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Abstract

The structure of the brain network shows modularity at
multiple spatial scales. The effect of the modular struc-
ture on the brain dynamics has been the focus of several
studies in recent years but many aspects remain to be
explored. For example, it is not well-known how the
delays in the transmission of signals between the neu-
rons and the brain regions, interact with the modular
structure to determine the brain dynamics. In this pa-
per, we show an important impact of the delays on the
collective dynamics of the brain network with modular
structure; that is, the degree of the synchrony between
different brain regions is dependent on the frequency.
In particular, we show that increasing the frequency
the network transits from a global synchrony state to
an asynchronous state, through a transition region over
which the local synchrony inside the modules is stronger
than the global synchrony. When the delays are depen-
dent on the distance between the nodes, the modular
structure of different spatial scales appears in the cor-
relation matrix over different specific frequency bands,
so that, finer spatial modular structure reveal in higher
frequency bands. The results are justified by a sim-
ple theoretical argument and elaborated by simulations
on several simplified modular networks and the connec-
tome with different spatial resolutions.

Introduction

Brain is organized as a highly modular system at a hier-
archy of spatial scales, from connectivity within a single
cortical column to inter-areal brain-wide connectivity
(Sporns and Betzel, 2016; Nicolini and Bifone, 2016;
Zhou et al., 2006; Meunier et al., 2010; Park and Fris-
ton, 2013). Modules are sub-networks with high density
of connections between the nodes within, and low den-
sity of connections between the modules (Girvan and
Newman, 2002; Fortunato and Hric, 2016). This mod-
ular connectivity provides differential statistical inter-
dependencies between the nodes inside and outside the
modules and serves as a suitable substrate for func-
tional specialization of the brain areas (Rubinov et al.,
2009; Sporns, 2013; Lord et al., 2017). Presence of the

long-range connections between a subset of nodes pre-
serves the communication between the different mod-
ules, to promote functional integration (Tononi et al.,
1994; Baum et al., 2017; Zamora-López et al., 2010).

Higher-order brain functions depend on the integra-
tion of local specialized processing in multiple spatial
and temporal scales (Park and Friston, 2013; Bassett
et al., 2011; Tononi et al., 1998; Cohen and D’Esposito,
2016). This integration takes place through a highly
dynamic functional network: the intriguing property of
the brain network is the ability to dynamically change
the communication between the populations and the
routes for information transfer despite to the fixed
anatomy (Honey et al., 2007; Fries, 2005, 2015; Betzel
et al., 2016). While time-averaged resting-state func-
tional networks resemble the substrate structural net-
work, there are considerable deviations from the struc-
tural networks when time-resolved, task-evoked func-
tional networks are considered (Honey et al., 2007). It
is hypothesized that the modular and hierarchical struc-
ture of the brain is particularly suited for providing such
a diverse adaptive dynamics, but it is not well-known
how the brain can spontaneously switch between the
different functional patterns of communication on top
of an almost static structural substrate (Park and Fris-
ton, 2013; Fries, 2005; Hutchison et al., 2013).

Interaction between the constituent nodes in the real-
istic distributed complex systems is not instantaneous.
In brain circuits, in particular, the finite speed of signal
transmission and synaptic processing time introduce a
time delay in the interactions between neurons and be-
tween brain regions. According to experimental stud-
ies, the transmission delays in the mammalian brain has
a wide range from milliseconds to tens of milliseconds
(Ringo et al., 1994; Nakagawa et al., 2014; Ghosh et al.,
2008; Asl et al., 2018). This indicates that the time de-
lay can be comparable with some other important tem-
poral scales in the nervous system, such as the mem-
brane time constant, the period of gamma oscillations,
and the effective window of time-dependent plasticity
rules (Gray and Singer, 1989; Grenier et al., 2001; Ab-
bott and Nelson, 2000); therefore not negligible. In the
past few decades, the effects of time-delay interactions
have received considerable attention. It has been shown
that the presence of delay can substantially enrich the
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dynamics of physical and biological systems and lead to
various phenomena such as multi-stability, clustering,
frustration, and enhanced synchronization (Ermentrout
and Kopell, 1998; Lee et al., 2009; Kim et al., 1997;
Esfahani et al., 2016; Dhamala et al., 2004). In this
study, we have shown how communication delays affect
the dynamical interdependencies between the brain re-
gions and give rise to a frequency-dependent functional
network. We show that the pattern of the information
transfer in neural circuits can be tailored by manipu-
lating the frequency of the constituent nodes.

Transmission delays in the brain are heterogeneous
and depend on the distance between connected re-
gions (Swadlow and Waxman, 2012). Here we have
explored the effect of heterogeneous delays on collec-
tive dynamics of the brain and phase relation between
different brain regions, connected through the com-
plex hierarchical-modular structure reported in the con-
nectome datasets (Hagmann et al., 2008). To sys-
tematically explore the role of the various parameters
and in particular to highlight the role of the distance-
dependent delays, we began with a simplified synthetic
modular network and systematically added the com-
plexity to the network to end with the connectome.

We first provided a simple analytical approach (Wu
and Dhamala, 2018; Woodman and Canavier, 2011;
Esfahani and Valizadeh, 2014) to show that with de-
layed interaction, the connection between two oscil-
lating components can be synchronizing or desynchro-
nizing depending on the frequency of the oscillation.
Through simulations on a synthetic modular network
with homogeneous delays, we then showed that the local
(intra-module) and the global (inter-module) coherence
depend on the frequency of the nodes and there is a nar-
row transition frequency range over which the global or-
der parameter is oscillatory and a stronger synchrony is
observed within the modules due to the stronger inter-
module connectivity. With heterogeneous distance-
dependent delays, compatible with the theoretical pre-
diction, we found a wide frequency range where the
short- and long-range connections are synchronizing
and desynchronizing, respectively, and strong local syn-
chrony was observed while different modules evolved
out of phase. In this region, the global order parame-
ter was no longer time-dependent but took a very small
value, and the functional network extracted from the
dynamical correlation between the nodes closely resem-
bled the modular structure of the underlying network.
The same effect was observed in a modular structure
with two levels of hierarchy where the delays were ac-
cordingly chosen from a trimodal distribution. In this
case, increasing the frequency, the synchrony at succes-
sive hierarchical levels vanished at different frequencies,
resulting in the distinct frequency ranges over each, the
functional network resembled the modular structure at
a different hierarchy level.

