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Abstract 25 

High-density markers discovered in large size samples are essential for mapping complex traits 26 

at the gene-level resolution for agricultural livestock and crops. However, the unavailability of 27 

large reference panels and array designs for a target population of agricultural species limits the 28 

improvement of array-based genotype imputation. Recent studies showed very low coverage 29 

sequencing (LCS) of a large number of individuals is a cost-effective approach to discover 30 

variations in much greater detail in association studies. Here, we performed cohort-wide whole-31 

genome sequencing at an average depth of 0.73× and identified more than 11.3 M SNPs. We 32 

also evaluated the data set and performed genome-wide association analysis (GWAS) in 2885 33 

Duroc boars. We compared two different pipelines and selected a proper method 34 

(BaseVar/STITCH) for LCS analyses and determined that sequencing of 1000 individuals with 35 

0.2× depth is enough for identifying SNPs with high accuracy in this population. Of the seven 36 

association signals derived from the genome-wide association analysis of the LCS variants, 37 

which were associated with four economic traits, we found two QTLs with narrow intervals 38 

were possibly responsible for the teat number and back fat thickness traits and identified 7 39 

missense variants in a single sequencing step. This strategy (BaseVar/STITCH) is generally 40 

applicable to any populations and any species which have no suitable reference panels. These 41 

findings show that the LCS strategy is a proper approach for the construction of new genetic 42 

resources to facilitate genome-wide association studies, fine mapping of QTLs, and genomic 43 

selection, and implicate that it can be widely used for agricultural animal breeding in the future. 44 

  45 
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Background 46 

Genome-wide association studies (GWASs) have generated thousands of genetic variants 47 

associated with complex traits in human and agricultural species [1, 2]. The mapping resolution 48 

lies on the density of genetic markers which perceive linkage disequilibrium (LD) in 49 

sufficiently large populations [3, 4]. Several large-scale whole-genome sequencing projects 50 

have been completed, [5] which were designed to identify the underlying mechanisms that drive 51 

hereditary diseases in human and genomic selection in the breeding of agricultural species [6-52 

8]. Despite the declining cost of sequencing, it is still difficult to accomplish the desired whole-53 

genome sequencing of every object in a large cohort. In this scenario, imputation-based 54 

strategies, which impute low-density panels to higher densities, offer an alternative to 55 

systematic genotyping or sequencing [9, 10]. To date, array-based genotype imputation has 56 

been widely used in agricultural species [11, 12]. The imputation accuracy of this strategy 57 

crucially depends on the reference panel sizes and genetic distances from the target population. 58 

However, the unavailability of large reference panels and array designs for target populations 59 

in agricultural species limits the improvement of array-based genotype imputation [13, 14]. 60 

Inaccurate imputations influence the results of follow-up analyses, such as genome-wide 61 

association studies (GWAS) and genomic selection (GS). 62 

In the recently-developed methods, low-coverage sequencing (LCS) of a large cohort has been 63 

proposed to be more informative than sequencing fewer individuals at high coverage [15-17]. 64 

Sample sizes and haplotype diversity could be more critical than sequencing depths in 65 

determining genotype accuracy of most segregating sites and in increasing the power of 66 

association studies. Overall, LCS has been proven to have higher power for trait mapping 67 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2019. ; https://doi.org/10.1101/754671doi: bioRxiv preprint 

https://doi.org/10.1101/754671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

compared to the array-based genotyping method in human [18]. To date, LCS-based genotype 68 

imputation has been employed in many studies using various populations and genotyping 69 

algorithms [19-23]. Especially, the STITCH imputation algorithm overcomes the barrier of the 70 

lack of good reference panels in non-human species and is applicable even in studies with 71 

extremely low sequencing depths [19, 24]. This is a promising approach for agricultural animals 72 

without large reference panels in the areas of functional genetic mapping and genomic breeding, 73 

but there is no such report yet. 74 

In this study, we describe a cost- and time-efficient low-coverage sequencing method to obtain 75 

high-density SNP markers in a large Duroc population [25]. We used the LCS data to demonstrate 76 

genotyping and imputation can be inferred with high accuracy in nucleus herds using the 77 

