time points. b) Under an 536 

exponential model with a fitness mutation occurring at time t1=tfg, hitchhikers ‘b’ and ‘r’ show an 537 

increased frequency compared to neutral, subject to time and effect of the fitness mutation. 538 

Passenger mutations ‘y’ and ‘g’ that occurred before or with the fitness mutation, but on a 539 

different cell lineage, end up with lower frequencies. We characterize mutations ‘b’ and and ‘r’ 540 

as generational (g-) hitchhikers since they mark the population’s generational growth.  541 

 542 
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 543 

 544 
 545 
Figure 2.  546 
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Figure 2. Higher coverage and stronger drivers improve driver detectability and effect 547 

prediction. In a) using a total of 541 simulations of tumor growth under a birth and death model 548 

(an average of 36 simulations per sequencing depth per simulated effect), we show the absolute 549 

median distance |D|c 	as in ‘absolute number of ordered mutations’ between our predicted and the 550 

simulated driver for different sequencing depths. With the exception of k=2 and sequencing 551 

coverage equal to 100x (p value=0.015), we were able to significantly detect the driver’s 552 

presence for depth coverages as low as 100x (p value <0.005). Blue line represents the random 553 

absolute median distance as derived by selecting a random mutation from each simulation and 554 

calculate the absolute distance to the simulated driver. Dotted lines represent the 2*sigma 555 

deviation from |D|c 	while capped bars represent the median’s standard error. For convenience and 556 

clarity, we only show bars for k=2. In b) again using a total of 541 simulations of tumor growth 557 

under a birth and death model, we show that higher depth coverage provides more accurate k 558 

predictions. Low coverage usually results in predicting a lower effect. Capped bars represent the 559 

standard error of the median effect prediction. The three lines represent simulations with 560 

simulated effect of 2,3 and 4. In c) By implementing the Williams et al 2018 algorithm for 561 

neutral and non-neutral simulations, we simulated 360 non-neutral and 140 neutral tumor 562 

progressions, with a populations size of 10000 cells. Then, we adjusted our effect predictions to 563 

account for a larger population with effect size equal to 1,000,000. In addition, we also adjusted 564 

the simulated selection coefficient s* for the same population size. In this figure we show the 565 

correlation between the simulated adjusted coefficient ‘1+s*’ against our adjusted predicted k*. 566 

By including both neutral and non-neutral simulations in our sample Pearson correlation was 567 

r=0.6. In d) after ranking simulated driver coefficients s* for every non-neutral simulation 568 

(adapted from Williams et al), we used a sliding window of 20 ranked simulations to estimate the 569 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2019. ; https://doi.org/10.1101/753871doi: bioRxiv preprint 

https://doi.org/10.1101/753871
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

absolute median distance (and 95% deviation) between the simulated and predicted driver within 570 

every window of 20 ranked simulations. Dotted lines represent a 2×σ deviation (95%). When 571 

our simulated selection coefficient was stronger than 0.05* our driver detection became highly 572 

accurate. Blue line represents absolute median distance for random predictions (444.5), while 573 

black lines represent the median standard error for these expectation (24.5). Simulated 574 

coefficients s* have been projected for a population with effect size of 1,000,000. In e) Using 575 

Kingman’s coalescent theory, for a length of time TW  with	n	lineages, we show that the growth 576 

�̂� estimator remains qualitatively unchanged (positive or negative) even for non g-hitchhikers. 577 

By approximation, the mutational density 𝛿z  within windows [1/n			1/(n − 1)), whose lengths 578 

are LW	is equal to 𝛿z =
~�
��
∝ 2𝜇𝑛. As mutational density 𝛿z  increases with n, and hence with 579 

time, �̂� estimator is predicted to take positive values for both constant and varying size 580 

populations. Similarly, for negative growth values, density δW decreases with time. A small 581 

positive bias is observed in cases of growth r=0, as the pattern reverses.  Using a population 582 

model N1A� = αN1, we let α > 1 corresponding to a decreasing (time is indexed in reverse) and α 583 

