
Musical prediction error responses similarly reduced by predictive uncertainty in 
musicians and non-musicians 

 
Quiroga-Martinez, D.R.a, Hansen N.C.b, Højlund A.c, Pearce M.a,d, Brattico E.a, Vuust P.a 

 
a) Center for Music in the Brain, Aarhus University & The Royal Academy of music, Denmark 

b) The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia 
c) Center for Functionally Integrative Neuroscience, Aarhus University, Denmark 

d) School of Electronic Engineering and Computer Science, Queen Mary University of London, UK 
  
  

Corresponding author: 
David Ricardo Quiroga-Martinez 
….. 
Address: Nørrebrogade 44 - Building 1A - 8000 Aarhus C., Denmark 
Email: dquiroga@clin.au.dk 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2019. ; https://doi.org/10.1101/754333doi: bioRxiv preprint 

https://doi.org/10.1101/754333
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 
 
Auditory prediction error responses elicited by surprising sounds can be reliably recorded with musical 
stimuli that are more complex and realistic than those typically employed in EEG or MEG oddball 
paradigms. However, these responses are reduced as the predictive uncertainty of the stimuli increases. In 
this study, we investigate whether this effect is modulated by musical expertise. Magnetic mismatch 
negativity (MMNm) responses were recorded from 26 musicians and 24 non-musicians while they listened 
to low- and high-uncertainty melodic sequences in a musical multi-feature paradigm that included pitch, 
slide, intensity, and timbre deviants. When compared to non-musicians, musically trained participants had 
significantly larger pitch and slide MMNm responses. However, both groups showed comparable 
reductions of pitch and slide MMNm amplitudes in the high-uncertainty condition compared to the low-
uncertainty condition. In a separate, behavioral deviance detection experiment, musicians were more 
accurate and confident about their responses than non-musicians, but deviance detection in both groups was 
similarly affected by the uncertainty of the melodies. In both experiments, the interaction between 
uncertainty and expertise was not significant, suggesting that the effect is comparable in both groups. 
Consequently, our results replicate the modulatory effect of predictive uncertainty on prediction error; show 
that it is present across different types of listeners; and suggest that expertise-related and stimulus-driven 
modulations of predictive precision are dissociable and independent.  
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1. Introduction 

 
Prediction is fundamental for the perception of auditory sequences. When listening to a series of sounds, 
the brain generates expectations about future events partly based on the statistical regularities of the context 
and long-term knowledge of acoustic signals (Huron, 2006; Pearce, 2018). The violation of these 
expectations generates neural prediction error responses (den Ouden, Kok, & de Lange, 2012). So far, most 
research in this area has focused on very simple and artificial auditory contexts such as sequences of 
repeated tones or short tone patterns (Heilbron & Chait, 2018). As a consequence, little is known about how 
auditory prediction operates in more complex, real-world settings. 
 
In a previous study, we addressed this issue by measuring prediction error responses to surprising sounds 
embedded in auditory stimuli that resembled real music (Quiroga-Martinez et al., 2019). As a marker of 
prediction error, we recorded the magnetic counterpart of the mismatch negativity (MMNm), which is a 
well-studied brain response to sounds that violate auditory regularities (Garrido, Kilner, Stephan, & Friston, 
2009; Näätänen, Gaillard, & Mäntysalo, 1978). We compared a low-uncertainty condition —referred to as 
low-entropy or LE—which consisted of a simple and repetitive pitch pattern, with a high-uncertainty 
condition—referred to as high-entropy or HE—which consisted of more realistic and less predictable non-
repetitive melodies. Note that entropy was used as a measure of uncertainty. Pitch, intensity, timbre and 
slide (i.e. pitch glide) violations were introduced. We found reliable MMNm responses to the violations in 
both conditions, thus demonstrating that low-level prediction error responses could be elicited in a 
constantly changing and more ecologically valid auditory stream. 
 
Interestingly, even though MMNm responses were reliable, their amplitudes were reduced in the HE 
context compared to the LE context, for pitch and slide deviants. This is consistent with predictive 
processing theories which propose that prediction error responses are reduced in contexts with high as 
compared to low uncertainty or, equivalently, low as compared to high precision (Clark, 2016; Feldman & 
Friston, 2010; Hohwy, 2013; Ross & Hansen, 2016; Vuust, Dietz, Witek, & Kringelbach, 2018). The 
ensuing precision-weighted prediction error would ensure that primarily reliable sensory signals drive 
learning and behavior. While a growing body of research already provides evidence for this phenomenon 
in the auditory modality (Garrido, Sahani, & Dolan, 2013; Hsu, Bars, Hämäläinen, & Waszak, 2015; 
Lumaca, Haumann, Brattico, Grube, & Vuust, 2019; Sedley et al., 2016; Sohoglu & Chait, 2016; Southwell 
& Chait, 2018), our study was the first to show its presence in a more ecologically valid setting such as 
music listening. Furthermore, the findings also pointed to a feature-selective effect in which only prediction 
error responses related to the manipulated auditory feature—pitch, in our case—are modulated by 
uncertainty.  
 
In the present work, we elaborate on this finding and investigate whether the effect of uncertainty on 
auditory prediction error is modulated by musical expertise. This question is motivated by research showing 
that musicians tend to exhibit stronger auditory prediction error responses than non-musicians. For example, 
larger MMN responses are often found for musically trained subjects, especially for pitch-related deviants 
(Brattico et al., 2009; Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004; Koelsch, Schröger, & Tervaniemi, 
1999; Putkinen, Tervaniemi, Saarikivi, Ojala, & Huotilainen, 2014; Tervaniemi, Huotilainen, & Brattico, 
2014; Vuust, Brattico, Seppänen, Näätänen, & Tervaniemi, 2012; Vuust et al., 2005). This has led some to 
propose that musical training enhances the precision of auditory predictive models (Hansen & Pearce, 2014; 
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Hansen, Vuust, & Pearce, 2016; Vuust et al., 2018), as more precise representations of musically relevant 
regularities would facilitate the detection of unexpected sounds.  
 
Crucially, a distinction can be made between expertise-driven and stimulus-driven precision or uncertainty. 
The former corresponds to the fine-tuning of predictive models by musical training, whereas the latter refers 
to the uncertainty inferred from the stimulus currently being listened to. Note that stimulus-driven 
uncertainty was the one manipulated in Quiroga-Martinez et al., (2019). Consequently, our goal here is to 
address whether its effect on prediction error is modulated by expertise-driven precision. Thus, we 
conjectured that when musical sequences are predictable, long-term knowledge of music would only have 
a moderate impact on the processing of sounds. Conversely, when musical stimuli become more 
unpredictable, listeners would need to rely more on their musical knowledge, which would provide a greater 
processing advantage to musically trained participants. Therefore, we hypothesized an interaction effect in 
which the modulation of prediction error by uncertainty would be less pronounced for musicians than for 
non-musicians. 
 
In this study, we used magnetoencephalography (MEG) and behavioral measures to test this hypothesis, 
employing the same stimuli and experimental designs as in Quiroga-Martinez et al. (2019). To this purpose, 
we compared a group of musicians with the group of non-musicians reported in the previous study. In the 
MEG experiment, participants passively listened to high- and low-entropy melodic sequences where pitch, 
intensity, timbre and slide deviants were introduced. In the behavioral experiment, participants were asked 
to detect pitch deviants embedded in different melodies and report the subjective confidence in their 
responses. In this case, five levels of context uncertainty were employed in order to detect fine-grained 
effects of predictive precision and dissociate pitch-alphabet size—the number of pitch categories used in 
the melodies—and repetitiveness as sources of uncertainty. We expected musicians to exhibit smaller 
reductions in MMNm responses, deviance detection scores, and confidence ratings than non-musicians, as 
the uncertainty of auditory contexts increased. Finally, we performed source reconstruction on the MMNm 
responses and the difference in MMNm amplitude between HE and LE conditions in order to further our 
understanding of the neural underpinnings of the precision-weighting effect. 

