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 18 

ABSTRACT 19 

Cell size varies during the cell cycle and in response to external stimuli. This requires the 20 

tight coordination, or “scaling”, of mRNA and protein quantities with the cell volume in order 21 

to maintain biomolecules concentrations and cell density. Evidence in cell populations and 22 

single cells indicates that scaling relies on the coordination of mRNA transcription rates with 23 

cell size. Here we use a combination of single-molecule fluorescence in situ hybridisation 24 

(smFISH), time-lapse microscopy and mathematical modelling in single fission yeast cells to 25 

uncover the precise molecular mechanisms that control transcription rates scaling with cell 26 

size. Linear scaling of mRNA quantities is apparent in single fission yeast cells during a 27 

normal cell cycle. Transcription rates of both constitutive and regulated genes scale with cell 28 

size without evidence for transcriptional bursting. Modelling and experimental data indicate 29 

that scaling relies on the coordination of RNAPII transcription initiation rates with cell size 30 

and that RNAPII is a limiting factor. We show using real-time quantitative imaging that size 31 

increase is accompanied by a rapid concentration independent recruitment of RNAPII onto 32 

chromatin. Finally, we find that in multinucleated cells, scaling is set at the level of single 33 

nuclei and not the entire cell, making the nucleus the transcriptional scaling unit. Integrating 34 

our observations in a mechanistic model of RNAPII mediated transcription, we propose that 35 

scaling of gene expression with cell size is the consequence of competition between genes 36 

for limiting RNAPII. 37 

38 
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 39 

INTRODUCTION 40 

Gene expression is coordinated with cell size in order to maintain biomolecule 41 

concentrations. Understanding the mechanisms that mediate this coordination, called 42 

hereafter “scaling”, is a fundamental and intriguing problem in cell biology [1,2]. Messenger 43 

RNAs (mRNA) and proteins are synthesised from the cell DNA genome, which is one of the 44 

few cellular components that do not scale with size. Because cell volume increases 45 

exponentially and mRNA half-lives are typically short, constant rates of mRNA or protein 46 

production cannot lead to gene expression scaling. Recent work, in yeast [3], animal [4,5] 47 

and plant cells [6] has shown that mRNA synthesis rates instead are coordinated globally 48 

with cell size and are a major mechanism of scaling. Conversely, mRNA degradation seems 49 

to be mostly unconnected to scaling [3,4,6], although evidence suggests that degradation 50 

rates are adjusted early after budding yeast asymmetric division [7] and when growth rate 51 

changes [8,9]. Scaling is pervasive and only few mRNAs are able to deviate from its 52 

regulation [10–12]. Interestingly, two of them have been found to participate in the control of 53 

size homeostasis [10,11]. 54 

What could be the molecular mechanism behind transcription scaling with cell size? For a 55 

gene with an active promoter mRNA numbers follow a Poisson distribution [13]. 56 

Transcription is however often discontinuous and periods of RNA synthesis or ‘bursts” 57 

alternate with periods of promoter inactivity [14]. Work in single mammalian cells has shown 58 

that scaling of mRNA numbers results from a coordination of the size of the transcription 59 

bursts with cell volume and not from their frequency [4]. This is compatible with the 60 

increased RNAPII occupancy observed genome-wide in large fission yeast cell cycle 61 

mutants [3]. This also indicates that the mechanism behind scaling may not be related to 62 

activation of transcription but rather to the efficiency of an active promoter. Critically, 63 

transcription is a complex process and is regulated at many levels including, RNAPII 64 

initiation, pause/release, elongation, and termination [15–18]. Which of these processes is 65 

coordinated with cell size to mediate scaling remains unclear.  66 

How could a complex set of molecular reactions such as transcription become more efficient 67 

as cell size increases? In an elegant experiment Padovan-Merhar and colleagues fused cells 68 

of small and large size and found that the number of mRNAs from a gene encoded in the 69 

small cell genome would increase in response to the large cell environment, however its 70 

concentration was almost halved. This suggests that scaling responds to both cell volume 71 

and DNA content [4]. This is consistent with the observation that the cell synthesis capacity 72 

is split between genome copies in diploid budding yeast cells [10]. Importantly, changes in 73 
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gene numbers, in the case of increased ploidy for instance, are associated with overall cell 74 

size increase in many organisms [1]. This indicates that the number of genes present in a 75 

cell is linked to its volume and number of macromolecules. This also suggests that the cell’s 76 

overall synthetic capacity could be limiting and have a determining role in setting its size 77 

[19]. It is therefore likely that scaling depends on a limiting factor involved in transcription but 78 

its identity and regulation with the cell volume is not known [19,20].  79 

In this study, we measured gene expression in over 20,000 single cells of the fission yeast 80 

Schizosaccharomyces pombe by single molecule in situ hybridisation (smFISH, Tables S1-81 

3) [21]. We combined these data with agent-based models of growing and dividing cells [22–82 

24], stochastic models of gene expression [13,25,26] and Bayesian inference [27–33] to 83 

investigate the quantitative parameters of gene expression that mediate scaling. This 84 

integrative approach enabled us to determine which part of the transcription process is 85 

scaling with cell size and which molecular event connects transcription with the cell volume. 86 

 87 

RESULTS 88 

Gene expression scaling is a single cell attribute of constitutive and inducible gene 89 

expression. 90 

We first confirmed that scaling of gene expression with cell size was an attribute of single 91 

fission yeast cells during rapid proliferation. To do this, we measured mRNA levels of 7 92 

constitutively expressed genes in wild-type haploids (wt), and in conditional mutants of the 93 

Wee1 (wee1-50) and Cdc25 (cdc25-22) cell cycle regulators by smFISH (Figure 1A, Table 94 

S1). At semi-permissive temperature, mutant cells divide at smaller and larger sizes than wt 95 

respectively (Figure S1A) [3]. Consistent with population microarray data, mean numbers of 96 

the 7 mRNAs measured in single cells scale with the average size of the three strains 97 

(Figure 1B) [3]. 98 

We then wondered whether scaling could be detected as cells elongate and progress 99 

through a normal cell cycle. The fission yeast elongation phase is restricted to G2. 100 

Confounding effects arising from changes in genome content during DNA replication are 101 

therefore unlikely. Using cell length as a measure of size (methods), we analysed 102 

expression of the rpb1 mRNA as a function of single cells’ sizes in wt, mutant and diploid 103 

cells and observed linear scaling within each genotype across a wide range of sizes (Figure 104 

1C and 1F). Linear scaling during the cell cycle was apparent for all the constitutive genes 105 

analysed in this study (Figure S1B-C). This indicates that gene expression scaling is not an 106 

artefact of mutations in the wee1 and cdc25 cell-cycle regulators. Moreover, the mutant data 107 
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demonstrate that gene expression scales over a dynamic range of sizes larger than that 108 

observed in wt cells. Together with earlier studies in cell populations this analysis 109 

establishes fission yeast as a powerful model system for studying scaling [3]. 110 

We next analysed the relation of scaling with ploidy using diploid cells. Diploids follow 111 

scaling parameters (slope, intercept) similar to smaller haploids (Figure 1C, 1F). 112 

Interestingly, for a given size, mRNA numbers in diploids and in cdc25-22 haploids were 113 

similar (Figure S1D-F). Moreover, when analysing 3 diploid strains bearing heterozygous 114 

deletions of single genes we observed significant linear scaling of the corresponding mRNA 115 

but decreased concentrations compared to both diploid and cdc25-22 cells. This suggests 116 

that scaling of single gene copies in fission yeast is coordinated with the cell genome content 117 

and that the machinery behind scaling may be limiting (Figure S1D-F).  118 

At the level of single genes, is scaling a property of constitutive expression or do genomes of 119 

larger cells have a globally higher gene expression potential? To answer this question, we 120 

analysed three mRNA that are induced during specific phases of the cell cycle (Figure 121 

S1G). All three mRNA showed stronger induction levels in larger cells when comparing wt 122 

with wee1-50 and cdc25-22 mutants (Figure 1D, 1G, S1I and S1J). This indicates that 123 

larger cells have an increased gene expression potential in order to support scaling of 124 

constitutive mRNA and inducible transcripts, which were not expressed in smaller cells at the 125 

beginning of the cycle. 126 

To investigate this further, we analysed the induction of two genes, which respond to acute 127 

changes in external conditions. The uracil regulated gene urg1 responds to changes in uracil 128 

concentration and sib1 to addition of 2,2-dipyridyl (DIP) [34,35]. Induction of the urg1 mRNA 129 

was heterogeneous and scaled with cell size across size mutants (Figure 1E, 1H, and S1H). 130 

