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Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in
structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing
on the case of plant–pollinator networks, we here describe a Bayesian statistical technique that allows us to
make accurate estimates of network structure and ecological metrics from such noisy observational data. Our
method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way
for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method
with an application to previously published data on plant–pollinator networks in the Seychelles archipelago,
calculating estimates of network structure, network nestedness, and other characteristics.

I. INTRODUCTION

Network-based methods of analysis have contributed sub-
stantially to our understanding of ecological systems by help-
ing us identify structure in the patterns of interaction between
species [1–4]. Such patterns have been shown to be strongly
linked to the dynamics and stability of ecosystems [5–7] and
this is particularly the case for mutualistic networks such as
plant–pollinator interactions—our focus in this paper—whose
functions are crucial to terrestrial biodiversity [6, 8] and human
food security [9, 10].

A central prerequisite for quantitative analysis of network
structure and function is accurate network data, and signifi-
cant effort has been invested in recent years in data gather-
ing for ecological networks of many kinds, including mu-
tualistic networks. There is, however, some debate over
whether the observed structure of mutualistic networks rep-
resents the true interaction patterns produced by evolutionary
and ecological mechanisms, at least to a good approxima-
tion [4, 6, 11], orwhether, conversely, it is biased by incomplete
sampling, for instance failing to detect the interactions of rare
species [12, 13]. In this paper we describe a new technique that
aims to give quantitative answers to these questions by apply-
ing methods of Bayesian inference to ecological network data.
Treating the case of plant–pollinator networks, we show that
it is possible to accurately infer interaction network structure
from observational data while taking into account confound-
ing variables such as varying species abundances. The output
of our calculations includes not only an estimate of the true
structure of the network but also an estimate of the certainty
of each interaction, which allows us in turn to make precise
statements about the accuracy of any further conclusions we
draw from the network structure. Estimates of interaction cer-
tainty can also help us identify interactions that would benefit
from greater sampling effort.

The structure of mutualistic networks is typified by several
characteristic features [14]: moderate connectance, meaning

∗ jgyou@umich.edu
† fsvaldov@umich.edu
‡ mejn@umich.edu

that a modest fraction of all potential interactions are realized;
long-tailed degree distributions, meaning that there are many
specialist species with a small number of interactions and a
few generalist species with many interactions; and nestedness,
meaning that the interactions of the least-connected species are
often subsets of the interactions of better-connected species.
A significant volume of research has been devoted to explain-
ing these features in terms of ecological and evolutionary
mechanisms (see Vázquez et al. [11] and Bascompte and Jor-
dano [6] for reviews). Other work, however, has suggested
that they can also be generated merely as artifacts of skewed
abundance distributions and incomplete sampling, both very
common in ecological systems [12, 13]. In particular, Blüth-
gen et al. [12] have shown that nestedness and broad degree
distributions can be a result of failure to observe interactions
between rare species because of low sampling effort and/or
the infrequency of the interactions in question. Findings like
this have stimulated further investigations of the effects of
sampling bias on network structure [4], both empirically by
varying sampling effort in the field [15–19] and theoretically
using models of network structure [12, 20–22]. These studies
suggest that incomplete sampling strongly underestimates the
number of interactions in networks and overestimates the de-
gree of specialization. The approach described in this paper
offers one way to address these shortcomings and obtain reli-
able estimates of the structure of mutualistic networks, free of
measurement bias.
The paper is organized as follows. In Section II, we outline

a first-principles statistical model of plant–pollinator interac-
tions and show how it can be used to estimate network structure
from error-prone observational data. Then in Section III we
demonstrate these methods with an application to a typical
plant–pollinator data set, showing how they give us not only
the network structure itself but also statistically principled es-
timates of quantities such as nestedness. In Section IV we give
some conclusions and directions for future work.
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II. NETWORK RECONSTRUCTION FROM
OBSERVATIONAL DATA

The typical field study of plant–pollinator interactions in-
volves observing instances of pollinators (such as insects) vis-
iting plants within a prescribed observation area and over a
prescribed period of time. The resulting data are reflective of
the structure of the plant–pollinator network for the species
involved but, for many reasons, they are not a perfect record of
that network. First, there maybe observational errors. While
the observers performing the work are usually highly trained
individuals, they may nonetheless make mistakes. They may
confuse one species for another, which is particularly easy to
do for small-bodied insects, or smaller species may be over-
looked altogether. Observers may make correct observations
but record them wrongly. And there will be statistical fluctu-
ations in the number of visits of an insect species to a plant
species over any finite time. For rare interactions there may
even be no visits at all if we are unlucky. The insects them-
selves may also make “mistakes” by visiting and appearing to
pollinate a plant that in fact they typically do not pollinate.
These and other factors mean that the record of observed visits
is an inherently untrustworthy guide to the true structure of the
plant–pollinator network.