2. Method 

For a more detailed description of the methods, please see Quiroga-Martinez et al., (2019). The data, code 
and materials necessary to reproduce these experiments and results are openly available at: 
http://bit.ly/music_entropy_MMN 

2.1. MEG experiment 

2.1.1. Participants 

Twenty-six musicians and twenty-four non-musicians participated in the experiment (see Table 1 for 
demographics). The non-musicians’ group was the same as the one reported in Quiroga-Martinez et al., 
(2019). All participants were right-handed with no history of neurological conditions, and did not possess 
absolute pitch. The musical training subscale of the Goldsmiths Musical Sophistication Index (GMSI) was 
used as a self-report measure of musical expertise (Müllensiefen, Gingras, Musil, & Stewart, 2014) and 
both the melody and rhythm parts of the Musical Ear Test (MET) were used as objective measures of 
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musical skills (Wallentin, Nielsen, Friis-Olivarius, Vuust, & Vuust, 2010). GMSI values (t = 17.9, p < .001) 
and MET total values (t = 5.2, p < .001) were significantly higher for musicians than for non-musicians. 
Participants were recruited through an online database and agreed to take part in the experiment voluntarily. 
All participants gave informed consent and were paid 300 Danish kroner (approximately 40 euro) as 
compensation. Data from two musicians (not included in the reported demographics) were excluded from 
the analysis due to artefacts related to dental implants. The study was approved by the Central Denmark 
Regional Ethics Committee (De Videnskabsetiske Komitéer for Region Midtjylland in Denmark) and 
conducted in accordance with the Helsinki declaration.  
 
Table 1. Participants’ demographic and musical expertise information in the two experiments. M = musicians, NM = 
non-musicians, Beh = behavioral. 
 

Experiment Group Age 
(mean) 

Age 
(SD) Female Male GMSI 

(mean) 
GMSI 
(SD) 

MET 
Mel 

(mean) 

MET 
Mel 
(SD) 

MET 
Rhy 

(mean) 

MET 
Rhy 
(SD) 

MET 
Total 

(mean) 

MET 
Total 
(SD) 

MEG 

NM 
(n=24) 26.54 3.4 13 11 10.17 3.48 33.17 5.39 35.79 5.33 69.12 9.44 

M 
(n=26) 24.15 2.89 10 16 35.85 6.35 41.5 4.43 40.77 4.55 82.27 8.35 

Beh 

NM 
(n=21) 21.9 5.18 16 5 12.9 5.77 - - - - - - 

M 
(n=24) 22.75 4.42 14 10 35.42 5.69 - - - - - - 

2.1.2. Stimuli 

Low-entropy (LE) and high-entropy (HE) conditions were included in the experiment. LE stimuli 
corresponded to a simple four-note repeated pitch pattern known as the Alberti bass, which has previously 
been used in musical MMNm paradigms (Vuust et al., 2011; Vuust, Liikala, Näätänen, Brattico, & Brattico, 
2016). In contrast, HE stimuli consisted of a set of major and minor versions of six novel melodies which 
did not have a repetitive internal structure and spanned a broader local pitch range than LE stimuli (Figure 
1; see Supplementary file 1 in Quiroga-Martinez et al., 2019 for the full stimulus set). Individual HE and 
LE melodies were 32-notes long, lasted eight seconds, and were pseudorandomly transposed from 0 to 5 
semitones upwards. The order of appearance of the melodies was pseudorandom. After transposition during 
stimulation, the pitch-range of the HE condition spanned 31 semitones from B3 (F0 ≈ 247 Hz) to F6 (F0 ≈ 
1397 Hz). LE melodies were transposed to two different octaves to cover approximately the same pitch 
range as HE melodies. The uncertainty of the stimuli was estimated with Information Dynamics of Music 
(IDyOM), a variable-order Markov model of auditory expectation (Pearce, 2005, 2018). When predicting 
pitch continuations based on a training corpus of Western tonal hymns and folk songs, this model confirmed 
higher mean entropy (which is a measure of uncertainty) and information content (which is a measure of 
surprise) for HE as compared to LE melodies (see Quiroga-Martinez et al., 2019 for more details).  
 
For stimulus delivery, a pool of 31 standard piano tones was created with the “Warm-grand” sample in 
Cubase (Steinberg Media Technology, version 8). Each tone was 250 ms long, was peak-amplitude 
normalized and had 3-ms-long fade-in and fade-out to prevent clicking. No gaps between tones were 
introduced. For the creation of deviants, the standards were modified as follows. Pitch: +50 cents; intensity: 
-20 dB; timbre: band-pass filter (1-4 kHz); slide: continuous pitch glide from -2 semitones. Deviants were 
created with Audition (Adobe Systems Incorporated, version 8). 
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Figure 1. Examples of the individual melodies employed in A) the MEG and B) the behavioral experiment. Colored 
notes represent deviants. LE = low entropy, IE = intermediate entropy, HE = high entropy. For the full stimulus set 
see Quiroga-Martinez et al. (2019) and the online repository. 

Each condition was presented in a separate group of three consecutive blocks. Within each block, melodies 
were played one after the other without pauses. At the beginning of each block, a melody with no deviants 
was added to ensure a certain level of auditory regularity at the outset. One deviant per feature was 
introduced in each melody. There were 144 deviants per feature in each condition. The position of each 
deviant was defined by segmenting the melody in groups of four notes, selecting some of these groups, and 
choosing randomly any of the four places within a group, with equal probability. The order of appearance 
of the different types of deviants was pseudorandom, so that no deviant followed another deviant of the 
same feature. The selection of four-note groups was counterbalanced among trials attending to the 
constraints of a combined condition included to assess the predictive processing of simultaneous musical 
streams (see Quiroga-Martinez et al., 2019 for further details). The analysis of the combined condition is 
beyond the scope of this article and will be presented elsewhere. HE and LE conditions were 
counterbalanced across participants and always came after the combined condition. 

2.1.3. Procedures 

Participants gave their consent after receiving oral and written information, and then completed the MET, 
filled out the GMSI questionnaire and put on MEG-compatible clothes. Electrodes and HPI coils were 
attached to their skin and their heads were digitized. During the recording, participants were sitting upright 
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in the MEG scanner looking at a screen. Before presenting the musical stimuli, their individual hearing 
threshold was measured through a staircase procedure and the sound level was set at 60dB above threshold. 
Participants were instructed to watch a silent movie of their choice, ignore the sounds and move as little as 
possible. They were told there would be musical sequences playing in the background interrupted by short 
pauses so that they could take a break and adjust their posture. Sounds were presented through isolated 
MEG-compatible ear tubes (Etymotic ER•30). The recording lasted approximately 90 minutes and the 
whole experimental session took between 2.5 and 3 hours including consent, musical expertise tests, 
preparation, instructions, breaks, and debriefing. 

