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Abstract 

Background 

In recent years, the rapid development of single-cell RNA-sequencing (scRNA-seq) 

techniques enables the quantitative characterization of cell types at a single-cell 

resolution. With the explosive growth of the number of cells profiled in individual 

scRNA-seq experiments, there is a demand for novel computational methods for 

classifying newly-generated scRNA-seq data onto annotated labels. Although several 

methods have recently been proposed for the cell-type classification of single-cell 

transcriptomic data, such limitations as inadequate accuracy, inferior robustness, and 

low stability greatly limit their wide applications. 

Results 

We propose a novel ensemble approach, named EnClaSC, for accurate and robust cell-

type classification of single-cell transcriptomic data. Through comprehensive 

validation experiments, we demonstrate that EnClaSC can not only be applied to the 

self-projection within a specific dataset and the cell-type classification across different 

datasets, but also scale up well to various data dimensionality and different data sparsity. 

We further illustrate the ability of EnClaSC to effectively make cross-species 

classification, which may shed light on the studies in correlation of different species. 

EnClaSC is freely available at https://github.com/xy-chen16/EnClaSC. 

Conclusions 

EnClaSC enables highly accurate and robust cell-type classification of single-cell 

transcriptomic data via an ensemble learning method. We expect to see wide 

applications of our method to not only transcriptome studies, but also the classification 

of more general data. 

Keywords: Single-cell, scRNA-seq, Cell types, Classification, Feature selection, Few-

sample classes, Neural networks 
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Background 
Recent advances in single-cell RNA-sequencing (scRNA-seq) techniques make it 

possible to reveal previously unknown heterogeneity and functional diversity at a 

microscopic resolution [1-3].  The exponential growth of the number of cells profiled 

in individual scRNA-seq experiments has shed light on the studies aiming to identify 

new cell types [4, 5], reveal regulatory mechanisms [6, 7], assess tissue composition [1, 

8, 9], investigate cell development and lineage processes [10-12], and many others. 

Currently, most of the analysis methods for scRNA-seq data are commenced with 

unsupervised clustering, which highly relies on the investigator’s background 

knowledge about the signature molecules, and is not efficient and accurate enough for 

the cell-type assignment of clusters [13]. Therefore, there is a demand for novel 

computational methods for classifying newly-generated scRNA-seq data onto 

annotated labels. 

A variety of methods have recently been proposed for the cell-type classification 

of single-cell transcriptomes. For example, an unsupervised approach, named scmap 

[14], projects cells to the identified cell-types based on the similarity between query 

and reference cells. Conventional supervised learning-based methods, such as Random 

Forest and Support Vector Machine, though can be used for the cell-type classification, 

have been proven that their performance is not comparable to scmap. SuperCT, a 

supervised neural network framework, characterizes cell types of single-cell 

transcriptomic profiles with transformed binary features. Nevertheless, there are still 

several limitations to be addressed in the proposed methods for the cell-type 

classification of single-cell transcriptomes. First, even the state-of-the-art methods have 

achieved encouraging performance, the classification performance and stability can still 

be further improved for various datasets and tasks as shown in the Results Section. 
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Second, to select informative features of the query and reference datasets, there is a 

demand for a tailored feature selection approach for the cell-type classification. Third, 

both the query and reference datasets may contain cell types that have only a small 

number of samples. A superior classification method should be able to effectively 

characterize the cell types with only a small number of samples. Last but equally 

important, a method that can be generally applied to data of various dimensions or 

dropout rates is desirable for the broader application scenarios. 

Motivated by the above understanding, we propose in this paper EnClaSC, a novel 

ensemble approach for accurate and robust cell-type classification of single-cell 

transcriptomes. Through comprehensive experiments, we illustrate that our method is 

superior to existing methods in not only the self-projection within a specific dataset, 

but also the cell-type classification across datasets. With a few-sample learning strategy, 

EnClaSC can effectively characterize the cell types that have only a small number of 

samples. We further show the robustness of our method for various data dimensionality 

and different data sparsity. Through joint analysis of classification results with scRNA-

seq datasets of different species, we demonstrate the ability of our method to make the 

cross-species cell-type classification.
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Methods 

Design of EnClaSC 

As illustrated in Fig. 1, EnClaSC consists of four modules. First, a feature selection 

module finds informative genes which benefit the cell-type classification from the 

common genes of the query and reference sets. Second, a few-sample learning module 

is adopted to sufficiently learn the characteristics of classes with few samples, and thus 

improve the performance in identifying the few-sample classes. Third, a neural network 

module uses artificial neural networks with an ensemble learning strategy to stabilize 

the performance of the cell-type classification. Finally, a joint prediction module 

integrates outputs of the few-sample learning and neural network modules to predict 

the class that a query cell belongs to. In general, EnClaSC draws on the idea of ensemble 

learning in the feature selection, few-sample learning, neural network and joint 

prediction modules, respectively, and thus constitutes a novel ensemble approach for 

cell-type classification of single-cell transcriptomes. 

