
Reconstruction of plant–pollinator networks from observational data

Jean-Gabriel Young,1, 2, 3, ∗ Fernanda S. Valdovinos,3, 4, 5, † and M. E. J. Newman3, 6, ‡
1Department of Computer Science, University of Vermont, Burlington, Vermont, USA
2Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, USA

3Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, USA
4Department of Environmental Science and Policy, University of California, Davis, California, USA
5Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA

6Department of Physics, University of Michigan, Ann Arbor, Michigan, USA

Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in
structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing
on the case of plant–pollinator networks, we here describe a Bayesian statistical technique that allows us to
make accurate estimates of network structure and ecological metrics from such noisy observational data. Our
method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way
for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method
with an application to previously published data on plant–pollinator networks in the Seychelles archipelago,
calculating estimates of network structure, network nestedness, and other characteristics.

INTRODUCTION

Network-based methods of analysis have contributed sub-
stantially to our understanding of ecological systems by help-
ing us identify structure in the patterns of interaction between
species [1–4]. Theoretical studies have shown that such pat-
terns affect the dynamics and stability of ecosystems [5–7].
This is particularly the case for mutualistic networks such as
plant-pollinator interactions—our focus in this paper—whose
functions are critical to terrestrial biodiversity [8–10] and crop
production [10–12].
A central prerequisite for quantitative analysis of network

structure and function is accurate network data, and signifi-
cant effort has been invested in recent years in data gather-
ing for ecological networks of many kinds, including mu-
tualistic networks. There is, however, some debate over
whether the observed structure of mutualistic networks rep-
resents the true interaction patterns produced by evolutionary
and ecological mechanisms, at least to a good approxima-
tion [4, 6, 13], orwhether, conversely, it is biased by incomplete
sampling [14], for instance failing to detect the interactions of
rare species [15–18]. In this paper we describe a new tech-
nique that aims to give quantitative answers to these questions
by applying methods of Bayesian inference to ecological net-
work data. Treating the case of plant–pollinator networks, we
show that it is possible to accurately infer interaction network
structure from observational data while taking into account
confounding variables such as varying species abundances.
The output of our calculations is an estimate of the true struc-
ture of the network and also a quantification of our uncertainty
about this structure. Standard techniques from statistical net-
work science [19, 20] and network ecology [18] can then help
us make precise statements about the accuracy of any further
conclusions we draw from the network structure. Estimates of
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interaction certainty can also help us identify interactions that
would benefit from greater sampling effort.
The structure of mutualistic networks is typified by several

characteristic features [21]: moderate connectance, meaning
that a modest fraction of all potential interactions are realized;
long-tailed degree distributions, meaning that there are many
specialist species with a small number of interactions and a
few generalist species with many interactions; and nestedness,
meaning that the interactions of the least-connected species are
often subsets of the interactions of better-connected species.
(These features are not necessarily independent. For instance,
it has been suggested that nestedness is itself a consequence
of the long-tailed degree-distribution [22].) A significant vol-
ume of research has been devoted to explaining these features
in terms of ecological and evolutionarymechanisms—seeBas-
compte and Jordano [6] and Vázquez et al. [13] for reviews.
Other work, however, has suggested that they can also be gen-
erated merely as artifacts of skewed abundance distributions
and incomplete sampling, both very common in ecological
systems [15, 16]. In particular, Blüthgen et al. [15] have
shown that nestedness and broad degree distributions can be
a result of failure to observe interactions between rare species
because of low sampling effort and/or the infrequency of the
interactions in question. Findings like this have stimulated fur-
ther investigations of the effects of sampling bias on network
structure [4], both empirically by varying sampling effort in
the field [23–27] and theoretically using models of network
structure [15, 28–30]. These studies suggest that incomplete
sampling strongly underestimates the number of interactions
in networks and overestimates the degree of specialization.
The approach described in this paper offers one way to ad-
dress these shortcomings and obtain reliable estimates of the
structure of mutualistic networks, free of measurement bias.
The paper is organized as follows. We first outline a first-

principles statistical model of plant–pollinator interactions and
show how it can be used to estimate network structure from
error-prone observational data. Then, we demonstrate these
methods with an application to a typical plant–pollinator data
set, showing how they give us not only the network structure
itself but also statistically principled estimates of quantities
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such as nestedness. Finally, we give some conclusions and
directions for future work.

RESULTS

Network reconstruction from observational data

The typical field study of plant–pollinator interactions in-
volves recording instances of potential pollinators (such as
insects) visiting plants within a prescribed observation area
and over a prescribed period of time. We will refer to these
records as visitation data. Network ecologists analyze vis-
itation data by constructing networks of plant and pollinator
species, where a connection between two species indicates that
a plant-pollinator interaction exists between them.
However, the meaning of edges in ecological networks is

not always clear [31]. One popular way to transform visita-
tion data into networks is to connect two species when they
interact “enough”—say when a pollinator species is seen on
the reproductive organ of a plant species a specified number
of times—but in this case the precise meaning of an edge will
depend on the details of the data collection and the choices
made in the analysis. How many visits do we take as evidence
of a plant–pollinator interaction? A single visit is probably not
enough—it might well be an error or misobservation. Is two
enough, or ten, or a hundred? And what about observations
that were missed entirely? Other methods of analysis trans-
form the data in different ways, for instance encoding them as
weighted networks, possibly with some statistical processing
along the way [32]. Even in this case, however, the edges
still just count numbers of visits (perhaps transformed in some
way), so the resulting networks are effectively histograms in
disguise, recording only potential interactions rather than true
biological connections.
A more principled approach to network construction begins

with a clear definition of what relationship (or relationships)
a network’s edges encode [33]. We argue that network ecol-
ogy often calls for a network of preferred interactions. In the
context of plant-pollinator networks the edges of such a net-
work indicate that pollinators preferentially visit certain plant
species and they encode a variety of mechanisms that constrain
species interactions, such as temporal or spatial uncoupling
(i.e., species that do not co-occur in either time or space),
constraints due to trait mismatches (e.g., proboscis size very
different from corolla size), and physiological-biochemical
constraints that prevent the interactions (e.g., chemical bar-
riers). (One can regard preferred interactions as being the
opposite of the “forbidden links” described in [34–36]). Pre-
ferred interactions are arguably the relevant ones for instance
when analyzing the reaction of a network to abrupt changes:
when one removes a plant species from a system, for example,
the pollinators that prefer it will have to modify their behav-
ior [7, 37, 38]. The interactions we consider are binary—either
a species prefers another species or it doesn’t—so the network
does not encode varying strengths of interaction.
While the data gathered in a typical field study are certainly

reflective of preferred interactions, they are, for many reasons,

not perfect measurements of networks of preferred interac-
tions [13, 17]. First, there may be observational errors. While
the observers performing the work are usually highly trained
individuals, they may nonetheless make mistakes. They may
confuse one species for another, which is particularly easy to
do for small-bodied insects, or smaller species may be over-
looked altogether. Observers may make correct observations
but record them wrongly. And there will be statistical fluctu-
ations in the number of visits of an insect species to a plant
species over any finite time. For rare interactions there may
even be no visits at all if we are unlucky. The insects them-
selves may also appear to make “mistakes” by visiting plants
that they typically do not pollinate. These and other factors
mean that the record of observed visits is an inherently untrust-
worthy guide to the true structure of the network of preferred
interactions. Here we develop a statistical method for making
estimates of network structure despite these limitations of the
data.

