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ABSTRACT 21	

Colorectal cancer is a major contributor to death and disease worldwide. The ApcMin mouse is 22	

a widely used model of intestinal neoplasia, as it carries a mutation also found in human 23	

colorectal cancers. However, the method most commonly used to quantify tumour burden in 24	

these mice is manual adenoma counting, which is time consuming and poorly suited to 25	

standardization across different laboratories. We describe a method to produce suitable 26	

photographs of the small intestine, process them with an ImageJ macro, FeatureCounter, 27	

which automatically locates image features potentially corresponding to adenomas, and a 28	

machine learning pipeline to identify and quantify them. Compared to a manual method, the 29	

specificity (or True Negative Rate, TNR) and sensitivity (or True Positive Rate, TPR) of this 30	

method in detecting adenomas are similarly high at about 80% and 87%, respectively. 31	

Importantly, total adenoma area measures derived from the automatically-called tumours were 32	

just as capable of distinguishing high-burden from low-burden mice as those established 33	

manually. Overall, our strategy is quicker, helps control experimenter bias and yields a greater 34	

wealth of information about each tumour, thus providing a convenient route to getting 35	

consistent and reliable results from a study.  36	

 37	

	  38	
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INTRODUCTION 39	

Human colorectal cancer is a major contributor to both disease and death in the Western 40	

world, with approximately 1.36 million cases diagnosed in 2012 1. Due to the massive impact 41	

of colorectal cancer worldwide, many animal models have been created to understand this 42	

disease and test potential treatments. Mutations in the Wingless/Int-1 (Wnt) pathway are 43	

commonplace in human colorectal cancer 2. The Adenomatous polyposis coli (APC) protein is 44	

part of the canonical Wnt pathway, which is strongly conserved across many species, 45	

including humans and mice. APC promotes the destruction of ß-catenin and prevents Wnt 46	

signalling. Interestingly, the Apc gene is mutated in over 80% of colorectal cancer cases, as 47	

well as in some breast cancers 3. One of the Apc mutations is particularly noteworthy, as it 48	

causes Familial Adenomatous Polyposis 4. This hereditary genetic disease causes thousands of 49	

polyps to form in the colon of the patient, which will invariably lead to colorectal cancer if 50	

that patient is not screened and treated. 51	

The ApcMin mouse is a widely used model of spontaneously occurring intestinal tumours that 52	

closely model human Familial Adenomatous Polyposis5. ApcMin mice have been highly 53	

valuable in demonstrating key mechanisms in colorectal cancer, for example, the importance 54	

of Vascular Endothelial Growth Factor in the initial growth of intestinal tumours 6, the role of 55	

COX-2 in adenoma formation 7, and the role of IL-33 in promoting tumorigenesis by 56	

modifying the tumor immune environment 8. ApcMin mice produce an inactive, truncated APC 57	

protein due to a mutation leading to a premature stop codon in the Apc gene 9. This functional 58	

loss in ApcMin mice favours aberrant cell growth and, ultimately, spontaneous adenoma 59	

generation in the mouse intestinal tract. Adenomas continue to grow throughout the mouse’s 60	

life, eventually causing bleeding, anaemia, and death, suggesting that tumour size, rather than 61	
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tumour count, may be a relevant metric. 62	

Despite the wide use of the ApcMin model, there is no standardized technique to quantify 63	

adenoma burden in these mice. Most papers rely on complex protocols and report only on 64	

manually-counted adenoma numbers, or numbers and areas in selected areas of the intestinal 65	

tract, although some also include information on adenoma location and size. However, high 66	

quality semi-automated methods are now becoming available to facilitate the identification of 67	

tumour lesions in histological images10, or guide the visual classification of macroscopic 68	

tumour lesions including melanomas in patients11. Therefore, these methods can offer rapid 69	

and objective tumour identification in a broad range of situations.  70	

In this paper, we describe a protocol for preparing standardised, photography-based images of 71	

mouse small intestine (SI), large intestine (LI) and caecum; a new ImageJ12 software macro 72	

called FeatureCounter that automatically identifies tumour-like features in the SI images and 73	

extracts measures such as area; and a machine learning pipeline for classifying these features 74	

as true adenomas or not. We illustrate this strategy’s performance on 120 mice of different 75	

genotypes, age and sex. On the whole, our approach extracts a more detailed picture of the 76	

adenoma burden in mice in a standardized and reliable manner, enabling a rapid and more 77	

sophisticated analysis of the experimental results. 78	

	79	

RESULTS 80	

Adenoma enumeration approaches 81	

Unbiased and reliable evaluation of tumour burden is essential to the interpretation of the 82	

results of any preclinical study addressing tumour biology and potential therapy. This is 83	
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normally achieved by blinding investigators to the treatment group and performing lengthy 84	

manual quantification under a microscope. Nonetheless, individual variations in measurement 85	

techniques make the standardization of results across different investigators difficult to 86	

achieve. To overcome these limitations, we designed three new techniques to evaluate tumour 87	

count and area in the SI of tumour-prone ApcMin mice. The three techniques differed in degree 88	

of automation, in how “features” of interest were identified, and in how those features were 89	

classified or “called” as true Adenomas or not. A diagrammatic representation of the steps and 90	

approximate time taken to perform a traditional method and these three new techniques are 91	

shown in Fig. 1. A summary of these approaches is provided below: 92	

1. The TRAD (Traditional) method involved dissecting the intestinal tract, longitudinally 93	

opening the gut, spreading the tissue onto a petri dish or glass plate, and manually 94	

enumerating tumours on fresh tissue using a stereomicroscope (Supplementary Fig. 95	