Moreover, our data do not in any case tell us directly about
network structure. The number of visits of a pollinator species
to a plant species can vary widely, depending particularly on
the abundance of the two species. How many visits do we take
as evidence of a true plant–pollinator interaction? A single
visit is probably not enough—it might well be an error or
misobservation. Is two enough, or ten, or a hundred? And is
this even the right question to ask? If we set the threshold at
100 visits, it seems absurd to then claim that 99 visits implies
no interaction at all.

All of these objections can be overcome if we use a more
realistic model of what our data mean.

A. Model of plant–pollinator data

Consider a typical plant–pollinator study, as described
above, in which some number np of plant species, labeled
by i = 1 . . . np , and some number na of animal pollinator
species, labeled by j = 1 . . . na, are under observation for a
set amount of time, producing a record of observed visits such
that Mi j is the number of times plant species i is visited by
pollinator species j. Collectively the Mi j can be regarded as a
data matrix M with np rows and na columns. This is the input
to our calculation.

The unknown quantity, the thing we would like to under-
stand, is the network of plant–pollinator interactions. We can
think of this network as composed of two sets of nodes, one
representing plants and the other pollinators, with connections
or edges joining each pollinator to the plants that it pollinates.
In the language of network science this is a bipartite network,
meaning that edges run only between nodes of unlike kinds—
plants and pollinators—and never between two plants or two
pollinators. Such a network can be represented by a second

matrix B, called the incidence matrix, with the same size as the
data matrix, but with elements Bi j = 1 if plant i is pollinated
by pollinator j and 0 otherwise.
The question we would like to answer is this: What is

the best guess at the structure of the network, represented
by B, given the data M? It is not straightforward to answer
this question directly, but it is relatively easy to answer the
reverse question. If we imagine that we know B, then we
can say what the probability is that we make a specific set
of observations M . And if we can do this then the methods
of Bayesian inference allow us to invert the calculation and
compute B from a knowledge of M and hence achieve our
goal. The procedure is as follows.
Consider a specific plant–pollinator species pair i, j. How

many times do we expect to see j visit i if j does, or does
not, normally pollinate i? The answer will depend on several
factors. First, and most obviously, we expect the number of
visits to be higher if i is in fact a pollinator of j. That is, we
expect Mi j to be larger if Bi j = 1 than if Bi j = 0. Second, we
expect there to be more visits if the period of observation is
longer or if the land area over which observations take place
is larger, all other factors being equal. Third, we expect to see
more visits for more abundant plant species than for less abun-
dant ones, and similarly for more abundant pollinators. And
fourth, as discussed at the start of Section II, we expect there
to be some random variation in the number of visits, driven by
fluctuations in individual behavior and the environment.
We can translate these factors into a mathematical model of

plant–pollinator interaction as follows. Assuming that polli-
nator visits are independent—that the occurrence of one visit
does not affect the timing or likelihood of another—the ran-
dom variation in the number of visits will follow a Poisson
distribution for each plant–pollinator pair i, j, parameterized
by a single number, the distribution mean µi j . This mean
value we expect to depend on the other three factors discussed
above and we introduce additional parameters to represent this
dependence.
First we introduce a parameter r to represent the larger num-

ber of visits when Bi j = 1, versus when it is 0. We write the
factor by which the number is increased as 1+ r with r ≥ 0, so
that r = 0 implies no increase and successively larger values
of r give us larger increases. Second, we represent the effect
of the overall time or land area of observation by an overall
constant C that multiplies the mean µi j . The same constant is
used for all i and j, since all plant–pollinator pairs experience
the same period and area of observation. Third, we assume
that the number of visits is directly proportional to the abun-
dance of the relevant plant and pollinator species: twice as
many pollinators of species j, for instance, will mean twice as
many visits by that species, and similarly for the abundance of
the plant species. Thus the number of visits will be propor-
tional to σiτj , for some parameters σi and τj representing the
abundances of plant i and pollinator j, respectively, in suitable
units (which we will determine shortly).
Putting everything together, the mean number of observed

visits to plant i by pollinator j is

µi j = Cσiτj(1 + rBi j), (1)
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and the probability of observing exactly Mi j visits is drawn
from a Poisson distribution with this mean:

P(Mi j |µi j) =
µ
Mi j

i j

Mi j!
e−µi j . (2)

This equation gives us the probability distribution of a single
element Mi j of the data matrix. Assuming once again that
visits are independent of one another, we can combine Eqs. (1)
and (2) for all plant–pollinator pairs to get the likelihood of the
complete data matrix M thus:

P(M |B, θ) =
∏
i, j

[
Cσiτj(1 + rBi j)

]Mi j

Mi j!
e−Cσiτj (1+rBi j ), (3)

where θ is a shorthand collectively denoting all the parameters
of the model.