The sib1 mRNA showed a much more homogeneous response which also showed clear 131 

scaling within and across cell types (Figure S1K). This indicates that higher gene 132 

expression capacity in larger cells supports scaling in response to unexpected changes in 133 

external conditions. Taken together, these data indicate that scaling is universal and does 134 

not depend on the mode of gene regulation. Scaling does not result from a passive 135 

accumulation of mRNA during the cell cycle but from a change in the cell gene expression 136 

capacity that is coordinated with cell size. 137 

 138 

Coupling of mRNA decay rates with cell size is not a mechanism of scaling 139 

Messenger RNA quantities are regulated at the level of transcription but also post-140 

transcriptionally through modulation of degradation rates [36]. Three studies have reported 141 
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that mRNA degradation rates are not regulated as a function of cell size in fission yeast, 142 

plant and mammalian cells [3,4,6]. To confirm these observations and extend them to single 143 

fission yeast cells, we analysed expression of 3 genes by smFISH after transcription 144 

inhibition with Thiolutin in wt, wee1-50, and cdc25-22 cells. Thiolutin has been shown to 145 

inhibit transcription in S. pombe efficiently (Figure S2A) [11]. We observed mRNA half-lives 146 

of around 30-40min for the rpb1 and rpb2 mRNAs consistent with previous observations 147 

(Figure S2B) [37]. In wee1-50 and cdc25-22 mutants both mRNAs showed half-lives similar 148 

to wt, consistent with an absence of scaling of mRNA degradations rates. We also measured 149 

mRNA half-lives as a function of the cell cycle using cells binned by size. This analysis did 150 

not show consistent positive or negative coordination of degradation kinetics with cell size 151 

(Figure S2B, left). The absence of scaling of mRNA degradation rates was further 152 

confirmed using an orthogonal promoter switch-off approach for the rbp1, rbp2 and rtp1 153 

genes (Figure S2B, right). Finally, as discussed in the next section mathematical modelling 154 

and inference do not support scaling of degradation rate. Overall, in agreement with previous 155 

studies, our analysis indicates that mRNA degradation is not a major mediator of scaling. 156 

 157 

Coupling of transcription rates to cell size and not burst frequency mediates scaling. 158 

We next explored the contribution of transcription rates to scaling using measurements of 159 

mRNA quantities and mathematical modelling. Using this combined approach allowed us to 160 

study dynamic transcription rates from static smFISH measurements of single cells. We 161 

developed agent-based models that incorporate the two-state model of gene expression 162 

inside growing and dividing cells, which are themselves described by phenomenological 163 

models of cell growth and size control (Figure 2A, methods). We used an Approximate 164 

Bayesian Computation (ABC) approach on cell size and smFISH measurements to infer 165 

mechanism of scaling. This inference approach determines the simplest model that captures 166 

the statistics of the experimental measurements and returns posteriors of the parameters 167 

and model probabilities for all models (methods). We used 2 classes of gene expression 168 

models that are the limiting cases of the two-state model shown in Figure 2A. The first class 169 

describes transcriptional bursts explicitly, while the second assumes only non-bursty 170 

transcription kinetics with a simple birth-death process that produces Poisson distributions 171 

(Figure 2A). Each class is in turn composed of two models the first assuming constant 172 

transcription rates during the cell cycle and the second assuming transcription rates that 173 

increase linearly (“scale”) with cell size (methods). 174 

We performed model selection between these four models on the smFISH data for 7 175 

constitutively expressed genes in the wt. This analysis generated two clear conclusions. 176 
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First, models assuming bursty transcription were strongly penalised and supported by small 177 

model probabilities (Figure 2B, compare proportion of blue and red colours). Second, 178 

among the Poisson models, the one assuming transcription scaling with size was preferred 179 

for all but one mRNA (rpb3 in Figure 2B, compare orange and dark red colours). From this 180 

we conclude that transcription rates of constitutively expressed genes in fission yeast are not 181 

bursty and scale with cell size. 182 

We then asked whether transcription regulated by the cell cycle or by external cues followed 183 

the same paradigm. We found that, as constitutively expressed genes, cell-cycle regulated 184 

mRNAs do not follow a bursty transcription dynamics (Figure 2B, middle). This indicates 185 

that transcription, even when regulated in defined sections of the cell cycle falls into the 186 

Poisson regime. In terms of scaling, model selection is, as for the constitutive case, in overall 187 

support of scaling of transcription rate with cell size (Figure 2B, middle). Messenger RNAs 188 

that respond to external stimuli showed a different picture. Model selection favoured the 189 

bursty model with support for burst size scaling. This could point to bursty transcription of 190 

inducible genes, to the presence of strong extrinsic noise, or to a scenario where cells 191 

respond heterogeneously to the external signals. 192 

In order to validate the model selection analysis, we generated simulations for all constitutive 193 

and cell-cycle regulated genes from Figure 2B, using models where transcription rates scale 194 

with cell size and follow a Poisson regime. This analysis reproduced quantitatively the mean 195 

and coefficient of variation (sd/mean, CV) of all experimental smFISH measurements, which 196 

illustrated the non-bursty nature of transcription for these genes further (Figure 2C). We 197 

then used the inferred parameters for the Poisson models to simulate gene expression of 198 

multiple genes in single cells and compared them to experimental data where 3 different 199 

mRNAs were measured in each cell (methods). This analysis suggests that most gene-to-200 

gene correlations in expression are explained by scaling of transcription rates with cell size 201 

and may not require extensive additional regulation (Figure 2D). However, our data also 202 

suggest that for some gene pairs (e.g. Rpb1-Rpb2), correlations can be explained better by 203 

including some additional extrinsic variability. 204 

We finally asked whether our modelling approach was also in support of a negligible role of 205 

mRNA degradation in scaling. We performed further model selection and simulation 206 

analyses on the transcription shut-off experiment from Figure S2B using models that 207 

consider different possible scalings of transcription and degradation rates (methods). This 208 

analysis shows that the model assuming transcriptional scaling with constant rates of mRNA 209 

degradation with cell size is overwhelmingly chosen (Figure 2E) and could capture 210 

experimental data quantitatively confirming our initial analysis (Figure S2B).  211 
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In summary, we show that, as in metazoans, scaling occurs through coordination of 212 

transcriptional rates with cell size in a rapidly growing unicellular organism. However, we find 213 

that transcription during the fission yeast rapid cell cycle is mainly Poissonian except during 214 

acute response to external changes where we detect signs of bursty expression. This is 215 

consistent with previous observation in the budding yeast Saccharomyces cerevisae [38]. 216 

Finally, we find that scaling of transcription rates explains most of the expression correlation 217 

of multiple mRNAs. 218 

 219 

Coordination of RNAPII initiation rates with cell size as the main mechanism of 220 

scaling. 221 

We then wondered which specific aspect of the transcription process was directly 222 

coordinated with cell size to mediate scaling. To investigate this and to confirm model 223 

predictions from Figure 2, we measured transcription rates experimentally. Single cells’ 224 

transcription rates can be estimated from smFISH images by measuring intensities of 225 

nuclear transcription sites [38]. As a model, we used probes directed against the 5’ region of 226 

the rbp1 mRNA. This probe design provides strong sensitivity for detection of nascent 227 

transcripts (Figure S3A, S3B). Transcription site intensities and cell size were overall 228 

positively correlated when comparing wt, wee1-50 and cdc25-22 cells confirming modelling 229 

results and previous observation in a metazoan cell line (Figure 3A, 3B, S3C) [4]. We then 230 

investigated the impact of increased ploidy on transcription rates scaling. For this we 231 

compared nascent site intensities of 4 mRNA in haploid cells with those of diploid strains. 232 

We used probes against the 5’ end of rpb1 as above and against three mRNA induced in 233 

specific phases of the cell cycle, since inducible expression increases the sensitivity of 234 

nascent site analysis. Intensities of individual transcription sites were similar between 235 

haploid and diploid cells (Figure 3C, green and yellow boxes). However, when considering 236 

the total intensity per cell, diploids showed increased rates and scaling was apparent again 237 

(Figure 3C, orange boxes). This indicates that the cell transcriptional capacity is limiting and 238 

distributed between the two gene copies of diploids. This was confirmed by analysis of the 239 

nascent intensity of the rbp1 mRNA in a heterozygous deletion strain which showed no 240 

increased rates in the remaining copy (Figure 3C). 241 

To investigate further the mechanism behind scaling of transcription rates, we designed an 242 

orthogonal modelling approach where transcription is modelled as RNAPII particles hopping 243 

on a gene represented by a lattice (Figure 3D). This approach, which is based on a totally 244 

asymmetric simple exclusion process (TASEP), has been used successfully to study 245 

transcription and translation [6,39–42]. In our model, a gene is represented by a lattice of 246 
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length and non-bursty transcription is modelled using three rates: i) the transcription 247 

initiation rate  is the rate at which RNAPII molecules enter the first site of the lattice (gene); 248 

ii) the elongation rate  is the rate at which RNAPII molecules hop one site forward on the 249 

lattice (gene); and iii) the termination rate  is the rate at which the RNAPII molecule which 250 

sits on the last site of the gene leaves the lattice and produces a full length mRNA (Figure 251 

3D). We incorporated this model in the agent-based framework from Figure 2 assuming 252 

each rate could be linearly coupled to cell size. 253 

By sampling the rates  and  over physiological time scales estimated from previous 254 

studies (Methods) we found that coupling of initiation rates with size produced the most 255 

robust linear scaling (Figure 3E) and the strongest positive correlation of nascent intensities 256 

with size (Figure S3D). Although a model coupling transcription elongation rates with cell 257 

size could also generate linear scaling in some parameter regions (Figure 3E, S3D), these 258 

required elongation rates to be much slower than experimental measurements either in 259 

yeast or metazoans which report elongation rates of around 2kb/min (Figure S3F) [38,43–260 