2.1.4. MEG recording and analyses 

Brain magnetic fields were recorded with an Elekta Neuromag MEG TRIUX system with 306 channels 
(204 planar gradiometers and 102 magnetometers) and a sampling rate of 1000 Hz. Continuous head 
position information (cHPI) was obtained with four coils (cHPI) attached to the forehead and the mastoids. 
Offline, the temporal extension of the signal source separation (tSSS) technique (Taulu & Simola, 2006) 
was used to isolate signals coming from inside the skull employing Elekta’s MaxFilter software (Version 
2.2.15). This procedure included movement compensation for all participants except two non-musicians, 
for whom continuous head position information was not reliable due to suboptimal placement of the coils. 
These participants, however, exhibited reliable auditory event-related fields (ERFs), as successfully verified 
by visually inspecting the amplitude and polarity of the P50(m) component. Electrocardiography, 
electrooculography, and independent component analysis were used to correct for eye-blink and heartbeat 
artifacts, employing a semi-automatic routine (FastICA algorithm and functions “find_bads_eog” and 
“find_bads_ecg” in  MNE-Python) (Gramfort, 2013). Visual inspection of the rejected components served 
as a quality check. 
 
Using the Fieldtrip toolbox (version r9093) (Oostenveld, Fries, Maris, & Schoffelen, 2011) in MATLAB 
(R2016a, The MathWorks Inc., Natick, MA), epochs comprising a time window of 400 ms after sound 
onset were extracted and baseline-corrected with a pre-stimulus baseline of 100 ms. Epochs were then low-
pass filtered with a cut-off frequency of 35 Hz and down-sampled to a resolution of 256 Hz. For each 
participant, ERFs were computed by averaging the responses for all deviants for each feature and averaging 
a selection of an equal number of standards. These were selected by finding, for each single deviant, a 
standard tone that was not preceded by a deviant and was in the same position of the same HE or LE 
melody—although not necessarily the same transposition—in a different trial. This ruled out artefacts 
related to the difference in noise between conditions—since there are many more standards than deviants—
and the position of the deviant within the melody. After averaging, planar gradiometers were combined by 
computing root mean square values. Finally, a new baseline correction was applied and MMNm difference 
waves were computed by subtracting the ERFs of standards from the ERFs of deviants. 
 
Statistical analyses were performed on combined gradiometer data. For the main analyses, a mass univariate 
approach was used in combination with cluster-based permutations (Maris & Oostenveld, 2007) for family-
wise error correction. Two-sided paired- and independent-samples t-tests were used for within- and 
between-subjects contrasts, respectively. The cluster-forming alpha level was .05, the cluster-level statistic 
was the maximum sum of t-values (maxsum) and the number of permutations was set to 10,000. All tests 
were conducted for each feature separately in a time window between 100 and 250 ms, which covers the 
typical latency of the MMN (Näätänen, Paavilainen, Rinne, & Alho, 2007). To assess the elicitation of the 
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MMNm, we compared the ERFs of standards with the ERFs of deviants for each group independently. The 
main effect of entropy was assessed by comparing, for each feature, the MMNm responses of all participants 
for LE and HE conditions. The main effect of expertise was assessed by comparing the average of LE and 
HE responses between groups. The entropy-by-expertise interaction was tested by subtracting HE from LE 
MMNm responses for each participant, and comparing the resulting differences between groups. Post-hoc, 
exploratory tests of simple effects were performed for the effect of entropy and expertise for each group 
and condition, respectively.  
 
To assess the relative evidence for the null and alternative hypotheses, a secondary Bayesian analysis was 
performed on mean gradient amplitudes (MGA), which were obtained as the mean activity ±25 ms around 
the MMNm peak, defined as the highest local maxima of the ERF between 100 and 250 ms after sound 
onset. This average was obtained from the four temporal combined gradiometers in each hemisphere with 
the largest P50(m) response (right channels: 1342-1343, 1312-1313, 1322-1323, 1332-1333; left channels: 
0222-0223, 0212-0213, 0232-0233, 0242-0243). Using R (R Core Team, 2019), the differences between 
HE and LE MMNm amplitudes were computed for each participant and used as the dependent variable in 
a Bayesian mixed-effects model including parameters for the effects of feature, hemisphere and group and 
their interactions (brms package, Bürkner, 2017). Participants were included as a random effect with respect 
to the intercept and the slopes of feature and hemisphere. Priors were taken from our previous work with 
the non-musicians’ group (see the analysis scripts and saved model fits in the online repository for a full 
description of priors and parameters). For the effect of expertise and the interactions with hemisphere and 
feature, a conservative prior was set with a mean of 0 and a standard deviation of 3 fT/cm, which is around 
half of the effect of entropy for the pitch MMNm in non-musicians. This prior assumes that small effect 
modulations are most likely and that situations in which the effect of entropy in musicians disappears, 
changes direction, or is at least twice the effect in non-musicians are unlikely. Inference was based on 95% 
credible intervals, Bayes Factors (BF) and posterior probabilities, as estimated for each feature and 
hemisphere (“hypothesis” function, brms package).  

2.1.5. Source reconstruction 

Source reconstruction was performed with the Multiple Sparse Priors (MSP) method (K. J. Friston et al., 
2008) implemented in SPM12 (version 7478). Only data from twenty musicians and twenty non-musicians 
were included, since individual anatomical magnetic resonance images (MRI) were available for these 
participants only. For one of the excluded musicians and one of the excluded non-musicians the images 
were corrupted by artefacts, whereas the remaining excluded participants did not attend the MRI session. 
Brain scans were obtained with a Magnetization‐prepared two rapid gradient echo (MP2RAGE) sequence 
(Marques et al., 2010) in a Siemens Magnetom Skyra 3T scanner, which produced two images that were 
combined and motion-corrected to form unified brain volumes. These volumes were segmented, projected 
into MNI coordinates, and automatically coregistered with the MEG sensor positions using digitized head 
shapes and preauricular and nasion landmarks. Coregistration outputs were visually inspected. Lead-fields 
were constructed using a single-shell BEM model with 20.484 dipoles (fine grid). A volume of the inverse 
solution was created for each participant feature and condition, in the following time windows: 175-215 ms 
for pitch, 110-150 ms for timbre and intensity, and 275-315 ms for slide. These time windows were chosen 
based on the peak MMNm amplitudes for each feature. Source reconstruction was also conducted for the 
differences between HE and LE conditions for pitch and slide MMNm amplitudes, with the aim to reveal 
the neural substrates of the entropy effect. To this end, individual volumes of the inverse solution were 
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obtained for a time window between 150 and 200 ms. Note that the case of the slide deviant is somewhat 
particular since the peak MMNm response occurred later than expected, whereas the effect of entropy was 
restricted to an earlier time window. For greater detail and an interpretation of this result, see Quiroga-
Martinez et al. (2019). The volumes for each feature and condition, as well as the volumes for the entropy 
effect, were submitted to a one-sample t-test to reveal the sources consistently identified across all 
participants. The error rate of voxel-wise multiple tests was corrected with random field theory with a 
cluster-level alpha threshold of 0.05 (Worsley, 2007). 

2.2. Behavioral experiment 

2.2.1. Participants 

Twenty-four musicians and twenty-one non-musicians participated in the behavioral experiment (Table 1). 
The non-musicians’ group is the same as the one reported in Quiroga-Martinez et al. (2019). Musical 
expertise was measured with the GMSI musical training subscale which yielded significantly higher scores 
for musicians than for non-musicians (t = 13.14, p < .001). Participants were recruited through an online 
database for experiment participation, agreed to take part voluntarily, gave their informed consent and 
received 100 Danish kroner (approximately 13.5 euro) as compensation. The data from all participants were 
analyzed, since above-chance deviance detection was verified in all cases. The sample size was chosen to 
be comparable to that of the MEG experiment. Two musicians and two non-musicians had previously 
participated in the MEG experiment. 

