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Abstract 10 

In working and practical contexts, dogs rely upon their ability to discriminate a target odor from 11 

distracting odors and other sensory stimuli. Few studies have examined odor discrimination using 12 

non-behavioral methods or have approached odor discrimination from the dog’s perspective. Using 13 

awake fMRI in 18 dogs, we examined the neural mechanisms underlying odor discrimination 14 

between two odors and a mixture of the odors. Neural activation was measured during the 15 

presentation of a target odor (A) associated with a food reward, a distractor odor (B) associated with 16 

nothing, and a mixture of the two odors (A+B). Changes in neural activation during the presentations 17 

of the odor stimuli in individual dogs were measured over time within three regions known to be 18 

involved with odor processing: the caudate nucleus, the amygdala, and the olfactory bulbs. Average 19 

activation within the amygdala showed that dogs maximally differentiated between odor stimuli 20 

based on the stimulus-reward associations by the first run, while activation to the mixture (A+B) was 21 

most similar to the no-reward (B) stimulus. To identify the neural representation of odor mixtures in 22 

the dog brain, we used a random forest classifier to compare multilabel (elemental) vs. multiclass 23 

(configural) models. The multiclass model performed much better than the multilabel (weighted-F1 24 

0.44 vs. 0.14), suggesting the odor mixture was processed configurally. Analysis of the subset of 25 

high-performing dogs based on their brain classification metrics revealed a network of olfactory 26 

information-carrying brain regions that included the amygdala, piriform cortex, and posterior 27 

cingulate. These results add further evidence for the configural processing of odor mixtures in dogs 28 

and suggest a novel way to identify high-performers based on brain classification metrics.   29 

1. Introduction 30 

For working purposes, trained dogs are generally considered the most practical and effective means 31 

of identifying target substances. In many cases, detection dogs are selectively bred for olfactory 32 

capabilities and behavioral traits that are correlated with their effectiveness in the field. Given their 33 

roles in national security and in detecting different diseases, hunting for pests, and tracking 34 

endangered species for conservation efforts, odor detection dogs remain in high demand (Bijland, 35 

Bomers, & Smulders, 2013; Cooper, Wang, & Singh, 2014; Davidson, Clark, Johnson, Waits, & 36 

Adams, 2014; Gadbois & Reeve, 2014). Research regarding dogs’ olfactory abilities typically 37 

focuses on the improvement of detection behaviors and trainability. Despite numerous behavioral 38 
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studies, little is known about the way in which olfactory information is interpreted by the canine 39 

brain. Few studies on canine olfaction approach the topic from the canine’s point of view or without 40 

responses mediated by the dog’s handler. While behavior is a necessary measure of a working dog’s 41 

effectiveness, a dog’s behavior can be biased by unconscious cues given by their handler.  42 

Large gaps remain in our understanding of how dogs process odors or discriminate between pure 43 

odors and their mixtures. For instance, it is unknown whether dogs search for the complete odor 44 

signature of a target substance or whether only some components serve as a target odor (Johnen, 45 

Heuwieser, & Fischer-Tenhagen, 2017). Despite substantial training on odor components, a dog’s 46 

behavioral responses to mixtures often cannot be predicted. This may be because the detection of 47 

individual substances within a mixture depends on chemical interactions between the different 48 

components. Given that most odor discrimination tests for dogs are behaviorally based and/or 49 

unstandardized, it is almost impossible to predict which components of an odor a particular dog uses 50 

to identify the target (Göth, McLean, & Trevelyan, 2003). For example, dogs that were trained to 51 

detect pure potassium chlorate failed to reliably detect potassium chlorate-based explosive mixtures 52 

(Lazarowski & Dorman, 2014). Whereas dogs trained on odor mixtures tend to perform better on 53 

detection tasks than when trained on pure odors (Hall & Wynne, 2018). These findings highlight the 54 

potential limitations of training dogs to detect a specific target odor to then indicate to the target 55 

when mixed with distractors (DeGreeff et al., 2017; Hayes, McGreevy, Forbes, Laing, & Stuetz, 56 

2018). The way in which this information is interpreted by the canine brain also remains under-57 

researched, but it is likely a complex and contextually dependent process (Berns, Brooks, & Spivak, 58 

2015; Hayes et al., 2018; Prichard, Chhibber, Athanassiades, Spivak, & Berns, 2018; Siniscalchi, 59 

2016). Considering that olfactory neuroanatomy is highly conserved among animals, studies of 60 

olfactory processing in dogs may also shed light on similar mechanisms in humans (Ache & Young, 61 

2005).  62 

The brain may have specialized representations for olfactory associations (Yeshurun, Lapid, Dudai, 63 

& Sobel, 2009). In humans, studies of odor perception typically rely on self-report measures and use 64 

suprathreshold odors that are easily detectible. Functional magnetic resonance imaging (fMRI) of an 65 

olfactory matching or identification task has demonstrated activation in the primary and secondary 66 

olfactory regions including: the piriform cortex, insula, amygdala, parahippocampal gyrus, caudate 67 

nucleus, inferior frontal gyrus, middle frontal gyrus, superior temporal gyrus, and cerebellum (Vedaei 68 

et al., 2017). Low level odors that go unnoticed by participants can also alter brain activation in the 69 

piriform cortex and thalamus (Lorig, 2012). Most of these studies have contributed to the 70 

identification of odor processing regions, but fewer have identified the regions’ roles during odor 71 

processing or learning during conditioning to odor stimuli. Regions that are thought to support 72 

conditioned associations to odors include the orbitofrontal and perirhinal cortices (Howard, Kahnt, & 73 

Gottfried, 2016; Qu, Kahnt, Cole, & Gottfried, 2016).  74 

More recent studies of human olfactory perception have implemented machine learning strategies to 75 

decode odor representation within the brain. FMRI decoding methods can reveal regions important 76 

for coding valence, expected outcomes, or stimulus identity. Machine learning approaches, such as 77 

multi-voxel pattern analysis (MVPA) or representational similarity analysis (RSA), identify patterns 78 

of activation from regions that might not show a change in mean activation with univariate measures 79 