Model of plant–pollinator data

Consider a typical plant–pollinator study in which some
number 𝑛𝑝 of plant species, labeled by 𝑖 = 1 . . . 𝑛𝑝 , and
some number 𝑛𝑎 of animal pollinator species, labeled by
𝑗 = 1 . . . 𝑛𝑎, are under observation for a set amount of time,
producing a record of observed visits such that𝑀𝑖 𝑗 is the num-
ber of times plant species 𝑖 is visited by pollinator species 𝑗 .
Collectively the 𝑀𝑖 𝑗 can be regarded as a data matrix 𝑴 with
𝑛𝑝 rows and 𝑛𝑎 columns. This is the input to our calculation.
The unknown quantity, the thing we would like to under-

stand, is the network of plant–pollinator interactions. We can
think of this network as composed of two sets of nodes, one
representing plant species and the other pollinator species,
with connections or edges joining each pollinator to the plants
it pollinates. In the language of network science this is a bipar-
tite network, meaning that edges run only between nodes of
unlike kinds—plants and pollinators—and never between two
plants or two pollinators. Such a network can be represented
by a second matrix 𝑩, called the incidence matrix, with the
same size as the data matrix and elements 𝐵𝑖 𝑗 = 1 if plant 𝑖 is
preferentially visited by pollinator 𝑗 and 0 otherwise.
The question we would like to answer is this: What is

the best guess at the structure of the network, represented
by 𝑩, given the data 𝑴? It is not straightforward to answer
this question directly, but it is relatively easy to answer the
reverse question. If we imagine that we know 𝑩, then we
can say what the probability is that we make a specific set
of observations 𝑴. And if we can do this then the methods
of Bayesian inference allow us to invert the calculation and
compute 𝑩 from a knowledge of 𝑴 and hence achieve our
goal. The procedure is as follows.
Consider a specific plant–pollinator species pair 𝑖, 𝑗 . How

many times do we expect to see 𝑗 visit 𝑖 if there is, or is not, a
preferred interaction between 𝑖 and 𝑗? The answer will depend
on several factors. First, and most obviously, we expect the
number of visits to be higher if 𝑗 is in fact a pollinator of 𝑖.
That is, we expect 𝑀𝑖 𝑗 to be larger if 𝐵𝑖 𝑗 = 1 than if 𝐵𝑖 𝑗 = 0.
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Second, we expect there to be more visits if there is greater
sampling effort—for instance if the period of observation is
longer or if the land area over which observations take place is
larger [15, 16, 26, 27]. Third, we expect to see more visits for
more abundant plant and pollinator species than for less abun-
dant ones, as demonstrated by several studies [28, 30]. And
fourth, as discussed above, we expect there to be some random
variation in the number of visits, driven by fluctuations in in-
dividual behavior and the environment. These are the primary
features that we incorporate into our model. It is possible to
add others to handle specific situations (see Ref. [39] and the
Methods), but we focus on these four here.
We translate these factors into a mathematical model of

plant–pollinator interaction as follows. The random varia-
tions in the numbers of visits will follow a Poisson distribution
for each plant–pollinator pair 𝑖, 𝑗 , parameterized by a single
number, the distribution mean `𝑖 𝑗 , provided only that mea-
surements are made sufficiently far apart to be independent
(which under normal conditions they will be). We expect `𝑖 𝑗
to depend on the factors discussed above and we introduce
additional parameters to represent this dependence. First we
introduce a parameter 𝑟 to represent the change in the average
number of visits when two species are connected (𝐵𝑖 𝑗 = 1),
versus when they are not (𝐵𝑖 𝑗 = 0). We write the factor by
which the number of visits is increased as 1 + 𝑟 with 𝑟 ≥ 0, so
that 𝑟 = 0 implies no increase and successively larger values
of 𝑟 give us larger increases. Second, we represent the effect
of sampling effort by an overall constant 𝐶 that multiplies the
mean `𝑖 𝑗 . The same constant is used for all 𝑖 and 𝑗 , since the
same sampling effort is devoted to all plant–pollinator pairs.
Third, we assume that the number of visits is proportional
to the abundance of the relevant plant and pollinator species:
twice as many pollinators of species 𝑗 , for instance, will mean
twice as many visits by that species, and similarly for the abun-
dance of the plant species [13]. Thus the number of visits will
be proportional to 𝜎𝑖𝜏𝑗 , for some parameters 𝜎𝑖 and 𝜏𝑗 repre-
senting the abundances of plant 𝑖 and pollinator 𝑗 , respectively,
in suitable units (which we will determine shortly).
Putting everything together, the mean number of observed

visits to plant 𝑖 by pollinator 𝑗 is

`𝑖 𝑗 = 𝐶𝜎𝑖𝜏𝑗 (1 + 𝑟𝐵𝑖 𝑗 ), (1)

and the probability of observing exactly 𝑀𝑖 𝑗 visits is drawn
from a Poisson distribution with this mean:

𝑃(𝑀𝑖 𝑗 |`𝑖 𝑗 ) =
`
𝑀𝑖 𝑗

𝑖 𝑗

𝑀𝑖 𝑗 !
𝑒−`𝑖 𝑗 . (2)

This equation gives us the probability distribution of a single
element 𝑀𝑖 𝑗 of the data matrix. Then, combining Eqs. (1)
and (2), the data likelihood—the probability of the complete
data matrix 𝑴—is given by the product over all species thus:

𝑃(𝑴 |𝑩, \) =
∏
𝑖, 𝑗

[
𝐶𝜎𝑖𝜏𝑗 (1 + 𝑟𝐵𝑖 𝑗 )

]𝑀𝑖 𝑗

𝑀𝑖 𝑗 !
𝑒−𝐶𝜎𝑖 𝜏 𝑗 (1+𝑟𝐵𝑖 𝑗 ) ,

(3)
where \ is a shorthand collectively denoting all the parameters
of the model: 𝐶, 𝑟, 𝜎 and 𝜏. Our model is thus effectively

a model of an entire network, rather than single interactions,
in contrast with other recent approaches to the modeling of
network data reliability [17, 18, 32].
There are two important details to note about this model.