1). The nature of these visually-identified tumours can be confirmed by standard 96	

histological techniques as shown in Supplementary Fig. 1.  97	

2. The DRAW approach involved dissecting the SI and removing all fat tissue, opening it 98	

longitudinally taking care to leave any visible tumours intact, and carefully spreading 99	

the tissue flat on a suitable cardboard as detailed in the Methods section. This was then 100	

photographed close-up with a white ruler in shot for scale, and the photo stitched 101	

together and opened using the Java-based image processing programme ImageJ 12. 102	

The image was scaled using the ruler, and the ImageJ ‘freehand selection’ function 103	

was used to manually draw the margin of each of the visually-identified Ad. These 104	

features were then measured and added up using the ImageJ’s ‘analyze particles’ 105	

function to generate adenoma numbers and area. The same approach was used also to 106	
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quantify tumours in the LI and caecum, after they were prepared similarly to the SI. In 107	

this study, the DRAW approach identified no adenomas in the SI, caecum or LI from 108	

control mice, indicating high researcher reliability when identifying tumours.  109	

3. The CALL approach followed the DRAW approach up to the full SI image opening in 110	

ImageJ. At this point, the FeatureCounter macro was run in ImageJ to automatically 111	

set the scale and outline the contour of interesting features that might be adenomas. 112	

From here, a researcher manually located each feature and “called” (assigned) them as 113	

‘true Adenomas’ (Ad) or ‘not Adenomas’ (nAd). The resulting information is used by 114	

ImageJ ‘analyse particles’ function to calculate adenoma number and areas. Thus, the 115	

CALL approach automatically identifies adenoma-like features that are then verified 116	

by eye, providing a gold-standard training set for machine learning if required. 	117	

4. Finally, the LDA approach used the FeatureCounter macro-identified features 118	

generated using the CALL approach and Linear Discriminant Analysis (LDA, a 119	

simple machine learning technique) to determine how to discriminate between Ad and 120	

nAd features based on the feature measures. Once trained on a CALL dataset, this 121	

method is fully automatic, and features can be delineated by FeatureCounter and then 122	

classified as an Ad or nAd by the LDA. 	123	

 124	

Photography and FeatureCounter can be faster than manual quantification 125	

We compared the time required to quantify SI tumours using the various approaches 126	

described in Fig. 1. Preparing the SI for analysis using the TRAD approach took about 30 127	

minutes. In contrast, the time to prepare and photograph one SI sample for all other 128	

approaches took in total about 40 minutes, including sample dissection, washing, 129	
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photographing, and image stitching time. Similar quality images were obtained using either 130	

fresh SI tissue or tissue that had been stored frozen and thawed before sample processing and 131	

analysis. Use of frozen tissues added about 5-10 minutes to the total tissue preparation time, 132	

but introduced a very useful experimental breakpoint option when immediate analysis was not 133	

possible or highly inconvenient, as is often the case in survival studies. 134	

The quantification of tumours using the TRAD approach, by visually quantifying tumours 135	

under the dissecting microscope, took up to 60 minutes per sample depending on tumour 136	

burden. Measurement of individual tumour sizes would add considerably to this time, 137	

especially when the tumour burden is high. In the DRAW approach, tracing features by hand 138	

in ImageJ took about 1 to 10 minutes per sample, again depending on tumour burden. 139	

Running the FeatureCounter macro to automatically identify image features of interest took 140	

about 15-30 seconds. Manually calling tumour features from the FeatureCounter macro’s 141	

features in the CALL approach took 1 to 5 minutes per sample, while the LDA approach 142	

(assuming a streamlined processing pipeline) took only one minute to complete the analysis 143	

across all 3188 features from 117 animals. It is immediately apparent that the main time gain 144	

is in the ability to automatically identify and call features, which is highest on heavily tumour-145	

burdened mice. For low-burden mice, the extra preparation time would offset this gain; 146	

however, the consistency and depth of data generated using the DRAW, CALL or LDA 147	

methods may make the extra time investment beneficial compared to the TRAD approach. 148	

Overall, the TRAD approach takes approximately 90 minutes per sample, the DRAW 149	

approach 60 minutes, the CALL approach 50 minutes and the LDA method 45 minutes per 150	

sample. Figure 1 schematizes these four approaches along with time costs for each step of 151	

each method.  152	
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 153	

Tissue preparation and FeatureCounter True Positive Rate 154	

High quality tissue preparation is essential to tumour identification using the FeatureCounter 155	

macro. Figure 2A shows a SI laid out on cardboard, before being bisected into two long 156	

pieces which were then cut longitudinally and, using tweezers, opened out, spread flat with 157	

smoothed edges, and cleaned with PBS to expose any adenomas present. A representative 158	

image is presented in Fig. 2B. Tumours are visible as denser white areas on the blue 159	

cardboard background. From these images, tumours were manually delineated by an 160	

experienced researcher to generate the DRAW mask in Fig. 2C. Alternatively, the 161	

FeatureCounter macro was used to automatically flag adenoma-like areas and generate a 162	

mask as shown in Fig. 2D. FeatureCounter identified very few features from a good 163	

preparation of control SI with no adenomas. Representative image and mask are shown in 164	

Fig. 2E and 2F, respectively. Common issues with tissue preparation and image analysis 165	

include rolled edges, excess fat, patches of dried tissue, and light reflections which can all be 166	

picked up as non-tumour features by the FeatureCounter macro (Supplementary Fig. 2). 167	

These “false positive” image features can be largely avoided by first removing excess fat at 168	

sample collection and then, during preparation, ensuring that the tissue edges are flat by 169	

smoothing with tweezers, regularly moistening the samples once mounted, and finally 170	

ensuring consistent camera and light placement during photography. Once the protocol is 171	

learnt, it is relatively simple to avoid all these artifacts.  172	

 173	

Validation of tumour identification in the small intestine 174	
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To ensure that our premise of identifying image features as actual adenomas was correct, we 175	

carried out experiments where fresh SI tissue was spread on blue cardboard, analysed using 176	

the DRAW method, and then used as a source of tissue for microscopic analysis. As shown in 177	