(Haxby, Connolly, & Guntupalli, 2014; Kahnt, 2018; Kahnt, Park, Haynes, & Tobler, 2014). In 80 

another study using RSA suggested that the spatial and temporal pattern of activation within the 81 

amygdala codes for odor valence (Jin, Zelano, Gottfried, & Mohanty, 2015).  82 
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While these studies report similar regions important for odor discrimination identified in traditional 83 

univariate fMRI analyses, the relationship of odor mixtures to the brain’s representation of odor 84 

components remains unknown (Howard & Gottfried, 2014; Howard, Gottfried, Tobler, & Kahnt, 85 

2015; Howard et al., 2016). Odor mixtures may be represented in the brain based on their 86 

components (elemental) or may be perceived as configural, creating an odor concept (Thomas-87 

Danguin et al., 2014). FMRI studies on human perception of odor mixtures shows that activation in 88 

the insula increases when the participant experiences the mixture containing the target odor, even 89 

when participants report that they are unable to distinguish the mixture with and without the target 90 

(Hummel, Olgun, Gerber, Huchel, & Frasnelli, 2013). However, other regions identified in this study 91 

included voxel sizes that would not pass whole brain corrections for multiple comparisons, requiring 92 

further study to confirm these brain regions’ roles in the perception of odor mixtures. Despite the 93 

need for the study of human olfactory perception at the neural level, no research has yet investigated 94 

similar considerations in the dog (Hayes et al., 2018).  95 

Studies of canine cognition using fMRI are becoming more common, including the adaptation of 96 

human experimental paradigms and analyses. With appropriate selection and training, dogs can be 97 

willing participants in fMRI and show little anxiety in the testing environment as it is similar to their 98 

shared environment with humans. Due to domestication, dogs are also more likely attuned to stimuli 99 

relevant to humans as opposed to stimuli salient to other model species. Since 2012, dog fMRI has 100 

revealed some of the conserved neural mechanisms underlying perception across species (Berns, 101 

Brooks, & Spivak, 2012). Dogs have a region for processing both human and dog faces similar to 102 

that of primates (Cuaya, Hernandez-Perez, & Concha, 2016; Dilks et al., 2015). Dogs show 103 

differential activation in the reward processing regions of the brain such as the caudate nucleus to 104 

social or food rewards (Cook, Prichard, Spivak, & Berns, 2016). And dogs show higher activation in 105 

the amygdala and caudate to odors associated with familiar humans and dogs than to odors of 106 

strangers (Berns et al., 2015). Canine fMRI studies have also revealed neural biases for stimulus 107 

modalities, suggesting that dogs learn visual and odor stimuli at a faster rate than verbal stimuli, and 108 

that differences in activation are most evident in the amygdala and caudate (Prichard, Chhibber, et 109 

al., 2018). Finally, MVPA analysis of dog fMRI data revealed that dogs and humans have similar 110 

brain regions for the representation of semantic knowledge in the form of words associated with 111 

objects (Prichard, Cook, Spivak, Chhibber, & Berns, 2018). Together, these studies suggest that dogs 112 

are not only willing fMRI participants, but that the existence of functionally similar brain regions 113 

shared by dogs and humans make them an appropriate model species for further research. 114 

To examine the neural mechanisms underlying a dog's classification of odor mixtures, we measured 115 

the fMRI response to two previously trained odors (one associated with reward and one not) 116 

(Prichard, Chhibber, et al., 2018) and to a mixture of the two odors. First, we used univariate 117 

analyses on mean activation levels within the olfactory bulb, amygdala, and caudate nucleus to 118 

determine whether the mixture was more similar to the pure reward or no-reward odors. Second, we 119 

used a random forest classifier (RFC) for: a) whole-brain decoding of odor identity; b) determination 120 

of whether a mixture is processed elementally or configurally; and c) identification of additional 121 

regions for odor classification in the dog’s brain. 122 

2. MATERIALS AND METHODS 123 

2.1 Participants 124 

Participants were 18 pet dogs volunteered by their Atlanta owners for fMRI training and fMRI 125 

studies (Berns, Brooks, & Spivak, 2013; Berns et al., 2012; Berns & Cook, 2016; Cook et al., 2016). 126 
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All dogs had previously completed four or more awake fMRI scans, including previous training on 127 

the two odors used in the current study (Prichard, Chhibber, et al., 2018). No physical or chemical 128 

restraint was implemented. The study utilized odor stimuli that each dog had previously experienced 129 

within the scanner environment. This study was performed in accordance with the recommendations 130 

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The 131 

study was approved by the Emory University IACUC (Protocols DAR-4000079-ENTPR-A and 132 

PROTO201700572), and all owners gave written consent for their dog’s participation in the study. 133 

2.2 Stimuli 134 

Olfactory stimuli were aqueous solutions of isoamyl acetate (IA), hexanol (Hex), and a mixture of the 135 

two calculated to result in approximately 5 ppm in the headspace of the container. Partial vapor 136 

pressures were calculated based on the molecular weight and reported vapor pressures of 4 mmHg 137 

and 0.9 mmHg respectively, obtained from PubChem (pubchem.ncbi.nlm.nih.gov). The odorants 138 

were miscible with water and the partial pressure of the odorant was the product of the pure odorant 139 

vapor pressure and the mole fraction of the odorant. The final dilutions in water were 0.12 mL/L for 140 

IA, 0.44 mL/L for Hex. 141 

Odorants were delivered using an MRI-compatible olfactometer used in a previous study and similar 142 

to those constructed for human olfactory imaging studies (Bestgen et al., 2016; Lowen & Lukas, 143 

2006; Prichard, Chhibber, et al., 2018; Sezille et al., 2013; Sommer et al., 2012; Toledano et al., 144 

2012; Vigouroux, Bertrand, Farget, Plailly, & Royet, 2005). Briefly, odorants were delivered using a 145 

continuous stream of air from an aquarium grade air pump (EcoPlus Commercial Air Pump 1030 146 