We finally run the simulations on the network ex-
tracted from the human connectome with different spa-
tial resolutions (Hagmann et al., 2008), where the de-
lays were assumed proportional to the distance between
the nodes. The connectome data showed a modular

structure with two levels of hierarchy, but the param-
eters such as the strength and the probability of the
connections, number of nodes in the modules and the
communication delays were more distributed than those
in simpler synthetic networks. Moreover, the brain net-
works were distinguished from the conventional modu-
lar networks by the presence of networks hubs which
were densely connected through inter-modular long-
range connections. We showed that the matrix of
the correlations in the model of the brain networks
changes with the frequency, and the patterns of local
and global synchrony change with frequency as is pre-
dicted by the theoretical background and simulations
on simplified synthetic networks, but with less distinc-
tion between different states. We have explored and
discussed the possible role of distributed parameters,
the role of hubs and rich-club organizations in the con-
nectome by performing extensive simulations. Our re-
sults highlight the role of communication delays, and in
particular distance-dependent delays, in the generation
of dynamic functional network and flexible information
transfer pattern in brain networks.

Methods

Dynamical model

Our model consisted of N phase oscillators coupled
through a modular network with time-delayed interac-
tions described by a generalized Kuramoto model (Ye-
ung and Strogatz, 1999):

θ̇i = ωi +
K

N

N∑
j=1

aij sin [θj(t− τij)− θi(t)] , (1)

where, θi and ωi = 2πνi (νi being the frequency) are the
phase and natural angular frequency of the i-th oscilla-
tor, respectively. aij are the elements of the adjacency
matrix: A. aij = 1 if there is a directed link from the
node j to i with a time delay τij ; otherwise aij = 0.
The parameter K sets the overall coupling strength.

Data analysis

The degree of global phase coherence is quantified by us-
ing the instantaneous Kuramoto order parameter which
is defined as r(t) = 〈| 1N

∑N
j=1 e

iθj(t)|〉, with 0 6 r(t) 6
1. r(t) = 1 (r(t) = 0) corresponds to the fully synchro-
nized (incoherent) state (Kuramoto, 2003). Here 〈.〉 in-
dicates averaging over different initial conditions. The
time average of r(t) in the steady-state is represented by
R. Moreover, to measure the degree of synchronization
between any two nodes of the network, we use the cor-
relation index defined as σij = 〈cos[θi(t)− θj(t)]〉. Here
σij is an element of the correlation matrix C (Arenas
et al., 2006). We determined functional network by the
binarization of the correlation matrix. To this end, we
introduced a threshold of T to convert the correlation
matrix C to the functional network Σ.
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The set of delayed differential equations (DDE)
(Eq. 1) is solved numerically using adaptive Bogacki-
Shampine scheme (Flunkert, 2011) with a minimum
time step 0.05, absolute and relative error tolerance
10−8 and 10−5, respectively. The numerical integration
was performed for the integration time tf = 6500 for
modular networks and connectome with 66 nodes and
10000 for hierarchical modular network and connectome
with 998 nodes. In all the simulations we discarded
tt = 1000 as the transient time. The initial values of θi
were randomly drawn from a uniform distribution in the
interval [−π, π]. For simplicity, the natural frequencies
of all the oscillators were considered identical.

Network connectivity

To construct a modular network we considered a ran-
dom network with N nodes which are grouped into
m modules. In each module, nodes were connected
with probability P1. The nodes in different modules
were connected to each other with the probability P2

(P1 > P2).

To construct a hierarchical and modular network
(HMN) we started with a modular network of m0 mod-
ules, each having n0 nodes. In each module, nodes were
connected with probability P1 (first level of hierarchy).
Nodes in different modules were connected with the
probability P2 (P2 < P1) (second level of hierarchy).
We add a copy of the above network and connect the
nodes belonging to these two different sets with a prob-
ability P3, where P3 < P2 (third level of hierarchy).
Generally speaking, to construct a network with h lev-
els of hierarchy, we repeated the above procedure h− 1
times, with the hierarchical level-dependent probabili-
ties, pl = αql−1 (l > 1), where α is a constant, 0 < q < 1
and q < P1. The resulting network had 2h−1m0 mod-
ules and 2h−1m0n0 nodes (Moretti and Muñoz, 2013).

To construct the human connectivity matrix we used
the human connectome data, down sampled from the
high-resolution connection matrix (998 regions of inter-
est (ROIs)) (Hagmann et al., 2008; Cabral et al., 2011).
To downsample the matrix to 66 regions, all incoming
fiber strengths to a target region were added and nor-
malized by its region-dependent number of ROIs. The
normalized coupling weights were assumed to be pro-
portional to the number of tracts between the nodes
and were controlled by an overall connection strength
K. The graph constructed from the connectivity ma-
trix had 574 edges, with an edge density of 27%, and
contained 5 modules, its modularity was 0.45 and had
an average degree of 18.

Structure-dynamics similarity measure

To evaluate the degree of similarity between the bina-
rized synchronization pattern matrix and the real mod-
ular/hierarchical network structure, we used normal-
ized mutual information (NMI). It is a measure based
on entropy that quantifies the amount of information
shared by two random variables (here structural and dy-
namical patterns). The NMI was calculated by defining
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Figure 1: Modular network with homogeneous
time delays. (a) The schematic illustration of a net-
work with three modules. (b) The adjacency matrix
of the modular network with N = 60,m = 3, (P1,
P2) = (0.7, 0.1). (c) The stationary order parameter
R for the Kuramoto model in the coupling strength
K− average natural frequency ν0 phase space corre-
sponding to the modular network with constant delay
τ = 4. (d, e) The time average of global and local or-
der parameters versus ν0 at couplings 0.1 and 0.5. The
hatched area gives an estimate width of the boundary
region. (f) The NMI versus ν0 for K = 0.1 and 0.5. (g-
i) The correlation matrices (C’s) at the K = 0.1 and
different ν0 = (10, 56, 100) Hz, corresponding to coher-
ent, boundary and incoherent regions, respectively. (j-
l) The distribution of correlation values corresponding
to panel (g-i), respectively. The results were obtained
by averaging over 50 different sets of network and initial
phases.
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Figure 2: Modular network with distance-
dependent time delays. (a) The schematic illustra-
tion of a network with three modules and bimodal inter-
action delay. (b) The adjacency matrix of the modular
network with N = 60,m = 3, (P1, P2) = (0.7, 0.1). (c)
The effect of different τ2 = 2, 3.2, 4.4, 5.6 and fixed
τ1 = 2 on the NMI. (d, e) The time average of global
and local order parameters versus ν0 at couplings 0.1
and 0.5, for connection matrix of (b) with(τ1, τ2) =(2,
4.3). The hatched area gives an estimate of the region
of transition state. (f) The NMI versus ν0 for K = 0.1
and K = 0.5. (g-i) The correlation matrices (C’s) for
K = 0.1 and ν0 = (10, 72, 150) Hz, corresponding
to coherent, transition and incoherent regions, respec-
tively. (j-l) The distribution of correlation values corre-
sponding to panel (g-i), respectively. The results were
obtained by averaging over 50 different realizations of
network and initial phases.