47]. Importantly, linear scaling could only be observed in regimes with slow initiation rates 261 

relative to elongation and termination indicating that initiation is rate limiting (Figure S3E).  262 

Interestingly, this also suggests that fast, non-limiting initiation rates could be a mechanism 263 

by which some genes escape scaling (e.g. rpb3; Figure 2B). Finally, these results were 264 

confirmed by ABC inference analysis of nascent sites intensities data using the same 265 

TASEP model for 3 genes in different strains which showed clear preference for the initiation 266 

model (Figure S3G). This in silico analysis indicates that scaling of initiation rates with cell 267 

size is the likely mechanism of scaling. 268 

The initiation model generated two important predictions. First, the model predicts that, even 269 

for non-bursty genes, cells in a population are not all actively transcribing at all times and the 270 

frequency of active transcription should increase with cell size. To test this prediction, we 271 

compared the fraction of cells with a nascent transcription site (“active cell fraction”) in wee1-272 

50, wt, cdc15-22 and diploid cells. As predicted by the model, a clear increase in the fraction 273 

of transcriptionally active cells with size could be observed (Figure 3F). Moreover, a strong 274 

positive correlation of the active cells fraction with cell length was apparent when calculated 275 

in sliding windows of increasing cell numbers during the normal cell cycle (Figure S3I). The 276 

second prediction of the initiation scaling model is a strong positive correlation between the 277 

number of transcribing RNAPII and cell size (Figure S3D). To test this, we analysed RNAPII 278 

occupancy across the genomes of wt, wee1-50 and cdc25-22 cells by chromatin 279 

immunoprecipitation followed by next generation sequencing (ChIP-seq). We used three 280 

antibodies against total RNAPII and Serine 5 phosphorylation of its carboxy terminal domain 281 
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(CTD, methods). Using data normalised to occupancy at histone genes (methods) we 282 

could observe a significant increase in overall RNAPII occupancy with size consistent with 283 

previous observation and confirming model predictions (Figure 3G) [3]. Importantly, we did 284 

not find evidence for a redistribution of RNAPII from the 5’ to the 3’ of genes in larger cells 285 

which makes regulation of scaling at the level of RNAPII pause/release unlikely (Figure 3H, 286 

S3J). This profile was also reproduced quantitatively in our minimal TASEP model (Figure 287 

3D, data not shown). In summary, our in silico and experimental data indicate that 288 

transcriptional scaling is mediated by an increase in RNAPII initiation rates coordinated with 289 

cell size. In addition, our modelling data together with the increase in RNAPII occupancy 290 

observed in larger cells suggest that RNAPII could be a limiting factor for transcription as cell 291 

size increases. 292 

 293 

RNAPII amounts on chromatin increases with cell size. 294 

If scaling of initiation rates is the mechanism behind scaling and RNAPII is limiting, the 295 

amount of RNAPII complexes on the genome of single cells should increase during the cell 296 

cycle.  To test this hypothesis, we measured localisation of RNAPII in single cells by live-cell 297 

imaging. To do this, we tagged components of the RNAPII complex with green fluorescent 298 

protein (GFP) and imaged them during the cell cycle (Figure 4A, S4A). First, we observed 299 

that the cellular concentration of Rpb1 and Rpb9, two RNAPII subunits, remained constant 300 

during the fission yeast G2 growth phase (Figure 4B, S4B). This indicates that scaling of 301 

transcription initiation is not controlled by regulation of the cellular concentration RNAPII. Our 302 

image data show that a very large fraction of the tagged RNAPII subunits localises in the 303 

nucleus in the DAPI-positive area (Figure 4A). We therefore asked whether the amount of 304 

RNAPII on chromatin changes with cell size during the cell cycle. To assess this, we 305 

measured fluorescence intensities of the nuclear region occupied by RNAPII subunits 306 

(Figure 4C, S4C). Strikingly, the signal for both Rpb1 and Rpb9 increases steadily during 307 

fission yeast G2 phase where most cell size increase occurs (Figure 4C, S4C). Importantly 308 

this was not the case for another DNA bound protein the histone Hta2 (H2A beta), (Figure. 309 

4D-E). This is consistent with the prediction of the initiation scaling model in the previous 310 

section and indicates that RNAPII quantities are likely to be limiting for transcription. In 311 

summary, these experiments indicate that increased initiation rates that mediate scaling are 312 

sustained by efficient import of RNAPII in the nucleus together with rapid recruitment onto 313 

chromatin.  314 

 315 

The nucleus is the scaling unit 316 
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In fission yeast and other organisms, nuclear and cytoplasmic volume are intimately 317 

connected [48]. As scaling of initiation rates depends on RNAPII levels in the nucleus we 318 

wondered whether nuclear size rather than cell size itself could be the quantitative 319 

determinant of scaling. 320 

To test this idea, we analysed nascent site intensities of cdc11-119 mutant cells cultivated at 321 

non-permissive temperature. Under these conditions, cells elongate, undergo mitosis and 322 

nuclear division but do not divide (Figure 5A) [49]. Strikingly, scaling of nascent site 323 

intensities of individual nuclei with cell size was not apparent in this system (RPearson = 0.06, 324 

Figure 5B, right). Scaling was only restored when all nascent sites present in a cell were 325 

added together (RPearson = 0.46, Figure 5B, left). This mirrors data from multinucleated cells 326 

showing that while the overall nuclear volume scales with cell volume, the volume of 327 

individual nuclei is proportional to their surrounding cytoplasmic volume [48].  Consistent 328 

with this, the ratios of nascent site intensities between nuclei of cdc11-119 cells were weakly 329 

correlated with their immediate cytoplasmic volumes (Figure S5A). This indicates that the 330 

cell “scaling unit” could be the nucleus and not the whole cell.  331 

We next analysed scaling in conditions where the correlation between cell and nuclear size 332 

is compromised. Pom1 is a regulator of cell polarity and division which when deleted leads to 333 

increased size variability at cell birth due to cell partitioning errors [50]. We analysed 334 

expression of three mRNA by smFISH in pom1Δ mutant cells expressing a marker of the 335 

nuclear envelope to allow measurement of nuclear size (Figure 5C). As expected cell and 336 

nuclear size show smaller correlation in the pom1Δ mutants compared to wt cells (Figure 337 

S5B). Scaling in this system was comparable to wt cells with the exception that pom1Δ 338 

mutants showed a higher y-axis intercept when mRNA numbers are plotted as a function of 339 

cell size (Figure S5C). This indicates that mRNA concentrations in pom1Δ cells are higher in 340 

smaller cells after birth and negatively correlated with cell size (Figure 5D). This deviation 341 

from perfect concentration homeostasis is also observed but to a lower degree in wt cells 342 

(Figure 5D) as reported for mammalian cells [4]. Moreover, mRNA numbers divided by 343 

nuclear volume show a negative correlation with nuclear volume (Figure S5D). The 344 

modelling approach described in Figure 2 which is based on transcription scaling with cell 345 

size and binomial partitioning of mRNAs based on daughter cell sizes failed to capture this 346 

behaviour (Figure 5E, magenta line). However, a modified model coupling transcription 347 

rates to nuclear size instead produced a good fit to the data (Figure 5E, S5F green line).  348 

Together, this analysis suggests that beside the nucleus being the scaling unit, nuclear size 349 

could be an important determinant of scaling. 350 

 351 
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A mechanistic model of scaling 352 

We used the results from this study to develop a mechanistic model of scaling centred 353 

around RNAPII mediated transcription (see also [19,20]). (Figure 5F, methods). In this 354 

model the rates of RNAPII complex synthesis and maturation scale with cell size. This is 355 

consistent with our smFISH and live-cell imaging data showing that RNAPII subunits have a 356 

constant cellular concentration during the cell cycle (Figure 1 and 4). RNAPII is then 357 

transported to the nucleus with a rapid rate that is depleting cytosolic RNAPII (as observed 358 

in live-cell imaging data; Figure 4). Once in the nucleus, RNAPII binds to DNA with a 359 

constant high affinity and transcription rates are proportional to the numbers of DNA-RNAPII 360 

complexes present on each gene at any given time consistent with scaling of initiation rates 361 

(Figure 3). Finally, RNAPII levels is set to be limiting in line with the initiation scaling model 362 

(Figure 3), the behaviour of diploid and heterozygous mutants (Figure 3) [10] and with the 363 

fact that the cell synthetic capacity is titrated against the number of genes in heterokaryons 364 

[4]. Moreover, this assumption fits the observation that many RNAPII subunits are limiting for 365 

growth in fission yeast [51–53]. The high affinity and the limiting amount of RNAPII ensures 366 

that the majority of RNAPII molecules are bound to DNA and increase with cell size 367 

consistent with our imaging data (Figure 4) and with biochemical evidence from mammalian 368 

cells [4]. Finally, DNA replication occurs close to cell division and each daughter cell inherits 369 

about half of the DNA-bound RNAPII mostly independent of its size as observed in our live 370 

cell imaging experiment (Figure 4C, S4C). This simple model is able to capture the different 371 

features of our data. First, it retrieved the scaling of DNA-bound RNAPII with cell size while 372 

keeping the overall cellular concentration constant as observed in Figure 4 (Figure S5E). 373 