GPH) through a Drierite filter (drierite.com), and through a 4-way plastic splitter to three plastic 100 147 

mL jars containing 50 ml of odorant solutions and one jar containing 50 ml of water to serve as a 148 

control. Each solution mixed with a continuous air stream. The experimenter used plastic valves to 149 

control directional flow of odorized air through 10’ of 1/8” ID Teflon tube, where the mixture (air 150 

dilution of the odorant) exited a PVC tube with a 1” diameter opening positioned in the MRI bore 151 

12” from the dog’s snout (Fig. 1). The fourth tube carrying air from the control jar remained open 152 

throughout the presentations of odorized air, maintaining a steady air stream presented to the dog and 153 

assisting in the clearing of lingering odor within the magnet bore.  154 

2.3 Experimental Design  155 

Dogs entered and stationed themselves in custom chin rests in the scanner bore. All scans took place 156 

in the presence of the dog’s primary owner, who stood throughout the scan at the opening of the 157 

magnet bore, directly in front of the dogs, and delivered all rewards (hot dogs) to the dog. The owner 158 

was present to minimize any anxiety that the dog may experience due to separation, consistent with 159 

studies involving pets or human infants. An experimenter was stationed next to the owner, out of 160 

view of the dog. The experimenter controlled the timing and presentation of odor stimuli to the dogs 161 

via a four-button MRI-compatible button box. Onset of each stimulus was timestamped by the 162 

simultaneous press of the button box with the opening of the appropriate valve. Manual control of the 163 

stimuli by the experimenter was necessary, as opposed to a scripted presentation, because of the 164 

variable time it takes dogs to consume food rewards.  165 

In a previous study, dogs were semi-randomly assigned IA or Hex as the reward stimulus such that 166 

roughly half of the dogs were assigned to each group (see Table 1) (Prichard, Chhibber, et al., 2018). 167 

In the current study, the same dogs were presented with the two previously trained odors, as well as a 168 

mixture of the two. An event-based design was used, consisting of reward, no-reward, and mixture 169 

trial types. On reward trials, the odor stimulus was presented for a fixed duration, which was 170 
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followed by the delivery of a food reward. During no-reward trials and mixture trials, the no-reward 171 

or mixture odor stimuli were presented for the same fixed duration and were followed by nothing. 172 

Each dog received the same trial sequence. For each trial type, dogs were presented an odor for an 173 

initial 3.6s during a span of 7.2 s, followed by a reward (hot dog) or nothing, with a 9.6 s inter trial 174 

interval between odor presentations. 175 

Each scan session consisted of 4 runs, lasting approximately 9 minutes per run. Each run consisted of 176 

22 trials (~8 reward, ~8 no-reward, ~5 mixture) with a semi-randomized presentation order, for a 177 

total of 88 trials per scan session. Twenty-two mixture trials were included to serve as a sufficient 178 

number of probe trials for fMRI analyses while minimizing mixture-outcome associations. No trial 179 

type was repeated more than 3 times sequentially, as dogs could habituate to the stimulus. Following 180 

each run, dogs would exit the scanner and relax, drink water, or stay in the scanner to complete the 181 

next run. 182 

Scanning was conducted with a Siemens 3 T Trio whole-body scanner using procedures described 183 

previously (Berns et al., 2013; Berns et al., 2012). During the first of the four runs, a T2-weighted 184 

structural image of the whole brain was acquired using a turbo spin-echo sequence (25-36 2mm 185 

slices, TR = 3940 ms, TE = 8.9 ms, flip angle = 131˚, 26 echo trains, 128 x 128 matrix, FOV = 192 186 

mm). The functional scans used a single-shot echo-planar imaging (EPI) sequence to acquire 187 

volumes of 22 sequential 2.5 mm slices with a 20% gap (TE = 25 ms, TR = 1200 ms, flip angle = 188 

70˚, 64 x 64 matrix, 3 mm in-plane voxel size, FOV = 192 mm). Slices were oriented dorsally to the 189 

dog’s brain (coronal to the magnet, as in the sphinx position the dogs’ heads were positioned 90 190 

degrees from the prone human orientation) with the phase-encoding direction right-to-left. Sequential 191 

slices were used to minimize between-plane offsets from participant movement, while the 20% slice 192 

gap minimized the “crosstalk” that can occur with sequential scan sequences. Four runs of up to 400 193 

functional volumes were acquired for each subject, with each run lasting about 9 minutes. 194 

2.4 Analyses 195 

2.4.1 Preprocessing 196 

Preprocessing of the fMRI data included motion correction, censoring, and normalization using 197 

AFNI (NIH) and its associated functions. Two-pass, six-parameter rigid-body motion correction was 198 

used based on a hand-selected reference volume for each dog that corresponded to their average 199 

position within the magnet bore across runs. Aggressive censoring removed unusable volumes from 200 

the fMRI time sequence because dogs can move between trials, when smelling an odor, and when 201 

consuming rewards. Data were censored when estimated motion was greater than 1 mm displacement 202 

scan-to-scan and based on outlier voxel signal intensities greater than 0.1 percent signal change from 203 

scan-to-scan. Smoothing, normalization, and motion correction parameters were identical to those 204 

described in previous studies (Prichard, Chhibber, et al., 2018). EPI images were smoothed and 205 

normalized to %-signal change with 3dmerge using a 6mm kernel at full-width half-maximum. The 206 

Advanced Normalization Tools (ANTs) software was used to register the mean of the motion-207 

corrected functional images (Avants et al., 2011) to the individual dog’s structural image.  208 