a confusion matrix M, for which the rows correspond to
the structural modules and the columns to the dynamic
modules found in a binarized correlation matrix. The
elements of M, Mij , are the number of nodes in the real
module i that appear in the emerging dynamic module
j. A measure of similarity between the partitions was
then defined as (Danon et al., 2005)

I(A,B) =
−2

∑cA
i=1

∑cB
j=1Nij log(NijN/N

iN j)∑cA
i=1N

i log(N i/N) +
∑cB
j=1N

j log(N j/N)
,

(2)
where the number of structural and dynamical modules
was denoted by cA and cB , respectively. The sum over
row i and column j of the matrix Nij was denoted by N i

and N j , respectively. The NMI gives results between 0
(no mutual information) and 1 (perfect similarity). In
order to determine the dynamical modules in the bina-
rized correlation matrix (functional network), we used
the multilevel community detection algorithm proposed
by Blondel et al (Blondel et al., 2008; Csardi and Ne-
pusz, 2006).

Results

We performed an extensive computational study on the
pattern of the correlation matrix in a model of the
human brain, where each region is characterized by a
phase oscillator with a certain frequency. We focused
on how the heterogeneous delays in the modular struc-
ture, affect the brain functional network at different fre-
quencies. In the following, we first provide a theoretical
background upon which the study is inspired. We then
present the results of the simulations on the simplified
multi-scale networks to highlight the role of delays and
we then show how the results are applied to study the
brain dynamics by operating the model on the human
connectome networks.

Theoretical background

We consider two phase oscillators with an identi-
cal frequency ω, coupled through a bi-directional
Kuramoto-like sinusoidal delayed interaction function
with strength ε and delay τ

θ̇1 = ω + ε sin [θ2(t− τ)− θ1(t)] ,

θ̇2 = ω + ε sin [θ1(t− τ)− θ2(t)] .

Assuming that the oscillators are weakly coupled, the
evolution of the difference of the phases φ = θ1−θ2 can
be described by

φ̇ = 2ε sin (φ) cos (α) , (3)

where α = ωτ . The phase locked solution determined
by φ̇ = 0 has two solutions 0 and π, where the former
in-phase solution is stable if cos(α) > 0 and the latter
anti-phase solution is stable if cos(α) < 0. So the na-
ture of the connection depends on the normalized delay
ωτ . Specifically, for ωτ < π/2 and ωτ > 3π/2 the con-
nection is synchronizing, while for π/2 < ωτ < 3π/2
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Figure 3: Dynamics of clusters for the modular networks. (a-c) and (d-f) show the dynamics of
the clusters for a modular network with unimodal and bimodal delay distribution at different values of ν0 (the
same network and delay as Fig. 1 and Fig. 2), respectively. (Upper panel) The global synchronization level
(black) and the cluster synchrony levels (colored). (Middle panel) The time evolution of phase difference
between clusters. (Lower panel) Three snap shots of node phases at given time. The colors are matched
to the clusters. The corresponding order parameters for each cluster (colored) and the global order parameter
(black) are represented inside the circles. Each set of (a, b, c) and (d, e, f) exhibit three phases of coherent,
intermediate, and incoherent states, respectively.

the connection is desynchronizing. In a network with
fixed interaction delay, the nature of the connections
can change due to the change in frequency. Of the inter-
est in this study, is when the delays between the nodes
are not equal, so changing the frequency, different con-
nections change nature at different frequencies and at
a given frequency some of the connections can be syn-
chronizing, while the others have the reverse effect. In
a modular network, it is reasonable to assume that the
delays for long-distance inter-module connections are
greater than those for local connections. This implies
that increasing frequency from small values, first long-
range connections change to desynchronizing and inter-
module coherence is lost while local coherence within
the modules persists. In the following, this hypothesis
is examined and elaborated by extensive simulations on
the synthetic simplified modular and hierarchical net-
works and in the realistic brain network.

Modular networks with homogeneous
and with distance-dependent delays

We first studied a network composed of phase oscilla-
tors divided into 3 modules. The connections between
the modules were of the same strength, but less dense
than the intra-module connections (Fig. 1a-b). Delays
between any two nodes of the network were set equal,
regardless of whether they are in a module or are in dif-
ferent modules. We then evaluated the overall coher-

ence of the network using the global Kuramoto order
parameter, for different values of coupling strength and
mean intrinsic oscillator frequency (Fig. 1c). Consis-
tent with the theoretical predictions, for small values of
connection strength, increasing frequency the network
switches from a global coherent state to the incoherent
state through a transition state with partial synchrony,
and with increasing the connection strength the inco-
herent region shrinks (Yeung and Strogatz, 1999). To
clarify the dynamical properties of transition state we
have shown the local (within the modules) order pa-
rameter along with the global order parameter for two
different values of the connection strength in Fig. 1d-e.
The plots show that in the transition region, which co-
incides in two spatial scales, the global order is slightly
less than the local order.