 

Fig. 1  The graphical illustration of EnClaSC. EnClaSC consists of four modules, 

including feature selection, few-sample learning, neural network and joint prediction 

modules. 
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Feature selection 

Let 𝐸 be the value of gene expression in scRNA-seq, 𝑛 the number of the cells in the 

dataset. The dropout rate of the  𝑗 𝑡ℎ  feature is abbreviated as 𝐷𝑗 . For the 𝑖 𝑡ℎ  cell 

(sample), the expression of the 𝑗 𝑡ℎ feature (gene) of is abbreviated as 𝐸𝑖𝑗. For the 𝑗 𝑡ℎ 

feature, the level of gene expression 𝐹(𝑗) is calculated by the logarithm-plus-one of its 

arithmetic mean value as 

𝐹(𝑗) = log (
∑ 𝐸𝑖𝑗

𝑛
𝑖=1

𝑛
+ 1) 

For the estimation of gene expression, we first use the dropout rate to fit a linear 

model using the least square method 

𝐹̃1(𝑗) = 𝑎𝐷𝑗 + 𝑏  

We then estimate 𝐹(𝑗) by the mean of the logarithm-plus-one of each feature, 

namely, 

𝐹̃2(𝑗) =
∑ 𝑙𝑜𝑔(𝐸𝑖𝑗 + 1)𝑛

𝑖=1

𝑛
 

The residuals of these two approaches between the true gene expression level are 

recorded as ∆𝐹1(𝑗) and ∆𝐹2(𝑗) , respectively. Briefly, ∆𝐹1(𝑗) = 𝐹(𝑗) − 𝐹̃1(𝑗) , and 

∆𝐹2(𝑗) = 𝐹(𝑗) − 𝐹̃2(𝑗). ∆𝐹1(𝑗) reflects the rate of gene expression, that is, whether the 

gene can be expressed or not. ∆𝐹2(𝑗) is the information entropy of each gene, which 

reflects the residual degree of each gene expression. We can use the integrated score 

𝐺(𝑗) = 𝛼∆𝐹1(𝑗) + (1 − 𝛼)∆𝐹2(𝑗) to consider the above two factors synthetically. Here, 

𝛼 is the control coefficient, which is responsible for regulating the influence of the two 

calculated factors. We set 𝛼 to 0.5 in all the experiments of this work. 

For a specific scRNA-seq dataset, we compute 𝐺(𝑗) as the scores of features, and 

then sort the features according to the scores in descending order. We extract 𝐾 sorted 

high-score features shared among the training and test sets. This feature selection 
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approach can effectively maximize the common high-score features of different 

scRNA-seq datasets, and thus contribute to the cell-type classification across datasets. 

Few-sample learning strategy 

We define few-sample classes as the cell types whose number of samples does not 

exceed 0.5% of the total number of training samples. In order to fully extract features 

of the few-sample classes, we perform data augmentation and pre-train a few-sample 

classification model using samples of the few-sample classes in the training set. In more 

detailed, let 𝑁 be the number of samples in the training set, n the number of samples of 

the few-sample classes in the training set, 𝑀 the number of samples in the test set, and 

𝐷 the number of features after feature selection. We pair the samples of these few-

sample classes one by one to form a few-sample training set with 𝑛 × 𝑛 samples and 

2 × 𝐷 features. If the two cells of a paired sample belong to the same cell type, we mark 

the label of the paired sample as 1; otherwise, we mark it as 0. We then pair the samples 

of the few-sample classes in the original training set with each sample in the original 

test set to form a few-sample test set with 𝑛 × 𝑀 samples and 2 × 𝐷 features. 