First, the definition in Eq. (1) does not completely determine
𝐶, 𝜎, and 𝜏 because we can increase (or decrease) any of these
parameters by a constant factor without changing the resulting
value of `𝑖 𝑗 if we simultaneously decrease (or increase) one
or both of the others. In the language of statistics we say
that the parameters are not “identifiable.” We can rectify this
problem by fixing the normalization of the parameters in any
convenient fashion. Here we do this by stipulating that 𝜎𝑖 and
𝜏𝑗 sum to one, thus:

𝑛𝑝∑︁
𝑖=1

𝜎𝑖 =

𝑛𝑎∑︁
𝑗=1

𝜏𝑗 = 1. (4)

In effect, this makes 𝜎𝑖 and 𝜏𝑗 measures of relative abundance,
quantifying the fraction of individual organisms that belong
to each species, rather than the total number. (This defini-
tion differs from traditional estimates of pollinator abundance
that define the abundance of a pollinator species in terms of
its number of observed visits.) Second, there may be other
species-level effects on the observed number of visits in ad-
dition to abundance, such as the propensity for observers to
overlook small-bodied pollinators. There is, at least within the
data used in this paper, no way to tell these effects from true
variation in abundance—no way to tell for example if there
are truly fewer individuals of a species or if they are just hard
to see and hence less often observed. As a result, the abun-
dance parameters in our model actually capture a combination
of effects on observation frequency. This does not affect the
accuracy of the model, which works just as well either way, but
it does mean that we have to be cautious about interpreting the
values of the parameters in terms of actual abundance. This
point is discussed further in the applications below.

Bayesian reconstruction

The likelihood of Eq. (3) tells us the probability of the
data 𝑴 given the network 𝑩 and parameters \. What we
actually want to know is the probability of the network and
parameters given the data, which we can calculate by applying
Bayes’ rule in the form

𝑃(𝑩, \ |𝑴) = 𝑃(𝑴 |𝑩, \)𝑃(𝑩 |\)𝑃(\)
𝑃(𝑴) . (5)

This is the posterior probability that the network has struc-
ture 𝑩 and parameter values \ given the observations that
were made. There are three important parts to the expression:
the likelihood 𝑃(𝑴 |𝑩, \), the prior probability of the net-
work 𝑃(𝑩 |\), and the prior probability of the parameters 𝑃(\).
The denominator 𝑃(𝑴) we can ignore because it depends on
the data alone and will be constant (and hence irrelevant for
our calculations) once 𝑴 is determined by the observations.
Of the three non-constant parts, the first, the likelihood, we

have already discussed—it is given by Eq. (3). For the prior on
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the network 𝑃(𝑩 |\) wemake the conservative assumption—in
the absence of any knowledge to the contrary—that all edges
in the network are a priori equally likely. If we denote the
probability of an edge by 𝜌, then the prior probability on the
entire network is

𝑃(𝑩 |\) =
∏
𝑖, 𝑗

(1 − 𝜌)1−𝐵𝑖 𝑗 𝜌𝐵𝑖 𝑗 . (6)

We consider 𝜌 an additional parameter which is to be inferred
from the data and which we will henceforth include, along
with our other parameters, in the set \.
To complete Eq. (5), we also need to choose a prior𝑃(\) over

the parameters. We expect there to be some limit on the value
of 𝑟, whichwe impose using aminimally informative priorwith
finite mean (this distribution turns out to be the exponential
distribution). For the remaining parameters we use uniform
priors. With these choices, we then have everything we need
to compute the posterior probability, Eq. (5).
Once we have the posterior probability there are a number

of things we can do with it. The simplest is just to maximize it
with respect to the unknown quantities 𝑩 and \ to find the most
likely structure for the network and the most likely parameter
values, given the data. This, however, misses an opportunity
for more detailed inference and can moreover give misleading
results. In most cases there will be more than one value of
𝑩 and \ with high probability under Eq. (5): there may be a
unique maximum of the probability, a most likely value, but
there are often many other values that have nearly as high
probability and offer plausible network structures competitive
with the most likely one. To get the most complete picture
of the structure of the network we should consider all these
plausible structures.
For example, if all plausible structures are similar to one

another in their overall shape then we can be quite confident
that this shape is reflective of the true preferred interactions
between plant and pollinator species. If plausible structures
are widely varying, however, then we have many different
candidates for the true structure and our certainty about that
structure is correspondingly lower. In other words, by consid-
ering the complete set of plausible structures we can not only
make an estimate of the network structure but also say how
confident we are in that estimate, in effect putting “error bars”
on the network.
How do we specify these errors bars in practice? One way

is to place posterior probabilities on individual edges in the
network. For example, when considering the edge connecting
plant 𝑖 and pollinator 𝑗 , we would not ask “Is there an edge?”
but rather “What is the probability that there is an edge?”
Within the formulation outlined above, this probability is given
by the average

𝑃(𝐵𝑖 𝑗 = 1|𝑴) =
∑︁
𝑩

∫
𝐵𝑖 𝑗𝑃(𝑩, \ |𝑴) 𝑑\ , (7)

where the sum runs over all possible incidence matrices and
the integral over all parameter values. More generally we can
compute the average of any function 𝑓 (𝑩, \) of the matrix 𝑩

and/or the parameters \ thus:〈
𝑓 (𝑩, \)

〉
=
∑︁
𝑩

∫
𝑓 (𝑩, \) 𝑃(𝑩, \ |𝑴) 𝑑\. (8)

Functions of the matrix and functions of the parameters can
both be interesting—the matrix tells us about the structure of
the network but the parameters, as we will see, can also reveal
important information.
Computing averages of the form (8) is unfortunately not an

easy task. A closed-form expression appears out of reach and
the brute-force approach of performing the sums and integrals
numerically over all possible networks and parameters is com-
putationally intractable in all but the most trivial of cases. The
sum over 𝑩 alone involves 2𝑛𝑝𝑛𝑎 terms, which is normally a
very large number.
Instead therefore we use an efficient Monte Carlo sampling

technique to approximate the answers. We generate a sam-
ple of network/parameter pairs (𝑩1, \1), . . . , (𝑩𝑛, \𝑛), where
each pair appears with probability proportional to the posterior
distribution of Eq. (5). Then we approximate the average of
𝑓 (𝑩, \) as 〈

𝑓 (𝑩, \)
〉
' 1

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑩𝑖 , \𝑖) . (9)

Under very general conditions, this estimate will converge to
the true value of the average asymptotically as the number
of Monte Carlo samples 𝑛 becomes large. Full details of
the computations are given in Materials and Methods, and
an extensive simulation study of the model is presented in
Supplementary Note 1.