This difference between the degree of synchrony in
the local and global scales suggests that within the tran-
sition region, the modular structure could be inferred
from the correlation matrix. To test this, we extracted
correlation matrix for each value of frequency, of which,
three typical ones are shown in Fig. 1g-i, representative
of three regions of global synchrony, transition region,
and asynchrony. Distribution of the correlation between
the pairs within and between the modules for the same
three frequency values are also shown in Fig. 1j-l. It
can be seen that in the transition region, the correla-
tion between the nodes inside and outside the modules
take different mean values and the two distributions are
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Figure 4: Hierarchical modular network with
distance-dependent time delays. (a) A typical
graph with hierarchical modular structure and hetero-
geneous coupling delays. (b) The adjacency matrix of
the network. The colors show the values of the time
delays for different levels of hierarchy ((τ1, τ2, τ3) =
(2, 4.3, 5.7)). (c) The hierarchical clustering dendro-
gram corresponding to a network with N = 100 nodes
and 2 levels of hierarchy with 2 and 4 clusters on each
level. (d) The time average of global and local order
parameters of clusters in level 1 and 2 versus ν0 at cou-
plings 0.1 and 0.5, for connection matrix of (b). The
hatched areas give an estimate of the boundary of inter-
mediate state for each level. (e) The NMI measurement
using the structural modules in the first and second lev-
els for K = 0.1. (f-i) The correlation matrices (C’s) for
K = 0.1 and different ν0 = (16, 48, 107, 145) Hz. The
results were obtained by averaging over 50 different re-
alizations of network and initial phases.

slightly distinct. So in principle, it was possible to infer
the modular structure of the network from the corre-
lation matrix. To this end we extracted the functional
network by binarizing the correlation matrix and eval-
uated the similarity between functional and structural
networks, using the similarity measure NMI (see Meth-
ods). It can be seen in Fig. 1f that in the transition
region, the two networks show a moderate level of sim-
ilarity. The main constraint is that the threshold for
the binarizing the correlation matrix should be chosen
with care, for a suitable assignment of the functional
link between the pairs inside and outside the modules.
In the following, we will show that when the delays are
distance-dependent, this constraint is relaxed and the
modular structure has a more apparent effect on the
functional network.

To explore the effect of distance-dependent delays, as
the simplest exemplary network we considered a modu-
lar network with a bimodal distribution of delays, where
the inter-module delays were greater than those for
intra-modules (Fig. 2). The other parameters were the
same as those of Fig. 1.

The global and the local order parameters have been
shown in Fig. 2d-e. We observe that increasing the fre-
quency, over a wide region strong synchrony is observed
within the modules, while global synchrony has taken
a small value. We note that compared to the homo-
geneous delay case, here this region is much wider and
the distinction between local and the global order pa-
rameters is quite bolder. The correlation matrices are
shown in three panels of Fig. 2g-i and the correspond-
ing distribution of the correlation of the pairs inside
and outside modules Fig. 2j-l, indicate that compared
to the homogeneous delay case, correlation across local
and long-range connections are much more different. In
particular, pairs in different modules show a negative
correlation, indicative of anti-phase like dynamics.

The distinction between local and long-range correla-
tion, in this case, suggests a closer correspondence be-
tween the structural and functional networks in the case
of heterogeneous (distance-dependent) delays. To show
this the binarized functional network was extracted
from the correlation matrix and the similarity between
the functional and structural connectivity was assessed
using NMI similarity measure. We note that with het-
erogeneous delays, the results are independent of the
choice of the threshold for extraction of the functional
network from the correlation matrix, due to the well-
separated distribution of the correlation, inside and be-
tween the modules. The results presented in Fig. 2f
show that the range of frequencies over which the net-
work structure and dynamics show similarity, gets wider
and over this range the modular structure has a more
clear reflection in the functional network, i.e., the NMI
similarity index has a higher value compared to the
previous ones with homogeneous delays (Fig. 2f). We
also observe that the more differentiated the delays, the
transition region widens and appears at lower natural
frequency values (Fig. 2c).

To further clarify, and for a better comparison of the
dynamics of the network with the homogeneous and
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heterogeneous delays, we have shown the time course of
the phases and instantaneous Kuramoto order param-
eter for three different frequency values, corresponding
to a coherent, incoherent, and the transition region for
unimodal and bimodal delay distributions in Fig. 3. In
the case of the unimodal delay distribution illustrated in
Fig. 3a-c, in the transition region, a high (but not per-
fect) coherence is visible within the modules, while the
three modules evolve out of phase. Different modules
are not phase-locked and the phase difference between
the modules is not fixed, leading to a time-dependent
global order parameter Fig. 3b. Out of the transition
region, the whole network is either synchronized Fig. 3a
or desynchronized Fig. 3c.

The configuration of the phases in the three regimes
with bimodal delay distribution illustrated in Fig. 3d-f
shows that in this case, in the transition region strong
synchrony is again found within the modules, while the
three modules are phase-locked at the constant phase
difference 2π/3. Therefore, while the synchronization
in the modules is almost perfect, the fixed phase dif-
ference between the modules leads to a very low cor-
relation between the modules and low global order pa-
rameter. These differences (compared to the unimodal
delay distribution) lead to better separation of the cor-
relation inside and between the modules in the case of
distance-dependent delays.

As discussed in the theoretical background, the con-
nection between a pair of oscillators with a given de-
lay might be attractive or repulsive depending on the
frequency, leading to in-phase or anti-phase locking, re-
spectively (Ermentrout and Kopell, 1998; Deco et al.,
2009; Sadeghi and Valizadeh, 2014). We distinguish two
different mechanisms that can lead to the difference in
synchrony level within and between the modules. In
a modular network, because of the denser connectiv-
ity within the modules, the effective coupling, which
is determined by the connection probability multiplied
by the individual connection strength, is stronger in-
side the modules and the degree of the stability of
the synchrony is different within and between mod-
ules. This means that the intra-module connection can
lead to a stronger locking than the inter-module connec-
tions. In addition, different delays for intra and inter-
module connections can result in a different (repulsive-
attractive) nature of the individual links. Since the
inter-module links have longer delays, they become re-
pulsive for the lower frequency values, which makes it
possible to lock the phases between the modules at the
maximum possible phase difference, 2π divided by the
number of modules (in the case of similar modules and
the small number of modules). Although, the phase
difference between the modules changes with the num-
ber of modules, a high local synchronization (with a
small global order parameter) is obtained in this re-
gion. In summary, although high coherence and low
coherence within and between modules are found in
both uni- and bimodal delay distributions, different ar-
guments may explain two cases. In homogeneous delay
network, the lower connectivity between the modules
leads to a lower correlation between the nodes in dif-

ferent modules in the transition region while for a bi-
modal delay distribution, the inter-module connections
become desynchronizing in a range of frequency over
which local connections are synchronizing. As a result,
in the latter case, the level of correlation between the
modules is much different than the correlation inside
the modules, and the functional connectivity can more
apparently reveal the underlying modular structure.