2.2.2. Experimental design  
Five conditions were included (Figure 1). Two of them correspond to the HE and LE conditions of the 
MEG experiment and employ a selection of the respective melodies. Three additional conditions with 
intermediate levels of entropy (IE1, IE2, IE3) were included to investigate whether more fine-grained 
manipulations of uncertainty modulate prediction error responses in musicians, as was previously shown in 
non-musicians. The pitch alphabet of these conditions spanned eight tones and was always the same, 
comprising a major diatonic scale from C4 to C5. Note that, in the MEG experiment, HE stimuli were not 
only less repetitive but also had a larger pitch alphabet than LE (at least before transposition during the 
experiment). In contrast, in the IE conditions we manipulated uncertainty by changing repetitiveness only. 
Thus, IE1 consisted of a repeated eight-note pattern, IE2 consisted of proper melodies with less constrained 
repetition, and IE3 consisted of pseudorandom orderings of the tones. Note that the contrast LE > IE1 would 
reveal whether the pitch-alphabet size alone is sufficient to modulate prediction error, whereas the 
comparisons IE1 > IE3, IE1 > IE2 and IE2 > IE3 would reveal the same with regard to repetitiveness.  
 
For each single melody in the experiment, a target version was created by raising the pitch of a tone by 25 
cents. This deviation was smaller than in the MEG experiment to avoid ceiling effects observed for non-
musicians during piloting. The target tone was located in a random position in the second half of each 
melody. All melodies were 32-notes long and were played with the same sound pool as the MEG 
experiment. There were ten target melodies and ten foil melodies (with no deviants) per condition. 
Participants were instructed to listen to the melodies, decide after each of them whether an out-of-tune note 
was present or not, and report how certain they were about their answer on a scale from 1 (not certain at 
all) to 7 (completely certain). The experimental session lasted around 30 minutes. 
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2.2.3. Statistical analyses  
We used signal detection theory to analyze accuracy (Macmillan, 2004), based on the assumption that larger 
prediction error responses would enhance the ability to distinguish target from non-target stimuli. For each 
condition, d-prime (d’) scores were computed as a measure of sensitivity and criterion (c) scores were 
computed as a measure of response bias. In the few cases where participants achieved 100% or 0% of hits 
or false alarms, values were adjusted to 95% and 5% respectively, to avoid infinite values in the estimations 
(Macmillan, 2004). 
 
Statistical analyses were run in R. For d’ scores, different mixed-effects models were estimated using 
maximum likelihood (“lmer” function, lme4 package, Bates, Mächler, Bolker, & Walker, 2015), and 
compared using likelihood ratio tests and Akaike Information Criteria (AIC). Model d0 included only an 
intercept as a fixed effect, whereas two alternative models added categorical (d1) or continuous (d2) terms 
for the entropy conditions. For model d2, we assigned values 1, 2, 3, 4 and 5 to the conditions according to 
their estimated uncertainty, and treated them as a continuous linear predictor. This allowed us to assess the 
extent to which a linear decreasing trend was present in the data, as was done previously with non-musicians 
(Quiroga-Martinez et al., 2019). Building on these models, in d1e and d2e a term for musical expertise was 
added, and in d1i and d2i a term for the entropy-by-expertise interaction was further included. Random 
intercepts for participants were included in all models. Random slopes were not added, as the number of 
data points per participant was not sufficient to avoid overfitting. For c scores, mixed-effects models were 
similarly compared, including an intercept-only model (cr0), a model with a categorical effect of entropy 
(cr1), a model with an additional effect of expertise (cr1e) and a model with an additional term for the 
entropy-expertise interaction (cr1i). Random intercepts for participants were added. 
 
Regarding confidence ratings, ordinal logistic regression was employed in the form of a cumulative-link 
mixed model (“clmm” function, ordinal package; Christensen, 2019) using logit (log-odds) as link. Models 
with an intercept only (co0), categorical (co1s) terms for entropy, and additional terms for expertise (co1se) 
and the entropy-by-expertise interaction (co1si) were estimated and compared. These models included 
random intercepts and slopes for participants. Unlike with d’ scores, no model included continuous terms 
for entropy, since categorical models were previously shown to explain the data significantly better for non-
musicians. Moreover, note that the cumulative-link model estimates an intercept for each cut-point between 
adjacent categories in the response variable. Post-hoc, Bonferroni-corrected pairwise contrasts for the effect 
of entropy on confidence ratings, d’ scores and c scores were conducted with the function “emmeans” 
(emmeans package; Lenth, Singmann, Love, Buerkner, & Herve, 2019) for musicians and non-musicians 
separately. 
 
Bayesian estimation was used to assess the evidence for the entropy-by-expertise interaction. Models d1i, 
d2i, and co1i were re-estimated and labeled as d1ib, d2ib and co1ib. Priors were defined based on our 
previous work with non-musicians (see corresponding analyses scripts in the online repository for a full 
description of priors and parameters). For the continuous model of d’ scores (d2ib), the prior for the entropy-
by-expertise interaction was Gaussian with mean 0 and standard deviation 0.1, which corresponds to half 
of the slope for the effect of entropy previously estimated for non-musicians. This prior is conservative and 
implies that small effect modulations are deemed most likely, and that a complete absence, change of 
direction or excessive enhancement of the effect is considered unlikely. For the categorical model of d’ 
scores (d1ib), a Gaussian prior with mean 0 and standard deviation 0.4 was used for each of the entropy 
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conditions. This prior corresponds to about half of the difference between the LE and HE conditions and, 
as with the continuous model, is conservative and deems extreme modifications of the effect unlikely. 
Regarding confidence ratings, a similar conservative Gaussian prior was set for the interaction term, with 
mean 0 and standard deviation 0.35. This prior deems small effects as the most likely and odds 
modifications larger than twice (𝑒𝑒2×0.35 = 2) or smaller than half �𝑒𝑒2×−0.35 = 0.5� of the original effect as 
unlikely. Inference was based on 95% credible intervals, Bayes Factors and posterior probabilities, 
estimated for each feature and hemisphere (“hypothesis” function, brms package). 

3. Results 

3.1. Presence of the MMNm  
As previously reported for the non-musicians (Quiroga-Martinez et al., 2019), we also found a difference 
between standards and deviants for each feature in the musicians’ group (all p < .001, supplementary file 
1). This difference had virtually the same topography and polarity as previously reported, thus confirming 
the presence of the MMNm (Figure 2). 
 

 
 

Figure 2. Topographic maps of the MMNm for all features, groups, and conditions in A) magnetometers and B) 
gradiometers. The activity corresponds to an average of ±25 ms around the peak latency, which is shown above each 
plot. The slide MMNm is displayed in both early and late time windows (see Quiroga-Martinez et al., 2019 for an 
explanation of early and late effects in the slide MMNm). LE = low entropy, HE = high entropy, M = musicians, N = 
non-musicians. 
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Figure 3. MMNm amplitudes for low-entropy (LE) and high-entropy (HE) conditions and the difference between 
conditions in both groups. The displayed activity corresponds to the average of the four right temporal combined 
gradiometers with the largest amplitude (channels 1342-1343, 1312-1313, 1322-1323 and 1332-1333). Gray lines 
depict individual MMNm responses. Shaded gray areas indicate 95% confidence intervals. Dashed vertical lines mark 
tone onsets. Topographic maps show activity ±25 ms around the peak difference. For descriptive purposes, green 
horizontal lines indicate when this difference was significant, according to the permutation tests. Note, however, that 
this is not an accurate estimate of the true extent of the effect (Sassenhagen & Draschkow, 2019). 
 