There are two important details that should be noted about
this model. First, the definition in Eq. (1) does not completely
determine C, σ, and τ because we can increase (or decrease)
any of these parameters by a constant factor without changing
the resulting value of µi j if we simultaneously decrease (or in-
crease) one or both of the others. In the language of statistics
we say that the parameters are not “identifiable.” We can rec-
tify this problem by fixing the normalization of the parameters
in any convenient fashion. Here we do this by stipulating that
σi and τj sum to one, thus:

np∑
i=1

σi =

na∑
j=1

τj = 1. (4)

In effect, this makes σi and τj measures of relative abundance,
quantifying the fraction of individual organisms that belong to
each species, rather than the total number.

Second, there are other species-level effects on the observed
number of visits in addition to abundance, such as the propen-
sity for observers to overlook small-bodied pollinators. There
is, at least within the data that we will be working with, no
way to tell these effects from true variation in abundance—no
way to tell for example if there are truly fewer individuals of
a species or if they are just hard to see and hence less often
observed. As a result, the abundance parameters in our model
actually capture a combination of effects on observation fre-
quency. This does not affect the accuracy of the model, which
works just as well either way, but it does mean that we have to
be cautious about interpreting the values of the parameters in
terms of actual abundance. This point is discussed further in
Section III.

B. Bayesian reconstruction

The likelihood of Eq. (3) tells us the probability of the
data M given the network B and parameters θ. What we
actually want to know is the probability of the network and
parameters given the data, which we can calculate by applying
Bayes’ rule in the form

P(B, θ |M) =
P(M |B, θ)P(B|θ)P(θ)

P(M)
. (5)

This is the posterior probability that the network has struc-
ture B and parameter values θ given the observations that
were made. There are three important parts to the expres-
sion: the likelihood P(M |B, θ), the prior probability of the net-
work P(B|θ), and the prior probability of the parameters P(θ).
The denominator P(M) we can ignore because it depends on
the data alone and will be constant (and hence irrelevant for
our calculations) once M is determined by the observations.
Of the three non-constant parts, the first, the likelihood,

we have already discussed—it is given by Eq. (3). For the
prior P(θ) on the parameters we assume a simple uniform dis-
tribution, equivalent to saying that we know nothing about the
parameter values in advance. This makes the prior a constant,
which means we can ignore it as we did P(M). For the prior on
the network P(B|θ)we make the conservative assumption—in
the absence of any knowledge to the contrary—that all edges
in the network are a priori equally likely. If we denote the
probability of an edge by ρ, then the prior probability on the
entire network is

P(B|θ) =
∏
i, j

(1 − ρ)1−Bi j ρBi j . (6)

We consider ρ an additional parameter which is to be inferred
from the data and which we will henceforth include, along
with our other parameters, in the set θ. We also need to
assume a prior probability on ρ and again we assume a uniform
distribution, meaning the prior is constant and we can ignore
it. With these choices, we now have everything we need to
compute the posterior probability, Eq. (5).
Once we have the posterior probability there are a number

of things we can do with it. The simplest is just to maximize
it with respect to the unknown quantities B and θ to find the
most likely structure for the network, and parameters, given the
data. This, however, misses an opportunity for more detailed
inference and can moreover give misleading results. In most
cases there will be more than one value of B and θ with high
probability under Eq. (5): there may be a unique maximum of
the probability, a most likely value, but there are often many
other values that have nearly as high probability and offer
plausible network structures competitive with the most likely
one. To get the most complete picture of the structure of the
network we should consider all these plausible structures.
For example, if all plausible structures are similar to one

another in their overall shape then we can be quite confident
that that shape is reflective of the true plant–pollinator network.
If plausible structures are widely varying, however, then we
have many different candidates for the true structure and our
certainty about that structure is correspondingly lower. In other
words, by considering the complete set of plausible structures
we can not only make an estimate of the network structure but
also say how confident we are in that estimate, in effect putting
“error bars” on the network.
How do we specify these errors bars in practice? One way

is to place posterior probabilities on individual edges in the
network. For example, when considering the edge connecting
plant i and pollinator j, we would not ask “Is there an edge?”
but rather “What is the probability that there is an edge?”
Within the formulation outlined above, this probability is given
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by the average

P(Bi j = 1|M) =
∑
B

∫
Bi jP(B, θ |M) dθ , (7)

where the sum runs over all possible incidence matrices and
the integral over all parameter values. More generally we can
compute the average of any function f (B, θ) of the matrix B
and/or the parameters θ thus:〈

f (B, θ)
〉
=

∑
B

∫
f (B, θ) P(B, θ |M) dθ. (8)

Functions of both the matrix and the parameters can be
interesting—the matrix tells us about the structure of the net-
work, but the parameters, as we will see, can also reveal im-
portant information.