Second, it explained the scaling of mRNA numbers with cell size including the higher mRNA 374 

concentration observed in smaller cells (Figure 5E). As this mechanistic model relies on 375 

both cell size mediated production of RNAPII and nuclear mediated partitioning of RNAPII it 376 

captures better the negative correlation between mRNA numbers over nuclear area and cell 377 

size than a purely nuclear size mediated transcriptional scaling (Figure S5E, compare blue 378 

and green line).  Overall, this simple mechanistic model of RNAPII transcription by 379 

integrating the experimental findings from this study, explains the origin of transcriptional 380 

scaling and its subtler features and identifies the competition between genes for the limited 381 

pool of transcriptional machinery as central to the phenomenon of transcriptional scaling. 382 

 383 

CONCLUSIONS 384 

We performed an extensive experimental and modelling study of gene expression scaling 385 

with cell size in single fission yeast cells. We found that scaling is a pervasive feature of 386 
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gene expression that impinges on constitutive and regulated expression. We then showed 387 

that scaling relies on an increase in RNAPII initiation rates with cell size and a concentration 388 

independent recruitment of a limiting RNAPII on the genome. Finally, we propose that the 389 

nucleus is the scaling unit and that nuclear size may participate in setting scaling levels. 390 

Our work supports a simple and robust model for the scaling of gene expression with cell 391 

size in which the competition between promoters for a limited pool of RNAPII determines 392 

their relative strength.  Because RNAPII maintains a constant concentration as cell size 393 

increases (as proteins do in general), the number of RNAPII complexes increase linearly 394 

with cell size.  cell size increase will not affect the relative strength of promoters, but will 395 

cause their absolute rate of transcriptional initiation to scale linearly with cell size, exactly as 396 

required to produce the observed gene expression scaling.  397 

Our model assumes that the general and specific transcription factors that regulate relative 398 

promoter strength are in excess even in small cells, and thus are not affected by cell size. To 399 

gain a deeper mechanistic understanding of scaling, it will be important to determine whether 400 

this assumption is met for most regulators or if some escape the rule. It could also inform 401 

about mechanisms through which some mRNA escape regulation by scaling as our 402 

modelling results suggest that non-limiting initiation rates can produce this behaviour [10–403 

12]. Another interesting question will be to determine the role of chromatin remodellers in 404 

facilitating transcription initiation in larger cells. It is possible that a more permissive 405 

chromatin environment in large cells synergises with increased RNAPII local concentrations 406 

to support higher transcription rates of inducible genes.  407 

Recent evidence suggests that, in mammals, burst size is regulated at the level of the 408 

proximal promoter sequence, while distal enhancers are involved in setting burst frequency 409 

[54]. Moreover, burst initiation and RNAPII pause/release but not RNAPII recruitment have 410 

been shown to be regulated in response to biological perturbations [55]. Our model of 411 

scaling through initiation of RNAPII transcription fits well with these data as this process is 412 

independent of both gene activation and control of burst frequency. It is also consistent with 413 

the observation that promoters maintain their relative expression levels in changing growth 414 

conditions [56]. 415 

Our observation that scaling is regulated at the level of single nuclei in multinucleated cells 416 

and may be linked to nuclear size is interesting. RNA synthesis levels have been connected 417 

to nuclear size in other systems such as multinucleated muscle cells [57], or for the HTLV-1 418 

mRNA [58]. It could reflect a higher availability of RNA polymerases around larger nuclei as 419 

these tend to be surrounded by larger cytoplasmic volume (Figure S5A) [48,57]. 420 

Interestingly, the nucleus was also found to be an independent transcriptional unit in mature 421 
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osteoclasts [59] and in multinucleated fungi where nuclei retain local control of cell cycle 422 

periodic transcription [60,61]. This suggests that more complex feedback and molecular 423 

mechanisms may also be at play.  424 

An important result from our study, which is not directly related to scaling, is the absence of 425 

bursty transcription for most fission yeast genes tested. This is in line with previous 426 

observations in budding yeast and plants [29,38,62]. Transcriptional bursts result in high 427 

gene expression noise and are associated with Fano factors (  of mRNA numbers) greater 428 

than 1, whereas Poissonian birth-death processes have a Fano factor = 1. Our finding that 429 

most transcription followed a non-bursty regime relied on our modelling taking cell size and 430 

the cell cycle into account explicitly. Without doing so, all genes in this study have been 431 

thought to have bursty expression as Fano factors calculated on the raw counts were well 432 

above 1 (not shown). This reiterates the importance of studying gene expression considering 433 

potential confounding effects of morphological features such as cell size and the cell cycle 434 

[23,24,29,63,64]. 435 

Finally, in addition to progressing our understanding of the mechanisms behind scaling, this 436 

study provides a large quantitative dataset of gene expression and cell size measurement in 437 

over 20000 cells in various conditions. This will support future modelling efforts aimed at 438 

understanding regulation of gene expression. 439 

 440 
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METHODS 454 

Strains and culture conditions 455 

The strains and their genotypes that were used in this study are listed in Table S1. Genetic 456 

crossing confirmed by polymerase chain reaction was used for strains generated unless 457 

otherwise specified. Strains were revived from glycerol frozen stocks on solid yeast extract 458 

agar (YE agar), or YE agar supplemented with 25 mg l-1 adenine, L-histidine, L-leucine, 459 

uracil, L-lysine, and L-arginine (Sigma), and with or without appropriate antibiotics for 460 

selection. YE agar plates were incubated for approximately 48 h at 32°C in a static incubator 461 

until visible large colonies could be observed. Single colonies were transferred into liquid 462 

yeast extract medium (YE), in YE supplemented as above (YES), Edinburgh minimal 463 

medium (EMM), or EMM supplemented as above (EMMS), unless otherwise indicated in 464 

figure legends, and incubated at 170 rpm in a shaking incubator. Temperature sensitive 465 

strains were grown at 32°C and shifted to 36.5°C for the time indicated in figure legends. For 466 

the induction of sib1 expression, the strains were grown at 25°C to an optical density at 600 467 

nm (OD600) of ≈0.4 and treated with 2,2-dipyridyl (DIP; ACROS) at a final concentration of 468 

250 µM for the time indicated in figure legends, or left untreated. For measuring mRNA 469 

decay rates, cells were grown in YE at 25°C to OD600 ≈0.4; cells were treated with thiolutin 470 

(AXXORA) for the time indicated at a final concentration of 15 µg/ml, or left untreated. For 471 

urg1 induction, cells were grown in EMM supplemented with or without 0.25 mg/ml uracil for 472 

the time indicated.  For transcription inhibition, log phase cultures (OD600~0.5) were treated 473 

with thiolutin (15 ug/ml) and same volume of DMSO (used for dissolve thiolutin) was added 474 

to thiolutin untreated culture. Samples were taken at 0, 25, 35, 45 mins and processed as for 475 

smFISH. For live-cell experiments, cells were grown in EMMS in syphonstats – chemostat-476 

like devices (http://klavinslab.org/hardware.html) which maintain the turbidity of liquid 477 

cultures by diluting with fresh medium appropriately – and maintained at OD600 0.4 at 32°C 478 

by frequent dilution [65]. 479 

RNA single molecule fluorescence in situ hybridisation (smFISH) 480 

All smFISH datasets are described in Table S2. All the mRNA counts, nascent site 481 

intensities and cell size measurements are available in Table S3. smFISH samples were 482 

prepared according to a method modified from published protocols [66,67]. Briefly, cells 483 

were fixed in 4% formaldehyde and the cell wall partially digested using zymolyase. Cells 484 

were permeabilised in 70% ethanol, pre-blocked with bovine serum albumin and salmon 485 

sperm DNA, and incubated overnight with custom Stellaris oligonucleotide sets (Biosearch 486 

Technologies) labelled with CAL Fluor Red 610, Quasar 670, or Quasar 570 (probe 487 

sequences are listed in Table S4). Cells were mounted in ProLong™ Gold antifade 488 
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mountant with DAPI (Molecular Probes), and imaged on a Leica TCS Sp8 confocal 489 

microscope, using a 63x oil objective (NA 1.40). Optical z sections were acquired (0.3 µm 490 

step size) for each scan to cover the entire depth of cells. Cell boundaries were outlined 491 

manually and single mRNA molecules were identified and counted using the FISH-quant 492 

MATLAB package [68]. Cell area, length, and width were quantified using custom ImageJ 493 

macros. The technical error in FISH-quant detection was estimated at 6–7% by quantifying 494 

rpb1 mRNA foci with two sets of probes labelled with different dyes. The nascent mRNA foci 495 

were identified and quantified using intensity information from the above-mentioned FISH 496 

quantification where an intensity 2.5 to 3-fold above the modal intensity within the same cell 497 

was chosen as a threshold for nascent mRNA. The quality of the identification of nascent 498 

sites was validated manually by visualising high intensity foci in the nucleus, with an 499 

accuracy of over 90% in all three strains (wild-type, cdc25-22, and wee1-50). 500 

ChIP-seq 501 

Chromatin immunoprecipitation (ChIP) assays was carried out essentially according to 502 

published methods [69]. In brief, cells were grown in YES to an OD600 of ~ 0.8 and fixed 503 

with formaldehyde solution (1% final) and then quenched with glycine.  After washing twice 504 

with cold PBS (phosphate-buffed saline), cells were re-suspended in lysis buffer containing 505 

proteases inhibitors and disrupted vigorously with acid-washed glass beads 8-11 times for 506 