We also examined how the above results are consis-
tent with respect to the changes in the different param-
eters of the network. This was an important question
since the brain networks suffer from a substantial het-
erogeneity in the parameters. The results are presented
in the supplementary figures (from S1 to S4). In gen-
eral, the main result was valid, i.e., in all cases, the
network transited from a globally synchronous state to
an asynchronous state through a wide transition region
with local synchrony, where the functional network was
similar to the structural modular network. Still some
effects were observed which are worth to be noted. In
the figures S1 to S4 of the supplementary file we have
shown how heterogeneity in the size of modules, pres-
ence of overlap between the modules, and heterogeneity
in the delays inside and outside the modules can affect
the dynamics of the modular networks. Interestingly,
in all the cases a consistent phase relation between the
modules no more existed in the transition region. This
led to a time-dependent global order parameter and rel-
atively smaller similarity between functional and struc-
tural networks. As we will see below all of these effects
can be relevant in the study of the dynamics of the brain
network.

Hierarchical networks with distance-
dependent delays

Brain networks show a modular structure in several hi-
erarchical spatial scales (Zhou et al., 2006; Hagmann
et al., 2008). As an advancement towards the real brain
network, we applied the same analysis to the networks
with more levels of structural hierarchy. Figure 4a-b
shows the hierarchical network with three levels, con-
structed with (m0 = 1, n0 = 25, P1 = 0.9, q = 0.25
and α = 1). The dendrogram represents a hierarchical
decomposition of the network which was generated by
applying Ward’s agglomerative hierarchical cluster al-
gorithm implemented in SciPy (Murtagh and Legendre,
2014; Oliphant, 2007). We considered only distance-
dependent delays, chosen from a trimodal distribution
where the delays increased with the connection level in
the hierarchy. In this case, the globally coherent and
fully incoherent states were separated in the parameter
space by an intermediate region with local synchrony.
Figure 4d shows the global order parameter and the
local order parameters calculated over the modules in
the two finer spatial scales. We observe that increas-
ing frequency, first global synchrony is lost due to the
decoherence of the two modules comprising the whole
network, and then the synchrony within these modules
is lost at larger frequencies since the modules in the
finer spatial scale desynchronized. This was in accor-
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Figure 5: Dynamics of hierarchical networks with distance-dependent delays. The dynamics of the
clusters for a hierarchical modular network at different frequencies is shown. (Upper panel) The global syn-
chrony level (black) and the cluster synchrony levels (colored curves). (Middle panel) The time evolution of
phase difference between clusters in level 1 and 2. (Lower panel) Three snapshots of node phases at the given
times. The colors are matched to the clusters. The corresponding order parameters for each cluster (colored)
and the global order parameter (black) are represented inside the circles. a, b, c, and d show four phases of
globally coherent, cluster synchronized at second and first levels, and incoherent states, respectively.

dance with our expectation that longer the connections
(larger the delays), the synchrony is lost in smaller fre-
quencies.

The NMI similarity measure illustrated in Fig. 4e
shows the frequency ranges over which the functional
network reveals the modular structure of the network
in two levels. The second level (coarser scale) of the
hierarchy is revealed over lower frequencies, while the
first level (finer scale) became observable for higher fre-
quencies. This point was more clearly apparent in the
correlation matrices shown in the four panels of Fig 4f-i.

The phase dynamics of the nodes in the hierarchi-
cal network is illustrated in Fig. 5. For small values of
frequency, all nodes oscillate synchronously. When in-
creasing the frequency, first long-distance connections
become repulsive because of longer delays. This cause
the network to split into two subpopulations with anti-
phase dynamics. In each subpopulation, two modules
belonged to a single cluster of the second hierarchy
level (Fig. 5b). This is achieved in a frequency range
where the second structural hierarchy level is revealed
in the functional network. By further increasing the
frequency, the intermediate-range connections also be-
came repulsive and the four groups arrange their phases
equidistantly at approximately the phase difference π/2
(Fig. 5c). This is accompanied by the range over which
finer spatial scale of hierarchy appeared in the func-
tional connectivity. It is notable that the phases of
the two modules in a single cluster have a π phase dif-
ference because the repulsive connection between them

was stronger than those in different clusters.

Human connectome

In previous sections, it has been shown that the pres-
ence of distance-dependent delay of the interactions in
a modular (and hierarchical) complex network, leads to
a frequency-dependent pattern of synchrony in different
spatial scales. Due to the finite velocity of signals along
neurites and synaptic transmission times, interactions
in the nervous system occur with delay (Jirsa, 2004;
Nunez and Cutillo, 1995; Jirsa, 2009). In addition, the
structural connections of the brain show a modular or-
ganization at different spatial levels. To check the va-
lidity of the mechanism presented above in the realis-
tic brain networks, we run the model on the human
connectome network. To construct the human connec-
tivity matrix, we used human connectome data with
66 regions, downsampled from the high-resolution con-
nection matrix (Hagmann et al., 2008) (see Methods).
Fig. 6a shows the structural network, while Fig. 6b and
c show the weighted connectivity matrix and the dis-
tance between the nodes, respectively. Similar experi-
ments were also repeated on a higher resolution network
with 998 nodes (Fig. S7).