BaseVar/STITCH method, allowing further genome-wide association and fine-mapping 78 

analyses on multiple traits with high resolution. The LCS strategy provides a powerful way for 79 

further exploration of functional genes in agricultural animal breeding. 80 

Results 81 

Samples and phenotypes 82 

We choose 2,885 Duroc boars provided by Guangdong Wen’s Foodstuff Group (Guangdong, 83 

China) as the study subjects, which were the same samples in the study by Tan et al. [25], and 84 

all the pigs were managed on a single nucleus farm. We obtained measurements of four 85 

phenotypes with different heritabilities, including back fat thickness at 100 kg (BF), loin muscle 86 

area at 100 kg (LMA), lean meat percentage at 100 kg (LMP), and teat number (TN). The 87 

estimates of genomic narrow-sense heritability were 0.37±0.05, 0.41±0.05, 0.42±0.06 and 88 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2019. ; https://doi.org/10.1101/754671doi: bioRxiv preprint 

https://doi.org/10.1101/754671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 
 

0.37±0.05, respectively. The phenotypic values followed a near bell-shaped distribution (Figure 89 

S1 and Table S1). 90 

Genome sequencing and data acquisition 91 

A Tn5-based protocol was used to prepare sequencing libraries of each pig at low cost (reagent 92 

cost: 2.60 $/library) as described in the Materials and Methods. At the beginning, the libraries 93 

were sequenced on an Illumina (PE 150) (192 libraries on 2 lanes) or a BGI platform (PE 100) 94 

(84 libraries on one lane), and the sequencing depths were 0.40±0.05×/pig for one lane and 95 

0.45±0.06×/pig for the other lane on the Illumina platform and 0.66±0.16×/pig on the BGI 96 

platform. The results generated by the BGI platform had lower PCR duplicates (2.23%), higher 97 

good index reads (97.10%), and higher genome coverage (98.55%) than the Illumina dataset, 98 

which had 10.82% of PCR duplicates, 93.64% of good index reads, and 98.50% of genome 99 

coverage. The high PCR duplicates would cause a greater number of useless data, leading to a 100 

lower depth for each individual pig. Therefore, the remaining samples were all sequenced on 101 

the BGI MGISEQ-2000 platform (96 samples/2 lanes). Overall, the total output of the 2869 102 

boars approached 5.32 TB, and the majority (96.74%) of reads were successfully mapped to the 103 

pig reference genome Sscrofa11.1. Each animal was sequenced at an average of depth of 104 

0.73±0.17×, and all the samples had lower levels of PCR duplicates on the BGI platform 105 

(2.60±0.08%). Moreover, we also re-sequenced 37 Duroc boars (the core boars of this 106 

population) at a high depth (average 10×/per sample), which were used for downstream 107 

accuracy evaluation. 108 

Processing pipeline of the low-coverage strategy and accuracy evaluation 109 
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Previous standard methods for joint SNP calling, such as those implemented in GATK and 110 

Samtools, were mainly used in high-depth resequencing methods. However, due to the low 111 

depth of each base, erroneous SNPs and genotypes could be called using such methods, 112 

especially for the GATK HaplotypeCaller algorithm [26]. In this study, we applied the BaseVar 113 

algorithm [27] to call SNP variants and estimate allele frequencies, and used STITCH [19] to 114 

impute SNPs. The initial screening of chromosome 18 (SSC18) in 1985 samples with BaseVar 115 

identified 506,452 and 414,160 bi-allelic candidate SNP sites before and after quality control, 116 

respectively. Next, we imputed these SNPs using STITCH, and 322,386 SNPs were retained 117 

with a high average call rate (98.89%±0.59%) after quality control. Meanwhile, we also used 118 

the GATK UnifiedGenotypeCaller algorithm (different from GATK HaplotypeCaller algorithm) 119 

and Beagle to analyze the data and compared the two results (Figure 1). The SNPs detected by 120 