Checking the model

Inherent in the discussion so far is the assumption that the
data can be well represented by our model. In other words, we
are assuming there is at least one choice of the network 𝑩 and
parameters \ such that the model will generate data similar to
what we see in the field. This assumption could be violated
if our model is a poor one, but there is nothing in the method
described above that would tell us so. To be fully confident
in our results we need to be able not only to infer the network
structure, but also to check whether that structure is a good
match to the data. The Bayesian toolbox comes with a natural
procedure for doing this. Given a set of high-probability values
of 𝑩 and \ generated by the method, we can use them in Eq. (3)
to compute the likelihood 𝑃(𝑴 |𝑩, \) of a data set 𝑴 and then
sample possible data sets from this probability distribution, in
effect recreating data as they would appear if the model were
in fact correct. We can then compare these data to the original
field data to see if they are similar: if they are then our model
has done a good job of capturing the structure in the data.
In the parlance of Bayesian statistics this approach is known

as a posterior–predictive assessment [40]. It amounts to cal-
culating the probability

𝑃(𝑀𝑖 𝑗 |𝑴) =
∑︁
𝑩

∫
𝑃(𝑀𝑖 𝑗 |𝑩, \)𝑃(𝑩, \ |𝑴) 𝑑\ (10)
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that pollinator species 𝑗 makes 𝑀𝑖 𝑗 visits to plant species 𝑖 in
artificial data sets generated by the model, averaged over many
sets of values of 𝑩 and \. We can then use this probability to
calculate the average value of 𝑀𝑖 𝑗 thus:

〈𝑀𝑖 𝑗〉 =
∑︁
𝑀𝑖 𝑗

𝑀𝑖 𝑗 𝑃(𝑀𝑖 𝑗 |𝑴) . (11)

The averages for all plant–pollinator pairs can be thought of
as the elements of a matrix 〈𝑴〉, which we can then compare
to the actual data matrix 𝑴, or alternatively we can calculate
a residue 𝑴 − 〈𝑴〉. If 〈𝑴〉 and 𝑴 are approximately equal,
or equivalently if the residue is small, then we consider the
model a good one.
To quantify the level of agreement between the fit and the

data we can also compute the discrepancy [40] between the
artificial data and 𝑴 as

𝑋2 =
∑︁
𝑖 𝑗

(𝑀𝑖 𝑗 − 〈𝑀〉𝑖 𝑗 )2

〈𝑀〉𝑖 𝑗
. (12)

Under the hypothesis that the model is correct, 𝑋2 follows a
chi-squared distribution with 𝑛𝑝 ×𝑛𝑎 degrees of freedom [40].
A good fit between model and data is signified by a value of 𝑋2
that is much smaller than its expectation value of 𝑛𝑝 × 𝑛𝑎 .
Note that the calculation of 𝑃(𝑀𝑖 𝑗 |𝑴) in Eq. (10) is of the
same form as the one in Eq. (8), with 𝑓 (𝑩, \) = 𝑃(𝑀𝑖 𝑗 |𝑩, \),
which means we can calculate 𝑃(𝑀𝑖 𝑗 |𝑴) in the same way we
calculate other average quantities, usingMonte Carlo sampling
and Eq. (9).

Application to visitation data sets

Well-sampled data

To demonstrate how the method works in practice, we first
consider a large data set of plant–pollinator interactions gath-
ered by Kaiser-Bunbury and collaborators [41] at a set of study
sites on the island of Mahé in the Seychelles. The data de-
scribe the interactions of plant and pollinator species observed
over a period of eight months across eight different sites on
the island. The data also include measurements of floral abun-
dances for all observation periods and all sites. Our method
for inferring network structure does not make use of the abun-
dance measurements, but we discuss them briefly at the end of
this section.
The study by Kaiser-Bunbury et al. focused particularly

on the role of exotic plant species in the ecosystem and on
whether restoring a site by removing exotic species would
significantly impact the resilience and function of the plant–
pollinator network. To help address these questions, half of
the sites in the study were restored in this way while the rest
were left unrestored as a control group.
As an illustration of our method we apply it to data from

one of the restored sites, as observed over the course of a
single month in December 2012 (the smallest time interval for
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FIG. 1. Illustration of the method of this paper applied to data from
the study of Kaiser-Bunbury et al. [41]. (a) We start with a data
matrix 𝑴 that records the number of interactions between each plant
species and pollinator species. Species pairs that are never observed
to interact (𝑀𝑖 𝑗 = 0) are shown in white. (b) We then draw 2000
samples from the distribution of Eq. (5), four of which are shown
in the figure. Each sample consists of a binary incidence matrix 𝑩,
values for the relative abundances 𝜎 and 𝜏 (shown as the orange and
blue bar plots, respectively), and values for the parameters𝐶, 𝑟 , and 𝜌
(not shown). (c) We combine the samples using Eqs. (7)–(9) to give
an estimate of the probability of each edge in the network and the
complete parameter set \. For the data set studied here our estimates
of the expected values of the parameters 𝐶, 𝑟, and 𝜌 are 〈𝐶〉 = 20.2,
〈𝑟〉 = 45.9, and 〈𝜌〉 = 0.244.
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which data were available). We pick the site named “Trois-
Frères” because it is relatively small but also well sampled.
Our calculation then proceeds as shown in Fig. 1. There were
8 plant and 21 pollinator species observed at the site during the
month, giving us an 8× 21 data matrix 𝑴 as shown in Fig. 1a.
(Following common convention, the plots of matrices in this
paper are drawn with rows and columns ordered by decreasing
numbers of observed interactions, so that the largest elements
of the data matrix—the darkest squares—are in the top and
left of the plot.)
Now we use our Monte Carlo procedure to draw 2000 sets

of incidence matrices 𝑩 and parameters \ from the poste-
rior distribution of Eq. (5) (Fig. 1b). These samples vary
in their structure: some edges, like the one connecting the
plant N. vanhoutteanum and the pollinator A. mellifera, are
present in nearly all samples, while others, like the one be-
tween M. sechellarum and A. mellifera, appear only a small
fraction of the time. Some others never occur at all. Averaging
over these sampled networks we can estimate the probability,
Eq. (7), that each connection exists in the network of preferred
interactions between plant and animal species—see Fig. 1c.
Some connections have high probability, close to 1, meaning
that we have a high degree of confidence that they exist. Others
have probability close to 0, meaning we have a high degree of
confidence that they do not exist. And some have intermediate
probabilities, meaning we are uncertain about them (such as
the M. sechellarum–A. mellifera connection, which has prob-
ability around 0.45). In the latter case the method is telling us
that the data are not sufficient to reach a firm conclusion about
these connections. Indeed, if we compare with the original
data matrix 𝑴 in Fig. 1a, we find that most of the uncertain
connections are ones for which we have very few observations,
relative to the total number of observations for these species—
say 𝑀𝑖 𝑗 = 1 or 2 for species with dozens of total observations
overall.
As we have mentioned, we also need to check whether the