2.4.2 Region of Interest (ROI) Analysis 209 

Each subject’s motion-corrected, censored, smoothed images were analyzed within a general linear 210 

model (GLM) for each voxel in the brain using 3dDeconvolve (part of the AFNI suite). Motion time 211 

courses were generated through motion correction, and constant, linear, quadratic, cubic, and quartic 212 

drift terms were included as nuisance regressors. Drift terms were included for each run to account 213 

for baseline shifts between runs as well as slow drifts unrelated to the experiment. Task related 214 
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regressors for each experiment were modeled using AFNI’s dmUBLOCK and stim_times_IM 215 

functions and were as follows: (1) reward stimulus, (2) no-reward stimulus, 3) mixture stimulus. The 216 

function created a column in the design matrix for each of the 88 trials, allowing for the estimation of 217 

a beta value for each trial. Trials with beta values greater than an absolute three percent signal change 218 

were removed prior to analyses as described in Prichard et al. (2018) as these were assumed to be 219 

beyond the physiologic range of the BOLD signal and possibly the result of spin-history effects and 220 

spurious levels of activation unrelated to the experiment.  221 

Anatomical ROIs were selected based on imaging results in canine brain areas previously observed to 222 

be responsive to olfactory stimuli (Berns et al., 2015; Jia et al., 2014). Anatomical ROIs of the left 223 

and right caudate nuclei, the left and right amygdala, and the olfactory bulbs were defined 224 

structurally using each dog’s T2-weighted structural image of the whole brain (Fig. 2). Beta values 225 

for each presentation of reward stimuli (33 trials), no-reward stimuli (33 trials), and mixture stimuli 226 

(22 trials) were extracted from and averaged over the ROIs in the left and right hemispheres.  For 227 

each ROI (amygdala, caudate, olfactory bulb), we used the mixed-model procedure in SPSS 24 228 

(IBM) with fixed-effects for the intercept, run number, type (reward, no-reward, mixture), and 229 

hemisphere (left or right), identity covariance structure, and maximum-likelihood estimation. Run 230 

was modeled as a fixed effect, making no assumptions about the time course. As hemisphere did not 231 

account for a significant amount of variance, data were collapsed across hemispheres and analyses 232 

removed hemisphere as a factor.  233 

2.4.3 Multivariate Decoding 234 

For this exploratory analysis, our aim was to identify regions in the dog brain that contribute to the 235 

classification of odor stimuli outside of those identified in the univariate analysis. Univariate analyses 236 

may answer the question if odor mixtures result in differences in regional brain activity, but 237 

multivariate methods are required if the identity of odors is distributed in patterns of neural activity. 238 

The primary question was whether dogs treat odor mixtures as elemental or configural. As in 239 

previous decoding human fMRI studies, we used scikit-learn’s random forest classifier (RFC). RFC 240 

has previously demonstrated robust performance on human fMRI data and has the ability to handle 241 

complex biological data (Lebedev et al., 2014). RFCs generally perform better than most linear 242 

classifiers and require less parameter tuning (Chollet, 2018). An RFC also allows for mapping of 243 

feature importance in the brain without resorting to searchlight analyses. Thus, in addition to 244 

generating whole-brain classification metrics, the relative importance of individual regions to the 245 

classification can be obtained. 246 

The volumes from the current study were concatenated with data from the previous study in which 247 

dogs were presented odors associated with reward and no reward in a classical conditioning paradigm 248 

(Prichard, Chhibber, et al., 2018), yielding a total of 176 separate odor trials. As described in the 249 

above GLM, preprocessing included censoring of the unsmoothed volumes for motion and outliers. 250 

Using AFNI’s 3dDeconvolve stim_times_IM function, we generated a whole-brain model of trial-by-251 

trial beta estimates for each trial type (reward, no reward, and mixture). The anatomical masks from 252 

the ROI analysis described above were used to extract average beta values from the left and right 253 

caudate for each trial. As in the univariate analysis, trials with beta values greater than |3 %| were 254 

removed prior to further analyses. Using AFNI’s 3dmerge tool, the remaining whole brain volumes 255 

were smoothed with a kernel of 6 mm to improve signal-to-noise ratios. The whole brain volumes 256 

were used as input for the classifiers below. To reformat the imaging data for use in the sklearn 257 

environment, the volumes were masked and reshaped using nilearn’s NiftiMasker class and split into 258 

training and testing sets using the python library pandas.  259 
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Two different models were tested: elemental and configural. For the elemental model, trials were 260 

coded using a 2-bit vector with bits for odor A and odor B. In this scheme, trials with the two pure 261 

odorants were coded as [1 0] and [0 1] while the mixture was coded as [1 1]. In contrast, the 262 

configural model assumed that the mixture was a distinct class and was coded as such. Here, the 263 

classes were simply A, B, and C. The primary difference between these two models was multilabel 264 

vs. multiclass. 265 

For both models, the RFC was instantiated in each dog by making 100 forests, each forest consisting 266 

of 100 trees with a max_depth of 5, min_samples_split of .25, bootstrapping as true, and 267 

max_features as log2. We used 100 forests of 100 trees to ensure that all volumes served as samples.  268 

A max_depth of 5, min_samples_split of .25 and max_features of log2 were included to prevent 269 

overfitting to the training set. Each dog’s data was split into odd and even runs (2-fold split) for 270 

training and testing. For training each forest, an equal number of exemplars from each class was 271 

randomly selected. Unselected trials were added to the test set. For each trial of the test set, the 272 

classifier predicted whether the stimulus presented was reward, no reward, or mixture. From this, we 273 

calculated the confusion matrix for each dog, aggregating over the 100 forests. The primary metrics 274 

obtained were recall, precision, and the F1-score (a weighted average of recall and precision). 275 

Each forest also produced a map of feature importances. Briefly, the feature importance is a value 276 

scaled between 0 and 1 that reflects how informative a voxel i.e. a larger feature importance 277 

corresponds to a voxel that is more informative in making the final predictions. Higher feature 278 

importances are driven by either voxels that increase accuracy drastically, or by voxels that are 279 

present in many trees within a forest. Sklearn’s RFC feature_importances_ method returned feature 280 

importances for each voxel that were subsequently back-mapped into each individual dog’s 281 

functional space, generating one map per forest. All 100 maps for each dog were averaged to assess 282 

which brain regions contributed to the classification reward, no reward, and mixture. Mean images 283 

for each dog were spatially normalized to template space using The Advanced Normalization Tools 284 