BaseVar/STITCH were mostly included (99.32%) in the GATK set, which included 570,919 121 

sites and contained 320,199 SNPs overlapping with the BaseVar/STITCH dataset. To evaluate 122 

imputation accuracy, we compared the genotypic concordance (GC) and the allele dosages R2 123 

[28] between the genotypes called in the high coverage whole-genome sequencing analyses of 124 

the 37 core boars (high-coverage set) and the imputed genotypes in the low-coverage data (LC 125 

set). As a result, a relative high-quality genotype set was acquired with less time consumption 126 

when K=10 (Figure S2). We then compared the results generated from the GATK-Beagle and 127 

BaseVar-STITCH pipelines in parallel. Figure 2 shows that highly accurate genotypes were 128 

obtained using the BaseVar-STITCH pipeline (R 2=0.92 and GC=0.97) across all allele 129 

frequencies, which excelled far beyond the method using GATK and Beagle (R2=0.48 and 130 
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GC=0.71). Therefore, we conclude the BaseVar-STITCH pipeline is a suitable variant 131 

discovery and imputation method for the LCS strategy (Figure 1). 132 

Previous studies have demonstrated that sequencing a large number samples at a low depth 133 

generally provides a better representation of population genetic variations compared to 134 

sequencing a limited number of individuals at a higher depth. Here, using the proper detection 135 

and imputation techniques, we obtained SNP sets based on different depths and sample sizes. 136 

From Figure 2, we can see that almost all variants had high concordance and r2 values (R2>0.91 137 

and GC>0.96) at all depths when the sample size reached 1000. Even at 0.2× sequencing depth, 138 

the SNPs were still detected and imputed with high confidence. Therefore, we conclude that 139 

both common and low-frequency SNPs (MAF>0.01) can be obtained with high confidence 140 

using information from a larger population in the LC strategy, even when the sequencing depth 141 

is around 0.2-0.3×. 142 

Genetic variations and population structure 143 

After strict parameter filtering in the pipeline (BaseVar-STITCH, Figure 1), we identified 144 

11,348,460 SNPs in 2885 Duroc pigs with high genotype accuracy (R2=0.92 and GC=0.97), 145 

and the density is corresponding to 1 SNP per 200 bp in the pig genome (Table S2). The 146 

distribution of variants across the whole genome is mostly uniform, which reflects the high 147 

robustness of the LC method. Among all the discovered SNPs, 1,524,015 (accounting for 13.43% 148 

of all SNPs) are novel to the pig dbSNP database (data from NCBI:GCA_000003025.6 on Jun, 149 

2017). The majority of identified SNPs were located in intergenic regions (51.98%) and intronic 150 

regions (36.85%). The exonic regions contained 1.37% of SNPs, including 0.14% missense 151 

SNPs. 152 
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Interrogating the distribution of the 11.35 million variants in this Duroc population revealed 153 

several genetic characteristics. A principal component analysis (PCA) of all the pigs manifests 154 

that there was no distinct population stratification among the population (Figure S3). The 155 

genome-wide allele frequency spectrum was shown in Figure 3a. The average rate of 156 

heterozygosity is low, which is 0.31 of the genomes (Figure 3b), suggesting a strong selection 157 

for the pure-bred population. Based on the large population with high-density SNPs, we 158 

analyzed the LD decay. The result showed the average pairwise LD r2 decreased slowly along 159 

with the increase of distance between markers. The average r2 of the whole genome had been 160 

decreased to 0.14 when the distance reached 1 Mb, and slight differences in the average r2 161 

existed among 18 chromosomes (Figure 3c and Table S3). Overall, using such high-quality and 162 

high-density variants, we could obtain more powerful results from GWAS analyses.  163 

Identification of candidate genes by high-resolution mapping QTLs for TN and BF 164 

We identified a subset of 258,662 SNPs that tagged all other SNPs with MAF >0.1% at LD 165 

r2 >0.98 for the first-round GWAS (Table S2). Fine-mapping was performed within 10 Mb of 166 

the SNPs to reach 5% Bonferroni-corrected significance threshold genome-wide. Overall, we 167 

discovered a total of seven QTLs for the four traits at 5% significance threshold (Figure 4 and 168 