model is a good fit to the data by performing a posterior–
predictive test. Figure 2 shows the results of this test. The
main plot in the figure compares the values of the 40 largest
elements of the original data matrix 𝑴 with the corresponding
elements of the generated matrix 𝑴. In each case, the original
value is well within one standard deviation of the average value
generated by the test, confirming the accuracy of the model.
The inset of the figure shows the residue matrix 𝑴−𝑴, which
reveals no systematic bias unaccounted for by the model. The
discrepancy 𝑋2 of Eq. (12) takes the value 26.94 in this case,
well below the expected value of 𝑛𝑝𝑛𝑎 = 168, which indicates
that the good fit is not a statistical fluke.
In addition to inferring the structure of the network itself,

our method allows us to estimate many other quantities from
the data. There are two primary methods by which we can do
this. One is to look at the values of the fittedmodel parameters,
which represent quantities such as the preference 𝑟 and species
abundances 𝜎, 𝜏. The other is to compute averages of quanti-
ties that depend on the network structure or the parameters (or
both) from Eq. (9).
As an example of the former approach, consider the param-

eter 𝜌, which represents the average probability of an edge,
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FIG. 2. Results of a posterior–predictive test on the data matrix 𝑴
for the example data set analyzed in Fig. 1. The main plot shows the
error on the 40 largest entries of 𝑴, while the inset shows the residue
matrix 𝑴 − 〈�̃�〉. Because the actual data 𝑴 are well within one
standard deviation of the posterior–predictive mean, the test confirms
that the model is a good fit in this case. Error bars correspond to one
standard deviation and are computed with 𝑛 = 2000 samples from the
posterior distribution.
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FIG. 3. Analyses that can be performed using samples from the
posterior distribution of Eq. (5). (a)Distribution of the connectance 𝜌.
Connectance values for binary networks obtained by thresholding the
data matrix at 𝑀𝑖 𝑗 > 0 and 𝑀𝑖 𝑗 ≥ 5 are shown as vertical lines for
reference. (b) Distribution of the preference parameter 𝑟 . The mean
value of 𝑟 is 〈𝑟〉 = 45.9 and its mode close to 40, but individual
values as high as 100 are possible. (c) Distribution of the nestedness
measure NODF. Values obtained by thresholding the data matrix at
𝑀𝑖 𝑗 > 0 and 𝑀𝑖 𝑗 > 1 are shown for reference. (d) Measured and
estimated abundances for each of the plant species (𝑅2 = 0.54).
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also known as the connectance of the network. Figure 3a
shows the distribution of values of this quantity over our set
of Monte Carlo samples, and neatly summarizes our overall
certainty about the presence or absence of edges. If we were
certain about all edges in the network, then 𝜌 would take only
a single value and the distribution would be narrowly peaked.
The distribution we observe, however, is somewhat broadened,
indicating significant uncertainty. The most likely value of 𝜌,
the peak of the distribution, turns out to be quite close to the
value one would arrive at if one were simply to assume that ev-
ery pair of species that interacts even once is connected in the
network. This does not mean, however, that one could make
this assumption and get good results. As we show below, the
network one would derive by doing so would be badly in error
in other ways.
Figure 3b shows the distribution of another of the model

parameters, the parameter 𝑟 , which measures the extent to
which pollinators prefer the plants they normally pollinate
over the ones they do not. For this particular data set the most
likely value of 𝑟 is around 40, meaning that pollinators visit
their preferred plant species about 40 times more often than
non-preferred ones, all other things being equal, an impressive
level of selectivity on the part of the pollinators.
For the calculation of more complicated network proper-

ties we can perform an average over the value of any func-
tion 𝑓 (𝑩, \), as long as there is an algorithm to compute it.
As an example, Fig. 3c shows a calculation of the quantity
known as “Nestedness based on Overlap and Decreasing Fill”
(NODF), a measure of the nestedness property discussed in the
introduction. This quantity measures the extent to which spe-
cialist species—those with relatively few interactions—tend to
interact with a subset of the partners of generalist species [42].
While it is complicated to compute NODF analytically, due to
the fact that one must order the species by degrees [22], it is
straightforward to calculate it within our framework: we sim-
ply calculate the value for each sampled network 𝑩 and plot
the resulting distribution. Interestingly, the most likely value
of NODF is significantly different from the one we would
calculate had we assumed, as discussed above, that a single
interaction is sufficient to consider two species connected. On
the contrary, we find that the system is almost certainly more
nested than this simple analysis would conclude.
In Fig. 3d, we compare the values of our estimated floral

abundance parameters 𝜎 to the measured abundances reported
by Kaiser-Bunbury et al. [41]. These parameters are not mea-
sures of abundance in the usual sense, because they combine
actual abundance (quantity or density) with other character-
istics such as ease of observation. We do find a correlation
between the estimated and observed abundances, but it is rel-
atively weak (𝑅2 = 0.54), signaling significant disagreement,
on which we elaborate in the discussion section.

Undersampled data

As we have pointed out, the connections in the network
about which we are most uncertain tend to be ones that are un-
dersampled, i.e., those for which we have only a small amount

FIG. 4. Illustration of the effect of data aggregation on edge uncer-
tainty. (a) Histogram of the edge probabilities 𝑃(𝐵𝑖 𝑗 = 1|𝑴) for the
four restored sites in the Mahé study as observed in October 2012
and analyzed individually. (b) Equivalent histogram after aggregat-
ing the data over the sites and then estimating a single network from
the resulting data matrix. The horizontal lines, both drawn at fifty
observations—are added merely as a guide to the eye. Note how the
upper histogram has more mass near the middle of the plot, while the
lower one has most of its mass close to probability zero or one, indi-
cating greater certainty in the positions of the edges in the aggregated
data.

of data. In an ideal world we could address this problem by
taking more data, but it is rare that we have the opportunity to
do this. More commonly the data have already been gathered
and our task is to produce the best results we can with those
data. There are nonetheless some remedies open to us, such as
aggregating data over different geographical areas or time win-
dows. In Fig. 4 we compare the edge probabilities estimated
from data recorded individually at the four “restored” sites in
the Mahé study during October 2012 to the edge probabilities
we obtain when we aggregate these observations into a single
data matrix and only then estimate the network. (We use re-
stored sites observed during the same month because they are
likely to be ecologically similar, meaning the data are measur-
ing approximately the same system.) Comparison of the two
distributions shows—as we would hope—that there are fewer
uncertain edges in the aggregated network than in its disaggre-
gated parts, i.e., there are fewer edges with probabilities in the
middle of the distribution and more with probabilities close to
zero or one.
In other cases neither aggregation nor gathering more data

is possible, for instance when reanalyzing a data set already
collected by others or already maximally aggregated. Such
data sets record the results of observational studies that are
already over, and may contain too few observations, but our
approach still allows us to perform rigorous inference in these
circumstances.
For instance, Jordano et al. [44] used dozens of existing