 
Figure 4. Activity related to the main effect of expertise and the entropy-by-expertise interaction—i.e. difference 
between low-entropy and high-entropy MMNm amplitudes for musicians and non-musicians. The displayed activity 
corresponds to the average of the four right temporal combined gradiometers with the largest amplitude (channels 
1342-1343, 1312-1313, 1322-1323 and 1332-1333). Shaded areas indicate 95% confidence intervals. Dashed vertical 
lines mark tone onsets. Topographic maps show activity ±25 ms around the peak difference. For descriptive purposes, 
green horizontal lines indicate when this difference was significant. Note, however, that this is not an accurate estimate 
of the true extent of the effect (Sassenhagen & Draschkow, 2019). 
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3.2. Effects of entropy, expertise, and interaction 
There was a significant main effect of entropy for pitch (p < .001), slide (p < .001) and intensity (p < .001), 
but not for timbre (p = .068), in the MMNm responses. Analyses of simple effects revealed significant 
differences for pitch and slide in both groups, and for intensity in musicians only (Figure 3). A significant 
main effect of expertise was observed for pitch and slide, but not intensity or timbre, in the MMNm 
responses (Figure 4). The same pattern emerged when LE (pitch: p = .01; slide: p = .018; intensity: p = .99; 
timbre: p = .68) and HE (pitch: p = .005; slide: p = .014; intensity: p = .3; timbre: p = .89) conditions were 
analyzed separately. The entropy-by-expertise interaction was not significant for any of the four features 
(Figure 4). 
 

 
Figure 5. A) Bayesian estimates of the mean gradient MMNm amplitude differences between high-entropy (HE) and 
low entropy (LE) conditions for each group. Error bars represent 95% credible intervals. B) Posterior probability 
densities of the differences in the entropy effect between musicians and non-musicians (i.e. entropy-by-expertise 
interaction) for each hemisphere and feature. Shaded areas depict 95% credible intervals. NM = non-musicians, M = 
musicians, BF01 = Bayes factor in favor of the null, p = posterior probability of the null. 
 
Regarding secondary Bayesian analyses, the posterior distributions of the differences between musicians 
and non-musicians for each hemisphere and feature are shown in Figure 5b. 95% credible intervals included 
zero in all cases. Bayes factors suggested that the null hypothesis was between 1.18 to 3.06 times more 
likely than the alternative, and the posterior probability of a null effect varied between 0.62 and 0.75, 
depending on the feature and hemisphere. We regard this as anecdotal/inconclusive evidence for the null 
hypothesis. Moreover, Bayesian pairwise contrasts between features reproduced the patterns observed in 
the maximum likelihood estimates previously reported for non-musicians (Quiroga-Martinez et al., 2019), 
in which pitch and slide tended to have larger entropy-related reductions in MMNm amplitude than intensity 
and timbre, in the right but not the left hemisphere. For musicians this pattern was different, with conclusive 
evidence for a difference between pitch and timbre in both hemispheres, and moderate evidence for a 
difference between pitch and intensity in the left hemisphere (Table 2). 
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Table 2. Pairwise Bayesian contrasts between features for entropy-related MMNm amplitude differences in each 
group and hemisphere. NM = non-musicians, M = musicians, CI = credible interval, BF01 = Bayes factor in favor of 
the null, BF10 = Bayes factor in favor of the alternative, P = posterior probability of the null. Contrasts with moderate 
or strong evidence for either the null hypothesis or the alternative hypothesis are highlighted in bold and marked with 
a star (*). 
 

Hemisphere Expertise Contrast Estimate CI 2.4% CI 97.5% BF01 BF10 P 

Right 
 
 
 
 
 
 
 
 

NM 
 
 
 

pitch > slide -0.01 -3.02 3.01 1.96 0.51 0.66 
pitch > intensity 3.45 0.47 6.4 0.61 1.64 0.38 

pitch > timbre 5.97 2.96 8.98 0.02 60.09 0.02* 
slide > intensity 3.46 -0.29 7.14 0.85 1.18 0.46 

slide > timbre 5.98 2.17 9.8 0.1 10.39 0.09* 
intensity > timbre 2.52 -1.09 6.16 1.03 0.97 0.51 

M 
 
 
 

pitch > slide 1.41 -2.05 4.89 1.79 0.56 0.64 

pitch > intensity 3.15 -0.32 6.6 0.96 1.04 0.49 

pitch > timbre 5.58 2.12 9.07 0.06 17.11 0.06* 
slide > intensity 1.74 -2.28 5.77 2.92 0.34 0.75 

slide > timbre 4.17 -0.02 8.38 0.8 1.25 0.45 

intensity > timbre 2.43 -1.51 6.44 1.53 0.65 0.6 

Left 
 
 
 
 
 
 
 

NM 
 
 
 

pitch > slide -0.14 -3.88 3.66 3.02 0.33 0.75 

pitch > intensity 1.36 -2.34 5.07 3.57 0.28 0.78 

pitch > timbre 2.67 -1.09 6.51 2.4 0.42 0.71 

slide > intensity 1.5 -2.87 5.82 3.59 0.28 0.78 

slide > timbre 2.81 -1.72 7.3 2.48 0.4 0.71 

intensity > timbre 1.31 -3.01 5.61 3.31 0.3 0.77 

M 
 
 
 

pitch > slide 2.23 -2.63 6.95 1.35 0.74 0.57 

pitch > intensity 5.99 1.29 10.75 0.16 6.29 0.13* 

pitch > timbre 7.09 2.33 11.87 0.08 13.2 0.07* 
slide > intensity 3.76 -2.15 9.79 1.51 0.66 0.6 

slide > timbre 4.86 -1.09 10.98 1.09 0.91 0.52 

intensity > timbre 1.1 -4.67 6.95 2.46 0.41 0.71 

3.3. Source reconstruction 

Neural generators of the MMNm were located in the surroundings of right and left auditory cortices, 
including both the posteromedial and anterolateral portions of Heschl’s gyrus (Figure 6). No prefrontal 
generators were observed, with the exception of the pitch MMNm for which there was a small source in 
the ventral part of the premotor cortex (BA6). Small clusters were also found for pitch in the somatosensory 
and parietal cortices, and for intensity in the parietal lobe around the perisylvian region. Regarding the 
entropy effect, the neural generators for pitch were located in the planum temporale anterior to the generator 
of the MMNm, whereas for slide a significant cluster was found in the right fusiform gyrus—an area 
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involved in higher-order visual processing—, which could be related to spurious visual activity arising from 
watching the movie. For this reason, uncorrected values thresholded at .001 are shown for the entropy effect 
on the slide MMNm in the supplementary file 2, which includes clusters in the planum temporale. 
 

 
Figure 6. Statistical maps of the source reconstruction for A) the MMNm for each feature and condition and B) the 
effect of entropy on pitch MMNm responses. Clusters are thresholded at p < .05 after multiple-comparisons correction. 
Clusters for the entropy effect are marked with a circle. Participants from both groups (musicians and non-musicians) 
were included in the statistical tests. P = pitch, S = slide, I = intensity, T = timbre. 
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Table 3. Likelihood ratio tests for all models in the behavioral experiment. AIC = Akaike Information Criterion, 
LR= Likelihood ratio, Df = difference in degrees of freedom, con = continuous, cat = categorical. Significant 
contrasts are highlighted in bold and marked with a star (*). 