Figure S4). The widths of all QTLs' intervals ranged from 40 Kb to 3 Mb; the intervals of five 169 

QTLs were more than 2 Mb in width, which was strongly influenced by the local linkage 170 

disequilibrium level of this population. In the subsequent analyses, we focused on QTLs 171 

containing small numbers of genes (TN and BF’s QTLs on SSC7, Figure 4a and 4b). 172 

The QTL on SSC7 that has major effect on TN has been widely identified in several commercial 173 

breeding lines and hybrids. Our GWAS results show a strong QTL in the same region (Figure 174 
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4a). Fine-mapping discovered two narrow LD blocks (SSC7:97.56-97.65 Mb and 98.06-98.10 175 

Mb) containing four candidate genes (Figure 4c). Comparing with the previous results based 176 

on the GBS (genotyping-by-sequencing) method, we directly detected 7 missense variants in 177 

three genes (ABCD4, PROX2, and DLST). Besides, our result identified the locus of SSC7: 178 

30.24-30.52 Mb was significantly associated with BF. No missense mutation has been detected 179 

in this region, but some UTR variants within six genes may have great effects on this trait. All 180 

of these genes, GRM4, HMGA1, NUDT3, RPS10, PACSIN1, and SPDEF have been reported to 181 

be associated with one or multiple traits in pigs, but clear causal mutations still lack. Our results 182 

provide a starting point for further functional investigations.  183 

Discussion 184 

To our knowledge, we generated the largest WGS genotyping data set of Duroc population so 185 

far, which contains 11 million markers from genotyping 2885 pigs. We expanded the candidate 186 

causal mutations for the TN and BF growth-related traits of pigs and demonstrated the efficacy 187 

of genetic fine-mapping utilizing low-coverage sequencing in animal populations with 188 

unavailable reference panels. This method is expected to have widespread usages in genome-189 

wide association studies, fine mapping of QTLs, and genomic selection. 190 

This study identified an optimal design, taking into account the number of samples, sequencing 191 

depth, and imputation algorithm. Two critical data can be referenced for future research on 192 

animals without large reference panels: the BaseVar-STITCH pipeline allows the GC higher 193 

than 0.96 when the sample size of 1000 and the sequencing depth of 0.2× were reached, or 194 

when the sample size of 500 and the sequencing depth of 0.5× were reached. The GC values 195 

under both conditions are significantly higher than other studies of array-based genotype 196 
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imputation. We also found that the genotype accuracy is more sensitive to sample sizes than 197 

sequencing depths. In other words, the results demonstrated low-coverage designs are more 198 

powerful than deep sequencing of fewer individuals for animal sequencing studies. 199 

The QTL region on SSC7, which was identified in the current study, has also been reported to 200 

be associated with TN, the number of vertebrae (NVE), or the number of ribs by GWASs [25, 201 

29-31]. Vertebrae develop from the somites, whose ventral elongation also determines the 202 

correct dorsoventral position of mammary epithelium along the flank [32]. Thus, somites may 203 

be the progenitor cells of vertebrae, ribs, and mammary glands, and the variations in the genes 204 

downstream of the developmental cascade for the formation of the mammary gland are most 205 

likely responsible for the QTL we detected for TN in the GWAS [33]. It is worth noting that 206 

five missense variants are discovered in PROX2, which is one of the vertebrate homologs of 207 

Drosophila melanogaster homeodomain-containing protein Prospero, and may be involved in 208 

the determination of cell fate and the establishment of the body plan [34]. We suggest these 209 

missense mutations may be the causal variants for the phenotype, although functional studies 210 

are needed to validate this hypothesis. For the QTL associated with BF, we found three UTR 211 

variants located in HMGA1. HMGA1 is a promising candidate gene associated with growth, 212 

carcass, organ weights, fat metabolism, as it has been reported to involve in a variety of genetic 213 

pathways regulating cell growth and differentiation, glucose uptake, and white and brown 214 

adipogenesis [35-39]. Overall, the QTLs with narrow intervals and a few candidate genes were 215 

identified, which emphasizes the potential of identifying new mutations in QTLs using the low-216 