plant-pollinator and plant-frugivore data sets to argue that the
degree distributions of mutualistic networks have a long tail,
but this conclusion is undermined by issues with undersam-
pling. As an example, one of the data sets they studied, orig-
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FIG. 5. Distributions of species-level parameters for a network of plants and pollinators in Kosciusko National Park, Australia, from the study
by Inouye and Pyke [43]. (a) Thresholded degree distributions calculated by connecting species 𝑖 and 𝑗 with an edge if 𝑀𝑖 𝑗 > 0. Inferred
degree distributions are calculated using the method of this paper, averaging the fraction 𝑝𝑘 of nodes with a given degree 𝑘 over 𝑛 = 2000
Monte Carlo samples. (b) Inferred distributions of abundances 𝜎 and 𝜏, calculated as a histogram over 𝑛 = 2000Monte Carlo samples of the
abundance parameters of the fitted model. Error bars correspond to one standard deviation in all cases.

inally gathered by Inouye and Pyke [43], records 1314 indi-
vidual interactions over a period of 3 months in Kosciusko
National Park, Australia, between 40 plants and 85 pollinator
species, which works out to an average of 0.386 unique ob-
servations per species pair. Is this sampling effort sufficient
to establish edges with certainty? As a point of reference, the
data analyzed in Fig. 1 comprises 201 observations between
8 plants and 21 pollinators species for an average of 1.196
observations per pair of species, and the aggregated data of
Fig. 4 contain 1.420 observations for every pair. Nonetheless,
there is uncertainty about some of the connections in these re-
constructed networks; this suggests that the network of Inouye
and Pyke, with less than a third as much data per species pair,
will contain significant uncertainty.
Even so, our method allows us to make inferences about

this network. In Fig. 5, we show estimates of the degree
distributions of both plant and pollinator nodes in the network
obtained from the posterior distribution 𝑃(𝑩 |𝑴), along with
naive estimates calculated by thresholding the (undersampled)
data as in the study by Jordano et al. [44]. As the figure
shows, the results derived from the two approaches are very
different. The thresholded degree distributions were classified
as scale-free by Jordano et al., but this classification no longer
holds once we account for the issues with the data; the inferred
degree distributions are in this case well-modeled as Poisson
distributions of means 5.53 and 2.60 for plants and pollinators
respectively and the power-law form is a poor fit. On the
other hand, the abundance parameters of the model, shown in
Fig. 5, do appear to have a broad distribution, an interesting
finding that calls for a rethinking of the relationship between
abundances and degree distributions. It is generally thought
that interactionswill tend to be evenly distributed under an even
distribution of abundance [13] but here the opposite seems to
be true.

DISCUSSION

In this paper, we have proposed a statistical model of plant–
pollinator interactions and shown how it can be used to infer the
structure and properties of empirical plant–pollinator networks
from noisy, error-prone measurements. The model employs
elementary ecological insights to create an expressive and ver-
satile structure that can capture the pattern of interactions in
a wide range of ecosystems. We use the toolbox of Bayesian
statistics to develop both an inference algorithm and a model
checking procedure for the model. Our methods explicitly
allow for the possibility that there are multiple plausible net-
works that could fit a given set of observations, a hallmark
of Bayesian analysis. Doing this allows us to make accurate
deductions even in cases where data sets are small and the
number of model parameters is large.
Applying our method to previously published plant-

pollinator visitation data, we arrive at a number of conclusions.
First, our analysis confirms previous findings that there is some
uncertainty inmeasured values of the connectance [23–27] and
thatmoderate connectance [6] seems to hold in plant-pollinator
networks even once we account for uncertainty (Fig. 3a). Sec-
ond, we have found that pollinators strongly prefer the plants
they normally visit over ones they do not, with pollinators vis-
iting their preferred plant species about 40 times more often
than non-preferred ones in our results (Fig. 3b). This high-
lights the strong selectivity of pollinators for the plant species
they usually visit. Third, we have found that networks re-
constructed using our method are more nested than networks
built using thresholds of one or a few visits to determine plant-
pollinator interactions, which supports the longstanding claim
that plant-pollinator networks are nested [6]. Finally, our anal-
ysis suggests that the distribution of number of interactions of a
species (the degree distribution) is less skewed than previously
thought [44]. This result supports recent findings showing that
incomplete sampling strongly underestimates the number of
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interactions and overestimates the degree of specialization.
Our model and inference algorithm also give an estimate of

species abundances. As we have argued, these estimates actu-
ally capture a combination of effects on observation frequency
beyond just plain abundance, which helps to explain why, as
we have seen, measured and estimated floral abundances are
correlated but not strongly so. Disagreements between mea-
sured and estimated abundances were observed previously by
Vazquez et al. [28], who used null models to show that mea-
sured abundances cannot in general explain the form of vis-
itation matrices. Taken together, these results indicate that
the frequency of observed interaction between plants and pol-
linators is not in fact proportional to their plain abundances
(defined as quantity or density of individuals), but instead in-
corporates a range of factors potentially including abundance,
ease of observation, network effects, and others [45]. One can-
didate for a possible additional factor that could play a role is
adaptive foraging by pollinators, which has been shown to in-
fluence the structure of ecological networks [4, 46]. Adaptive
foraging occurs, for example, when pollinators deliberately
visit less abundant plants more often if those plants contain
more food (such as nectar or pollen) relative to more abundant
plants with less food [7]. Our estimated abundance parameters
automatically include such factors where traditional field esti-
mates of pollinator abundance—such as the number of visits
of a pollinator species—do not. Analyses that use traditional
estimates of abundance, as in Refs. [15, 16], may as a result fail
to control for significant species-level effects on observed vis-
itation rates [13]. We would therefore argue that best practice
calls for the use of estimated abundances like those proposed
here rather than traditional ones when estimating networks of
preferred interactions.
There are a number of ways in which the approach presented

here could be extended. The method as described assumes
an ecosystem that is more or less static, but ecosystems can
change rapidlywith the seasons. One could imagine a dynamic
variant of themodel that allows parameters to evolve over time,
or networks with several levels of preference, allowing for
more nuanced description of plant–pollinator systems. On the
applications side, we have limited our analysis to the important
case of plant–pollinator networks, but similar methods could
be applied to other types of ecological networks, allowing us
to better separate signal from noise in those domains too.