20 sec in a FastPrep instrument. Samples were then sonicated in Bioruptor (at High setting 507 

and 6 times 5 mins with 30 secs ON/30 secs OFF). Chromatin were immunoprecipitated with 508 

antibody against Rpb1 (ab817) or Rpb1 CTD-ser 5 (ab5408 or sigma 04-1572), which were 509 

coupled to Dynabead protein-G and protein-A and Dynabead sheep anti-mouse or rat IgG 510 

(Invitrogene). DNA was purified from immunoprecipitated samples using MinElute Qiagen 511 

kit. Quantification of the DNA was done using QuDye dsDNA HS assay kit and quality was 512 

verified using Bioanalyzer.  513 

For sequencing DNA from immunoprecipitated samples, the libraries were made using the 514 

NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina (E6240S) with the indexes 515 

provided in NEBBext Multiplex Oligos for Illumina (Index Primers Set1,2 and 3). Negative 516 

control DNA are those from the same chromatin extracts without going through 517 

immunoprecipitation steps.  Pools of libraries were sequenced on an Illumina HiSeq 2500 518 

instrument at the MRC LMS genomics facility. Paired-end reads (100 nt) were generated 519 

from two pools of 12 or 18 samples per sequencing lane. Data were processed using RTA 520 

1.18.64, with default filter and quality settings. The reads were de-multiplexed with bcl2fastq-521 

1.8.4 (CASAVA, allowing 0 mismatches).  522 

ChIP-seq analysis 523 
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A description of ChIP-seq libraries can be found in Table S5. Sequencing reads were 524 

aligned to the fission yeast genome as available in PomBase in July 2019 using BWA 525 

[70,71]. For figure 3G, RNAPII occupancy counts were extracted for each transcript using 526 

HTseq [72] and the fission yeast annotation available in PomBase in July 2019 [71]. Data 527 

were normalised using DESeq2 and scaled using the mean counts of fission yeast histone 528 

genes as a scaling factor to allow comparison of global RNAPII occupancy between size 529 

mutants [73]. Amounts of histone proteins are thought to scale with DNA content rather than 530 

cell volume and are commonly used as normalisation factors for absolute proteomics 531 

measurements [74]. Moreover, average synthesis rates of histones were found to remain 532 

constant across a wide range of sizes in budding yeast (Kurt Schmoller personal 533 

communication). For figures 3H and S3I, RNAPII immunoprecipitation data were normalised 534 

with their respective input and average gene analysis was performed using the deeptools 535 

analysis suite [75].  536 

Live-cell microscopy and analysis 537 

Strains of interest and wild-type ySBM2 were grown from single colonies in 5 ml YES before 538 

they were transferred into syphonstats and maintained at OD600 0.4 overnight in EMMS. 539 

Prior to microscopy, ySBM2 cells were mixed at a 1:10 ratio with each strain of interest and 540 

diluted to a final OD600 of 0.3 in fresh EMMS. Cells were loaded directly into a CellASIC® 541 

ONIX Y04C-02 microfluidic plate (EMD Millipore) according to the manufacturer instructions. 542 

Fresh EMMS was continually perfused through the growth chamber with a constant pressure 543 

of 6.9 kPa (approximately 3 µl/h). Cells were imaged on an Olympus IX70 inverted widefield 544 

fluorescence microscope with an environmental chamber maintained at 32°C, with a high 545 

precision motorised XYZ stage (ASI), controlled with µManager version 1.4.22 [76]. Cells 546 

were continually imaged at a 10 minute interval with a 40× objective (NA 0.95, UPlanSApo; 547 

Olympus) with brightfield (30 ms exposure), GFP (250 ms exposure, emission filter Semrock 548 

514/30 nm), and dsRed (500 ms exposure, emission filter Semrock 617/73 nm) channels 549 

captured by a Hamamatsu Orca Flash 4.0 V2 sCMOS camera, with illumination provided by 550 

a Lumencor Spectra X LED light source set to 20% power. For each of the four growth 551 

chambers within the microfluidic plate, three positions were defined, each of which was 552 

focussed using the software autofocus using the brightfield channel; since this feature was 553 

generally inaccurate, a 3 µm Z-stack was used around the autofocus position to ensure that 554 

at least one Z-position was in focus for each position. 555 

Initial analysis was performed with Fiji – a derivative of ImageJ – with time-lapses assembled 556 

if necessary, and in-focus slices for each time-point selected using a custom macro (written 557 

by Stephen Rothery, Facility for Imaging by Light Microscopy, Imperial College London), 558 

resulting in a 4-dimensional OME-TIFF file for each field-of-view (XYCT). Each file was 559 
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subsequently analysed using a series of custom Python scripts utilising the scikit-image, 560 

SciPy, NumPy, and pandas packages extensively among others. The scripts permit the 561 

semi-automated definition of cell boundaries (segmentation) within the brightfield channel, 562 

followed by the quantification of fluorescence within cell boundaries, identification of nuclei, 563 

further quantification within nuclear boundaries, and assignment of cells into lineages. Cell 564 

segmentation was effected using a custom ‘balloon-filling’ algorithm, in which a connected 565 

series of nodes is ‘inflated’ from its centre inducing an outwards force on all nodes; this 566 

outward force is counteracted by an ‘image force’, which applies an opposing force inversely 567 

proportional to the intensity of pixels neighbouring the node, this has the effect of preventing 568 

nodes from expanding through areas of low light intensity – which generally surrounds the 569 

cell boundary; finally each node is also affected by its direct neighbouring nodes which pull 570 

each node sideways according to their position, ensuring smooth contours. Together, after 571 

multiple iterations, nodes migrate from a central location until the forces equilibrate at areas 572 

of low light intensity (generally the edge of the cell). This procedure can be performed in an 573 

automated manner in which iterations cease when the area contained within the nodes does 574 

not significantly change, or in a supervised manner, in which further iterations are prompted 575 

manually via a keyboard command, with progress displayed via a graphical interface. Initial 576 

centres of cells are defined either by manually clicking, or by the centre of the cell in the 577 

previous frame. Nuclei are defined as areas within the cell boundary which have red 578 

fluorescence pixel intensity values greater than 1.1 standard deviations above the mean 579 

intensity within the whole cell boundary. Time from mitosis is defined as the number of hours 580 

from the point at which the number of detected nuclei increases from one to two. 581 

Fluorescence intensity is adjusted for uneven illumination according to a series of empty 582 

fields imaged using the same settings. Background and autofluorescence is determined from 583 

wild-type cells cultured within the same field-of-view, with the mean level of fluorescence 584 

within these cells subtracted from measurements. Fluorescence is normalised by cell or 585 

nuclear area by dividing total fluorescence of all pixels within their respective boundary by 586 

the area of that boundary. Scripts are available upon request. 587 

For live cell imaging in Figure S4, cells were imaged in ibidi microfluidic channel slides 588 

(μslide VI 0.4, #80601) instead of a CellASIC ONIX microfluidic plate. 30 μL of cells sampled 589 

from syphonstat cultures maintained at OD600=0.5 for at least 15 generations were loaded 590 

into channels of a pre-warmed slide. 40 μL of pre-warmed EMMS was then added to each 591 

reservoir of channels, followed by 10 μL of mineral oil (Sigma, M5904) to prevent 592 

evaporation during imaging. Live-cell microscopy was performed as described above. 593 

Image analysis was semi-automated and performed using custom interactive MATLAB 594 

scripts available upon request. Tracks corresponding to individual cell cycles are recorded 595 
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by user clicking. Only cell cycles for which cells remained in in focus for at least the 2 hours 596 

preceding mitosis were collected. Local background subtraction was automatically applied to 597 

fluorescence images. Cell segmentation was performed automatically based on thresholding 598 

of the brighfield images. Nuclear segmentation was performed automatically based on 599 

thresholding of the uch2-mCherry fluorescence images. 600 

Cell size measurements 601 

We extracted both cell area and cell length measurements form the smFISH images as 602 

proxies for cell volume. We observed that both measurements support robustly data 603 

characteristics such as scaling of mRNA numbers and positive intercepts. We used cell 604 

length as a proxy for cell volume throughout the manuscript as it proved to be a simpler and 605 

more consistent measure. Importantly, as fission yeast has a cylindrical shape, its length is 606 

directly proportional to its volume. For the nucleus, we acquired area measurements only. As 607 

the nucleus is spherical, area and volume are not proportional. We have therefore derived 608 

volume estimates from area measurements assuming a perfect sphere using: 609 

volume = 4/3* π *(area/π)3/2 610 

 611 

Mathematical modelling  612 

We use agent-based simulations of stochastic gene expression coupled to cell size in 613 

growing and dividing cells (Figure 2A) [24]. We assume cells grow exponentially with a 614 

constant growth rate from birth to division that is sampled from a truncated Gaussian 615 

distribution with mean  and standard deviation . A cell that is born with birth length  616 

grows until it reaches the division length  We use a phenomenological model of cell size 617 

control that relates the final size to initial size through a noisy linear map, which captures 618 

experimentally observed variability and correlations in cell size [77–79]. 619 

       (1) 620 

where  and  are size control parameters (   denotes a sizer mechanism and  an 621 

adder mechanism) and  is a truncated Gaussian with mean zero and standard deviation 622 