coverage sequencing method in a single sequencing step. 217 
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Increasing the marker density was proposed to have the potential to improve the accuracy of 218 

genomic prediction for quantitative traits [40]. However, in recent studies, SNP chips were 219 

mostly used to build genetic relationship matrices [41, 42], which could not catch all 220 

recombination events in a given population. Here, the whole-genome low-coverage sequencing 221 

data gave the best accuracy of prediction, since most causal mutations that underlie a trait are 222 

expected to be included. Meanwhile, the haplotype reference panel can accommodate new 223 

haplotypes due to recombination at any time, thus improving the issue of the decrease of 224 

prediction accuracy over generations. Our data can cover the sites of various of SNP chips well 225 

because the genome coverage exceeds 98.36%, and it is competitive with arrays in terms of 226 

cost and SNP density. Besides, most researchers or breeders may concern more about the 227 

efficiency of the method. The development of application servers brings hope to solve the time-228 

consuming computational issue of genotyping using the whole genome sequencing data. In this 229 

study, we applied GTX, which is an FPGA-based hardware accelerator platform [43], to do the 230 

alignments, and all 3000 alignments were accomplished in two days. Then the genotyping and 231 

imputation could be achieved on the cluster server or even cloud server in a single day. 232 

Therefore, the accuracy and timeliness issue for genomic prediction could be all resolved in the 233 

near future. An alternative solution at present is that we can select different useful tag-SNPs to 234 

make ultra-low-density SNP chips for various traits with different genetic architectures using 235 

the high-density genetic map built by LC data, since all possible haplotypes were available in 236 

the haplotype database. Further, the cost could be reduced, and breeding could be achieved 237 

more efficiently. 238 

Methods 239 
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Ethics Statement 240 

All procedures involving animals in this study were carried out in accordance with the 241 

guidelines for the care and use of experimental animals established by the Ministry of Science 242 

and Technology of the People’s Republic of China (Approval Number: 2006-398). All the 243 

animal experiment protocols were approved by the Animal Welfare Committee of China 244 

Agricultural University (Permission Number: SKLAB-2014-04-02). 245 

Animals, phenotyping, and DNA Extraction 246 

The Duroc boars used for this study were provided by Guangdong Wen’s Foodstuff Group 247 

(Guangdong, China), which were born from September 2011 to September 2013. All pigs were 248 

managed on a single nucleus farm. The associated phenotype data used in this study included 249 

teat number (TN), back fat thickness at 100 kg (BF), loin muscle area at 100 kg (LMA), and 250 

lean meat percentage at 100 kg (LMP). The last three phenotypes were recorded when the 251 

weights of pigs reached 100 ± 5 Kg. The phenotype data of TN were acquired from Tan’s study, 252 

and BF, LMA, and ELMP were measured over the last three to four ribs using a b-ultrasound-253 

scan equipment (Aloka SSD-500). The phenotypic values of TN followed a near bell-shaped 254 

distribution, which is same as reported by Tan et al., and the data of other three phenotypes all 255 

nearly followed the normal distribution (Fig S1).  In addition, body weights were recorded at 256 

birth, and at the beginning (30 ± 5 Kg) and the end (100 ± 5 Kg) of the experiment. Genomic 257 

DNA was extracted from the ear tissue using a DNeasy Blood & Tissue Kit (Qiagen 69506), 258 

assessed using a NanoDrop, and checked in a 1% agarose gel. All the samples were quantified 259 

using a Qubit 2.0 Fluorometer, and then diluted to 40 ng/ml in 96-well plates. 260 

Tn5 Libraries generation and sequencing 261 
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Equal amounts of Tn5ME-A/Tn5MErev and Tn5ME-B/Tn5MErev were incubated at 72 ℃ for 262 

2 min, then were placed on ice immediately. Tn5 (Karolinska Institutet 171 77 Stockholm, 263 

Sweden) was loaded with the Tn5ME-A+rev and Tn5ME-B+rev in 2× Tn5 dialysis buffer at 264 

25℃ for 2 h. All linker oligonucleotides were same as the previous report [44]. 265 