Computing averages of the form (8) is unfortunately not
an easy task. A closed-form expression appears out of reach
and the brute-force approach of performing the sums and in-
tegrals numerically over all possible networks and parameters
is computationally intractable. Instead therefore we use an
efficient Monte Carlo sampling technique to approximate the
answers. We generate a sample of network/parameter pairs
(B1, θ1), . . . , (Bn, θn), where each pair appears with probabil-
ity proportional to the posterior distribution of Eq. (5). Then
we approximate the average of f (B, θ) as〈

f (B, θ)
〉
'

1
n

n∑
i=1

f (Bi, θi) . (9)

Under very general conditions, this average will converge to
its true value asymptotically as the number of Monte Carlo
samples n becomes large. Full details of the computations are
given in Materials and Methods.

C. Checking the model

Inherent in the discussion so far is the assumption that the
data can be well represented by our model. In other words, we
are assuming there is at least one choice of the network B and
parameters θ such that the model will generate data similar to
what we see in the field. This assumption could be violated if
our model is a poor one, but there is nothing in the method of
Section II B that would tell us so. To be fully confident in our
results we need to be able not only to infer the network struc-
ture, but also to check whether that structure is a good match
to the data. Luckily the Bayesian toolbox comes with a natural
procedure for doing this. Given a set of high-probability val-
ues of B and θ, as described in Section II B, we can use them
in Eq. (3) to compute the likelihood P(M |B, θ) of a data set M
and then sample possible data sets from this probability dis-
tribution, in effect recreating data as they would appear if the
model were in fact correct. We can then compare these data
to the original field data to see if they are similar: if they are
then our model has done a good job of capturing the structure
in the data.

In the parlance of Bayesian statistics this approach is known
as a posterior–predictive check. It amounts to calculating the
probability

P(M̃i j |M) =
∑
B

∫
P(M̃i j |B, θ)P(B, θ |M) dθ (10)

that there are M̃i j observed visits of pollinator j to plant i in
artificial data sets generated by the model, averaged over many
sets of values of B and θ. We can then use this probability to
calculate the average value of M̃i j thus:

〈M̃i j〉 =
∑
M̃i j

M̃i j P(M̃i j |M) . (11)

The averages for all plant–pollinator pairs can be thought of
as the elements of a matrix 〈M̃〉, which we can then compare
to the real data matrix M , or alternatively we can calculate a
residue M − 〈M̃〉. If 〈M̃〉 and M are approximately equal,
or equivalently if the residue is small, then we consider the
model a good one. Note that the calculation in Eq. (10) is of
the same form as the one in Eq. (8), with f (B, θ) = P(M̃i j |B, θ),
which means we can calculate P(M̃i j |M) in the same way we
calculate other average quantities, usingMonte Carlo sampling
and Eq. (9).

III. RESULTS

To demonstrate how the method works in practice, we con-
sider a large data set of plant–pollinator interactions gathered
by Kaiser-Bunbury and collaborators [23] at a set of study sites
on the island of Mahé in the Seychelles. The data describe the
interactions of plant and pollinators species as observed over
a period of eight months across eight different sites on the
island. It also includes measurements of plant abundances for
all observation periods and all sites. Our method for infer-
ring network structure does not make use of the abundance
measurements, but we discuss them briefly at the end of this
section.
The study by Kaiser-Bunbury et al. focused particularly

on the role of exotic plant species in the ecosystem and on
whether restoring a site by removing exotic species would
significantly impact the resilience and function of the plant–
pollinator network. To help address these questions, half of
the sites in the study were restored in this way while the rest
were left unrestored as a control group.
As an illustration of our method we apply it to data from

one of the restored sites in the Mahé study, as observed over
the course of a single month in December 2012 (the smallest
time interval for which data were available). We pick the
site named “Trois-Frères” because it is relatively small but
also well sampled. Our calculation then proceeds as shown in
Fig. 1. Therewere 8 plant and 21 pollinator species observed at
the site during the month, giving us an 8×21 data matrix M as
shown in Fig. 1a. (Following common convention, the plots of
matrices in this paper are drawnwith rows and columns ordered
by decreasing numbers of observed interactions, so that the
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FIG. 1. Illustration of our inference method applied to an example
data set from Kaiser-Bunbury et al. [23]. (a) We start with a data
matrix M that records the number of interactions between each plant
species and pollinator species. Missing interactions Mi j = 0 are
shown in white. (b) We then draw 2 000 samples from the distri-
bution appearing in Eq. (5), four of which are shown in the figure.
Each sample consists of a binary incidence matrix B, values for the
relative abundances σ and τ (shown as the orange and blue bar plots,
respectively), and values for the parameters C, r , and ρ (not shown).
(c) We combine the samples using Eqs. (7)–(9) to give an estimate of
the probability of each edge in the network and the complete param-
eter set θ. For the data set studied here our estimates of the expected
values of the parameters C, r , and ρ are 〈C〉 = 52.2, 〈r〉 = 58.5,
and 〈ρ〉 = 0.208.