We adopt LightGBM, a gradient boosting framework that uses tree-based learning 

algorithms, to perform the few-sample training. We use the default setting of 

parameters except for the parameters listed in Table 1 [15]. To obtain the probability 

scores that an original test sample belongs to the few-sample classes, we weight the 

prediction results of the few-sample test set by the Pearson correlation coefficients 

between the expression values of the two cells in corresponding few-sample test 

samples drawing on the idea of ensemble learning, namely, 

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑖) =  
∑ 𝑟𝑖𝑗𝑐𝑖𝑗

𝑁𝑥
𝑗=1

∑ 𝑟𝑖𝑗
𝑁𝑥

𝑗=1
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where 𝑥 is one of the classes in the original training set, 𝑁𝑥 the number of samples of 

class 𝑥 in the original training set, 𝑗 the 𝑗 𝑡ℎ sample of class 𝑥 in the original training 

set, 𝑖 the 𝑖 𝑡ℎ sample of class 𝑥 in the original test set, and 𝑟𝑖𝑗 the Pearson correlation 

coefficients between  𝑖  and  𝑗 , 𝑐𝑖𝑗  the prediction result of LightGBM for the paired 

sample of  𝑖 and  𝑗. 

Table 1. Parameters of the LightGBM model 

Parameters Setting 

boosting_type 'gbdt' 

objective 'regression' 

metric {'l2', 'auc'} 

learning_rate 0.05 

bagging_freq 5 

verbose 1 

If the predicted maximum score of an original test sample is greater than 𝛾, then 

we assign the sample as the class that has the maximum score, otherwise, the sample is 

predicted as "unassigned" and should be further classified using the subsequent 

artificial neural networks. 

Artificial neural networks for the cell-type classification  

The neural network module uses artificial neural networks with ensemble learning 

strategy to classify the test samples which are predicted as “unassigned” by the few-

sample learning module. We first design an artificial neural network framework with 

parameters as shown in Table 1, and implement it using Keras with Tensorflow as the 

backend. In order to improve the stability of the classification performance, drawing on 

the Bootstrap strategy, we generate 10 new training sets by selecting 30% of the original 

training set at random with replacement, and then use them to train 10 neural networks, 

respectively. For each trained neural network, if the predicted maximum score of a test 
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sample exceeds, again, 𝛾, the sample is assigned as the class that has the maximum 

score, otherwise, it is classified as "unassigned". We set 𝛾 to 0.7 in all the experiments 

of this work. For each test sample, we classify it as "unassigned" unless there are more 

than half of the 10 neural networks predict the test sample as a specific same class, and 

we thus classify the sample based on the voting result of the 10 neural networks. 

Table 2. The architecture of the neural network 

Layers Setting 

Dense_1 {(feature numbers,128), ’relu’} 

Dropout_1 0.25 

Dense_2 {(128,64), ’relu’} 

Dropout_2 0.5 

Dense_3 {(64,32), ’relu’} 

Dense_4 {(32,number of classes in training sets), ’softmax’} 

Assessment of performance  

We adopt the widely used 𝑘𝑎𝑝𝑝𝑎  value and 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒  value to assess the 

classification performance of the models. Briefly, we calculate the 𝑘𝑎𝑝𝑝𝑎 values of the 

classification results of assigned samples and the real classes of corresponding samples 

using the following formula 

𝑘𝑎𝑝𝑝𝑎 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 

where 𝑝0 is the sum of the number of samples correctly classified divided by the 

number of samples in the test set, that is, the overall classification accuracy of the test 

set. Assuming that the number of real samples in each class of test set 

is 𝑎1, 𝑎2 … 𝑎𝐶  respectively, the number of samples in each class of the test set predicted 

is 𝑏1, 𝑏2 … 𝑏𝐶 respectively, and the number of samples in the test set is 𝑛. We have 

𝑝𝑒 =
𝑎1 × 𝑏1 + 𝑎2 × 𝑏2 + ⋯ + 𝑎𝐶 × 𝑏𝐶

𝑛 × 𝑛
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For the assessment of the ability of a model to recognize the cells in the test set, we 

use 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 to represent the proportion of the number of samples that can be 

assigned to a cell type by the classifier, namely, 

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 =
𝑏1 + 𝑏2 + ⋯ + 𝑏𝐶

𝑛
 

Because the classes of test sets and training sets may not be completely consistent, 

the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 should be maintained at a relatively high level, but not the higher 

the better, and thus the classification performance is primarily related to 𝑘𝑎𝑝𝑝𝑎 values. 