Tagmentation were carried out at 55℃ for 10 minutes by mixing 4 μl 5×TAPS-MgCl2, 2 μl 266 

dimethylformamide (DMF) (Sigma Aldrich), 1 μl of the Tn5 that pre-diluted to 16.5 ng/μl, 50 267 

ng DNA, and nuclease-free water. The total volume of the reaction was 20 μl. Then 3.5 μl 0.2% 268 

SDS was added, and Tn5 was inactivated for another 10 min at 55℃. 269 

KAPA HiFi HotStart ReadyMix (Roche) was used for PCR amplification. The primers were 270 

designed for MGI sequencers, with the reverse primers contained 96 different index adaptors 271 

to distinguish individual library. The PCR program was as follows: 9 min at 72℃, 30 sec at 272 

98℃, and then 9 cycles of 30 sec at 98℃, 30 sec at 63℃, followed by 3 min at 72℃. The 273 

products were quantified by Qubit Fluorometric Quantitation (Invitrogen), then the groups of 274 

96 indexed samples were pooled with equal amounts. 275 

Size-selection was performed using the AMPure XP beads (Beckmann), with the left side size 276 

selection ratio was 0.55×, and the right was 0.1×. The final libraries were sequenced on 2 lanes 277 

of MGISEQ-2000 to generate 2×100bp paired-end reads or on 1 lane of BGISEQ-500 to 278 

generate 2×100 bp paired-end reads. 279 

High depth sequencing of 37 boars 280 

We sequenced 37 out of the total 1985 pigs using the Hiseq X Ten system at a high depth of 281 

10×. GTX by Genetalks company, a commercially available FPGA-based hardware accelerator 282 

platform, was used in this study for both mapping clean reads to the Sscrofa11.1 reference 283 
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genome (ftp://ftp.ensembl.org/pub/release-97/fasta/sus_scrofa/dna/) and variant calling. The 284 

alignment process is accelerated by FPGA implementation of a parallel seed-and-extend 285 

approach based on the Smith-Waterman algorithm, while the variant calling process is 286 

accelerated by FPGA implementation of GATK HaplotypeCaller (PairHMM). GATK multi-287 

sample best practice [45] was used to call and genotype SNPs for the 37 pigs, and the SNPs 288 

were hard filtered with a relatively strict option “QD < 10.0 || ReadPosRankSum < -8.0 || FS > 289 

10.0 || MQ<40.0”. The average running time from a fastq file to a gvcf file was about 3 min for 290 

each sample in this study. 291 

Low coverage sequencing data analyses 292 

Sequencing reads from the low coverage samples were mapped to Sscrofa11.1 reference 293 

genome using GTX-align, which includes a step of marking PCR duplicates. The indel 294 

realignment and base quality recalibration modules in GATK were applied to realign the reads 295 

around indel candidate loci and to recalibrate the base quality. Variant calling was done using 296 

the BaseVar and hard filtered with EAF >= 0.01 and the Depth that is greater than or equal to 297 

1.5 times InterQuartile Range. The detailed BaseVar algorithm to call SNP variants and to 298 

estimate allele frequency was described in a pevious report [27]. We used STITCH [19] to 299 

impute genotype probabilities for all individuals. The key parameter K (number of ancestral 300 

haplotypes) was decided based on the tests in SSC18. Results were filtered with an imputation 301 

info score > 0.4 and Hardy-Weinberg Equilibrium (HWE) p-value > 1e−6. Two validation 302 

actions were taken to calculate the accuracy of imputation. The first parameter is genotypic 303 

concordance (GC), which was calculated as the number of correctly-imputed genotypes divided 304 
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by total sites. Another parameter is allele dosages R2, which was described in a previous report 305 

[28]. The SNPEff program [46] was used to annotate the variants.  306 

Heritability estimation and Genome-wide association 307 

Heritability was estimated using a mixed model as the following: 308 

    y = Xbb + Za + Zc + e 309 

with Var(y) = ZAaZ’ơa
2 + Iơc

2 + Iơe
2, where Z is an incidence matrix allocating phenotypic 310 

observations to each animal; b is the vector of fixed year-month effects for BF, LMA, and 311 