. The dividing cell of length  produces two daughter cells with birth sizes  and , 623 

where  and  is another truncated Gaussian with mean 0.5 and standard 624 

deviation . The biomolecules such as mRNA molecules (except for DNA) are binomially 625 

partitioned in the daughter cells with a probability proportional to the daughter cell size 626 

As shown in Figure 2A, we simulate a fixed number of cells, so upon cell division one of 627 
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the existing cells (including one of the newly born daughter cells) is chosen randomly and 628 

taken out of the simulation. This ensures we are simulating a constant number of cells in 629 

time and can produce snap-shot data with the correct cell age and size distribution as 630 

observed in the experimental data. This has been used in the simulations used in the ABC 631 

inference (Figure 2). For the modelling results shown in Figure 3 and 5, where the results 632 

are conditioned on cell size, we have used a simpler scheme [24], where upon cell division 633 

only one of the daughter cells is followed modelling a single lineage (similar to the data 634 

generated in a mother machine) [80]. The simulations are performed using a simple 635 

algorithm that uses discretised time steps to simulate exactly the Gillespie method [81] with 636 

time-dependent parameters [82]. The simulation code for inference is written in the Julia 637 

programming language and the rest of simulations are performed in R. The codes are 638 

available upon request.  639 

Our main gene expression model is the so-called telegraph model or the two-state model 640 

[83] where the gene can be in an ‘off’ or an ‘on’ state and transcription can only occur when 641 

the gene is on (Figure 2A). If the gene is always on then this model reduces to a simple 642 

non-bursty birth-death process with parameters transcription rate  and mRNA decay rate . 643 

Here the mRNA counts per cell have a Poisson distribution (in the absence of cell cycle 644 

effects). In the limit where the duration of the promotor on-state is shorter than the mRNA life 645 

time we have the bursty limit characterised by 3 parameters of average burst frequency , 646 

average burst size   and mRNA decay rate .  In this model, birth events are 647 

simulated as geometrically distributed increases in mRNA numbers [84]. For Figure 2B 648 

model selection, we used four variants of this model including the Poisson and bursty limits 649 

with or without transcriptional dependence to cell size. Transcriptional scaling is modelled as 650 

linear dependence of transcription rate or burst size to cell size ( , where,  is a 651 

constant and ,is the cell length). The models for the cell cycle regulated genes, assume that 652 

there is a point in the cell cycle, where gene expression increases from a basal level to an 653 

active level. ABC model selection in Figure 2E is performed on the data from the 654 

transcription shut-off experiments of the 3 strains of wt, wee1-50, and cdc25-22. The 3 655 

models included are all the Poisson limit with different scaling assumptions for transcription 656 

and decay rates. Model one assumes transcriptional scaling with a single constant decay 657 

rate across the 3 strains, the second model assumes also transcriptional scaling but with 3 658 

different constant decay rates within each strain. And the third model assumes constant 659 

transcription and decay rate that is proportional to inverse cell size across the 3 strains. The 660 

priors used in the model selection, are wide over a physiological range. The model selection 661 

results were not too senstivie to the choice of the priors.  662 
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In Figure 3D a more detailed model of transcription is illustrated, which is based on the 663 

totally asymmetric simple exclusion process (TASEP) [6,39–41]. Here, the promoter is 664 

assumed to be always active, i.e. we are modelling a non-bursty gene. The gene is modelled 665 

as a lattice of size . Transcription starts by initiation through binding of a RNAPII molecule 666 

to the first site on the gene with rate  if the site is empty. Elongation is modelled as hopping 667 

of RNAPII forward with rate if the next site is available. Termination is modelled with 668 

RNAPII leaving the last site on the gene with rate  which gives rise to a fully transcribed 669 

mRNA. In our model, we have ignored pausing, backtracking and incomplete termination. In 670 

Figure 3E, we compare 3 variants of this model, where size scaling is through linear 671 

coupling of initiation, elongation or termination rate to cell size. We chose  for 672 

computational efficiency and as it is larger than the typically observed number of RNAPIIs on 673 

the genes, which is related to nascent site intensity (Figure 3A).  In each model, we 674 

randomly picked the initiation time scale , elongation time scale through the whole gene 675 

, and termination time scale  between 0.001-0.1 hours that produces average mRNA 676 

numbers of between 20-30 for a moderately expressed gene. The lower limit on the time 677 

scale is significantly shorter than the mRNA life time and the upper limit represents very slow 678 

steps to achieve moderate transcription, given the mRNA life time, and is also slower than 679 

the time-scales reported in the literature [cite]. The rates are inversely proportional to the 680 

time-scales as ,  and . Note that as  is the rate of hopping per 681 

site, it is also proportional to the number of sites on the gene . We also performed an ABC 682 

model selection using an implementation of our TASEP model in Julia on several datasets 683 

(Figure S3G). We used the same prior as discussed above.  684 

The nuclear scaling model and the RNAPII model in Figure 5E rely on both cell size and 685 

nuclear size dynamics. It is known that nuclear size scales closely with cell size [48]. There 686 

has not been much modelling of nuclear size control in the literature. We introduce a 687 

phenomenological and passive model of cell and nuclear size control, extending the noisy 688 

linear map of cell size control (Equation 1). We assume cellular exponential growth, cell size 689 

control and division as before. We assume nuclear size also grows exponentially and follows 690 

its own noisy linear map: 691 

 692 

Cell division time is determined when cells reach their final size ( For simplicity, we 693 

assume mitosis is taking place at cell division and the size of the newly divided daughter 694 

cells and their nucleus is determined by  and , where  and  are 695 

truncated correlated Gaussian noise with mean equal 0.5, standard deviations  and  696 
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and correlation coefficient of . We choose  based on analysis of our time-lapse 697 

imaging data (Figure 4) and the rest of the parameters of our dual noisy linear map model of 698 

cell and nuclear control were fitted on the static pom1 mutant size data using the ABC 699 

inference.  700 

Given, our dual noisy linear map model discussed above, in the nuclear scaling model 701 

(Figure 5E), we assume transcription rate  to be linearly dependent on the nuclear size  702 

but mRNAs are partitioned upon division based on the size of the daughter cells (not nuclear 703 

size of the daughter cells). In this model a small daughter cell is likely to inherit a nucleus of 704 

average size, with transcription rates higher than expected from cell size, resulting in an 705 

increase in mRNA concentration for small cells.  706 

The RNAPII model (Figure 5F) provides a mechanistic RNAPII based model of 707 

transcriptional scaling. In this hybrid deterministic and stochastic model, transcription, 708 

translation, complex formation and maturation of RNAPII molecules are modelled as simple 709 

cell size dependent production steps. The RNAPII is then transported to the nucleus by a 710 

nuclear size dependent rate and it binds to DNA with high affinity with a rate that is 711 

dependent on the concentration of DNA in the nucleus (inversely proportional to nuclear 712 

size). In this model transcription rate of a gene is assumed to be proportional to the amount 713 

of DNA-bound RNAPII.  714 

In this hybrid deterministic and stochastic model, RNAPII dynamics are modelled 715 

deterministically by a series of ODEs inside growing and dividing cells, while transcription of 716 

mRNA is modelled stochastically. Upon cell division, we assume mRNA are partitioned 717 

binomially according to the size of the daughter cells. The free cytosolic and nuclear RNAPII 718 

are portioned binomially according to the size of the daughter cells and their nucleus. The 719 

scaling in this model comes about from sequestration of RNAPII on the DNA. The model is 720 

very robust to different model parameters and assumptions as long as the level of free 721 

cytosolic and nuclear RNAPII is much smaller than the DNA bound RNAPII. The qualitative 722 

model results for Rpb1 shown in Figure 5E, are obtained by using the parameters of the 723 

dual noisy linear map model discussed above for the pom1 mutant, tuning RNAPII 724 

parameters to obtain about 10% free RNAPII and linear scaling of DNA bound RNAPII, as 725 

well as setting the transcription rate to match expression levels of Rpb1. The model without 726 

any further tuning recovers deviation from concentration homeostasis observed at small cell 727 

sizes, which is observed for the different genes in the WT and Pom1 mutant strains.   728 

ABC inference and model selection 729 
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In this study we have used Approximate Bayesian Computation (ABC) for inference.  When 730 

the likelihood function is intractable, we require a tool for carrying out inference without it. 731 

ABC is precisely such a tool. The algorithm originated in the 1980s and 90s (see e.g. [85]). 732 

For review of more recent developments, see [15]. ABC aims to carry out Bayesian 733 

inference without having to evaluate the likelihood function. Given data  and model with 734 

parameter set this is done by approximating the posterior distribution:  735 

 736 

Where  is a set of data generated from the model with parameters , sampled from the 737 

prior ,  is a distance measure that is defined on the set of such datasets (or their 738 

summary statistics) and  is a tolerance, representing the degree of approximation we are 739 

willing to accept. The simplest ABC algorithm, that is based on sampling  repeatedly and 740 

rejecting the ones that produce data with larger distance than our tolerance (which is called 741 