Fig. 3C and 3D, two putative adenomas were selected due to their relatively isolated location 178	

away from other tumours in the same sample, removed using a scalpel, then formalin fixed, 179	

embedded in paraffin, and stained with haematoxylin and eosin. Figure 3A and 3E show a 180	

magnification of these adenomas. Microscopic images in Fig. 3B and 3F revealed a typical 181	

morphology with thickened mucosa, glandular appearance and a sessile structure. This 182	

appearance is characteristic of adenomas as described in ApcMin mice 5 and very similar to that 183	

of ApcMin adenomas imaged in our Lab using standard methods such as Swiss rolling of 184	

intestinal tissue (Supplementary Fig. 1).  185	

As a further validation of the tumour-bearing status of ApcMin mice as determined using the 186	

DRAW method, we compared spleen and body weight between groups of ApcMin mice and 187	

their adenoma-free WT littermates, which were sacrificed at the same time or shortly after 188	

euthanasia of the last surviving ApcMin mouse in the same litter. A total of 49 mice, 27 ApcMin  189	

and 22 WT, were assessed. The average age of the ApcMin mice was 149 days with SD of 37, 190	

while the average age of the WT controls was 177 ± 21 days. The results in Fig. 4 show that 191	

spleen weight was significantly higher in ApcMin mice compared to WT controls, while body 192	

weight was lower. This is consistent with the reported anemia that develops in ApcMin mice 193	

with increasing tumour burden, which in turn leads to splenomegaly 5. All ApcMin mice 194	

harboured numerous adenomas in the SI and a considerable tumour burden measured as total 195	

tumour surface throughout the SI. No tumours were detected in the WT littermates. 196	

 197	
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Linear Discriminant Analysis setup and feasibility 198	

We postulated that it would be possible to identify the true adenomas amongst the SI image 199	

features delineated by FeatureCounter using data from the 22 shape and colour feature 200	

measures provided by ImageJ. For example, one might expect adenomas to have rounder 201	

shapes and slightly different colour than fat deposits and other non-tumour features. We thus 202	

investigated the use of machine learning techniques for separating the true adenomas, “Ad”, 203	

from not true adenomas, “nAd”. To provide a full training data for such a classifier, all the 204	

image features from 120 mice with complete measures were called as Ad or nAd by a blinded, 205	

experienced researcher using the CALL method. The dataset ultimately contained 3447image 206	

features (1286 Ad, 1919 nAd, rest unclassified). 207	

As a first analysis, we performed a PCA of the	of the image feature data generated using 208	

FeatureCounter. It was quickly apparent that there was segregation – though imperfect – 209	

between the Ad and nAd classes (see Supplementary Fig. 3), suggesting that it was likely 210	

that the LDA would be able to identify true Ad from nAd. We thus pursued the LDA to try 211	

and automatically separate the feature classes based on the measure data. 212	

Non-independence of observations can be a major problem in any statistical methodology not 213	

designed to take it into account, as is the case for LDA. Here, observations (image features) 214	

are nested within mice, in other words, many features may be found in the same mouse, 215	

potentially causing non-independence of observations. This may be an issue if, for example, a 216	

generally low-quality gut preparation led to bias in one or more image feature measurements 217	

across all features from that mouse: the LDA learning would include this bias and thus fail to 218	

generalize properly to all features. We thus used the PCA in Supplementary Fig. 3 to 219	

highlight potential mouse-level biases. As shown in Supplementary Fig. 3, the barycentres of 220	
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most of the 120 mice clustered at the center of the PCA, indicating no major mouse-level bias. 221	

For animals with barycentres not clustering within this central area, SI photographs were 222	

retrieved and scrutinized for signs of substandard preparation. We concluded that 3 mice had 223	

photography of insufficient quality due to either poor sample preparation or inappropriate 224	

camera settings. After excluding these, no such bias was observed. This result emphasises the 225	

importance of standardising the tissue preparation and photography protocols to minimise 226	

sample batch effects. After this step, 3188 features with proper CALL classifications (1279 227	

Ad (40.1%) and 1909 nAd (59.9%)) from 117 mice were retained for training the classifier. 228	

 229	

Linear Discriminant Analysis performance 230	

As with any classification strategy, it is good practice to perform a validation experiment to 231	

assess the classifier’s stability and performance when faced with novel data; in other words, 232	

we wanted to check that the LDA classification strategy would perform well when applied to 233	

real-world experimental numbers. Using a “bootstrapping” random sampling with 234	

replacement strategy (see LDA validation in Methods), we generated a total of 4000 235	

validation datasets, computationally representing the equivalent number of ‘experiments’ of 236	

normal ApcMin and WT animals, and each was used to train a separate LDA. We chose a 237	

bootstrapping approach due to the relatively smaller size of our dataset, and selected with 238	

replacement to ensure that population distribution was maintained for selections within each 239	

validation dataset. For each validation set, feature-level performance indicators including 240	

accuracy, TPR and Positive Predictive Value (PPV, or precision) and dataset-wide 241	

performance indicators (such as the ratio of positive adenoma calls over true adenomas) were 242	

derived for Ad and nAd on the full dataset, and compared to those obtained using LDA on the 243	
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full dataset, as described in the Methods. 244	

The distributions of the feature-level performance indicators are presented in Fig. 5A and 5B. 245	

The accuracy achieved for the full dataset was of 87%. The TPR (or the percent of the true Ad 246	

/ nAd correctly identified as such by the LDA) for the full LDA of Ad and nAd were close to 247	