Data collection  

We downloaded three humans pancreatic scRNA-seq dataset provided by Baron, M. et 

al., Muraro, MJ et al., and Xin, Y. et al. (hereinafter are abbreviated as Baron Dataset, 

Muraro Dataset, and Xin Dataset, respectively) from NCBI Gene Expression Omnibus 

via accession GSE84133, GSE85241, and GSE81608, respectively [16-18]. The human 

pancreatic scRNA-seq dataset provided by Segerstolpe, Å. et al. (hereinafter is 

abbreviated as Segerstolpe Dataset) was downloaded from EMBL-EBI ArrayExpress 

via accession E-MTAB-5061 [5]. For the subsequent usability of the dataset, we 

removed the cells of the "unclear" class in Muraro Dataset, the cells of the "not 

applicable", "unclassified endocrine" and "unclassified" classes in Segerstolpe Dataset 

and the cells of the "alpha.contaminated", "beta.contaminated", "delta.contaminated", 

and "gamma.contaminated" classes. After preprocessing, Baron Dataset contains 8569 

samples with 20, 125 features, Muraro Dataset contains 2122 samples with 19, 127 

features, Xin Dataset contains 1492 samples with 39, 851 features, and Segerstolpe 

Dataset contains 2166 samples with 25, 525 features. 

We also downloaded two mouse retina scRNA-seq datasets provided by Macosko, 

EZ et al. and Shekhar, K. et al., (hereinafter are abbreviated as Macosko Dataset and 
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Shekhar Dataset, respectively) from NCBI Gene Expression Omnibus via accession 

GSE63473 and GSE81904 [2, 19]. Macosko Dataset measures the expression of 23, 

288 genes in 44, 808 cells, while Shekhar Dataset measures the expression of 13, 166 

genes in 27, 499 cells. 

Two mouse brain cell scRNA-seq datasets provided by Romanov, RA et al. and 

Zeisel, A. et al. (hereinafter are abbreviated as Romanov Dataset and Zeisel Dataset, 

respectively) and one mouse brain cell scRNA-seq dataset collected by Darmanis, S. et 

al. (hereinafter is abbreviated as Darmanis Dataset) were downloaded from the NCBI 

Gene Expression Omnibus via accession GSE74672, GSE60361 and GSE67835, 

respectively [9, 20, 21]. To unify the label information, we replaced the cell type label 

'oligos' in the Remanov Dataset with 'oligodendrocytes', and the cell type labels 

'ca1pyramidal', 's1pyramidal' and 'interneurons' in the Zeisel Dataset with 'neurons'. 

After preprocessing, Romanov Dataset contains 2881 samples with 24, 341 features, 

Zeisel Dataset contains 3005 samples with 19, 972 features, and Darmanis Dataset 

contains 466 samples with 22, 088 features. 
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Results 

EnClaSC achieves high performance for self-projection within a dataset 

In order to illustrate that our method can effectively perform self-projection within a 

scRNA-seq dataset, we conducted a series of self-projection experiments using 6 

datasets, including Baron Dataset, Muraro Dataset, Xin Dataset, Segerstolpe Dataset, 

Macosko Dataset and Shekhar Dataset. We compared the performance of our method 

with scmap, a similarity-based method, and SuperCT, an ANN-based method (we self-

implemented the method according to the paper because SuperCT is not open source) 

[13, 14]. Using the same training (reference) and test (query) sets with EnClaSC, we 

run the two baseline methods with parameters or structures proposed by the respective 

authors.  

 

Fig. 2  Performance comparison of the self-projection within a specific dataset. 

Both EnClaSC and scmap provide a feature selection method, while SuperCT uses 

all features.  When running EnClaSC and scmap, we selected 100 features, which is 

considered to be able to better demonstrate the advantages of scmap in their paper. We 

performed 5-fold cross-validation within each of the six datasets. EnClaSC model has 

better self-projection performance than SuperCT and scmap. At the same time, in terms 
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of self-projection stability, EnClaSC is significantly superior to SuperCT. The variance 

of the 𝑘𝑎𝑝𝑝𝑎 value of EnClaSC is 95.05% lower than SuperCT, and the variance of the 

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 of EnClaSC is 85.60% lower than SuperCT.  