ABC rejection sampling [86]), is too inefficient. Much work has been carried out over the past 742 

decade in this area, leading to a variety of different implementations with much more 743 

favourable scaling of computation time with the dimensionality of the parameter space [86]. 744 

For the purpose of this project we will use a Sequential Monte Carlo implementation, based 745 

on the implementations of Toni et. al [87] (ABC-SMC) and Lenormand et.al [88] (APMC). In 746 

the ABC-SMC, one fixes the size of the posterior sample, , and a finite sequence of 747 

decreasing tolerances, , a priori. The primary differences between APMC and ABC-SMC 748 

are firstly that the sequence of epsilons is not determined a priori; it is dynamically 749 

determined from the previous iteration’s distribution of errors until a stopping criterion 750 

( ) is fulfilled and secondly that simulations from earlier iterations are not discarded.  751 

ABC lends itself very naturally to model selection [86,87]. In essence, all we have to do is to 752 

extend our priors to one extra dimension, representing different models. Formally, we require 753 

a joint prior distribution over models and parameters, . We have combined the model 754 

selection aspects of ABC-SMC implementation and adaptive aspect of APMC to obtain our 755 

APMC with model selection algorithm.  756 

In order to apply our APMC algorithm, we need to choose an appropriate distance . 757 

As the problem at hand is stochastic in nature, we have chosen to use sum of square 758 

differences of summary statistics of the data and simulated data in the distance measure: 759 

 760 
where, we used central sample moments and cross moments  of our data up to order 761 

3. With our data sample sizes, moments beyond the first three are usually too noisy to be 762 
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useful. Also, each term in the distance measure are weighted by the bootstrap estimates of 763 

standard deviation of the central moments. This rescales the terms in the sum appropriately 764 

and downweighs the noisier moments, helping to prevent overfitting of the data.  765 

  766 

767 
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FIGURE LEGENDS 768 

 769 

Figure 1: Gene expression scaling is a single cell attribute of constitutive and 770 

inducible gene expression. A. Representative images of an smFISH experiment. The 771 

rpb1, rpb2, and rpb3 mRNA are labelled in wee1-50, cdc25-22, and wt cells. Overlay of the 772 

three channels and DAPI staining of DNA are shown in the last column. The white scale bar 773 

represents 5µm. B. Log2 average copies/cell of 7 mRNAs in wee1-50 (green) and cdc25-22 774 

(red) cells plotted against log2 average copies/cell of the same mRNAs in wt cells. mRNA 775 

common names are shown on the figure. Plain line shows equality and dotted lines values 2 776 

fold up or down. C. rpb1 mRNA copies/cell plotted against cell length for wee1-50 (green), wt 777 

(blue), cdc25-22 (red) and wt diploid cells (orange). D. ace2 mRNA copies/cell plotted 778 

against cell length for wee1-50 (green), wt (blue), cdc25-22 (red) and wt diploid cells 779 

(orange). E. urg1 mRNA copies/cell plotted against cell length for wee1-50 (green), wt (blue), 780 

cdc25-22 (red) cells. Cells were analysed 3h after addition of uracil to the medium. F. same 781 

as C. with all the cells in grey. The solid line shows median counts in running windows 782 

sampled from 100 bootstrap samples of the experimental data and the shaded area 783 

represents 95% confidence intervals. Only cells above the dotted lines were considered as 784 

expressing the mRNA and were used for the running window analysis. G. same as D. with 785 

all the cells in grey. The solid line shows median counts in running windows sampled from 786 

100 bootstrap samples of the experimental data and the shaded area represents 95% 787 

confidence intervals. Only cells above the dotted lines were considered as expressing the 788 

mRNA and were used for the running window analysis. H. same as E. with all the cells in 789 

grey. The solid line shows median counts in running windows sampled from 100 bootstrap 790 

samples of the experimental data and the shaded area represents 95% confidence intervals. 791 

Only cells above the dotted lines were considered as expressing the mRNA and were used 792 

for the running window analysis. 793 

 794 

Figure 2: Coordination of transcription rates to cell size and not burst frequency nor 795 

mRNA decay rates mediates scaling. A. Cartoon of the modelling strategies used in this 796 

section (methods). Domino-like shapes represent cells/agents with mRNA pictured as 797 

yellow dots. Modelling of the cell cycle uses a noisy linear map framework and population 798 

size is kept constant by removing a random cell for every division event. The left part of the 799 

figures represents the two states model of gene expression. The transcription rate v and 800 

degradation rate d can be coupled to cell length (L). B. Bar chart showing the sum of particle 801 

weights for four models of transcription scaling after model selection analysis. Results for 802 
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genes with three types of regulation are shown. Constitutive: constitutively expressed genes, 803 

Periodic: cell cycle regulated genes, Regulated: genes regulated by external stimuli. For 804 

regulated genes, times after addition of 2,2-dipyridyl (sib1) or uracil (urg1) are shown. The 805 

four types of model used in this analysis are marked on the right. Poisson: non-bursty 806 

transcription, Bursty: bursty transcription, Constant: constant transcription rates during the 807 

cell cycle, Scaling: transcription rates scaling with cell length (methods). C. Simulation of 808 

mRNA numbers during the cell-cycle using a model where transcription is scaling under a 809 

poisson regime. Coefficients of variation (CV) are plotted as a function of mean simulated 810 

mRNA numbers for each particle of each mRNA. Yellow circles denote the median of 811 

simulated data for all particles of a given mRNA. Red circles denote median for all 812 

experimental data used for parameter inference. D. Expression correlation between pairs of 813 

mRNA in single cells. smFISH experimental measurements are marked by orange dots with 814 

the 95% confidence interval shown with orange bars. 95% confidence intervals for 815 

correlations obtained from model simulations as in C are shown with blue bars. Red bars 816 

show the 95% confidence interval for simulations including 20% additional extrinsic noise 817 

(methods). E. Bar chart showing the sum of particle weights for three models of mRNA 818 

degradation after model selection analysis. Decay rate scaling: transcription constant and 819 

degradation rates scale with cell length, Constant single: wt, wee1-50, and cdc25-22 cells 820 

have an identical constant degradation rate during the cell cycle with transcriptional scaling. 821 

Constant multiple: wt, wee1-50, and cdc25-22 cells have distinct constant degradation rates 822 

during the cell cycle with transcriptional scaling. 823 

Figure 3: Coordination of RNAPII initiation rates with cell size as the main mechanism 824 

of scaling. A. rpb1 normalised nascent sites intensities plotted against their respective cell 825 

length for wee1-50 (green), wt (blue), cdc25-22 (red). B. same as A. with all the cells in grey. 826 

The solid line shows median counts in running windows sampled from a count distribution 827 

identical to the experimental data. Shaded area represents 95% confidence intervals 828 

(methods). Cells with no nascent sites are excluded. Pearson correlation coefficient of 829 

nascent site intensity and length is shown. C. Boxplots of normalised nascent intensities for 830 

rpb1 and the cell cycle regulated genes ace2, mid2 and fkh2. Intensities are compared 831 

between haploid (green), diploid (yellow, orange), and rpb1 heterozygote deletion cells 832 

(purple). For diploid cells the yellow boxplot shows intensities of single nascent sites, and 833 

orange boxplots show the total nascent intensities per cell. D. Cartoon of the TASEP 834 

modelling strategy of RNAPII transcription. A gene is represented by a lattice of length LG. 835 

RNAPII molecules enter the lattice at a rate α (Initiation), hop through the lattice at a rate β 836 

(Elongation) and exit the lattice at a rate γ (Termination, methods). E. Transcription linear 837 

scaling captured by the TASEP model where rates α (Initiation), β (Elongation) or γ 838 
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(Termination) are linked to cell length. Simulations where run with each model with 500 839 

random sets of TASEP parameters  and  over times scales of 0.001 to 0.1 hours 840 

(methods). Deviation from linearity is shown for parameter samples in each of the 3 model 841 

variants. For each parameter set 1500 cells are simulated and two linear regressions are 842 

done on the mRNA numbers vs cell length data for the smaller and larger half of simulated 843 

cells. The deviation from linearity is estimated as the difference between the linear 844 

regression coefficients of small vs large cells. Values close to zero indicate a linear scaling 845 

and larger values indicate saturation of mRNA numbers at large cells. The dashed line 846 

shows the error in estimating the slope of the linear fit. Note that the initiation model shows 847 

the most robust linearity. F. Fraction of cells with a nascent site (“Transcribing fraction”) 848 

plotted as a function of mean cell length for the rpb1 mRNA in a series of strains of different 849 

average length. Strains names are labelled next to the data points. Red line shows linear 850 

regression and R2 is shown in the top left corner. G. Chromatin immunoprecipitation analysis 851 

of RNAPII occupancy in wee1-50 (green), wt (blue), and cdc25-22 (red) cells. RNAP ChIP-852 

seq data for antibodies against Serine 5 CTD phosphorylation (left, middle) and total 853 

Rbp1(right) are shown. RNAP occupancy values were normalised using DEseq2 and scaled 854 

using occupancy at histone genes (methods). H. RNAPII occupancy 5’/3’ ratio in wee1-50 855 

(green), wt (blue), and cdc25-22 (red) cells. RNAP ChIP-seq data for antibodies against 856 