largest elements of the data matrix—the darkest squares—are
in the top and left of the plot.)
Now we use our Monte Carlo procedure to draw 2000 sets

of incidence matrices B and parameters θ from the poste-
rior distribution of Eq. (5) (Fig. 1b). These samples vary
in their structure: some edges, like the one connecting the
plant N. vanhoutteanum and the pollinator A. mellifera, are
present in nearly all samples, while others, like the one be-
tween M. sechellarum and A. mellifera, appear only a small
fraction of the time. Some others never occur at all. Averaging
over these sampled networks we can estimate the probability,
Eq. (7), that each connection exists in the true plant–pollinator
network—see Fig. 1c. Some connections have high prob-
ability, close to 1, meaning that we have a high degree of
confidence that they exist. Others have probability close to 0,
meaning we have a high degree of confidence that they do not
exist. And some have intermediate probabilities, meaning we
are uncertain about them (such as theM. sechellarum–A. mel-
lifera connection, which has probability around 0.45). This is
not a failing of our methodology, but rather one of its strengths.
It is telling us that the data are not sufficient to reach a firm
conclusion about these connections. Indeed, if we compare
with the original data matrix M in Fig. 1a, we find that most
of the uncertain connections are ones for which we have very
few observations, say Mi j = 1 or 2.
As discussed in Section II C, we also need to check whether

the model is a good fit to the data by performing a posterior-
predictive test. Figure 2 shows the results of this test. The
main plot in the figure compares the values of the 40 largest
elements of the original data matrixM with the corresponding
elements of the generated matrix M̃ . In each case, the original
value is well within one standard deviation of the average value
generated by the test, confirming the accuracy of the model.
The inset of the figure shows the residue matrixM − M̃ , which
reveals no systematic bias unaccounted for by the model.
In addition to inferring the structure of the network itself,

our method allows us to estimate many other quantities from
the data. There are two primary methods by which we can do
this. One is to look at the values of the fittedmodel parameters,
which represent quantities such as the preference r and species
abundances σ,τ. The other is to compute averages of quanti-
ties that depend on the network structure or the parameters (or
both) from Eq. (9).
As an example of the former approach, consider the param-

eter ρ, which represents the average probability of an edge,
also known as the connectance of the network. Figure 3a
shows the distribution of values of this quantity over our set
of Monte Carlo samples, and neatly summarizes our overall
certainty about the presence or absence of edges. If we were
certain about all edges in the network, then ρ would take only
a single value and the distribution would be narrowly peaked.
The distribution we observe, however, is somewhat broadened,
indicating significant uncertainty. The most likely value of ρ,
the peak of the distribution, turns out to be quite close to the
value one would arrive at if one were simply to assume that ev-
ery pair of species that interacts even once is connected in the
network. This does not mean, however, that one could make
this assumption and get good results. As we show below, the
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that the model is a good fit in this case.

0.1 0.2 0.3 0.4 0.5
Connectance 

0

2

4

6

8

Po
st

er
io

r p
ro

ba
bi

lit
y

(a)
Mij > 0Mij 5

50 100 150 200
Preference r

0.000

0.005

0.010

0.015

0.020

Po
st

er
io

r p
ro

ba
bi

lit
y

(b)

0.1 0.2 0.3 0.4 0.5
Nestedness (NODF)

0

2

4

6

8

Po
st

er
io

r p
ro

ba
bi

lit
y

(c)
Mij > 0 Mij > 1

0.00 0.05 0.10 0.15 0.20 0.25
Estimated floral abundances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

su
re

d 
flo

ra
l a

bu
nd

an
ce

s

(d)

FIG. 3. Examples of the types of analysis that can be performed using
samples from the posterior distribution of Eq. (5). (a) Distribution of
the connectance ρ. Connectance values for binary networks obtained
by thresholding the data matrix at Mi j > 0 and Mi j ≥ 5 are shown
as vertical lines for reference. (b) Distribution of the preference
parameter r . The mean of this distribution is 〈r〉 = 58.5 and its
mode close to 50, but individual values as high as 100 are possible.
(c) Distribution of the nestedness measure NODF. Values obtained
by thresholding the data matrix at Mi j > 0 and Mi j > 1 are shown
for reference. (d) Estimated and measured abundances for each of
the plant species (R2 = 0.29). The white dot is treated as an outlier.

network one would derive by doing so would be badly in error
in other ways.
Figure 3b shows the distribution of another of the model

parameters, the parameter r , which measures the extent to
which pollinators prefer the plants they normally pollinate
over the ones they do not. For this particular data set the most
likely value of r is around 60, meaning that pollinators visit
their preferred plant species about 60 times more often than
they do the average species, an impressive level of selectivity
on the part of the pollinators.
For the calculation of more complicated network proper-