80% and 90%, respectively, indicating that the LDA was identifying correctly the majority of 248	

both real Ad and nAd features. The PPV (or the proportion of the features identified as Ad / 249	

nAd by the LDA that were correctly identified) of Ad or nAd were approximately 85% and 250	

87% respectively, again showing good performance of the full LDA to classify Ad and nAd 251	

features. Unsurprisingly, the LDA done on the whole dataset outperformed the majority of 252	

bootstrapping datasets, perhaps indicating a slight overfitting when using the full dataset. 253	

Nonetheless, all the indicators obtained on the validated datasets remained strong (indeed, the 254	

worst performing indicator was Ad.TPR, with only 75% of values above 75%). 255	

Importantly, the LDA performed very well when considering mouse-level performance 256	

indicators. The Ad.ratio represents the ratio of the LDA-derived Ad count over the CALL-257	

provided Ad-count; the nAd.ratio is a similar indicator for nAd features. If the LDA was, in 258	

practice, perfect, these ratios would be of exactly 1 (although it should be noted that the 259	

converse is not true, and a ratio of 1 does not correspond to perfect performance). We 260	

observed that the majority (the “most average 50%”, as indicated by the gray boxes in Fig. 261	

5B) of validation dataset Ad.ratios were between 0.919 and 1.051, with a median of 0.984, 262	

while the whole dataset achieved an Ad.ratio of 0.941. The nAd.ratio performed arguably 263	

even better, with the majority of validation dataset nAd.ratios being between 0.965 and 1.054 264	

with a median of 1.010, compared to an overall dataset performance of 1.04. Full indicator 265	

quantiles are given in Tables S3 & S4, with the 0% and 100% quantiles indicating the 266	
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minimum and maximum values, that is, 0% and 100% of datasets below the indicated values, 267	

respectively. Taken together, these results indicate that despite the presence of a low 268	

frequency of inaccurate tumour callings, the estimated mouse-level tumour count is highly 269	

accurate. 270	

Both the adenoma numbers and the total adenoma areas calculated by LDA showed high 271	

correlation to the values obtained using DRAW or CALL. Concordance between LDA and 272	

CALL was very good, in general with LDA obtaining only slightly less Ad counts than 273	

CALL, as shown by the regression line & confidence region thereof in Fig. 5C. Quite 274	

interestingly, the total Ad area was a much more accurate and consistent mouse-level measure 275	

compared to the number of Ad, as evidenced by the tight regression line in Fig. 5E. 276	

Unsurprisingly, the LDA approach yields mouse-level measures closer to those of CALL 277	

rather than that of DRAW, as it was trained and used on adenoma callings from the CALL 278	

approach (Fig. 5D for counts and 5F for area); however, all three approaches generate 279	

similar tumour number and total tumour area measures, indicating a good predictive value 280	

across the three methods.  281	

 282	

Adenoma area is a valuable measure of tumour burden  283	

Many previous papers have used total tumour number as the only measurement of tumour 284	

burden to assess the effects of various treatments on ApcMin mice (for example, 13-15). 285	

However, this does not take into account the size of the tumours, which can also be highly 286	

variable.  287	

The automated method described here greatly facilitates the measurement of total adenoma 288	
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area. We investigated how appropriate total adenoma area is as a measure of tumour burden. 289	

Figure 6A illustrates why total area should be measured and recorded: it presents two 290	

samples with identical tumour counts, but largely different tumour sizes. Biologically, larger 291	

tumours in the colon have been shown to be associated with shorter patient survival, showing 292	

the importance of considering tumour size as well as number in response to treatments 16,17. 293	

Furthermore, Fig. 6B illustrates that, in a sample of 63 mice evaluated using the DRAW 294	

method, the average area of each tumour varied between different sections of the intestinal 295	

tract, with tumours in the LI being significantly larger on average than SI tumours. We also 296	

examined the correlation between total adenoma area and adenoma count in the SI. As shown 297	

in Fig. 6C, the correlation between adenoma area and count was high, but the spread 298	

increased with tumour number, thus reinforcing the utility of both measurements in evaluating 299	

tumour status. Finally, we correlated the number and total area of tumours in the SI to spleen 300	

weight, which represents a good surrogate measure of health status in ApcMin mice. Total 301	

tumour area in the SI was a better correlate of spleen weight than tumour number (Fig. 6D), 302	

even when excluding a potential outlier (R2= 0.36 vs. 0.43). We argue that these observations, 303	

taken together, demonstrate the need to evaluate tumour area in addition to tumour count. 304	

 305	

Utility of the total adenoma area measurements as assessed by LDA 306	

To evaluate the usefulness and comparability of the tumour burden measures established by 307	

the DRAW and LDA approaches, we compared their power to discriminate between tumour 308	

burdens in mice of different ages (147 days or younger versus older than 147 days at the time 309	

of sacrifice, which are expected to have different tumour burdens) as a proof of principle. 310	

These comparisons are illustrated in Fig. 7A-D. Younger mice show a significantly lower 311	
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number of Ad and total Ad area than older mice, in both the DRAW and LDA method, thus 312	

validating that both manual and automatic classification of SI features can distinguish 313	

between lower numbers and area of adenomas. Unsurprisingly, differences were much more 314	

pronounced for the area measures than the counts, further illustrating the utility of area as a 315	

measure of tumour load.  316	

 317	

DISCUSSION 318	

We have developed a standardized protocol for first preparing and photographing mouse SI 319	

samples, then for the manual (using the DRAW approach) or automatic (using an ImageJ 320	

macro, FeatureCounter) identification of interesting image features (CALL approach), and 321	

finally an LDA-based method for the automatic classification of said features as true 322	