METHODS

As outlined in the main text, our method relies on a gen-
erative network model in which observed visits to plants by
pollinators are considered noisy measurements of an unob-
served underlying plant–pollinator network. This formulation
allows us to frame the task of determining the network struc-
ture as a Bayesian inference problem [31, 47–49] in which the
probability of the network having incidence matrix 𝑩 given a
data matrix 𝑴 is

𝑃(𝑩, \ |𝑴) = 𝑃(𝑴 |𝑩, \)𝑃(𝑩 |\)𝑃(\)
𝑃(𝑴) , (13)

where \ are model parameters and 𝑃(𝑴) is an unimportant
normalizing constant. The element 𝑀𝑖 𝑗 of matrix 𝑴 records
the number of times insects of species 𝑗 are seen to polli-
nate plant species 𝑖, while 𝐵𝑖 𝑗 = 0, 1 encodes the presence
or absence of an edge between the two species in the plant–
pollinator network. Both matrices are of dimension 𝑛𝑝 × 𝑛𝑎
where 𝑛𝑝 is the number of plants and 𝑛𝑎 is the number of
pollinators.
We model the number of visits 𝑀𝑖 𝑗 as a Poisson random

variable with mean

`𝑖 𝑗 = 𝐶𝜎𝑖𝜏𝑗 (1 + 𝑟𝐵𝑖 𝑗 ), (14)

and use independent priors on all parameters with

𝑃(𝑟) = _𝑒−_𝑟 , _ = 0.01, (15)

and uniform priors on 𝐶,𝝈, and 𝝉. We further assume that
edges are a priori equally likely with probability 𝜌 and use a
uniform prior distribution on 𝜌 itself. This leads to

𝑃(𝑩, \ |𝑴) ∝ 𝑃(\)
∏
𝑖 𝑗

(1 − 𝜌)1−𝐵𝑖 𝑗 𝜌𝐵𝑖 𝑗

`
𝑀𝑖 𝑗

𝑖 𝑗

𝑀𝑖 𝑗 !
𝑒−`𝑖 𝑗 , (16)

with 𝑃(\) ∝ 𝑃(𝑟). We note that in this Bayesian formulation,
one can easily model interaction specific traits [39] or account
for known biology like trait-matching [13, 50] by altering the
priors on 𝐵𝑖 𝑗 for a particular pair of species 𝑖, 𝑗 [48].

Bayesian reconstruction of networks

Given the probability distribution in Eq. (16) there are a
number of approaches we could take. Following [47, 48] we
could employ an expectation–maximization (EM) algorithm to
calculate the distribution over potential network structures and
a point estimate of \ or, following [49], we could integrate out
the parameters \ and then sample from the resulting marginal
distribution on 𝑩. Neither of these approaches is completely
satisfactory here however, the first because point estimates of
the parameters can be unreliable for large models such as ours,
and the second because the values of the model parameters are
actually of interest to us, so we would prefer not to eliminate
them.
Instead therefore we make use of a technique from the liter-

ature on finite mixture models [51] to sample efficiently from
the joint distribution of both 𝑩 and \ and hence estimate both.
First, we sample values of the parameters \ from their marginal
distribution

𝑃(\ |𝑴) =
∑︁
𝑩

𝑃(𝑩, \ |𝑴). (17)

The sum over 𝑩 can be carried out analytically because the
particular 𝑃(𝑩, \ |𝑴) defined in Eq. (17) can be written in the
form∑︁

𝑩

𝑃(𝑩, \ |𝑴) =
∑︁
𝑩

∏
𝑖 𝑗

𝑥
𝐵𝑖 𝑗

𝑖 𝑗
𝑦
1−𝐵𝑖 𝑗

𝑖 𝑗
=
∏
𝑖 𝑗

(𝑥𝑖 𝑗 + 𝑦𝑖 𝑗 ),
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where 𝑥𝑖 𝑗 and 𝑦𝑖 𝑗 combine all the terms associated with the
situation where there is/is not an edge. We then find that

𝑃(\ |𝑴) ∝ 𝑒−𝐶𝑃(\)
∏
𝑖 𝑗

(𝐶𝜎𝑖𝜏𝑗 )𝑀𝑖 𝑗

×
[
1 − 𝜌 + 𝜌(1 + 𝑟)𝑀𝑖 𝑗 𝑒−𝐶𝜎𝑖 𝜏 𝑗𝑟

]
.

(18)

We can now sample from this distribution using standardmeth-
ods such as Hamiltonian Monte Carlo—see below. This gives
us our estimates of the parameter values.
For given values of the parameters we then estimate the

network 𝑩 itself by sampling from the distribution

𝑃(𝑩 |𝑴, \) = 𝑃(𝑴 |𝑩, \)𝑃(𝑩 |\)
𝑃(𝑴 |\) . (19)

Using the previous expressions for the likelihood 𝑃(𝑴 |𝑩, \)
and 𝑃(𝑩 |\)—Eqs. (3) and (6) of the Results—and noting that
the denominator 𝑃(𝑴 |\) is proportional to Eq. (18), we find

𝑃(𝑩 |𝑴, \) =
∏

𝑖 𝑗 (1 − 𝜌)1−𝐵𝑖 𝑗
[
𝜌(1 + 𝑟)𝑀𝑖 𝑗 𝑒−𝐶𝜎𝑖 𝜏 𝑗𝑟

]𝐵𝑖 𝑗∏
𝑖 𝑗

[
1 − 𝜌 + 𝜌(1 + 𝑟)𝑀𝑖 𝑗 𝑒−𝐶𝜎𝑖 𝜏 𝑗𝑟

]
=

∏
𝑖 𝑗

𝑄
𝐵𝑖 𝑗

𝑖 𝑗
(1 −𝑄𝑖 𝑗 )1−𝐵𝑖 𝑗 , (20)

where

𝑄𝑖 𝑗 = 𝑃(𝐵𝑖 𝑗 = 1|𝑴, \) = 𝜌(1 + 𝑟)𝑀𝑖 𝑗 𝑒−𝐶𝜎𝑖 𝜏 𝑗𝑟

1 − 𝜌 + 𝜌(1 + 𝑟)𝑀𝑖 𝑗 𝑒−𝐶𝜎𝑖 𝜏 𝑗𝑟

(21)
is the posterior probability of an edge between species 𝑖 and 𝑗 ,
given the parameters \.
We now simply average 𝑄𝑖 𝑗 over our sampled values of the

parameters \ to get the expected probability of an edge be-
tween any pair of nodes. More generally, we can calculate an
estimate of any function 𝑓 (𝑩, \) by drawing 𝑚 samples \𝑘 of
the parameter set and 𝑛 random incidence matrices 𝑩𝑙 (\𝑘 ) for
each set, with edges appearing independently with probabili-
ties 𝑄𝑖 𝑗 given by (21), then averaging:〈

𝑓 (𝑩, \)
〉
' 1

𝑚𝑛

𝑚∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑓
(
𝑩𝑙 (\𝑘 ), \𝑘

)
. (22)