The parameters of the structural network are listed
in the table 1. The connectivity matrix showed two lev-
els of hierarchy where the whole brain was divided to
two modules (corresponding to two hemispheres) in the
coarser scale and to 5 modules in the finer scale. The
main difference with the conventional hierarchical net-
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work studied above was that one of the modules in the
finer scale is shared between two hemispheres (Fig. 6a).
This network is reminiscent of the rich club organiza-
tion with dense connectivity between a subset of nodes
in different modules (Van Den Heuvel and Sporns, 2011;
Harriger et al., 2012; Nigam et al., 2016; de Reus and
van den Heuvel, 2013; Collin et al., 2013). Another im-
portant difference was that despite to our convention
in the synthetic modular networks, the distance (and so
the delay) between two nodes in different modules is not
necessarily greater than those between the pairs inside
the modules (see Fig. S5b,d). In other words, distribu-
tion of the delays for different spatial scales are overlap-
ping, and inter-module connections include both short
and long-range connections. This was more apparent in
the second level of the hierarchy, i.e., the distribution
of the delays connecting two nodes in single hemisphere
almost spans the same range of delays compared with
that of inter-hemisphere connections. Generally say-
ing, all the parameter including the size of the modules,
weight, and the delay of the connections were hetero-
geneous and were only partially distinctive for different
spatial scales (Fig. S5 and table S1). This could affect
the results as was studied in synthetic networks and was
shown in the supplementary figures (Figs. S1-S4).

To run the model on the connectome, we assumed
that the communication delays are proportional to the
length of the fibers connecting the nodes and assigned a
constant average speed of 5m/s for signal propagation.
Under these assumptions, the delay matrix took values
between 0 and 40ms.

The global order parameter R and the local order
parameters corresponding to the other two hierarchi-
cal scales were shown in Fig. 6d. Compatible with the
previous results, when the delay increased, the system
moved from coherence to the incoherent state through
a relatively large transition region with partial syn-
chrony. This was in analogy with the results on mod-
ular (Fig. 1 and 2) and hierarchical (Fig. 4) networks,
however, the difference between the order parameters
at different scales was not as bold as that in the syn-
thetic networks, especially for the second level of the
hierarchy. Based on the theory, that was because the
delays are not completely differentiated for inside and
outside the modules and for two hierarchical scales (see
supplementary Fig. S5).

Functional network extracted from binarization of
the correlation matrices at different frequencies was
compared to the structural network using NMI mea-
sure, shown in (Fig. 6e). The similarity between the
functional network and the finer scale modular struc-
ture showed a peak of around ν0 ' 40 Hz in the low
gamma range is obtained (Pesaran et al., 2002; Hen-
rie and Shapley, 2005; Bauer et al., 2007; Uhlhaas and
Singer, 2006). But the second hierarchical state (cor-
responding to two hemispheres) showed a very low ap-
pearance in the functional network and almost at the
same frequency which the first level appeared. It is
worth to mention that in hierarchical networks we ex-
pected that the finer scale structure to reveal over
higher frequencies, given the delays in two levels have

distinct distributions. Here the distribution of the de-
lays was not distinctive for the second level and accord-
ingly, both the spatial levels appeared over the same
range of frequencies. The exemplar correlation matri-
ces presented in Fig. 6f indicate the appearance of the
finer scale modular structure in the correlation matrix
over the appropriate range of frequency. Similar results
were obtained for high-resolution human connectome
with 998 nodes, shown in supplementary Fig. S7.

Figure 7 contains more detailed information on the
dynamics of the nodes in different regimes. For low fre-
quencies, high values of global and local order param-
eters, indicate coherence within and between modules.
For large frequencies, coherence is lost at the local and
global levels. In the intermediate region, local-order
parameters have larger mean values and less temporal
variation than the global order parameter. The impor-
tant difference here, compared to the simulated mod-
ular network (Fig. 3), was that the modules are not
phase-locked to each other. This was the consequence
of the wide distribution of the different parameters of
the human connectome, where among them the distri-
bution of the delay is the most decisive parameter that
can destabilize perfect locking of the modules (see ta-
bles 1, S1). This was in agreement with our results
presented in the supplementary material showing that
heterogeneity destroys phase locking between the mod-
ules (Figs S1-S4).

Conclusions

Impact of the structure of the neuronal networks on
their dynamics has been extensively studied in recent
years (Sporns et al., 2000; Honey et al., 2007; Hermund-
stad et al., 2013), but many aspects are not fully un-
derstood. The purpose of the present study was to in-
vestigate the role of time-delayed interactions and the
modular structure in shaping the collective dynamics of
the brain networks. In particular, we were interested in
the role of distance-dependent delays on the correlation
between oscillatory activities of different brain regions.
To this end, we first simulated simple modular networks
of phase oscillators and explored the role of delayed in-
teractions. The main result was that the pattern of
the synchrony was dependent on the frequency of the
nodes. Increasing the frequency of the constituent oscil-
lating nodes, the networks switched from the coherent
to the incoherent state via a partially coherent state
in which a stronger coherence was seen between the
nodes within the modules compared to those in differ-
ent modules. In the case of homogeneous synchrony, the
transition region was narrow and the local and global
coherence had a small difference. When the delays were
distance-dependent, the transition region considerably
widened and the difference between the coherence inside
and outside the modules became quite significant: Al-
most perfect synchrony was maintained inside the mod-
ules while different modules dynamics was un- or anti-
correlated. Over the suitable range of frequency, i.e., in
this transition region, the modular structure of the net-
work was reflected in the functional network deduced
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index size ein eout D win wout 〈τin〉[ms] std(τin)[ms]
1 12 34 116 0.52 0.17 0.03 6.45 4.3
2 13 57 123 0.73 0.16 0.02 9 6.6
3 14 61 159 0.67 0.19 0.04 6.4 4.5
4 14 48 158 0.53 0.17 0.03 6.6 4.6
5 13 47 98 0.71 0.16 0.02 8.2 6.1

Table 1: Properties of each cluster in the human connectome with 66 nodes. Size shows the number of nodes,
ein(eout) is the number of edges in (between) the clusters, D is the density of edges and win(wout) is the
normalized sum of edge weights in (between) the clusters. 〈τin〉 and std(τin) are the mean value of delay and
standard deviation of delays, respectively.
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Figure 6: The human cortex. (a) The graph repre-
sentation of the human cortex. The colors distinguish 5
communities. (b) The connection strength matrix, the
color-bar has log10 scale. The weights were normalized
so that 0 ≤Wij ≤ 1. (c) The distance between regions
given as the average length of the fibers connecting pair
of regions with log10 scale. (d) The time average of
global and local order parameters of clusters in level 1
and 2 versus ν0 at couplings K = 30. (e) The NMI
versus ν0 for K = 30. (f-h) The correlation matrices
(C’s) at the same coupling K = 30 and different ν0 =
(10, 46, 100) Hz. (i-k) The distribution of correlation
values corresponding to panel (f-h), respectively. The
results were obtained by averaging over 50 different sets
of initial phases.

by the binarization of the networks correlation matrix.
The similarity of the structural and functional network
was almost perfect over a wide frequency range if the
delays were picked from a bimodal distribution with two
distinct peaks for inter- and intra- module connections.