ties we can perform an average over the value of any func-
tion f (B, θ) as described in Section II B.As an example, Fig. 3c
shows a calculation of the quantity known as “Nestedness
based on Overlap and Decreasing Fill” (NODF), a measure of
the nestedness property discussed in the introduction. This
quantity measures the extent to which the specialist species—
those with relatively few interactions—tend to interact with a
subset of the partners of the generalist species [24]. While
NODF is hard to compute in closed form [25], it is straightfor-
ward to calculate within our framework: we simply calculate
the value for each sampled network B and plot the resulting
distribution. Interestingly, the most likely value of NODF is
significantly different from the one we would calculate had we
assumed, as discussed above, that a single interaction is suffi-
cient to consider two species connected. We instead find that
the system is almost certainly more nested than this simpler
analysis would conclude.
In Fig. 3d, we compare the values of our estimated plant

abundance parameters σ to the measured abundances reported
by Kaiser-Bunbury et al. As discussed in Section II A, our pa-
rameters are not true measures of abundance because they
combine actual abundance with other characteristics such as
ease of observation. We do find some correlation between
the estimated and observed abundances, but it is relatively
weak (R2 = 0.29), signaling significant disagreement. This
indicates that the frequency of observed interaction between
plants and pollinators is not in fact proportional to their plain
abundances, but to a combination of abundance, ease of ob-
servation, and potentially other factors as well. One candidate
for a possible additional factor that could play a role is adap-
tive foraging by pollinators, which has been shown to influ-
ence the structure of ecological networks [4, 26]. Adaptive
foraging occurs, for example, when pollinators deliberately
visit less abundant plants more often if those plants contain
more food (such as nectar or pollen) relative to more abundant
plants with less food [7]. Our estimated “abundance” parame-
ters automatically include such factors where traditional field
measurements of abundance do not, and analyses that use such
traditional measurements, as in [12, 13], may as a result fail
to control for significant species-level effects on observed vis-
itation rates. We would therefore argue that best practice calls
for the use of estimated rather than measured abundances, as
in the methodology proposed here.
Finally, as we have mentioned, the connections in the net-

work about which we are most uncertain tend naturally to be
those for which we have the smallest amount of data. In an
ideal world we could address this problem by takingmore data,
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FIG. 4. Illustration of the effect of data aggregation on edge un-
certainty. In the top panel, we show a histogram of the edge prob-
abilities P(Bi j = 1|M) for the four restored sites as observed in
October 2012, analyzed individually. In the bottom panel, we show
the equivalent histogram obtained by aggregating the data over the
sites and then estimating a single network from the resulting data
matrix. The horizontal lines, both drawn at fifty observations—are
added merely as a guide to the eye. Note how the upper histogram
has more mass near the middle of the plot, while the lower one has
most of its mass close to probability zero or one, indicating greater
certainty in the positions of the edges in the aggregated data.

but the more common situation is the one we face here where
the data have already been gathered andwe are taskedwith per-
forming the best analysis we can. There are nonetheless some
remedies open to us, such as aggregating data over different
geographical areas or time windows. In Fig. 4 we compare
the edge probabilities estimated from data recorded individu-
ally at the four “restored” sites in October 2012 to the edge
probabilities we obtain when we aggregate these observations
into a single data matrix and only then estimate the network.
(We use restored sites observed during the same month be-
cause they are likely to be ecologically similar, meaning the
data are measuring approximately the same system.) Compar-
ison of the two distributions shows—as we would hope—that
there are fewer uncertain edges in the the aggregated network
than in its disaggregated parts, i.e., there are fewer edges with
probabilities in the middle of the distribution and more with
probabilities close to zero or one.

IV. DISCUSSION

In this paper, we have proposed a statistical model of plant–
pollinator interactions and shown how it can be used to infer
the structure and properties of real plant–pollinator networks
from noisy, error-prone measurements. The model employs
elementary ecological insights to create an expressive and ver-
satile structure that can capture the pattern of interactions in
a wide range of ecosystems. We have used the toolbox of
Bayesian statistics to develop both an inference algorithm and
a model checking procedure for the model. Our methods ex-

plicitly allow for the possibility that there aremultiple plausible
networks that could fit a given set of observations, a hallmark
of Bayesian analysis. Doing this allows us to make accurate
deductions even in cases where data sets are small and the
number of model parameters large.
To show how the method works in practice, we have pre-

sented a case study of a plant–pollinator data set gathered on
the island of Mahé in the Seychelles. We have shown that
our method is able to reconstruct the plant–pollinator net-
work itself and we have validated the reconstruction using
a posterior-predictive check that compares the observed data
against those we would expect to see if the reconstruction were
correct. We have further shown that the method can be used
to calculate estimates of arbitrary network properties without
significant additional work. As an example we have calcu-
lated the nestedness measure known as NODF, though other
network properties can also be easily estimated.
As a byproduct of the fitting procedure we have also shown

that we can estimate a range of model parameters that are of
potential ecological interest, including parameters that corre-
spond to network connectance and species abundance, and a
parameter that measures the interaction specificity of pollina-
tor species, the amount by which they favor their preferred
species of plants over others.
There could be a number of possible extensions of the work

presented here. The method as described assumes an ecosys-
tem that is more or less static, but real ecosystems can change
rapidly with the seasons. One could imagine a dynamic vari-
ant of the model that allows parameters to evolve over time.
On the applications side, it would be interesting to investi-
gate previously studied plant–pollinator data sets anew, and
verify whether careful statistical treatment and a better de-
lineation between networks and measurements leads to new
conclusions. These developments, however, we leave for fu-
ture work.
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Appendix A: Materials and Methods