(ANTs) software (Avants et al., 2011; Datta et al., 2012).  285 

To determine the significance of both the confusion matrices and feature importance maps, we 286 

followed the permutation approach outlined by Stelzer et al. (2013) and which we used previously to 287 

identify the significance of regions for language processing in dogs (Prichard, Cook, et al., 2018; 288 

Stelzer, Chen, & Turner, 2013). For each dog, a random number was appended to the data labels for 289 

each trial to reorder the labels and create a permuted list of labels, while the timeseries of fMRI 290 

volumes remained unchanged. The RFC was trained and tested on this set of permuted labels and the 291 

fMRI volumes 100 times, outputting a confusion matrix and a map of feature importances for each 292 

forest. As we did with our real dataset above, we then averaged across these 100 forests, creating one 293 

confusion matrix and one mean image per set of permuted labels. We repeated this procedure 100 294 

times to create a distribution of confusion matrices and feature importance maps for each dog.  295 

For each confusion matrix, we computed the weighted F1 score. This allowed us to calculate the 296 

cumulative distribution of F1 scores for the permuted data, which then allowed an estimation of the 297 

significance of the actual F1 score for the real data. As we were interested in identifying additional 298 

brain regions involved in the identification of odors, we included those dogs whose whole-brain 299 

classifier performed substantially above chance. Only dogs who had a real F1 greater than the 90th 300 

percentile of the null distribution were used to create a group feature importance map. 301 

To simulate the group image across dogs, we randomly selected one mean permuted image per dog, 302 

normalized that mean image to template space, and averaged across the dogs comprising the group 303 
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map – i.e. those dogs whose F1 was greater than the 90th percentile of their null distribution. This 304 

random selection and normalization were repeated 10,000 times. Because each voxel in the brain 305 

may have a different distribution given its location in the brain, we did not assume a canonical 306 

distribution across all voxels and opted to make a voxel-wise distribution. For each voxel in the 307 

brain, we created the distribution from the 10,000 noise maps and determined the values for p = 308 

0.005. This map of thresholds was applied to the mean feature importance map created from the real 309 

data and to each of the 10,000 noise maps (Fig. 3). To determine the significance of any clusters 310 

found after thresholding at the voxel-wise level, we created a distribution of cluster sizes found in the 311 

thresholded 10,000 noise maps.  312 

3. RESULTS 313 

3.1 Univariate 314 

Changes in neural activation during the presentations of the odor stimuli in individual dogs were 315 

measured over time within the three ROIs known to be involved with odor processing. Using the 316 

mixed-model procedure in SPSS 24 (IBM) we found neural evidence for differentiation of the three 317 

odor stimuli across all ROIs (p = 0.004), which varied significantly by Odor Type (p < 0.001). There 318 

was a significant interaction between Odor Type x Run (p = 0.031), suggesting the magnitude of the 319 

effect changed over time. 320 

As there was a main effect of ROI, we used post-hoc analyses to examine whether these differences 321 

remained when segregated by ROI (Table 2 & Fig. 4). In the caudate, we found a significant 322 

interaction between Odor Type x Run (p = 0.019) (Fig. 5A), but no main effect of Odor Type or Run. 323 

More robust evidence for the differentiation between odor stimuli was evident in the amygdala for 324 

Odor Type (p < 0.0001) (Fig. 5B), suggesting that the odor-outcome associations were reinstated 325 

from the previous study. There was also an Odor Type x Run interaction, suggesting a difference in 326 

the temporal pattern between odor types (p = 0.028). Similar to human olfaction studies, we found 327 

initial evidence for the differentiation of Odor Type in the olfactory bulbs (p = 0.029) (Fig. 5C). 328 

In sum, the differences in neural activation across regions of the olfactory pathway show that dogs 329 

formed odor stimulus-reward associations. Though the differentiation between the three odor stimuli 330 

was most pronounced in the amygdala, similarity in activation between the no reward and mixture 331 

stimuli across all three ROIs suggested that the mixture was most like the no reward stimulus. 332 

However, when we tested whether the sum of activations to reward and no reward odors was the 333 

same as the activation to the mixture, we found significant differences in the amygdala, such that the 334 

sum of activations was greater than activation to mixture (t(17) = 3.28, p = 0.004). This suggests that 335 

mixture was, in fact, processed differently than the simple sum of its components. To further test this 336 

theory, multivariate decoding was performed. 337 

3.2 Multivariate Decoding 338 

Based on the weighted-F1 score, the multiclass model performed much better than the multilabel 339 

model (F1: 0.44 vs. 0.14) (Table 3). The multiclass model had an average recall of 0.40, which was 340 

better than the chance value of 0.33, while the multilabel model had very poor recall (0.19), in effect, 341 

predicting most stimuli as the mixture, including the pure odorants. Using the permuted data as a 342 

reference null distribution of F1 scores, we determined that the real data from 8 dogs passed the 90th 343 

percentile (Bhubo, Caylin, Eddie, Kady, Koda, Ohana, Wil, and Zen). These dogs were then used to 344 

construct the whole brain map of informative voxels. 345 
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For these eight dogs, the feature importances of their multiclass models were backprojected into their 346 

brains, transformed to the atlas space, and then averaged. Only those voxels that passed the 347 

individual significance of p = 0.005 were used. Across these eight dogs, clusters with more than 2 348 

voxels were used to create a cumulative distribution of possible cluster sizes. A cluster size of 98 349 

voxels corresponded to p = 0.001. At this voxel and cluster threshold, three clusters were identified 350 