EnClaSC outperforms other methods in the cell-type classification across 

datasets 

We use six scRNA-seq datasets to demonstrate the superior cell-type classification 

performance of EnClaSC. Using Baron Dataset, Muraro Dataset, Xin Dataset, and 

Segerstolpe Dataset these four human pancreatic datasets, we selected each one of them 

as the test set, while the integration of remaining three datasets serves as the training 

set, respectively. In addition, we used two mouse retina datasets, namely, Macosko 

Dataset and Shekhar Dataset, to form two symmetric training-test sets. We used 100 

selected features in EnClaSC and scmap, while all features in SuperCT, and repeated 

each experiment five times. 

 

Fig. 3  Performance comparison of the cell-type classification across different 

datasets. 

As shown in Fig. 3, the 𝑘𝑎𝑝𝑝𝑎 value of EnClaSC is higher than that of scmap given 

comparable 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠, except for the group where Macosko Dataset serve as the 

test set and scmap achieves much lower 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠. Compared with SuperCT, 
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which also uses a neural network architecture, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠 of EnClaSC has little 

difference except for Baron Dataset as the test set, while most 𝑘𝑎𝑝𝑝𝑎  values of 

EnClaSC outperform SuperCT. When Baron Dataset serves as the test set, the 

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠  of SuperCT is much lower than that of scmap and EnClaSC. In 

addition, it can be seen from the figure that the classification performance of EnClaSC 

is much more stable than that of SuperCT. Therefore, even though EnClaSC only uses 

100 features, the classification performance of EnClaSC is still far better than that of 

SuperCT. In general, EnClaSC has a more outstanding performance in cell-type 

classification compared with other two base-line methods. 

Contribution of each module 

Feature selection module 

We validated the contribution of the feature selection module using the four human 

pancreatic datasets including Baron Dataset, Muraro Dataset, Xin Dataset and 

Segerstolpe Dataset，and two mouse retina datasets including Macosko Dataset and 

Shekhar Dataset. We performed six experiments as the above section. We first took 

each one of the four human pancreas datasets as a test set and integrated the remaining 

three datasets as a training set. Then we took each one of the two mouse retina datasets 

as a test set, and the remaining one was served as a training set. We replaced the feature 

selection method of our feature selection module with PCA, which is commonly used 

for scRNA-seq dimensionality reduction, feature selection methods of Seurat v3.0 and 

that of scmap, and compared them with our original method [22].  

The results are shown in Fig. 4. Compared to PCA, our feature selection method is 

more stable. The 𝑘𝑎𝑝𝑝𝑎 and the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 of EnClaSC is much better than the 

EnClaSC framework using the feature selection method of Seurat v3.0 (the average of 
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𝑘𝑎𝑝𝑝𝑎  values of EnClaSC is 69.65% higher than Seurat v3.0, and the average of 

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠  is 3.95% higher than Seurat v3.0). EnClaSC has slightly higher 

𝑘𝑎𝑝𝑝𝑎  values with comparable 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠  compared with the EnClaSC 

framework using the feature selection method of scmap. In summary, the feature 

selection module of EnClaSC is superior to other widely used feature selection 

approaches in the EnClaSC framework, and thus serves as the effective feature selection 

approach for the cell-type classification. 

 

Fig. 4 Performance of EnClaSC using different feature selection strategy. 

Neural network module 

We validated the contribution of the neural network module using the four human 

pancreatic datasets and the two mouse retina datasets, and we again performed six 

experiments as the above section. We replaced the neural networks in EnClaSC with a 

single neural network that does not use the ensemble learning strategy. We compared 

the performance of the above approach with that of our complete model, and show the 

results in Fig. 5. With 64.14% reduced variance of 𝑘𝑎𝑝𝑝𝑎  and 71.97% reduced 

variance of 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 on average, the main contribution of ensemble learning 

strategy with several neural networks is significantly improving the stability of 
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classification performance. Besides, on most datasets, the ensemble learning strategy 

slightly improves the classification performance. 

 

Fig. 5  Performance of EnClaSC with or without ensemble learning in the neural 

network module. 