As outlined in the main text, our method relies on a gen-
erative network model in which observed visits to plants by
pollinators are considered noisy measurements of an unob-
served underlying plant–pollinator network. This formulation
allows us to frame the task of determining the network struc-
ture as a Bayesian inference problem [27–30] in which the
probability of the network having incidence matrix B given a
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data matrix M is

P(B, θ |M) =
P(M |B, θ)P(B|θ)P(θ)

P(M)
, (A1)

where θ aremodel parameters and P(M) is an unimportant nor-
malizing constant. The element Mi j of matrix M records the
number of times insects of species j are seen to pollinate plant
species i, while Bi j = 0,1 encodes the presence or absence of
an edge between the two species in the plant–pollinator net-
work. Both matrices are of dimension np × na where np is the
number of plants and na is the number of pollinators.
We model the number of visits Mi j as a Poisson random

variable with mean

µi j = Cσiτj(1 + rBi j), (A2)

and, assuming uniform priors on all the parameters and edges
that are a priori equally likely with probability ρ, we find that

P(B, θ |M) ∝
∏
i j

(1 − ρ)1−Bi j ρBi j
µ
Mi j

i j

Mi j!
e−µi j . (A3)

1. Bayesian network reconstruction

Given the probability distribution in Eq. (A3) there are a
number of approaches we could take. Following [28, 29] we
could employ an expectation–maximization (EM) algorithm to
calculate the distribution over potential network structures and
a point-estimate of θ or, following [30], we could integrate out
the parameters θ and then sample from the resulting marginal
distribution on B. Neither of these approaches is completely
satisfactory here however, the first because point estimates of
the parameters can be unreliable for large models such as ours,
and the second because the values of the model parameters are
actually of interest to us, so we would prefer not to eliminate
them.

Instead therefore we make use of a technique from the liter-
ature on finite mixture models [31] to sample efficiently from
the joint distribution of both B and θ and hence estimate both.
The main idea is to first sample values of the parameters θ
from their marginal distribution

P(θ |M) =
∑
B

P(B, θ |M). (A4)

The sum over B can, it turns out, be carried out in closed form
for the particular P(B, θ |M) defined in Eq. (A4) and gives

P(θ |M) ∝ e−C
∏
i j

(Cσiτj)
Mi j

[
1 − ρ + ρ(1 + r)Mi j e−Cσiτjr

]
.

(A5)

We can then sample from this distribution using standardmeth-
ods such as Hamiltonian Monte Carlo—see below. This gives
us our estimates of the parameter values themselves.

For given values of the parameters we can then estimate the
network B by sampling from the distribution

P(B|M, θ) =
P(M |B, θ)P(B|θ)

P(M |θ)
. (A6)

Using our previous values for the likelihood P(M |B, θ)
and P(B|θ), and noting that the denominator P(M |θ) is pro-
portional to Eq. (A5), we find

P(B|M, θ) =

∏
i j(1 − ρ)1−Bi j

[
ρ(1 + r)Mi j e−Cσiτjr

]Bi j∏
i j

[
1 − ρ + ρ(1 + r)Mi j e−Cσiτjr

]
=

∏
i j

QBi j

i j (1 −Qi j)
1−Bi j , (A7)

where

Qi j = P(Bi j = 1|M, θ) =
ρ(1 + r)Mi j e−Cσiτjr

1 − ρ + ρ(1 + r)Mi j e−Cσiτjr

(A8)
is the posterior probability of an edge between species i and j,
given the parameters θ.
We can now simply average Qi j over our set of sample

values of the parameters θ to get the expected probability of
an edge between any pair of nodes. More generally, we can
calculate an estimate of any function f (B, θ) by drawing m
samples θk of the parameter set and n random incidence ma-
trices Bl(θk) for each set with edges appearing independently
with probabilities Qi j given by (A8), then averaging:〈

f (B, θ)
〉
'

1
mn

m∑
k=1

n∑
l=1

f
(
Bl(θk), θk

)
. (A9)

2. Implementation

In our implementation of this approach we sample param-
eters θ from the distribution of Eq. (A5) using the technique
known as Hamiltonian Monte Carlo, in which one defines an
inertial mechanicswith a position space equivalent to the space
of allowed values of the parameters and auxiliary momenta
chosen so that the dynamics under the corresponding Hamil-
ton’s equations samples from the desired distribution [32].
We implement the calculation in Stan,1 a probabilistic pro-
gramming language that automatically performs Hamiltonian
Monte Carlo sampling for arbitrary target distributions [33].
In practice, the program operates on the log of the poste-
rior probability, which for our distribution (A5) has the form
log P(θ |M) = −C +