Measure Effect Comparison AIC LR (𝜒𝜒2) Df p > LR 

d’ scores (categorical) 
 

null d0 576.28 - - - 

Entropy (cat) d1-d0 529.14 55.13 4 < .001* 

Expertise d1e-d1 505.15 26 1 < .001* 

Interaction d1i-d13 504.06 9.09 4 0.06 

d’ scores 
(continuous) 

 

Entropy (con) d2-d0 524.68 53.6 1 < .001* 
Expertise d2e-d2 500.68 26 1 < .001* 
Interaction d2i-d2e 501.46 1.22 1 0.27 

c scores 
 
 

null cr0 369.81 - - - 

Entropy (cat) cr1-cr0 364.8 13.01 4 0.01* 
Expertise cr1e-cr1 365.61 1.19 1 0.28 

Interaction cr1i-cr1e 348.43 25.18 4 < .001* 

Confidence 
 
 

null co0 14660.73 - - - 

Entropy (cat) co1s-co0 14182.46 514.28 18 < .001* 
Expertise co1se-co1s 14179.11 5.34 1 0.02* 
Interaction co1si-co1se 14180.86 6.25 4 0.18 

 
3.4. Behavioral experiment 
 
Parameter estimates and data from the behavioral experiment are shown in Figure 7. Analyses of d’ scores 
revealed that adding entropy as a categorical (d1) or continuous (d2) factor explained the data significantly 
better than an intercept-only (d0) model (Table 3). Furthermore, the comparisons d1e-d1 and d2e-d2 
revealed a significant main effect of expertise, whereas the comparisons d1i-d1e and d2i-d2e were 
nonsignificant, thus failing to provide evidence for an entropy-by-expertise interaction. A contrast between 
the continuous (d2e) and the categorical model (d1e) was not significant (𝜒𝜒2 = 1.53, 𝑝𝑝 =  .67). The 
residuals of these two models were normally distributed. AIC values revealed a similar picture and slightly 
favored d2e over d1e as the winning model (Table 3). Bonferroni-corrected pairwise comparisons for the 
full model (d1i) showed significant differences between LE and the other four conditions for non-musicians. 
For musicians, however, the comparisons LE > IE1 and LE > IE2 were nonsignificant, whereas the contrasts 
LE > IE3, LE > HE, IE1 > IE2, IE1 > IE3 and IE1 > HE were significant. Finally, other comparisons such 
as IE1 > IE3, IE2 > HE and IE2 > HE, although nonsignificant, resulted in large effect sizes in both groups 
(table 4). 
 
Regarding Bayesian analyses, there was anecdotal/inconclusive evidence that the interaction terms were 
not different from zero, for both the d1ib and d2ib models (Figure 8). The only exception was the parameter 
for LE > IE1 in model d1ib, for which zero was located slightly to the left of the credible interval. An 
interaction in this case was about three times more likely than a null effect. This is in agreement with the 
likelihood ratio test between d1i and d1e, for which the p-value was close to the alpha threshold (table 3). 
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Figure 7. A) d’ scores, B) c scores and C) confidence ratings—expressed as the probability of response for each 
confidence category. Note how the number of higher ratings (e.g. 7) tended to decrease, and the number of lower 
ratings (e.g. 1) tended to increase, with increasing entropy levels. Also note how musicians were more confident or 
certain overall. All parameter values were taken from maximum likelihood estimates. For d’ scores, the slopes of the 
continuous (d2i) model are also plotted as dashed lines. Error bars and shaded areas represent 95% confidence 
intervals. M = musicians, NM = non-musicians, LE = low entropy, IE = intermediate entropy, HE = high entropy. 
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Figure 8. Bayesian posterior probability densities for the entropy-by-expertise interaction parameters—i.e. expertise-
related modulation of the comparisons LE-IE1, LE-IE2, LE-IE3, LE-HE and the slope of the continuous model. 
Densities for (A) categorical and (C) continuous mixed models of d’ scores, as well as (B) a cumulative-link mixed 
model of confidence ratings are displayed. Shaded areas represent 95% credible intervals. Since accuracy and 
confidence generally decreased with higher entropy levels, positive parameter values indicate smaller differences 
between conditions for musicians compared to non-musicians. BF01 = Bayes factor in favor of the null, p = posterior 
probability of the null, LE = low entropy, IE = intermediate entropy, HE = high entropy. 

 
An analysis of c scores revealed a main effect of entropy and an interaction between entropy and expertise 
(Table 3). The mean c score for both groups was positive, thus indicating a mild bias towards missing the 
targets. The bias changed between conditions following different patterns for each group, as revealed in the 
pairwise contrasts. Concretely, for non-musicians there was a significant difference in the contrasts LE > 
IE3 and IE1 > IE3, whereas for musicians c scores were significantly higher for LE than the other four 
conditions (supplementary materials 3). When contrasting musicians and non-musicians for each condition 
separately, the nature of the interaction was clearer. For LE and IE1, the bias was significantly lower for 
musicians than non-musicians and even became negative in the case of LE (Table 6, Figure 7). 
 
Regarding confidence ratings, there were main effects of entropy and expertise, as revealed by the contrasts 
co1s-co0 and co1se-co1s, respectively (Table 3). Adding an interaction term (co1si) did not explain the 
data significantly better. AIC values suggested co1se as the winning model. Pairwise comparisons revealed 
significant differences between LE and the other four conditions and the contrast IE1 > IE3 for non-
musicians (Table 5). For musicians, there was not a significant difference for the contrast LE > IE1 but for 
contrasts IE1 > LE2, IE1 > LE3, IE > HE, IE1 > IE3, IE1 > HE and IE2 > IE3. Bayesian analyses suggested 
moderate evidence for an interaction in the case of the LE-IE1 and LE-IE2 slopes and inconclusive evidence 
in favor of the null for the LE-IE3 and LE-HE parameters (Figure 8). 
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Table 4. Bonferroni-corrected pairwise comparisons for d’-scores. Significant contrasts are highlighted in bold and 
marked with a star (*). CI = confidence interval, LE = low entropy, IE = intermediate entropy, HE = high entropy, 
M = musicians, NM = non-musicians. 

expertise contrast estimate CI 2.5% CI 97.5% t p Cohen's d 
NM 

 
 
 
 
 
 
 

LE > IE1 0.55 0.02 1.07 2.96 0.04* 0.93 
LE > IE2 0.54 0.01 1.06 2.91 0.04* 0.92 
LE > IE3 1.04 0.51 1.56 5.61 < .001* 1.77 
LE > HE 1.04 0.52 1.57 5.66 < .001* 1.79 
IE1 > IE2 -0.01 -0.53 0.52 -0.04 1 -0.01 
IE1 > IE3 0.49 -0.03 1.01 2.65 0.09 0.84 
IE1 > HE 0.5 -0.03 1.02 2.7 0.08 0.85 
IE2 > IE3 0.5 -0.03 1.02 2.7 0.08 0.85 
IE2 > HE 0.51 -0.02 1.03 2.74 0.07 0.87 
IE3 > HE 0.01 -0.52 0.53 0.04 1 0.01 

M 
 
 
 
 
 
 

LE > IE1 -0.11 -0.6 0.38 -0.64 1 -0.19 
LE > IE2 0.39 -0.1 0.88 2.25 0.25 0.67 
LE > IE3 0.52 0.03 1.01 3.02 0.03* 0.89 
LE > HE 0.66 0.17 1.15 3.81 < .001* 1.13 
IE1 > IE2 0.5 0.01 0.99 2.9 0.04* 0.86 
IE1 > IE3 0.63 0.14 1.12 3.67 < .001* 1.08 
IE1 > HE 0.77 0.28 1.26 4.46 < .001* 1.32 
IE2 > IE3 0.13 -0.36 0.62 0.77 1 0.23 
IE2 > HE 0.27 -0.22 0.76 1.56 1 0.46 
IE3 > HE 0.14 -0.35 0.63 0.79 1 0.23 

 
Table 5. Bonferroni-corrected pairwise comparisons for confidence ratings. Significant contrasts are highlighted in 
bold and marked with a star (*). CI = confidence interval, LE = low entropy, IE = intermediate entropy, HE = high 
entropy, M = musicians, NM = non-musicians. 