(Fig. 6). Two clusters surrounded the amygdala – one rostrally and one caudally. The third cluster 351 

was located in the posterior cingulate. 352 

4. Discussion 353 

Here, we show fMRI evidence that dogs’ brains tended to classify odor mixtures configurally. To test 354 

neural mechanisms of dogs’ perception of odors and a mixture, we used fMRI to examine changes in 355 

brain activation to previously trained odors associated with reward or no reward, as well as a mixture 356 

of the two. Our results suggest that while dogs may have different odor-outcome associations with 357 

each individual odor, they perceive the combination of odors as a new odor. In reward processing 358 

regions of the brain, we anticipated that if dogs treat mixtures as the sum of their components, then 359 

the neural activation to the mixture should be equivalent to the sum of the activation to the reward 360 

and no reward components. However, significant differences in activation within the amygdala 361 

showed that dogs did not treat these as equivalent conditions.  362 

Further, using machine learning, we identified additional regions of the dog brain, including the peri-363 

amygdalar cortex and the posterior cingulate that significantly predicted the identity of the odor 364 

beyond the regions specified in a priori hypotheses. Moreover, we found that a multilabel model 365 

significantly outperformed a multilabel model, further supporting the conclusion that dogs processed 366 

the mixture configurally rather than elementally. 367 

One possible explanation for our results is that the dogs’ perception of odor mixtures may depend on 368 

the combined ratio of the odor elements. For example, rabbits trained on a target odor B treated the 369 

A+B (ratio 68/32) mixture as elemental but the A+B (ratio 30/70) mixture as configural (Schneider et 370 

al., 2016). As our study utilized a 50/50 mixture, we cannot similarly conclude ratio-based 371 

differences in elemental or configural processing of odor mixtures in the dog brain. However a 372 

second possible explanation is that dogs classify mixtures as themselves as in the 3-way model, but 373 

when limited to two classes as in the 2-way model, dogs’ neural biases for novelty influences 374 

predictions toward the distractor odor (Prichard, Cook, et al., 2018).  375 

Because the univariate model suggested that dogs treat mixtures as more like the no reward stimulus 376 

than the reward stimulus, the mechanism underlying dogs’ discrimination of odor mixtures may have 377 

been a learned association between the mixture with absence of reward. The apparent differences in 378 

activation in the caudate nucleus and amygdala to odor stimuli associated with reward or no reward 379 

suggested that perception changed over time, consistent with a learned discrimination. The 380 

significant differential effect for reward versus no-reward across multiple ROIs is therefore 381 

consistent with prior research, showing that reward processing regions of the canine brain change in 382 

activation relative to the value of conditioned stimuli regardless of modality (Cook et al., 2016; 383 

Prichard, Chhibber, et al., 2018). Further, we have previously shown that in an associative reward 384 

learning paradigm, changes in the neural activation within the caudate and amygdala within an initial 385 

span of 6 minutes, suggesting that a mixture-no reward association could also form quickly (Prichard, 386 

Chhibber, et al., 2018). If true, the overall activations in the amygdala and caudate  might simply 387 

index their relative salience, but not their full identities. 388 
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The RFC identified regions important for odor processing similar to those in the human studies, 389 

including the amygdala, piriform cortex, and posterior cingulate. In human classical conditioning 390 

paradigm using odors, MVPA analyses revealed predictive representations of identity-specific reward 391 

in OFC and identity general reward in vmPFC. Reward related functional coupling between OFC and 392 

piriform cortex and between vmPFC and amygdala further revealed parallel pathways that support 393 

identity-specific and general predictive signaling (Howard et al., 2015; Howard et al., 2016; Zelano, 394 

Mohanty, & Gottfried, 2011). Our study also mirrors some of the results examining human’s 395 

perception of odor mixtures. In humans, common neural activation patterns in the superior temporal 396 

gyrus, caudate nucleus, and insula occur in response to mixtures containing pleasant and unpleasant 397 

odors (Bensafi et al., 2012). Given the similar results to human studies, this suggests that shared 398 

neural mechanisms may exist across species for odor processing. Further, we show that RFC is a 399 

successful classifier for fMRI analyses, with the caution that specific classifiers may be better suited 400 

for some studies over others (Misaki, Kim, Bandettini, & Kriegeskorte, 2010).  401 

What does this mean for odor processing in dogs? Understanding how a dog discriminates between 402 

odor mixtures can aid in the design of more effective protocols to increase a dog’s performance on 403 

odor detection and identification tasks. Protocols designed based on the dogs’ perceptual abilities are 404 

less prone to biases inherent to behavioral studies (e.g. the Clever Hans effect) that require human-405 

reported measures. In addition, the dogs’ perception of the mixture stimulus in our study suggests 406 

that dogs perceive the mixture as a new odor rather than as its individual elements. Consistent with 407 

previous behavioral studies, this may explain why dogs trained on individual target odors have 408 

difficulty generalizing to mixtures, but dogs trained on mixtures perform well on detection tasks and 409 

detect the target odor when mixed with novel distractors (Hall & Wynne, 2018; Lazarowski & 410 

Dorman, 2014; Lazarowski et al., 2015). Further, dogs’ brain activations showed more similarity 411 

between the mixture of odors and a no reward odor, suggesting either a learned association or a 412 

neural bias toward the no reward odor. Treating a mixture as a novel odor, or having bias toward the 413 

no reward component of a mixture, would likely lead to increased false-negatives during a detection 414 

task whereas a learned association for mixtures may conflict with detection applications. Knowledge 415 

of dogs’ classification of odor mixtures in the dog brain should improve training practices for 416 

working dogs and highlight the potential learning aspects inherent in mixture detection tasks. 417 