Adenomas or not Adenomas. Taken as a whole, these strategies allow for the consistent, rapid 323	

and robust derivation of mouse-level tumour burden measures (both as adenoma count and 324	

total adenoma area) for subsequent analysis. 325	

Each of the steps in this standardized protocol works towards reducing technical, mouse-, 326	

experimenter- and even institute-level bias and variability, thus increasing result 327	

comparability and reproducibility. Additionally, the benefits are synergistic: as already 328	

pointed out, more controlled sample preparation allows for more consistent feature 329	

identification; and more consistently-defined features make feature classification easier. To 330	

note, best results for training the LDA classifier would be expected by using training sets 331	

called manually by either a single experimenter (as in this study), allowing the LDA to 332	

“learn” the same cues as that experimenter, or by as many different experimenters as possible 333	
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(preferably across the same mice) allowing the LDA to “learn” the common cues to all. 334	

Even with the best practice, however, the correct classification of image features by our LDA 335	

step was not perfect. Most certainly, each step of our proposed method can be further 336	

improved in future research. The use of diffuse lighting (such as a photography tent) at the 337	

photography stage would minimise reflections that can be picked up as image features. The 338	

FeatureCounter may be adjusted to detect less features in tumour-less images (for example, 339	

by increasing the threshold size to ignore small features), while the automatic classification 340	

may be adjusted or replaced with another machine learning methodology. For example, a 341	

GLMNET algorithm 18 would allow the simultaneous selection and estimation of input 342	

variable coefficients, at the very least leading to more consistent, if not more accurate, results. 343	

More advanced machine learning algorithms, such as neural networks, are now being used in 344	

the analysis of images from pathological samples, with new quantification approaches 345	

becoming available (reviewed in 10). In some cases, deep neural networks have been shown to 346	

deliver classifications that are as accurate as those of a specialist, as in the case of skin lesions 347	

11. Therefore, neural networks, of which LDA is a simple, single node example, have the 348	

potential to provide better classification of images such as those generated in this study. In 349	

any case, manual verification by an experienced researcher can be rapidly and easily 350	

associated with any of the protocols described here, and would be most conveniently carried 351	

out after LDA corrects the most evident misclassifications, such as those resulting from 352	

imperfect sample preparation or photography– although these are relatively rare once the 353	

technique is learned (3/120 in this study). 354	

Regardless, our semi-automated strategy is faster, more reliable and also more flexible than 355	

previously used methods. Samples can be processed and analysed while fresh, or can be 356	
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frozen and analysed later at a convenient time. Through the sample freezing step, “break 357	

points” are introduced into the experimental workflow, i.e. points at which the 358	

experimentation for a single sample can be suspended temporarily, while in traditional 359	

methods each sample is often prepared and counted the same day. The reduced time cost in 360	

tumour quantification can be another major benefit in the DRAW, CALL and LDA 361	

approaches. It is thus immediately apparent that, beyond the added flexibility, our automated 362	

strategy may earn a considerable sample preparation and counting time gain when many mice 363	

– especially heavily tumour-burdened ones – are being assessed. Furthermore, the preparation 364	

techniques are accelerated further when processing multiple samples at a time. Additionally, 365	

the wealth of data is higher using these approaches compared to the TRAD count method, 366	

where just tumour number, or cumulative tumour area in a small section of the intestine, is 367	

assessed. We also note that once digitized, the photographic information can be stored almost 368	

indefinitely, allowing the data to be revisited if need be, for example, after a FeatureCounter 369	

update, or after the implementation of a new classification methodology, or for meta-analysis. 370	

Finally, if the effort of generating a large LDA training set was not justified, the CALL and 371	

DRAW methods can be rapidly implemented, and are still quicker, more reliable, and 372	

producing more detailed data than the traditional method.  373	

Several previous papers (for example, 13-15) have only reported on total adenoma number, 374	

using this as the lone tumour burden measure to assess the effects of various treatments on 375	

ApcMin mice. However, this does not take into account the size or aspect of the tumours, which 376	

can be highly variable. For our part, we believe that adenoma count certainly cannot be used 377	

alone, as area can differ for identical adenoma counts, and its distribution changes between 378	

different segments of the mouse intestinal tract. The reasons for these similarities and 379	
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differences are multiple. For example, early studies of the ApcMin mouse strain reported that 380	

adenomas develop mostly during early life and up to puberty, and their numbers did not 381	

increase after 100 days of age 19. After this stabilisation in numbers, the adenomas have been 382	

observed to instead grow in size 20, thus increasing tumour burden in a way not captured by 383	

adenoma count alone. Additionally, significant size differences have been found in some 384	

cases, demonstrating that area measures can provide additional information about treatments 385	

or exacerbating conditions 21. For example, therapies may be effective at controlling adenoma 386	

growth without fully eradicating tumours, an effect that would be detected as decreased 387	

burden with little or no change in tumour number. We thus conclude that adenoma area, and 388	

potentially other measures, are of sufficient importance and value to warrant the use of new 389	

methods to facilitate collection of such information. As adenoma number is still generated 390	

using our approach, comparisons to previous studies remain possible. Of note, with our 391	

ImageJ feature-based approach, it is possible to derive several aggregate measures (for 392	

example, average adenoma greyscale value per mouse, as listed in parameters in 393	

Supplementary Table 2) that might relate back to tumour burden or other biological 394	

indicators of interest. Further research in this direction may yield interesting insights. 395	

In conclusion, we propose a semi-automated method to rapidly quantify tumour number and 396	

associated tumour burden measures that will help alleviate biases, along with reproducibility 397	

and consistency problems, which currently hamper efforts to interpret results across the 398	

ApcMin mouse literature. Our method is convenient, can be adapted to provide measurements 399	

of several tumour characteristics, and will facilitate the use of ApcMin mouse intestinal 400	

adenoma model in a variety of applications. 401	

 402	
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METHODS 403	

Animals 404	

C57BL/6J-ApcMin (ApcMin) mice were purchased from The Jackson Laboratory (Bar Harbor, 405	