expertise contrast odds ratio CI 2.5% CI 97.5% z p 

NM 
 
 
 
 
 
 
 

LE > IE1 2.64 1.59 4.38 5.39 < .001* 
LE > IE2 4.24 2.09 8.59 5.74 < .001* 
LE > IE3 6.23 2.69 14.44 6.11 < .001* 
LE > HE 3.99 2.19 7.25 6.49 < .001* 
IE1 > IE2 1.6 0.84 3.08 2.03 0.42 
IE1 > IE3 2.36 1.04 5.35 2.94 0.03* 
IE1 > HE 1.51 0.82 2.79 1.88 0.6 
IE2 > IE3 1.47 0.96 2.24 2.57 0.1 
IE2 > HE 0.94 0.65 1.36 -0.46 1 
IE3 > HE 0.64 0.4 1.01 -2.74 0.06 

M 
 
 
 
 
 
 

LE > IE1 1.53 0.92 2.52 2.36 0.18 
LE > IE2 2.14 1.08 4.21 3.14 0.02* 
LE > IE3 3.56 1.6 7.92 4.46 < .001* 
LE > HE 2.79 1.56 4.99 4.96 < .001* 
IE1 > IE2 1.4 0.75 2.62 1.5 1 
IE1 > IE3 2.33 1.07 5.08 3.06 0.02* 
IE1 > HE 1.83 1.01 3.31 2.86 0.04* 
IE2 > IE3 1.67 1.1 2.52 3.48 0.01* 
IE2 > HE 1.31 0.9 1.89 2.02 0.43 
IE3 > HE 0.78 0.5 1.22 -1.54 1 
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Table 6. Bonferroni-corrected contrasts of c scores between musicians and non-musicians for each condition. 
Significant contrasts are highlighted in bold and marked with a star (*). CI = confidence interval, LE = low entropy, 
IE = intermediate entropy, HE = high entropy, M = musicians, NM = non-musicians. 

condition contrast estimate CI 2.5% CI 97.5% t p Cohen's d 
LE NM - M 0.6 0.26 0.94 3.46 < .001* 1.41 
IE1 NM - M 0.35 0.01 0.7 2.05 0.04* 0.84 
IE2 NM - M -0.1 -0.44 0.25 -0.55 0.58 -0.22 
IE3 NM - M -0.19 -0.53 0.16 -1.08 0.28 -0.44 
HE NM - M 0.02 -0.32 0.36 0.1 0.92 0.04 

4. Discussion 

In the present work, we show that the reduction of prediction error responses by predictive uncertainty 
(Quiroga-Martinez et al., 2019) is also found in musically trained participants. This indicates that the effect 
is robust and is present across listeners with different degrees of musical expertise. Moreover, while 
musicians had larger MMNm responses to pitch and slide deviants, there was no evidence for an entropy-
by-expertise interaction that would indicate a less pronounced effect of uncertainty for musical experts. 
 
4.1. Expertise-related effects 
 
Across different degrees of melodic entropy, musicians were more accurate and confident in detecting pitch 
deviations, and had larger pitch and slide MMNm responses in the MEG experiment. This extends previous 
findings showing larger MMNm responses—especially for pitch-related deviants—in musicians than non-
musicians (Brattico et al., 2009; Fujioka et al., 2004; Koelsch et al., 1999; Putkinen et al., 2014; Tervaniemi 
et al., 2014; Vuust et al., 2012, 2005). Since this indicates an enhancement of auditory discrimination skills 
and could be framed as an increase in predictive precision, it is rather surprising that the effect of contextual 
uncertainty on prediction error is not significantly different between the two groups.   
 
What these results suggest is that expertise-driven and stimulus-driven changes in predictive precision are 
dissociable and independent. Thus, intensive musical training might sharpen the long-term representation 
of in-tune musical pitch categories and therefore facilitate the detection of pitch deviants. This would result 
in higher baseline levels of deviance detection and confidence as well as larger baseline MMNm amplitudes 
for musicians. In contrast, the uncertainty of the current stimulus would be inferred dynamically from its 
local statistics, leading to a short-term modulation of prediction error that is independent from long-term 
expertise, hence explaining the additive effects observed in both the MEG and behavioral experiments. 
 
The observed pattern of results is surprising also with regard to behavioral studies in which musicians gave 
significantly higher unexpectedness ratings to melodic continuations than non-musicians, in contexts with 
low but not high entropy (Hansen & Pearce, 2014; Hansen et al., 2016).  This finding has been taken to 
reflect a better ability of musicians to distinguish between low- and high-entropy contexts. Note that these 
results would predict a larger effect of entropy in musical experts, which is the opposite of what we 
hypothesized, but for which there was no evidence in our data either. It has to be noted, though, that the 
type of unexpected tones that we used was different from the one reported in those experiments. Here, 
surprising tones corresponded to out-of-tune deviants, whereas in the behavioral studies unexpectedness 
judgements were made on plausible in-tune melodic continuations. Furthermore, the effect of entropy was 
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reported for expected and unexpected tones combined, whereas here we only employed tones that were 
highly unexpected. These discrepancies point to future research addressing the effect of entropy on the 
neural responses to in-tune compared to out-of-tune surprising tones, and to expected and unexpected tones 
separately. 
 
Bayesian estimation allowed us to evaluate the relative evidence for the null and alternative hypotheses. 
For the change in MMNm amplitude between conditions, the parameter estimates of the difference between 
groups generally had small mean values (Figure 5b), indicating a rather small or absent modulation of 
expertise. However, while all credible intervals contained zero, they were also uncertain, spanning a rather 
broad amplitude range. This is reflected in Bayes factors, which were inconclusive, and therefore not much 
can be said about the null hypothesis. 
 
In the behavioral experiment, the picture was slightly different. For d’-scores, there was moderate evidence 
that the difference between LE and IE1 was reduced in musical experts. Evidence for other interaction 
terms, including LE-IE3, LE-HE and the slope for the continuous model, although inconclusive, suggested 
that the effect of entropy was slightly less pronounced for musicians. A similar pattern was observed for 
the confidence ratings. Therefore, although likelihood ratio tests were non-significant for the interactions, 
Bayesian analyses provided some evidence for a group difference, at least for some interaction parameters. 
 
Based on this, it would be tempting to conclude that there is evidence for our hypothesis at the behavioral 
level. However, these results might as well arise from a ceiling effect in musicians’ d’ scores and confidence 
ratings that would reduce differences between LE and IE1 or LE and IE2, compared to the non-musicians’ 
noticeable differences between these conditions. The distribution of individual data points in Figure 7 
suggests that this might be the case. Taking into consideration the results of the MEG experiment, the 
generally inconclusive Bayes factors and the possibility of a ceiling effect, it is fair to remain skeptical 
about the presence of an entropy-by-expertise interaction when the two experiments are considered 
together. 

4.2. Feature-specific effects 

One intriguing finding in Quiroga-Martinez et al. (2019) was that the effect of predictive uncertainty on 
prediction error was restricted to pitch-related deviants (out-of-tune tones and pitch glides). This was 
interpreted as suggesting a feature-selective effect, given that uncertainty was manipulated in the pitch 
dimension only, while uncertainty in other dimensions such as timbre and intensity was kept constant. In 
the current work, this result was replicated in musicians, although with a slightly different pattern of 
differences. In non-musicians, larger entropy effects were observed for pitch and slide deviants, compared 
to intensity and timbre deviants, in the right but not the left hemisphere. For musicians, larger entropy 
effects were found for pitch deviants when compared with timbre deviants in both hemispheres, and when 
compared with intensity deviants in the left hemisphere.  
 