We also run the model on top of the human brain
connectivity matrix. It is known that the brain has a
modular multi-scale structure and the neural signals do
take a delay to be transmitted between any two nodes
of the neural network, due to the finite speed of the sig-
nals (Aston-Jones et al., 1985; Antic and Zecevic, 1995).
We observed that the modular structure can be revealed
by the correlation matrix in a range of frequencies, but
only a low (for coarser spatial scale) to moderate (for
finer spatial scale) level of similarity was observed be-
tween the structural and functional networks, consis-
tent with the previous results (Cabral et al., 2014). We
attributed these results to the several differences be-
tween our synthetic modular networks and the brain
network. One of the most important differences was
the presence of a subset of nodes in different modules
which are strongly connected together. This rich-club
population(Harriger et al., 2012; Nigam et al., 2016;
de Reus and van den Heuvel, 2013; Collin et al., 2013)
could maintain correlation between the modules for a
wider range of parameters. The next difference was that
the distribution of the delays in the connectome was
not quite distinctive for the links inside and outside the
modules and there was considerable overlap between
two sets of links. Moreover, heterogeneity in different
parameters of the brain network such as the size of the
modules, strength of the connections and connection
probability could affect the results. Our extensive sim-
ulations on the variations of the synthetic modular net-
works showed that these considerations can be indeed
an explanation for the observed results on connectome
and their differences with the results on synthetic mod-
ular networks.

Our results are also noteworthy for their applicabil-
ity to network inference in realistic networks. The first
is that our method, like many other methods, is based
on the transparency of the structure near the verge of
coherent state or in the transition region over which
partial synchrony can be observed in the collective dy-
namics (Villegas et al., 2014; Kaiser et al., 2007). Most
of the other methods for the network inference are based
on the varying an overall interaction strength to set the
network in the transition region (Cabral et al., 2012).
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Although the strength of the synaptic connections in
the brain changes due to the synaptic plasticity (Song
et al., 2000; Tsodyks et al., 1998), these changes are too
slow to explain the changes in the pattern of functional
interactions which can take place in a few milliseconds
(Biswal et al., 1995). Here we have shown that this
could be achieved by varying the frequency band, given
the connections bear non-zero delay. Notably, in case
that the delay of the connections was specific for dif-
ferent hierarchical levels, the modular structure of the
network became very apparently transparent in a wide
range of frequency, and there was no need for a pre-
cise adjustment of the parameters to infer the structure
from the functional network.

In the conventional models of synchronization, with-
out time delays, the synchronization properties are in-
dependent of the mean frequency of the nodes and are
simply determined by the connection strength and the
disparity of the natural frequencies (Kuramoto, 2012;
Acebrón et al., 2005). The presence of a delay intro-
duces a new time scale into the equations of the sys-
tem and makes them dependent on frequency (Yeung
and Strogatz, 1999; Esfahani et al., 2016). Indeed, the
interaction can force the nodes to an in-phase or an
anti-phase state, depending on the delay and oscilla-
tion frequency (Wu and Dhamala, 2018; Li and Zhou,
2011). When the links have different delays, the identi-
fication of different links in the network can be different
at a given frequency and it is possible to engage and dis-
engage different nodes in the network in coherent com-
munities with adjusting the baseline frequency. In this
way the present study proposes that the heterogeneous
delays play a decisive role in the state-dependent pat-
tern of the coherence in the brain (Hutchison et al.,
2013) and the flexible pattern of effective communi-
cation between the brain regions (Friston, 2011; Pariz
et al., 2018).
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tions coordinate amygdalo-rhinal interactions during
learning. Journal of Neuroscience, 27(35):9369–9379,
2007.

Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F.,
Moore, T. M., Shinohara, R. T., Kahn, A. E., Van-
dekar, S. N., Rupert, P. E., Quarmley, M., et al. Mod-
ular segregation of structural brain networks sup-
ports the development of executive function in youth.
Current Biology, 27(11):1561–1572, 2017.

Betzel, R. F., Fukushima, M., He, Y., Zuo, X.-N.,
and Sporns, O. Dynamic fluctuations coincide with
periods of high and low modularity in resting-state
functional brain networks. NeuroImage, 127:287–297,
2016.

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and
Hyde, J. S. Functional connectivity in the mo-
tor cortex of resting human brain using echo-planar
mri. Magnetic resonance in medicine, 34(4):537–541,
1995.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and
Lefebvre, E. Fast unfolding of communities in large

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/754622doi: bioRxiv preprint 

https://doi.org/10.1101/754622
http://creativecommons.org/licenses/by-nc-nd/4.0/


networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008.

Cabral, J., Hugues, E., Sporns, O., and Deco, G. Role of
local network oscillations in resting-state functional
connectivity. Neuroimage, 57(1):130–139, 2011.

Cabral, J., Hugues, E., Kringelbach, M. L., and Deco,
G. Modeling the outcome of structural disconnection
on resting-state functional connectivity. Neuroimage,
62(3):1342–1353, 2012.

Cabral, J., Luckhoo, H., Woolrich, M., Joensson, M.,
Mohseni, H., Baker, A., Kringelbach, M. L., and
Deco, G. Exploring mechanisms of spontaneous func-
tional connectivity in meg: how delayed network in-
teractions lead to structured amplitude envelopes of
band-pass filtered oscillations. Neuroimage, 90:423–
435, 2014.

Cohen, J. R. and D’Esposito, M. The segregation and
integration of distinct brain networks and their re-
lationship to cognition. Journal of Neuroscience, 36
(48):12083–12094, 2016.

Collin, G., Sporns, O., Mandl, R. C., and van den
Heuvel, M. P. Structural and functional aspects re-
lating to cost and benefit of rich club organization
in the human cerebral cortex. Cerebral cortex, 24(9):
2258–2267, 2013.