ME) and bred in SPF conditions at the Malaghan Institute of Medical Research by mating 406	

C57BL/6J-ApcMin/+ males with Wild-type (WT) C57BL/6J (Apc+/+) females. ApcMin/+ and WT 407	

offspring were identified by PCR and were both used in experimental conditions and pipeline 408	

development. Water and standard laboratory chow were available ad libitum. All mice were 409	

checked regularly for signs of anaemia and sickness, and were euthanized for tissue collection 410	

if they developed pallor, low haematocrit (< 20%), weight loss, slow movement and/or 411	

hunched posture.  412	

All experimental protocols were approved by the Victoria University of Wellington Animal 413	

Ethics Committee, and were carried out in accordance with the Victoria University of 414	

Wellington Code of Ethical Conduct. 415	

 416	

Tissue preparation 417	

Mice were euthanized and the entire intestinal tract was extracted and sectioned into the SI, 418	

caecum and LI. Special care was taken to remove as much mesenteric fat as possible. Sections 419	

were washed thoroughly using PBS, drained, and analysed immediately or frozen in 6 well 420	

plates at ‑80°C until further use.  421	

 422	

Photography 423	
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For image analysis, SI tract sections were thawed (if frozen) and spread out in a thin 424	

horseshoe shape on pieces of Steel Blue Germination paper (Anchor Paper Company, St 425	

Pauls, MN, USA) approximately 25x10 cm in size. This colour was selected to enhance the 426	

contrast between adenomas and the rest of the intestine. Once laid out on the paper, the SI was 427	

cut into 2 equal pieces. Each piece was then cut longitudinally along the tube, opened and 428	

edges spread flat using the edge of curved tweezers. Mucus and intestinal contents were 429	

removed by spraying PBS on the tissue preparation, revealing any adenomas present. The 430	

preparation was then photographed with a Panasonic Lumix G Vario DMX-G5W and a 45-431	

150 mm lens with additional 4x filter (Marumi, Japan), with a white ruler in shot. Multiple 432	

pictures were taken and stitched together to reconstruct an image of the entire SI using the 433	

software Hugin 2013.0.0 22.  434	

For the LI and caecum, a similar strategy was undertaken, where the tissue was placed on the 435	

same type of Steel Blue Germination Paper as the SI, cut longitudinally (with multiple cuts 436	

needed for the caecum), spread as flat as possible with special care taken to flatten tissue near 437	

an adenoma in the caecum, and photographed with the white ruler in shot. Both the LI and the 438	

caecum are small enough that they could be captured in one photograph.  439	

 440	

Manual delineation of tumours in images (DRAW approach) 441	

In order to enumerate and measure the area of tumours in the stitched images of SI, LI and 442	

caecum, we used the Java-based image processing programme “ImageJ” 443	

(https://imagej.net,12), which is freely available and able to analyse images in a variety of 444	

formats. Full detail on tissue preparation, photography and analysis can be found at 445	

https://gitlab.com/gringer/featurecounter/blob/master/Sample_Photography.pdf.  446	
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Images were scaled using a small macro and the white ruler in shot as a reference. ImageJ’s 447	

‘freehand selection’ function was then used to manually delineate visually-identified image 448	

regions corresponding to adenomas. A scaled mask image was created using ImageJ’s ‘create 449	

mask’ function, and was analysed with the ‘analyze particles’ function to generate adenoma 450	

numbers and measurements such as area. This is referred to as the “DRAW” approach.  451	

 452	

FeatureCounter, an ImageJ macro for the automatic identification of image features 453	

In order to automate the identification of image regions potentially corresponding to 454	

adenomas from the photographs of intestinal sections as described in the DRAW approach, 455	

we developed a more extensive ImageJ macro, called “FeatureCounter”, focusing on SI 456	

sections as these contain the large majority of the tumours that develop in ApcMin mice. First, 457	

FeatureCounter subtracts the blue background, leaving a grey scale image. It subsequently 458	

performs automatic thresholding, before despeckling the image according to the parameters 459	

listed in Table S1. This leaves areas of over 0.2mmsq in size, or “image features” that are 460	

potentially tumours. The “analyse particles” function within ImageJ measures 22 variables for 461	

each feature: Area, Perimeter, Mean, StdDev, Mode, Min, Max, Median, Skew, Kurt, Major, 462	

Minor, Angle, Circularity, AR, Round, Solidity, Feret, FeretAngle, MinFeret, IntDen, and 463	

RawIntDen. The details of these measures and their processing can be found in Table S2.   464	

FeatureCounter was optimised to work on the SI due to its smooth and regular surface. It 465	

does not perform as well at quantifying tumours in the LI, where the surface of the intestinal 466	

wall is ridged, or in the caecum, where the tissue does not spread out flat particularly well. As 467	

the number of tumours in the caecum and LI rarely exceeds 3 (mean and SD of LI and 468	

caecum is 1.81 ± 2.00 and 0.41 ± 0.75 respectively), these tumours can be quickly and 469	
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accurately quantified manually from photos using the DRAW approach. Therefore, further 470	

work to optimize FeatureCounter performance on the LI and caecum did not seem warranted, 471	

and was not pursued.  472	

 473	

Manual validation of tumour features (CALL approach) 474	

Image features identified by FeatureCounter can be manually validated. After running 475	

the macro, a user can manually assign or “call” which features are tumours, referring to 476	

them as “Adenoma” (Ad) or “not-an-Adenoma” (nAd) or, for unclear features, ‘Not 477	