Few-sample learning module 

To demonstrate the contribution of the few-sample learning module, we compare the 

performance of EnClaSC with or without the few-sample learning module. We first 

used Shekhar Dataset as the training set, Macosko Dataset as the test set to evaluate the 

contribution of the few-sample learning module. This training-test set has a very distinct 

characteristic compared to other sets we have used, because there are massive samples 

of few-sample classes of the training set in the test set, which makes the classification 

task much more challenging. According to the definition in the Methods Section, we 

consider “rods” and “cones” as the few-sample classes in the training set. These two 

cell types account for 0.34% and 0.18% respectively in the training set, and account for 

65.61% and 4.17% respectively in the test set. 
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Fig. 6  Performance of EnClaSC with or without the few-sample learning module. 
a The results of EnClaSC with few-sample learning module on Macosko Dataset. b The 

results of EnClaSC without few-sample learning module on Macosko Dataset. c The 

results of EnClaSC with few-sample learning module on Segerstolpe Dataset. d The 

results of EnClaSC without few-sample learning module on Segerstolpe Dataset. e The 

results of EnClaSC with few-sample learning module on Baron Dataset. f The results 

of EnClaSC without few-sample learning module on Baron Dataset. 

As shown in Fig. 6a and 6b, EnClaSC with the few-sample learning module can 

identify 66.34% samples in the test set with the classification accuracy rate of 95.92%. 

However, the classification accuracy rate of EnClaSC without the few-sample learning 

module is only 87.33%. As shown in Fig. 6a and 6b, the number of incorrectly classified 

samples of the "rods" class is less than without the few-sample classification model, 

and the samples of the "cones" class in the test set are all classified incorrectly. 

We also evaluated the contribution of the few-sample learning module using 

training and test sets whose cell types have similar sample distributions. We integrated 
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Baron Dataset, Muraro Dataset, and Xin Dataset as the training set, and used 

Segerstolpe Dataset as the test set, and Segerstolpe Dataset, Muraro Dataset and Xin 

Dataset as training sets, Baron Dataset as the test set to form two training-test sets for 

the experiment.  

As shown in Fig. 6a and 6b, the training of few-sample classes in the neural 

network is insufficient with limited samples, resulting in the worse classification 

performance, while the few-sample learning module can effectively characterize the 

few-sample classes, and thus improve the classification performance.  

In addition, we found that in the Segerstolpe Dataset, which contains "MHC class 

II" cell type but not 'macrophage' cell type. In the case that Baron Dataset or Segerstolpe 

Dataset serves as the test set, the few-sample learning module can associate the 

'macrophage' class with the "MHC class II" class as shown in Fig. 6c-f. The data showed 

that "MHC class II" is a protein that is mainly secreted by the macrophage cell, 

indicating that the few-sample learning module possesses the potential ability to 

recognize new cell types and assign them to relative cell types. In summary, the few-

sample learning module endows EnClaSC the ability to effectively resolve few-sample 

classes of the training set, while providing the potential ability to correlate new cell 

types with known relative cell types. 

EnClaSC scales up well with various data dimensionality  

To illustrate the robustness of our method for various data dimensionality, we selected 

different numbers of features among the four human pancreatic datasets including 

Baron Dataset, Muraro Dataset, Xin Dataset, and Segerstolpe Dataset. We took each 

one of the four human pancreas datasets as a test set and integrated the remaining three 

datasets as a training set, and repeated each experiment five times. In order to illustrate 

the superior data-dimension adaptability of our method, we selected 100, 300, 500, 700 
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and 900 as the feature numbers of our method and scmap. It is worth noting that instead 

of designing a feature selection module, SuperCT directly binarizes all features, and 

thus uses all features in these experiments. 

As shown in Fig. 7, the performance of EnClaSC slightly improves with the 

increase of data dimensionality. When the data dimensionality is 300, the 𝑘𝑎𝑝𝑝𝑎 value 

of scmap rises to the peak and remains basically unchanged, while the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠 

of scmap drops dramatically with the increase of data dimensionality. At the same time, 

we can see that when the data dimensionality reaches 500 or becomes higher, the 

𝑘𝑎𝑝𝑝𝑎 values and the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 of EnClaSC are consistently higher than that of 

scmap and SuperCT. In summary, EnClaSC scales up well with various data 

dimensionality, and the higher the data dimensionality, the better the performance of 

EnClaSC. 
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Fig. 7  Performance comparison on datasets of various dimensionality. a-d The 

performance on Muraro Dataset, Baron Dataset, Segerstolpe Dataset and Xin Dataset, 

respectively. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/754085doi: bioRxiv preprint 

https://doi.org/10.1101/754085


 - 21 - 

EnClaSC scales up well with different data sparsity 

Considering that scRNA-seq data suffer from the dropout phenomenon, we further 

demonstrated that our method can scale up well with different data sparsity using the 

four human pancreatic datasets to perform four experiments as the above section. We 

randomly set 0%, 10%, 20%, 30%, 40%, and 50% of the non-zero elements in the raw 

expression matrix, and repeated each experiment five times. As illustrated in Fig. 8, 

EnClaSC is much more robust to the dropout rate compared with other two methods. 