ELMP; b also includes birth weight, the weights at the beginning and end of the test as 312 

covariance; Xb is the incidence matrix for b; a is the vector of additive values based on the 313 

pedigree information; c is the vector of random family effects; Aa is a pedigree-based additive 314 

relationship matrix; ơa
2 is the additive variance; ơc

2 is the variance of random family effects; 315 

and ơe
2 is the residual variance. Variance components for BF, LMA, and LMP were estimated 316 

by AIREMlF90 program, and by thrgibbs1f90 program for TN. Both programs were in the 317 

BLUPF90 package. The additive heritability was defined as: ha
2 = ơa

2 /(ơa
2 + ơc

2 + ơe
2). 318 

A subset of 258,662 SNPs that tagged all other SNPs with MAF >1% at LD r2 <0.98 and the 319 

call rate >95% were retained for genome-wide association analysis. A mixed linear model 320 

(MLM) approach was used for the genome-wide association analyses as implemented in the 321 

GCTA package (v1.24) [47]. The statistical model during analyses of TN included the year and 322 

season as discrete covariates. For BF, LMA, and ELMP, the year and season were included as 323 

discrete covariates, and birth weight, the weight at the beginning and end of the test were used 324 

as quantitative covariate. To correct multiple testing across the genome, a Bonferroni correction 325 
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was applied to compensate for the number of estimated independent markers from a PCA 326 

analysis and was performed as follows. A subset of SNPs that were in approximate linkage 327 

equilibrium with each other was obtained by removing one in each pair of SNPs if the LD was 328 

greater than 0.5 using the PLINK v1.07 ‘--indep-pairwise’ command [48]. The squared 329 

correlation coefficient (r2) between the genotypes was calculated using the vcftools ‘--geno-r2’ 330 

command [45]. Consequently, for our population, the genome-wide 1% significance threshold 331 

was determined as p-value < 3.47x10-7 (0.01/28,828), and a suggestive association was 332 

determined as 1.73 x10-6 (0.05/28,828). 333 
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 469 

Figure 1. The LCS study design. The flow chart summarizes the steps used to detect and 470 

impute SNPs, where the green block represents the pipeline for the LCS analysis (BaseVar-471 

STITCH). The data generated from the GATK-Beagle pipeline were compared with that of the 472 

BaseVar-STITCH pipeline, and the data generated from the high-coverage sequencing analyses 473 

were used to verify the above results. The BaseVar-STITCH pipeline was used in the further 474 

GWAS study. 475 
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 477 

Figure 2. Dosage R2 and genotypic concordance (%) values for different MAFs and 478 

sample sizes. (a) and (b) show the comparison of Dosage R2 and genotypic concordance values 479 

between the BaseVar/STITCH for LGS (blue) and the GTAK/Beagle (orange) pipelines, and 480 

(c) and (d) show the comparison of Dosage R2 and genotypic concordance values among 481 

different sequencing depths. 482 
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 484 

Figure 3. Sequencing diversity of the Duroc population. (a) Histogram of allele counts by 485 

each 1% MAF bin. (b) Histogram of genome-wide heterozygosity. (c) The extent of linkage 486 

disequilibrium (LD), in which the LD on chromosome 6 and 10 represent the highest and lowest 487 

levels among the whole genome respectively. 488 
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 491 

Figure 4. Manhattan plots and fine-mapping of total tit number (TN) and back fat 492 

thickness (BF). (a) and (b) depict the TN and BF association signals on the whole genome, in 493 

which the blue and red horizontal line represent the 0.05 (p < 1.73×10-6) and 0.01 (p < 3.46×10-494 

7) significant levels after Bonferroni correction. (c) Fine-mapping of TN using the entire set of 495 

SNPs, in which two isolated regions on chromosome 7 with the lengths of 90 Kb and 40 Kb 496 

were detected as QTLs. (d) Fine-mapping of BF using the entire set of SNPs, a narrow QTL 497 

with the length of 280 Kb on chromosome 7 was detected. 498 
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