Perceptually driven protocols may therefore enhance a working dog’s detection performance, 418 

contributing to the health and safety of humans.  419 

The opportunity to study the neural mechanisms of odor processing in an awake dog also offers two 420 

clear advantages over the study of odor processing in humans. First, unlike human studies, dog fMRI 421 

offers a unique opportunity to study odor processing in primary sensory areas like the olfactory bulbs 422 

given its large size relative to the rest of the dog brain. In humans, the olfactory bulbs is 423 

proportionately smaller than in canines, making imaging difficult due to its size and the susceptibility 424 

artifact around the sinuses. In our study, the olfactory bulbs were structurally defined in each dog 425 

prior to analysis, allowing us to account for the unique aspects of brain morphology across individual 426 

canines. In dogs, we found a significant main effect for the differentiation between odor types, 427 

similar to human studies of olfactory processing, but over a much larger region of cortex. In other 428 

nonhumans, imaging mammalian olfactory cortex may prove difficult due to the resulting signal loss 429 

from the air-to-tissue contact in regions near the olfactory bulbs. That said, fMRI of odor processing 430 

in canines within this primary sensory region may offer opportunities to understand the mechanisms 431 

of odor perception above and beyond what is possible in human fMRI.  432 

Second, while humans use language to describe events and percepts, odors are difficult to describe 433 

verbally (Cain, de Wijk, Lulejian, Schiet, & See, 1998; Iatropoulos et al., 2018). When odors are 434 
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administered during language-dependent tasks, interference occurs when the odor and label are 435 

simultaneously processed. This difficulty is thought to be due to limitations in cortical networks, as 436 

spatiotemporal patterns produced in neural coding of odors and language are similar. Additionally, 437 

humans’ limited language for odors may be a cause for our disregard of this sense compared to our 438 

bias for visual stimuli (Lorig, 1999). Odor naming may also account for some of the difficulty 439 

reported by participants when attempting to evoke images of the odor objects (Stevenson, Case, & 440 

Mahmut, 2007). The inability to name objects based on their olfactory, as opposed to their visual 441 

appearance, may be explained by the brain circuitry involved in associating olfactory and visual 442 

object features to their lexico-semantic representations (Olofsson & Gottfried, 2015; Olofsson et al., 443 

2014; Olofsson & Wilson, 2018). Dogs prove to be a valuable model for the study of odor processing 444 

because they do not have the confound of language and have unique brain morphology for imaging 445 

of primary olfactory cortex.  446 

This study also contributes significantly to the existing literature on odor processing in canines. First, 447 

this study replicates findings from our previous odor fMRI study using the same dogs and the same 448 

odor stimuli (Prichard, Chhibber, et al., 2018). Second, ours is the first study to use data directly from 449 

the awake, unanesthetized dog (i.e. brain imaging) as opposed to behavioral outcomes to assess dogs’ 450 

perception of odor mixtures. And in contrast, other canine fMRI studies examining the neural 451 

correlates of odor processing have used restrained or anesthetized subjects (Jia et al., 2014; 452 

Siniscalchi, 2016; Thompkins, Deshpande, Waggoner, & Katz, 2016). Third, we used RFC to 453 

perform decoding of the dog brain with awake, unrestrained dogs. In particular, this study supports 454 

the differences inherent in univariate fMRI analyses compared to MVPA analyses, as the latter do not 455 

classify stimuli based on mean activations (Hebart & Baker, 2018). This allowed us to identify 456 

regions supporting classification of stimuli in addition to those specified in univariate analyses. And 457 

fourth, ours is the first study to use RFC in nonhuman fMRI and to back map the feature importances 458 

into brain space to identify regions that contribute to high classification accuracy. Our novel use of 459 

RFC can inform future brain decoding studies as it offers an alternative approach to popular 460 

searchlight methods for localizing important regions.  461 

There are several possible limitations to our study. First, the presence of the human owner was 462 

constant. Because the human was not blind to the nature of the stimuli, they could have inadvertently 463 

influenced the dogs through body language. However, the olfactory stimuli were least likely to be 464 

picked up by the humans and were not communicated by human owners, so Clever-Hans effects are 465 

unlikely to explain these results. Second, the effects of habituation counteract those of learning. 466 

Habituation was perhaps most evident in the amygdala, which displayed a generally declining 467 

response with run across trial types. There is ample evidence that the amygdala habituates to repeated 468 

presentations of the same stimuli and specifically to odor stimuli (Gottfried, O'Doherty, & Dolan, 469 

2002; Plichta et al., 2014; Poellinger et al., 2001; Wright et al., 2001). It would not be surprising that 470 

repeated presentation of the stimuli could lead to decreased physiological response, especially to 471 

odors. Third, the pet dogs that participated in the study were not previously trained on odor-detection 472 

or discrimination (except for two dogs). Highly trained working dogs may perform differently than 473 

pets. However, the results were consistent across dogs that varied in age, breed, and sex, so 474 

generalizability to the population is likely. Fourth, the odor training utilized two component odors 475 

and one mixture, so the findings may not generalize to all odor mixtures or all mixture concentrations 476 

(Schneider et al., 2016). Finally, the stimulus-reward associations were acquired through a passive 477 

task in the scanner. No behavioral tests were conducted to test acquisition of the learned associations 478 

or to compare to the neural activations. This task design was chosen to minimize any additional 479 

training required for the dogs and as a follow-up to our previously published study on odor learning. 480 
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As in humans, further study may reveal dissociable neural pathways support the associative and 481 

perceptual representations of sensory stimuli (Howard et al., 2016). 482 

Our results highlight potential neural mechanisms that underly the perception of odors in dogs. ROI-483 

based analysis highlights the importance of the amygdala for learned associations and that these 484 

associations are maintained over time. Machine-learning analysis of dogs’ perception of an odor 485 

mixture suggests that dogs perceive odor mixtures as new odors rather than as their individual 486 

components. This finding has important implications for the training of odor detection dogs and 487 

serves as a potential mechanism underlying dogs’ poor behavioral performance when generalizing 488 

from a target odor to mixture. Future decoding studies of the dog brain may allow us to better 489 

understand canine perception and highlight potential neural mechanisms for olfactory processing 490 

conserved across species. 491 
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TABLES 674 