< 1 corresponding to an increasing population.  584 

 585 
 586 
      587 
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 588 

 589 
Figure 3. Growth patterns and growth association. Across 993 linear tumors from PCAWG 590 

consortium we expect an under-selection mutation to be associated with periods of positive 591 

growth (see supplementary methods). We compared several mutation types (driver mutation, 592 

mutation within geneX, within GO categoryX), to a random distribution from their respective 593 

sample for association with positive growth. a-b) we show the i) averaged growth progression, 594 

ii) mutational growth and iii) mutational effect, for a single low coverage CNS-oligo tumor and a 595 

single low coverage thyroid adenocarcinoma tumor without any PCAWG-identified drivers. 596 

Green asterisks denote the ordered position of a PCAWG-predicted driver within the sample. 597 

Yellow asterisks denote a growth peak and putative driver presence. In c) we derived three main 598 

growth patterns (steady growth, sigmoid growth, stagnation/shrinkage) for 993 linear tumors, as 599 
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they were grouped using a k-means clustering algorithm. Various cancer types showed specific 600 

enrichment or depletion for the three clusters d) PCAWG drivers and Vogelstein genes showed 601 

significant positive growth enrichment compared to a list of random highly mutated genes. e) We 602 

show the GO enrichment for the 20 most affected biological processes, when we use 293 genes, 603 

significantly associated with periods of positive growth.  604 

 605 
 606 
 607 
 608 
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 609 
Figure 4. Mutational elements from tumor suppressor genes and oncogenes showing 610 

growth enrichment. We show the positive growth enrichment across different mutation types 611 

(introns, synonymous, missense, nonsense, promoters) for a) Vogelstein tumor suppressor genes 612 

and b) Vogelstein oncogenes. In c) we plot gene elements (e.g. {GeneX_mutation type}) from 613 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2019. ; https://doi.org/10.1101/753871doi: bioRxiv preprint 

https://doi.org/10.1101/753871
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Vogelstein gene list that showed significant positive or negative enrichment. We further zoom in 614 

to BCL2’s genomic region to map missense, nonsynonymous, promoter and intronic mutations.  615 

 616 

 617 
 618 
 619 
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Figure 5. Mapping candidate drivers during tumor progression on an ultra-deeply-620 

sequenced AML liquid tumor.  621 

In a) we show the averaged growth progression for an AML deep sequenced tumor. We ordered 622 

the sample’s mutations from highest to lowest frequency and divided them into bins of 200 623 

mutations. Three cancer mutations hit the tumor to establish a permanent growth (cancer 624 

mutations denoted by green bars). In b) we plot the mutational growth ri-1 for each mutation 625 

across tumor progression. The three cancer genes (IDH1-missense, FLT3-missense, IDH2-626 

missense) aligned well with 3 of our top 5 growth peaks (p-value < 2.2e-16). Candidate driver 627 

mutations -denoted by yellow bar- that we identified from our PCAWG database as being 628 

associated with positive growth (see also ‘d)’) aligned well with early –previously unjustified 629 

growth peaks. In c) we show each mutation’s effect in tumor progression. Effect peaks 630 

corresponds to putative drivers. d) By using our PCAWG database from our previous analysis, 631 

we tested which mutations from the deep sequenced sample were associated with positive 632 

growth. Overall, we found 6 mutation types that showed positive enrichment across 993 633 

PCAWG tumors including TP53-missense (appeared during metastasis), IDH1-missense, 634 

COL18A1-missense, CPS1-missense, GLI1-missense and SRCAP-missense.  Missense TP53 635 

and SRCAP mutations are not included in graph (b) as they were metastatic mutations. For 636 

association with positive growth we tested all missense mutations (eg CPS1-missense), and 637 

every mutation in the sample from Vogelstein cancer genes (eg. NOTCH2-Intron). 638 

 639 

 640 

 641 

 642 
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