∑
i j(Xi j + Yi j) where

Xi j = Mi j log Cσiτj , (A10)
Yi j = log

(
1 − ρ + ρ(1 + r)Mi j e−Cσiτjr

)
. (A11)

To avoid potential over- or underflow and ensure numerical
stability we rewrite the latter expression slightly by defining

µi j = log(1 − ρ), νi j = log ρ + Mi j log(1 + r) − Crσiτj,
(A12)

1 Code implementing our model is available online at https://github.
com/jg-you/plant-pollinator-inference.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2019. ; https://doi.org/10.1101/754077doi: bioRxiv preprint 

https://github.com/jg-you/plant-pollinator-inference
https://github.com/jg-you/plant-pollinator-inference
https://doi.org/10.1101/754077


9

and then writing

Yi j =
{
µi j + log

(
1 + eνi j−µi j

)
if µi j > νi j ,

νi j + log
(
1 + eµi j−νi j

)
otherwise,

(A13)

which ensures that Yi j is always a manageable number.
An important practical consideration is verifying the con-

vergence of the Monte Carlo algorithm. Hamiltonian Monte
Carlo mixes rapidly, but, like all Monte Carlo methods, it can
sometimes become trapped at local optima. To ensure repre-
sentative sampling of the posterior distribution, we therefore
perform multiple Monte Carlo runs from random initial states
and if any of the runs converges to a region of significantly
smaller probability than the others then we repeat the entire
calculation. In the example calculations given in the paper we
perform four runs, with an equilibration period of 5000 Monte
Carlo steps each, followed by taking 500 samples.

3. Quantifying error using posterior predictive checks

A crucial part of the model fitting process is assessing
whether the model is a good fit to the data. In the main
text we argue that a so-called posterior predictive test is a good
way of making this assessment. The idea is to generate a new
artificial data set M̃ from the model using the values of the
model parameters derived from the fit to the input data M . If
we find that M̃ looks similar to the input then our model has
done a good job of capturing the structure of the data.

To carry out this procedurewe need to calculate the posterior
predictive distribution for species pair i, j given by

P(M̃i j |M) =
∑
B

∫
P(M̃i j |B, θ)P(B, θ |M) dθ. (A14)

Since the likelihood P(M̃i j |B, θ), Eq. (3), factors into separate
terms for each plant–pollinator pair i, j, this expression can
with only a little work be simplified to

P(M̃i j |M) =

∫
P(θ |M)

[
Qi jP(M̃i j |Bi j = 1, θ)

+ (1 −Qi j)P(M̃i j |Bi j = 0, θ)
]

dθ, (A15)

and the integral can then be approximated by simply averaging
over the set of sampled values of θ.

Two particularly useful statistics for the posterior predictive
test are the mean and the variance of M̃i j , which in this case
are equal since M̃i j by definition has a Poisson distribution for
given B and θ. Both are, to a good approximation, given by

λi j ≈
1
n

n∑
k=1

[
Qi j(θk)µi j(Bi j = 1) +

(
1 −Qi j(θk)

)
µi j(Bi j = 0)

]
,

(A16)
where µi j is the mean defined in Eq. (A2).

4. Description of the data set

The data analyzed in Section III were gathered by Kaiser-
Bunbury et al. [23] in inselbergs (steep-sidedmonolithic rocky
outcroppings) on the tropical granitic island of Mahé, located
in the Indian Ocean. Mahé is the largest of the Seychelles
islands, the oldest extant island group in the world, which
originated after splitting from Gondwanaland about 70 mil-
lion years ago. Because of the islands’ age and geographical
isolation, the native species in the Seychelles are mostly en-
demic, arising more by evolution than immigration. An influx
of exotic species, coupled with a habitat loss, has nonethe-
less had lasting effects on the islands’ biological communities,
but the vegetation on the inselbergs of Mahé has been less
impacted than the rest of the island. The vegetation on the in-
selbergs is characterized by short trees, shrubs, and an absence
of flowering herbs.
The data we analyze includes records of the visits of pol-

linator species to all plant species found in each of the eight
inselbergs, observed between September 2012 and April 2013
during the island’s eight-month-long tropical flowering sea-
son. Species visiting flowers were recorded as pollinators if
they touched the sexual parts of the flowers within a standard
observation window of 30 minutes [34]. Floral abundances
were obtained by counting flowers in 1-meter cubes randomly
located along transects spanning the inselbergs. The visit data
were used to generate 64 data matrices of plant–pollinator
interactions, one for each period and location. Our primary
analysis focuses on the matrix for the site known as Trois-
Frères as observed during the month of December 2012. We
choose this data set primarily because it is relatively small and
hence easy to visualize.
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