Csardi, G. and Nepusz, T. The igraph software package
for complex network research. InterJournal, Complex
Systems, 1695(5):1–9, 2006.

Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A.
Comparing community structure identification. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2005(09):P09008, 2005.

de Reus, M. A. and van den Heuvel, M. P. Rich club or-
ganization and intermodule communication in the cat
connectome. Journal of Neuroscience, 33(32):12929–
12939, 2013.

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and
Kotter, R. Key role of coupling, delay, and noise in
resting brain fluctuations. Proceedings of the National
Academy of Sciences, 106(25):10302–10307, 2009.

Dhamala, M., Jirsa, V. K., and Ding, M. Enhancement
of neural synchrony by time delay. Physical review
letters, 92(7):074104, 2004.

Ermentrout, G. B. and Kopell, N. Fine structure of
neural spiking and synchronization in the presence
of conduction delays. Proceedings of the National
Academy of Sciences, 95(3):1259–1264, 1998.

Esfahani, Z. G., Gollo, L. L., and Valizadeh,
A. Stimulus-dependent synchronization in delayed-
coupled neuronal networks. Scientific reports, 6:
23471, 2016.

Esfahani, Z. G. and Valizadeh, A. Zero-lag synchroniza-
tion despite inhomogeneities in a relay system. PLoS
ONE, 9(12), 2014.

Flunkert, V. Delay-Coupled Complex Systems: And
Applications to Lasers. Springer Science & Business
Media, 2011.

Fortunato, S. and Hric, D. Community detection in
networks: A user guide. Physics reports, 659:1–44,
2016.

Fries, P. A mechanism for cognitive dynamics: neuronal
communication through neuronal coherence. Trends
in cognitive sciences, 9(10):474–480, 2005.

Fries, P. Rhythms for cognition: communication
through coherence. Neuron, 88(1):220–235, 2015.

Friston, K. J. Functional and effective connectivity: a
review. Brain connectivity, 1(1):13–36, 2011.

Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., and
Jirsa, V. K. Cortical network dynamics with time
delays reveals functional connectivity in the resting
brain. Cognitive Neurodynamics, 2(2):115–120, 2008.

Girvan, M. and Newman, M. E. Community struc-
ture in social and biological networks. Proceedings of
the national academy of sciences, 99(12):7821–7826,
2002.

Gray, C. M. and Singer, W. Stimulus-specific neuronal
oscillations in orientation columns of cat visual cor-
tex. Proceedings of the National Academy of Sciences,
86(5):1698–1702, 1989.

Grenier, F., Timofeev, I., and Steriade, M. Focal syn-
chronization of ripples (80–200 hz) in neocortex and
their neuronal correlates. Journal of neurophysiology,
86(4):1884–1898, 2001.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R.,
Honey, C. J., Wedeen, V. J., and Sporns, O. Mapping
the structural core of human cerebral cortex. PLoS
biology, 6(7):e159, 2008.

Harriger, L., Van Den Heuvel, M. P., and Sporns, O.
Rich club organization of macaque cerebral cortex
and its role in network communication. PloS one, 7
(9):e46497, 2012.

Henrie, J. A. and Shapley, R. Lfp power spectra in v1
cortex: the graded effect of stimulus contrast. Jour-
nal of neurophysiology, 94(1):479–490, 2005.

Hermundstad, A. M., Bassett, D. S., Brown, K. S.,
Aminoff, E. M., Clewett, D., Freeman, S., Frithsen,
A., Johnson, A., Tipper, C. M., Miller, M. B., et al.
Structural foundations of resting-state and task-
based functional connectivity in the human brain.
Proceedings of the National Academy of Sciences, 110
(15):6169–6174, 2013.

Honey, C. J., Kötter, R., Breakspear, M., and Sporns,
O. Network structure of cerebral cortex shapes func-
tional connectivity on multiple time scales. Proceed-
ings of the National Academy of Sciences, 104(24):
10240–10245, 2007.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/754622doi: bioRxiv preprint 

https://doi.org/10.1101/754622
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hutchison, R. M., Womelsdorf, T., Allen, E. A.,
Bandettini, P. A., Calhoun, V. D., Corbetta, M.,
Della Penna, S., Duyn, J. H., Glover, G. H.,
Gonzalez-Castillo, J., et al. Dynamic functional con-
nectivity: promise, issues, and interpretations. Neu-
roimage, 80:360–378, 2013.

Jirsa, V. K. Connectivity and dynamics of neural infor-
mation processing. Neuroinformatics, 2(2):183–204,
Jun 2004.

Jirsa, V. K. Neural field dynamics with local and global
connectivity and time delay. Philosophical Transac-
tions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 367(1891):
1131–1143, 2009.

Kaiser, M., Goerner, M., and Hilgetag, C. C. Crit-
icality of spreading dynamics in hierarchical cluster
networks without inhibition. New Journal of Physics,
9(5):110, 2007.

Kim, S., Park, S. H., and Ryu, C. S. Multistability in
Coupled Oscillator Systems with Time Delay. Phys-
ical Review Letters, 79(15):2911–2914, oct 1997.

Kuramoto, Y. Chemical oscillations, waves, and
turbulence. Chemistry Series. Dover Publications,
2003. ISBN 978-0-486-42881-9. originally published:
Springer Berlin, New York, Heidelberg, 1984.

Kuramoto, Y. Chemical oscillations, waves, and turbu-
lence, volume 19. Springer Science & Business Media,
2012.

Lee, W. S., Ott, E., and Antonsen, T. M. Large coupled
oscillator systems with heterogeneous interaction de-
lays. Physical Review Letters, 103(4):4–7, 2009.

Li, D. and Zhou, C. Organization of anti-phase syn-
chronization pattern in neural networks: what are
the key factors? Frontiers in systems neuroscience,
5:100, 2011.

Lord, L.-D., Stevner, A. B., Deco, G., and Kringelbach,
M. L. Understanding principles of integration and
segregation using whole-brain computational connec-
tomics: implications for neuropsychiatric disorders.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
375(2096):20160283, 2017.

Meunier, D., Lambiotte, R., and Bullmore, E. T. Mod-
ular and hierarchically modular organization of brain
networks. Frontiers in neuroscience, 4:200, 2010.
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