Care should be taken not to overinterpret these potential expertise-related differences, until they have been 
shown in direct group comparisons. However, attention should be paid to the intensity MMNm because, 
for musicians, a small yet significant difference between LE and HE contexts was found in the cluster-
based permutation analyses, which in turn resulted in a significant main effect of entropy for this feature. 
Note that, for non-musicians, there was already a hint of such a difference. Therefore, it seems that intensity 
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prediction errors are also somewhat affected by the pitch entropy of the melodies, something that challenges 
the proposed feature-selectivity.  
 
These results suggest that uncertainty is mainly feature-selective, but has a residual effect on predictive 
processing in other features as well. However, there might be two confounding factors here. First, the 
perception of loudness changes with pitch height (Suzuki, Møller, Ozawa, & Takeshima, 2003). In that 
case, the slightly different pitch distributions in HE and LE conditions (see Supplementary figure 1 in 
Quiroga-Martinez, et al., 2019) might have made the loudness violation slightly more or less salient for 
different conditions. The second confound could be the baseline salience of the deviants, which might have 
differed between features. For example, a very strong timbre violation might have been less affected by 
entropy than a less strong intensity violation or an even weaker pitch violation, thus yielding the observed 
feature-specific patterns.  
 
Another interesting feature-wise finding is that musicians had larger MMNm amplitudes for pitch and slide 
but not timbre or intensity compared to non-musicians. This is consistent with the literature, in which larger 
amplitudes have been consistently found for pitch-related deviants in musicians but less so for other features 
(Putkinen et al., 2014; Tervaniemi et al., 2014). This might reflect a focus on pitch discrimination as a core 
ability for musical experts and the fact that musical pitch is organized in rich multidimensional cognitive 
systems (Krumhansl, 1990), which is not the case for intensity or timbre.   

4.3. Source reconstruction 
As expected from the literature (Deouell, 2007), neural generators of the MMNm were located in primary 
and secondary bilateral auditory cortices. No prefrontal generators were observed, with the exception of the 
pitch MMNm for which there seemed to be a small source in the ventral part of BA6. This, however, could 
be caused by leakage of the temporal source. The location of the entropy effect for the pitch MMNm, which 
was anterior to the primary source, suggests that entropy affected the passing of prediction error responses 
from primary to secondary auditory cortex. This is consistent with predictive processing theories (Clark, 
2016; Feldman & Friston, 2010; Hohwy, 2013) that suggest an uncertainty-driven reduction in the gain of 
prediction error responses, which prevents them from driving inference and learning at higher levels of the 
cortical hierarchy (Griffiths & Warren, 2002). Moreover, this is partly consistent with results reported by 
Southwell and Chait (2018), who found reduced anterior temporal responses to deviant sounds in contexts 
with high as compared to low uncertainty. Note that other prefrontal sources were also found in that study 
which were not detected here. However, their results were based on EEG source reconstructions with no 
individual anatomical images, which may explain the differences in the sources found in the two studies. 

4.4. Behavioral experiment 
As mentioned above, the effect of entropy on accuracy and confidence scores was present in musicians as 
well. There was also a main effect of expertise in which musicians were better and more confident at 
discriminating the deviants, but there was no conclusive evidence for an entropy-by-expertise interaction. 
Thus, behavioral measures were in agreement with the outcomes of the MEG experiment. Apart from these 
findings, two results deserve attention. First, pairwise differences were found between HE and IE1, and 
between intermediate conditions (e.g. IE1 and IE3) in both groups. This corroborates the finding that any 
of the two sources of uncertainty manipulated in the experiment, namely pitch-alphabet size and stimulus 
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repetitiveness, can modulate prediction error separately. Second, c scores revealed a reduced bias in 
musicians for LE and IE1 conditions, indicating a higher rate of hits only for categories with the highest 
precision. Interestingly, for LE stimuli, some musicians systematically reported deviants when there were 
none, which suggests that the expectancy of a deviation might have occasionally induced the illusion of a 
mistuning. 

4.5. Limitations and future directions 
Since we used the same methods as in Quiroga-Martinez et al. (2019), the limitations already discussed in 
that work also apply to the current report. Briefly, these include the impossibility of disentangling the 
contribution of pitch-alphabet size and repetitiveness to the modulation of the MMNm; the different 
repetition rates of individual melodies in different conditions, which might have created different veridical 
expectations during stimulation; the difference in the distribution of pitches between conditions in the MEG 
experiment and its possible implications for the pitch MMNm; the measurement of uncertainty at the 
context level rather than on a note-by-note basis; the unusual listening situation—i.e. participants listening 
passively while watching a silent movie—which limits the generality of the findings; the rather artificial 
auditory context—even though our stimuli are much more realistic than in most MMN research; and the 
lack of a preregistration of our hypothesis and analysis plan—something that is partly overcome by the fact 
that we have now replicated our main findings and have openly shared materials, code and data. 
 
Despite these limitations, our work provides further evidence for the effect of uncertainty—or precision—
on prediction error, which is consistent with an increasing number of empirical findings (Garrido et al., 
2013; Hsu et al., 2015; Lumaca et al., 2019; Sedley et al., 2016; Sohoglu & Chait, 2016; Southwell & Chait, 
2018), theories of predictive processing and models of music perception (Clark, 2016; Feldman & Friston, 
2010; Hohwy, 2013; Ross & Hansen, 2016; Vuust et al., 2018). Furthermore, our findings confirm that 
MMNm responses can be reliably recorded in realistic paradigms where sounds constantly change, which 
constitutes a methodological improvement on existing approaches.  
 
Consequently, we hereby open the possibility of addressing questions about predictive processing and 
predictive uncertainty in more realistic and complex auditory environments. One possible future direction 
in this regard would be to elucidate where and how the modulation of prediction error takes place in the 
auditory frontotemporal network. Specifically, it would be interesting to address whether the precision-
weighting effect arises from top-down or intrinsic connectivity, and whether neuromodulation plays a role 
(Auksztulewicz et al., 2018). Paradigms similar to the one presented here could be used in combination 
with connectivity measures, such as dynamic causal modelling (Moran, Pinotsis, & Friston, 2013), and 
intracranial recordings (e.g. Omigie et al., 2019) to address these questions. Moreover, for music research, 
methods such as these could be very informative about the nature of musical knowledge and musical 
expectations and how these are represented in the cortical hierarchy. Relatedly, this line of research could 
inform musical aesthetics, given that some musical styles exploit uncertainty as an artistic resource 
(Mencke, Omigie, Wald-Fuhrmann, & Brattico, 2019). Finally, the use of more realistic stimuli could help 
us understand how different types of musical stimuli (e.g. different styles) are processed by listeners of 
different backgrounds, something that we have started to address here with musical experts, but that could 
be extended, for example, to listeners from different cultures or with instrument-specific expertise.      
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Conclusion 

In the present study we have shown that pitch prediction error responses in musical experts—as indexed by 
MMNm responses, accuracy scores, and confidence ratings—are reduced by pitch predictive uncertainty 
when listening to relatively complex and realistic musical stimuli. This suggests that our previous findings 
in non-musicians are robust and replicable and provides further support for theories of predictive processing 
which propose that neural responses to surprising stimuli are modulated by predictive uncertainty. 
Furthermore, our results show that, while musicians have generally larger prediction error responses, the 
uncertainty effect does not substantially change with expertise, thus pointing to separate long-term and 
short-term mechanisms of precision modulation. Overall, our work demonstrates that music, as a rich and 
multifaceted auditory signal, is an ideal means to improve our understanding of uncertainty and predictive 
processing in the brain. 
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