Assigned’ (NA). In our study, there were relatively few NA features, and they were 478	

consequently excluded from further analyses. We refer to this approach as the “CALL” 479	

approach. 480	

Of further interest, the image feature measures obtained from FeatureCounter can be 481	

leveraged in a machine learning algorithm to automatically determine which features are 482	

tumours and which are false positives. Such a machine learning algorithm would require 483	

a gold-standard “training dataset”, i.e., a dataset of image features, their measurements, 484	

and a prior validation of which features are indeed tumours or not, to learn tumour-485	

specific patterns. The CALL approach can be used to generate such a training set. 486	

	487	

Linear Discriminant Analysis (LDA) for automatic classification of image features 488	

Using the image feature measurements from FeatureCounter and a training dataset as 489	

prepared using the CALL approach above, a machine learning technique can be used to 490	

attempt to automatically separate tumour features from non-tumour features using the feature 491	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 1, 2019. ; https://doi.org/10.1101/754325doi: bioRxiv preprint 

https://doi.org/10.1101/754325


	

	 23	

measurements. LDA is one such supervised classification technique. It determines 492	

discriminant functions – or the optimal linear combinations of the various input variables 493	

(here: the 22 feature measures) – that can be used to classify statistical observations (here: 494	

image features) into different classes (here: Ad or nAd). In our implementation, the squares of 495	

the input variables were included as further input variables, as this allows quadratic 496	

separations within the original variable space. All data were analysed within the R statistical 497	

programming framework 23. 498	

LDA is sensitive to several influences, including 1) extreme non-normality in input variable 499	

distributions and 2) extreme outliers in input variables. For these reasons, it is recommended 500	

to pre-process the input variables. We manually examined the distributions of the feature 501	

measure variables per class, and applied log10 transformations, shifted log10 transformations, 502	

and imposed certain filters, as described in Table S2.  503	

The applicability of LDA to the transformed feature data was first evaluated by performing a 504	

Principal Components Analysis (PCA) with package FactoMineR 24, the assumption being 505	

that if the major axes of variability in the measurement data cannot segregate the classes even 506	

partially, there is no point in performing an LDA and more advanced machine learning 507	

techniques need to be used. The LDA was then performed using the lda function in the R 508	

package MASS 25 for features with no missing values. A link to the R script used to run the 509	

LDA can be found in the Supplementary materials. We then proceeded to investigate the 510	

performance of our LDA at two levels, described below: at the feature level (checking 511	

whether the classification performed well) and at the mouse level (checking whether, in 512	

practice, the methodology allowed for accurate tumour counting and area quantification). 513	

 514	
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LDA feature-level and dataset-level performance 515	

We compared the LDA’s feature-level predictions to the adenomas selected using the CALL 516	

method, which were considered “true” adenomas in this instance. We considered as indicators 517	

of the LDA’s performance the True Positive Rate (TPR, or Sensitivity, here defined as the 518	

proportion of all true Ad that were also identified as adenomas using LDA), the Positive 519	

Predictive Value (PPV, or the proportion of the LDA-identified adenomas that were indeed 520	

Ad), and the Accuracy (the proportion of all features correctly identified as Ad or nAd). 521	

Similar calculations were done for the nAd classes.  522	

As indicators of dataset-level performance of the CALL and LDA adenoma callings, we 523	

counted the number of Ad and nAd calls, and calculated the ratios of the number of LDA-524	

predicted Ad and nAd over the number of CALL-provided Ad and nAd (Ad.ratio and 525	

nAd.ratio, respectively). An LDA with perfect performance would generate ratios of exactly 526	

1, although a value of 1 is not necessarily indicative of perfect performance. 527	

 528	

LDA validation 529	

To assess the robustness of the LDA’s results, we performed a large validation experiment 530	

with a complex re-sampling scheme inspired by those of mixed modelling/multi-level models. 531	

We chose to randomly sample mice (with replacements, i.e. a same mouse can be sampled 532	

more than once) from the 117 with appropriate data, including all their image features in each 533	

validation dataset. Mice continued to be sampled until a) at least 12 mice (about 10.3% of the 534	

total) had been sampled, and until b) at least 750 features (23.5% of total) had been sampled. 535	

Indeed, as the choice of the feature number parameter in the re-sampling scheme strongly 536	
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influences the performance indicators, we empirically determined that a minimal feature 537	

count of 750 presented the best trade-off between sample size and indicator performance 538	

(Supplementary Fig. 4). Additionally, to ensure some measure of class balance, only datasets 539	

with a composition containing at least 30% Ad features and 30% nAd features were retained. 540	

A total of 4000 validation datasets were generated (computationally representing the 541	

equivalent number of ‘experiments’ of normal ApcMin and WT animals), and each was used to 542	

train a separate LDA. For each validation LDA model, feature-level performance indicators 543	

(Accuracy, TPR, PPV) and dataset-level performance indicators (Ad.ratio and nAd.ratio) 544	

described above were derived using the whole dataset. For all indicators, we established their 545	

quantiles of interest (0, 5, 25, 50, 75, 95, 100%) to compare to the values obtained on the full 546	

dataset LDA. 547	

 548	

Statistics used to compare mouse-level results 549	

Comparisons of mouse data (weight, tumor numbers etc) used the Mann-Whitney U test or a 550	

Kruskal-Wallis test followed by Dunn’s multiple comparison test, and were performed using 551	

Prism 8.0 GraphPad software.  552	

To compare adenoma results at the mouse level (counts, total areas) obtained using different 553	

methods (CALL and LDA), we used Deming regression, a statistical technique used for 554	

comparing two measurement methods for a same quantity, where both measurements are 555	

assumed to have measurement error (typical linear regression only assumes error in the 556	

outcome variable). We used the mcreg function implemented in package mcr 26 assuming a 557	

variance ratio of 1, and using bootstrapping (n=999, ‘Bias-corrected and accelerated’ method) 558	

to obtain a regression curve confidence area.  559	
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 560	

Availability of Data and Materials 561	

The FeatureCounter ImageJ macro is freely available to download from 562	

https://gitlab.com/gringer/featurecounter/ together with instructions for photography, and 563	

macro installation, some examples of tumour images, and the R code for running the 564	

LDA. The datasets generated during the current study are available from the 565	

corresponding author on reasonable request. Tumour images are available from Zenodo 566	

repository. doi:10.5281/zenodo.3365777. 567	

 568	

569	
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Figure 1.	  Schematic of the tumour measurement methods described in this paper.  