The 𝑘𝑎𝑝𝑝𝑎 values hardly change with the increasing of the dropout rate, even though 

the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 decrease slightly. Nevertheless, the performance of scmap becomes 

worse because the randomly zeroing of the feature matrix could cause significant 

changes in cell-to-cell similarity. The performance of SuperCT fluctuates irregularly 

with the increasing dropout rate. In some cases, the 𝑘𝑎𝑝𝑝𝑎  value may close to 0, 

indicating that the increasing dropout rate could cause further deterioration of the 

stability of SuperCT. The results demonstrate that EnClaSC can account for the sparsity 

of single-cell gene expression data, and thus benefits the cell-type classification tasks 

with the exponential growth of the Drop-seq based scRNA-seq data. 
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Fig. 8  Performance comparison on datasets of different sparsity. a-d The 

performance on Muraro Dataset, Baron Dataset, Segerstolpe Dataset and Xin Dataset, 

respectively. 
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EnClaSC enables cross-species classification 

To illustrate that EnClaSC can effectively make cross-species classification, we used 

datasets of mouse brain cells provided by Romanov, R. A. et al. (Romanov Dataset for 

short) and Zeisel, A. et al. (Zeisel Dataset for short) as the training set, and a dataset of 

human brain cells provided by Darmanis, S. et al. (Darmanis Dataset for short) as the 

test set for the cross-species classification. Because there are only 466 samples on 

Darmanis Dataset, we did not use the Darmanis Dataset as the training set. As shown 

in Fig. 9, our method not only achieves the highest 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒 (37.83% higher than 

scmap, and 2.54% higher than SuperCT), but also has the highest 𝑘𝑎𝑝𝑝𝑎  (79.13% 

higher than scmap and 80.06% higher than SuperCT) in this cross-species classification 

task. Similarly, using our feature selection module in EnClaSC also provides the 

highest 𝑘𝑎𝑝𝑝𝑎 value (211.60% higher than PCA, 11.89% higher than Seurat v3.0, and 

4.94% higher than scmap), and 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑎𝑡𝑒𝑠  (0.51% higher than PCA, 2.84% 

higher than Seurat v3.0, and 2.46% higher than scmap). The results demonstrate that 

EnClaSC has superior classification performance both in the classification of 

homologous cells of the same species and in the classification of homologous cells of 

different species. 

 

Fig. 9  Performance comparison of cross-species classification. 
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Discussion 
scRNA-Seq techniques have advanced rapidly in recent years and enable the 

quantitative characterization of cell types at a single-cell resolution. EnClaSC is 

proposed to classify cell types using supervised learning. With the contribution of the 

tailored feature selection, neural network and few-sample learning modules, our 

method is superior to other baseline methods, such as scmap and SuperCT, with regard 

to not only accuracy and robustness, but also the performance of classifying few-sample 

classes.  

Our method can certainly be improved in some aspects. First, a more well-crafted 

module, such as modules considering dropout evens, can be introduced to better 

characterize the scRNA-seq data, and thus further improves the performance of our 

method. Second, our method can be extended to incorporate other types of functional 

genomics data such as chromatin accessibility [23, 24]. Finally, drawing on the idea of 

VPAC, we can integrate the feature selection module with other modules to endow the 

method with the ability to balance the feature selection and prediction steps, and thus 

extract features that are more conducive to the cell type classification [25].
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Conclusions 
We have proposed a supervised learning method, named EnClaSC, for accurate and 

robust cell-type classification of single-cell transcriptomes. Each of the well-crafted 

feature selection, neural network and few-sample learning modules draws on the idea 

of ensemble learning, which makes EnClaSC superior to existing methods in the self-

projection within a specific scRNA-seq dataset, the cell-type classification across 

different scRNA-seq datasets, various data dimensionality, and different data sparsity. 

We have further demonstrated the ability of EnClaSC to effectively make cross-species 

classification, which may shed light on the studies in the correlation of different species. 

Eventually, we expect that such a supervised learning approach will be widely 

applicable for the cell-type classification with the explosive growth of scRNA-seq data.
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