Table 1. Dogs (N=18) and odor stimulus paired with reward. 675 

Dog Breed Sex Reward Odor 

BhuBo Boxer mix M hexanol 

Caylin Border collie F hexanol 

Daisy Pitbull mix F hexanol 

Eddie Labrador Golden mix M isoamyl acetate 

Kady Labrador F hexanol 

Koda Pitbull mix F isoamyl acetate 

Libby Pitbull mix F hexanol 

Mauja Cattle dog mix F hexanol 

Ninja Cattle dog mix F isoamyl acetate 

Ohana Golden Retriever F hexanol 

Ollie Border collie Beagle mix M isoamyl acetate 

Pearl Golden Retriever F hexanol 

Tallulah Cattle Dog mix F hexanol 

Truffles Pointer mix F isoamyl acetate 

Tug Portuguese Water dog M hexanol 

Velcro Viszla M isoamyl acetate 

Wil Australian Shepherd M isoamyl acetate 

Zen Labrador Golden mix M isoamyl acetate 

Dog’s names, breed, sex, and odor stimuli (S+) are listed 676 
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Table 2. Model results for Odor Type, Run, and ROI. Asterisks denote significant results. 678 

ROI Fixed Effects 

Numerator 

df 

Denominator 

df F Sig. 

Caudate Intercept 1 2580 0.265 0.606 

 Run 3 2580 0.607 0.611 

 Odor Type 2 2580 2.056 0.128 

 Run * Odor Type 6 2580 2.529 0.019* 

Amygdala Intercept 1 2426 12.831 0.000* 

 Run 3 2426 2.068 0.102 

 Odor Type 2 2426 11.016 0.000* 

 Run * Odor Type 6 2426 2.37 0.028* 

Olfactory Intercept 1 1296 0.143 0.706 

Bulbs Run 3 1296 0.592 0.62 

 Odor Type 2 1296 3.539 0.029* 

 Run * Odor Type 6 1296 0.746 0.613 

 679 

 680 

Table 3. Performance of multiclass and multilabel models. 681 

    Precision Recall F1 

Multiclass 

Reward 0.59 0.33 0.43 

No Reward 0.55 0.46 0.50 

Mixture 0.15 0.45 0.22 

Weighted Average 0.52 0.40 0.44 

Multilabel 

Reward 0.66 0.03 0.06 

No Reward 0.67 0.08 0.14 

Mixture 0.12 0.91 0.21 

Weighted Average 0.60 0.19 0.14 

 682 

  683 
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FIGURES 684 

Figure 1. Experimental design with odor stimuli. Three odor stimuli were repeatedly presented 685 

during a scan session. One stimulus was associated with food (Reward), while the No Reward and 686 

Mixture stimuli were associated with nothing. Presentation of odorants to dog in MRI bore via 687 

experimenter-controlled olfactometer during scan session. The owner remained in front of the dog. 688 

 689 

Figure 2. Regions of interest (ROIs). ROIs were drawn in individual anatomical space, example 690 

ROIs shown in template space here in transverse and dorsal views. A) Caudate nuclei have been 691 

shown to differentially respond to odor stimuli associated with reward and no-reward. B) Amygdalae 692 

have shown differential responding to odor stimuli associated with reward and no-reward, as well as 693 

arousal. C) Olfactory bulbs including olfactory bulbs respond to odor stimuli. ROI is shown here in 694 

sagittal and dorsal views in template space. 695 

 696 

Figure 3. Schematic diagram of MVPA methods. A random forest classifier (RFC) was trained on 697 

a balanced subset of the real data, outputting a map of voxels important for classification. We 698 

repeated this process 100 times to ensure that all samples were used at least one. The maps from 699 

these 100 repetitions were averaged, normalized to group space, and thresholded at a voxel and 700 

cluster level to create the final image. To determine the voxel and cluster-level thresholds, we created 701 

random data by permuting the data labels associated with each volume, then trained as described 702 

above for the real data, which constituted one permutation. The data were permuted 100 times and 703 

one map was selected at random to transform into group space. We generated 10,000 random group 704 

maps, created a voxel-by-voxel distribution and a cluster distribution, which were then applied to the 705 

image generated by the real data. 706 

 707 

Figure 4. Percent signal change by ROI for odor stimuli. Mean values of odorant responses across 708 

dogs by ROI and by trial type are plotted relative to the implicit baseline (blue = reward, red = no 709 

reward, purple = mixture of reward and no reward). Error bars denote the standard error of the mean 710 

across dogs. Averaged beta values in the caudate did not show significant differentiation between 711 

odorants. The amygdala showed marked differentiation between odor stimuli, with the greatest 712 

activation to odor stimuli associated with reward. The olfactory bulbs followed a similar pattern of 713 

activation to the caudate. Across all ROIs, the neural activation to the mixture of odors was most 714 

similar to the neural response during the presentation of the no reward odor. 715 

 716 

Figure 5. Percent signal change by ROI for reward and mixture odors relative to no reward 717 

odor. Mean values across dogs are plotted for each run (blue = Reward— No Reward, purple = 718 

Mixture— No Reward) and averages across all runs (right). Error bars denote the standard error of 719 

the mean across dogs. There were main effects of odor type across all ROIs (p = 0.004), which were 720 

significantly different by odor type (p < 0.001). There was a significant interaction ROI and Run (p = 721 

0.031), suggesting the magnitude of the effect changed over time. A) Averaged beta values in the 722 

caudate show a significant interaction between Run and Odor Type (p = 0.036). B) Averaged beta 723 

values in the amygdala show significant effects of Odor Type (p = 0.001). C) Following corrections 724 

for multiple comparisons, activations in the olfactory bulbs were not significantly different.  725 

 726 

Figure 6. Clusters of informative voxels for multiclass random forest classifier. Three clusters 727 

were identified in the 8 dogs whose whole-brain classifier performed at the 90th percentile of a null 728 

distribution. Two clusters bracketed the amygdala (left and middle) while the third cluster was 729 

located in the posterior cingulate (right). Voxel and cluster level significance is p = 0.005 and p = 730 

0.001 respectively. Color indicates feature importance in terms of bits information gain (x 10-4). 731 

732 
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Figure 1 734 
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Figure 2 736 
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Figure 3739 
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Figure 4 741 
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Figure 5 743 
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Figure 6 746 
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