Implementation

In our implementation of this approach we sample param-
eters \ from the distribution of Eq. (18) using the technique
known as Hamiltonian Monte Carlo (HMC). In HMC one de-
fines an inertial mechanics in a position space equivalent to the
space of the parameters, with auxiliarymomenta chosen so that
the dynamics under the corresponding Hamilton’s equations
samples from the desired distribution [52]. We implement
the calculation in Stan, a probabilistic programming language
that automatically performs HMC sampling for arbitrary target
distributions [53]. In practice, the program operates on the log

of the posterior probability, which for our distribution (18) has
the form log 𝑃(\ |𝑴) = −𝐶 +∑

𝑖 𝑗 (𝑋𝑖 𝑗 + 𝑌𝑖 𝑗 ) where

𝑋𝑖 𝑗 = 𝑀𝑖 𝑗 log𝐶𝜎𝑖𝜏𝑗 , (23)
𝑌𝑖 𝑗 = log

(
1 − 𝜌 + 𝜌(1 + 𝑟)𝑀𝑖 𝑗 𝑒−𝐶𝜎𝑖 𝜏 𝑗𝑟

)
. (24)

To avoid potential over- or underflow and ensure numerical
stability we rewrite the latter expression slightly by defining

`𝑖 𝑗 = log(1−𝜌), a𝑖 𝑗 = log 𝜌+𝑀𝑖 𝑗 log(1+𝑟)−𝐶𝑟𝜎𝑖𝜏𝑗 , (25)

and then writing

𝑌𝑖 𝑗 =

{
`𝑖 𝑗 + log

(
1 + 𝑒a𝑖 𝑗−`𝑖 𝑗

)
if `𝑖 𝑗 > a𝑖 𝑗 ,

a𝑖 𝑗 + log
(
1 + 𝑒`𝑖 𝑗−a𝑖 𝑗

)
otherwise,

(26)

which ensures that 𝑌𝑖 𝑗 is always a manageable number.
An important practical consideration is verifying the con-

vergence of the Monte Carlo algorithm. HMC mixes rapidly,
but, like all Monte Carlo methods, it can sometimes become
trapped at local optima. To ensure representative sampling
of the posterior distribution, we therefore perform multiple
Monte Carlo runs from random initial states and if any of the
runs converges to a region of significantly smaller probability
than the others then we repeat the entire calculation. In the
example calculations given in the paper we perform four runs,
with an equilibration period of 5000 Monte Carlo steps each,
followed by taking 500 samples.

Quantifying error using posterior predictive assessment

A crucial part of the model fitting process is assessing
whether the model is a good fit to the data. In the main
text we argue that a so-called posterior predictive test is a good
way of making this assessment. The idea is to generate a new
artificial data set 𝑴 from the model using the values of the
model parameters derived from the fit to the input data 𝑴. If
we find that 𝑴 looks similar to the input data then our model
has done a good job of capturing the structure of the data.
To carry out this procedurewe need to calculate the posterior

predictive distribution for species pair 𝑖, 𝑗 given by

𝑃(𝑀𝑖 𝑗 |𝑴) =
∑︁
𝑩

∫
𝑃(𝑀𝑖 𝑗 |𝑩, \)𝑃(𝑩, \ |𝑴) 𝑑\. (27)

Since the likelihood 𝑃(𝑴 |𝑩, \), Eq. (3), factors into separate
terms for each plant–pollinator pair 𝑖, 𝑗 , this expression can
with a little work be simplified to

𝑃(𝑀𝑖 𝑗 |𝑴) =
∫

𝑃(\ |𝑴)
[
𝑄𝑖 𝑗𝑃(𝑀𝑖 𝑗 |𝐵𝑖 𝑗 = 1, \)

+ (1 −𝑄𝑖 𝑗 )𝑃(𝑀𝑖 𝑗 |𝐵𝑖 𝑗 = 0, \)
]
𝑑\, (28)

and the integral can then be approximated by simply averaging
over the set of sampled values of \.
Two particularly useful statistics for the posterior predictive

test are the mean and the variance of 𝑀𝑖 𝑗 , which in this case
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are equal since 𝑀𝑖 𝑗 by definition has a Poisson distribution for
given 𝑩 and \. Both are to a good approximation given by

_𝑖 𝑗 '
1
𝑛

𝑛∑︁
𝑘=1

[
𝑄𝑖 𝑗 (\𝑘 )`𝑖 𝑗 (𝐵𝑖 𝑗 = 1)

+
(
1 −𝑄𝑖 𝑗 (\𝑘 )

)
`𝑖 𝑗 (𝐵𝑖 𝑗 = 0)

]
, (29)

where `𝑖 𝑗 is the mean defined in Eq. (14).

Description of the data sets

The data analyzed in Figs. 1–4 were gathered by Kaiser-
Bunbury et al. [41] on inselbergs (steep-sidedmonolithic rocky
outcroppings) on the tropical granitic island of Mahé, located
in the Indian Ocean. The vegetation on the inselbergs is char-
acterized by short trees, shrubs, and an absence of flowering
herbs. The data we analyze includes records of the visits of
pollinator species to all plant species found in each of the eight
inselbergs, observed between September 2012 and April 2013
during the island’s eight-month-long tropical flowering sea-
son. Species visiting flowers were recorded as pollinators if
they touched the sexual parts of the flowers within a standard
observation window of 30 minutes [54]. Floral abundances
were obtained by counting flowers in 1-meter cubes randomly
located along transects spanning the inselbergs. The visit data
were used to generate 64 data matrices of plant–pollinator
interactions, one for each period and location. Our primary
analysis focuses on the matrix for the site known as Trois-
Frères as observed during the month of December 2012. We
chose this data set primarily because it is relatively small and
hence easy to visualize.
The data analyzed in Fig. 5 were gathered by Inouye and

Pyke [43] in the Kosciusko National Park, Australia, between
December 21, 1983, and March 30, 1984. The observations
were made in 26 plots of 2m× 2m, chosen before the flowering
season and encompassing an alpine zone at elevations ranging
from 1940 to 2040 meters and a montane habitat at elevations
of 1860 to 1920 meters. Flowers were counted roughly every
second day. Insect visitation data were collected through in-
cidental observations made during the phenological censuses
of the flowers as well as dedicated observation periods of 10
minutes length, spread throughout the study duration. The
data set of Inouye and Pyke [43] is only one of several data
sets re-analyzed by Jordano et al. [44]. We chose this data
set because it is somewhat undersampled, making it a good
example of a situation where our method can improve network
estimates.

DATA AVAILABILITY

The Mahé visitation data used in this study are available
as supplementary material to Kaiser-Bunbury et al. [41]. The
data of Inouye and Pyke [43] analyzed in Fig. 5 can be down-
loaded from the Web of Life data base [55], available at
http://www.web-of-life.es, under the network identifier
M_PL_019.

CODE AVAILABILITY

Reference implementations in stan and python of the
methods described in this study are freely available online [56].
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