Flow chart illustrating each step needed to perform the TRAD, DRAW, CALL, and LDA intestinal 

adenoma identification methods described in this paper. The icons represent the tools required to 

perform each step; estimated time costs per step are indicated. Please refer to the Materials & Methods 

and Results for a detailed description of the workflow for each method. 
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Figure 2. The image features (adenomas) identified by the automated FeatureCounter macro 

mostly correspond to adenomas as identified using the manual DRAW method 

(A) Freshly collected SI from an ApcMin mouse placed on blue cardboard. (B) The same SI after being 

cut longitudinally, spread and and cleaned with PBS to expose tumours.� (C) FeatureCounter-generated 

tumour mask for the same sample. (D) Manually-generated tumour mask for the same sample. (E) A 

representative partial picture of a control SI. (F) FeatureCounter-generated mask, showing features 

picked up on the section shown in E. No additional features were picked up from the complete image. 	  
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Figure 3. The image features identified using the DRAW method are adenomas. 

Fresh SI tissue was isolated from ApcMin mice, immediately set up on blue paper (C) and examined 

using the DRAW method in FeatureCounter to generate the mask in (D). Two relatively isolated 

features were chosen (marked by orange lines and magnified in B, E) excised from the paper support 

using a scalpel, and processed by formalin fixation, paraffin embedding and H&E staining to generate 

the images in (A) and (F). Data are from one of 3 mice and 7 SI tumours that were similarly treated and 

analysed. 
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Figure 4.  Spleen weight, body weight, number of SI tumors and their total area differ significantly 

between ApcMin mice and their WT littermates. 

ApcMin mice (n=27, 13 females and 14 males) were sacrificed when anemic and their body and spleen 

weights were determined. SI tumor numbers and total area were determined as shown in Figure 2 using 

the DRAW method. WT littermates (n=22, 9 females and 13 males) were sacrificed together with, or 

soon after, the last surviving ApcMin littermate. Average ages ± SD were 149 ± 36 days for ApcMin mice, 

and 177 ± 21 days for WT controls. Bar graphs show mean ± SD, each dot represents one mouse. P 

values were calculated using a Mann-Whitney test, ****: p<0.0001. 
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Figure 5.	  LDA predicts ApcMin tumour count and area with similar accuracy to the CALL and 

DRAW approaches.  

(A, B) Violin plots illustrating the distribution of the selected LDA performance indicators across the 

4000 cross-validation datasets from 117 mice, each including 750-959 image features, when compared 

to the CALL-defined adenomas. The light grey violins are representative of the distribution of values 

obtained across the CV datasets; central grey boxes indicate the middle 50% of values; white diamonds 

represent median values for the CV datasets; dark grey diamonds represent the values observed in the 

full LDA. (A) shows Accuracy (ACC); Ad True Positive Rate (TPR, or sensitivity); Ad Positive 

Predictive Value (PPV); nAd TPR (or specificity); and nAd PPV distributions.  
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(B) The Ad.ratio is the ratio between the number of CALL Ad and LDA Ad, with a value of 1 

indicating a perfect match. The nAd.ratio is determined similarly for nAd features. 

(C-F) Deming regression plots comparing mouse-level adenoma number and total area values obtained 

through different approaches, for 35 mice. (C) compares adenoma counts generated by the LDA and 

CALL methods, (D) compares adenoma counts generated by the LDA and DRAW methods, (E) 

compares total adenoma area generated by the LDA and CALL methods, and (F) compares total 

adenoma area generated by the LDA and DRAW methods. Each dot corresponds to one mouse. Dotted 

grey line represents equality between measures. Solid grey line represents the regression line. Shaded 

grey area represents 95% confidence interval around the regression line.  
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Figure 6.	  Total tumor area is an informative measure of tumour burden in ApcMin mice. 

(A) Duodenal samples from two ApcMin mice, each with two tumours. Note the large difference in 
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tumour sizes between the two samples. (B) Bar graphs show the mean Number, Total area and Mean 

tumor area of tumours in different locations of the intestinal tract, +/- SD. Tumors were identified and 

measured using the DRAW method in a sample of 70 ApcMin mice. Each dot represents a single mouse. 

****: p<0.0001 as determined using a Kruskal-Wallis test with Dunn’s multiple comparison test. (C) 

Correlation between tumour count and size in LDA-called features in the SI of 35 mice. The dotted line 

represents the regression line. (D) Linear regression analysis of spleen weight vs. SI tumor number (left 

panel) or total area (right panel) in the SI of 27 mice for which spleen weight was available. Each dot 

represents one mouse. Data are from Figure 4. 	  
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Figure 7. The DRAW and LDA methods both differentiate tumour number and total tumour area 

in young vs. old mice.  

35 ApcMin mice were sacrificed when anaemic and then split by age: ‘Young’ (n=18) range from 1-147 

days, while ‘Old’ (n=17) range from 147-214 days. (A, B): Violin plots of the number of tumours 

enumerated by the DRAW method (A) and the LDA method (B). (C, D): Violin plots of total area of 

tumours calculated by the DRAW method (C) and the LDA method (D). Stars indicate significance at 

the 5% level for approximate one-tailed Mann-Whitney-Wilcoxon tests (*: p<0.05, **: p<0.01, ***= 

p<0.001). 
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