Serine 5 CTD phosphorylation (left, middle) and total Rbp1(right) are shown. RNAP 857 

occupancy values were normalised to input samples and each gene was divided into 100 858 

bins using the deeptools package.  Ratios between mean occupancy in bins 1-50 compared 859 

to bins 51-100 are shown (methods). Note that ratios are not changing with size and are 860 

consistently lower than 1. 861 

Figure 4: Nuclear RNA Polymerase II concentration increases with cell size. A. 862 

Confocal images of Rpb1, Rpb9, and Hta2 proteins tagged with GFP in wt fission yeast cells. 863 

DAPI straining for DNA and overlay of both channels are shown. The white scale bar 864 

represents 5µm. B. Widefield fluorescence data from live-cell imaging RNAPII subunit Rpb9. 865 

Normalised intensity/cell as a proxy for total cellular protein concentration is plotted along 866 

time relative to the mitotic phase of the cell cycle. C. Widefield fluorescence data from live-867 

cell imaging RNAPII subunit Rpb9. Total pixel intensity in the area of strong fluorescence 868 

signal as a proxy for chromatin bound amounts is plotted along time relative to the mitotic 869 

phase of the cell cycle. D. As in B. but for the histone protein Hta2. E. As in C. but for the 870 

histone protein Hta2.  871 

Figure 5: The nucleus is the scaling unit. A. Representative smFISH images for the rpb1 872 

and rpb2 mRNA in cdc11-119 grown at non-permissive temperature. The white scale bar 873 

represents 5µm. B. rpb1 normalised nascent sites intensities per nucleus (blue) or per cell 874 
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(orange) plotted as a function of each cell respective size. Red lines are regression lines 875 

from linear models. The white scale bar represents 5µm. C. Representative smFISH images 876 

for the rpb1, rpb2, and shd1 mRNA in wt and pom1 deletion mutants carrying the Cut11-877 

GFP nuclear marker (left column). Overlay is shown on the right. The white scale bar 878 

represents 5µm. D. mRNA concentration (mRNA/cell length) for the rpb1, rpb2, and shd1 879 

mRNA in wt (black) and pom1 deletion mutants (red). The solid line shows median counts in 880 

running windows sampled from a count distribution identical to the experimental data. 881 

Shaded area represents 95% confidence intervals. E. rpb1 concentrations measured by 882 

smFISH are plotted as a function of cell length. Running average for the experimental data 883 

(grey) or derived from model predictions assuming transcription rates scaling with cell length 884 

(magenta), nuclear area (green), or predicted from a mechanistic model of RNAPII prediction 885 

are shown (light blue). F. Cartoon representation of a mechanistic model of RNAPII 886 

transcription (see Methods for details and parameters). 887 

Figure S1 related to Figure 1. A. Cell length distribution for the 111 datasets described in 888 

this study. Colours represent different genotypes. Datasets are described in Table S2. 889 

Coloured lines show the interquartile range for all the wee1-50 (green), wt (blue), cdc25-22 890 

(red), diploid and heterozygote deletions (orange) and pom1∆ (light blue) cells. B. Top: 891 

Pooled count distribution of 7 constitutively expressed genes in wee1-50 (green), wt (blue), 892 

and cdc15-22 (red) cells. Bottom: Median counts of 7 constitutively expressed genes as a 893 

function of cell length in running windows sampled from a count distribution identical to the 894 

experimental data. Shaded area represents 95% confidence intervals (methods). Data from 895 

wee1-50, wt, cdc15-22 cells are pooled and gene names are indicated next to their 896 

respective data line. C. Deviation from linearity is plotted as a function of linearity P-values 897 

(see Figure 3E, methods). Low P-values mean significant deviation from linearity. Colours 898 

are as in panel A. P-values equal 0.05 and 0.001 are shown with dashed lines and 899 

annotated. D. rpb1 mRNA copies/cell plotted against cell length for diploid (orange), cdc25-900 

22 (red) and rpb1 heterozygote diploid (purple). The solid line shows median counts in 901 

running windows sampled from a count distribution identical to the experimental data. 902 

Shaded area represents 95% confidence intervals (methods). E. myo1 mRNA copies/cell 903 

plotted against cell length for diploid (orange), cdc25-22 (red) and myo1 heterozygote diploid 904 

(purple). The solid line shows median counts in running windows sampled from a count 905 

distribution identical to the experimental data. Shaded area represents 95% confidence 906 

intervals (methods). F. pan1 mRNA copies/cell plotted against cell length for diploid 907 

(orange), cdc25-22 (red) and pan1 heterozygote diploid (purple). The solid line shows 908 

median counts in running windows sampled from a count distribution identical to the 909 

experimental data. Shaded area represents 95% confidence intervals (methods). G. 910 
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Representative images of an smFISH experiment for cell cycle regulated genes. The mid2, 911 

fkh2, and ace2 mRNA are labelled in wee1-50, cdc25-22 and wt cells. Overlay of the three 912 

channels and DAPI staining of DNA is shown on the last column.  The white scale bar 913 

represents 5µm. H. Representative images of an smFISH experiment for a gene regulated 914 

by external conditions (urg1). The urg1, ace2, and rpb1 mRNA are labelled in wt cells 915 

before, 3 hours and 12 hours after addition of uracil to the culture. Overlay of the three 916 

channels and DAPI staining of DNA is shown on the last column. The white scale bar 917 

represents 5µm. I. mid2 mRNA copies/cell plotted against cell length for wee1-50 (green), wt 918 

(blue), cdc25-22 (red). The solid line shows median counts in running windows sampled 919 

from a count distribution identical to the experimental data. Shaded area represents 95% 920 

confidence intervals (methods). Only cells above the dotted lines were considered as 921 

expressing the mRNA and were used for the running window analysis. J. fkh2 mRNA 922 

copies/cell plotted against cell length for wee1-50 (green), wt (blue), cdc25-22 (red). The 923 

solid line shows median counts in running windows sampled from a count distribution 924 

identical to the experimental data. Shaded area represents 95% confidence intervals 925 

(methods). Only cells above the dotted lines were considered as expressing the mRNA and 926 

were used for the running window analysis. K. sib1 mRNA copies/cell plotted against cell 927 

length for wt cells before (light blue), 20min after (blue) or 45min (pink) after addition of 2,2-928 

dipyridyl (DIP). The solid line shows median counts in running windows sampled from a 929 

counts distribution identical to the experimental data. Shaded area represents 95% 930 

confidence intervals (methods).  931 

Figure S2 related to Figure 2. A. Representative images of smFISH experiments for the 932 

rpb1 mRNA in cells before (t = 0) and after a 45min (t = 45) treatment with 15 µg/ml of 933 

Thiolutin. Note the number of mRNA dots decreases with time and that the transcription foci 934 

disappear after treatment. The white scale bar represents 5µm. B. Left: mRNA half-lives 935 

were measured after Thiolutin treatment in bins of increasing cell length for the rpb1 (2 936 

repeats) and rpb2 mRNA in wee1-50, wt, and cdc25-22 cells (left). Right: mRNA half-lives 937 

were measured after nmt41 promoter switch-off in bins of increasing cell length for the rpb1, 938 

rpb2 and rtp1 mRNA in wt cells.  939 

Figure S3 related to figure 3. A. Representative images of smFISH experiments for the 940 

rpb1 mRNA in haploid and diploid cells. Nascent transcription sites are indicated with white 941 

arrows.  The white scale bar represents 5µm. B. Fraction of cells with 1, 2, or 3 nascent sites 942 

(as in A) in haploid and diploid cells. Note the diploid cells have mostly 2 sites validating our 943 

approach specificity and sensitivity to detect nascent transcription sites. C. Boxplot of 944 

nascent sites intensities for the rpb1 gene in wee1-50 (green), wt (blue) and cdc25-22 (red) 945 

(related to Figure 3A). D. Pearson correlation between mRNA numbers and cell length for 946 
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the simulation data from Figure 3E. E. Histogram of ratio of initiation time scale ( ) and 947 

the sum of elongation time scale and termination time scale (  for parameter sets 948 

resulting in linear scaling and parameter sets resulting in saturating transcription scaling 949 

indicating that initiation rate should be limiting for linear transcriptional scaling. F. Elongation 950 

time of a 2kb gene obtained from the simulations from Figure 3E for the models with 951 

Initiation rates (α, green) and elongation rates (β, red) coupled with size. Only simulation that 952 

achieved linearity are shown. Elongation time from published experimental measurements of 953 

elongation rates (1-2kb/min) are shown. Note that the elongation scaling simulations require 954 

elongation rates much slower than experimentally measured in order to achieve linearity. G. 955 

ABC model selection results between the initiation scaling and elongation scaling TASEP 956 

models for 3 genes across several strains. H. Distribution of the correlations of frequencies 957 

of actively transcribing cells with cell length for different parameter sets from the Figure 3E 958 

simulations. Note the strong positive correlations as observed in experimental data (Figure 959 

3F). I. Boxplot of correlations between normalised intensities of the rpb1 mRNA and cell 960 

length for all cell genotypes in sliding windows or containing different number of cells. Each 961 

box represents a window of a given width. Sliding windows are shifted with increment of 1 962 

cell along all cells ordered by length. Note that correlations are mainly positive. J. Average 963 

gene analysis for the RNAPII ChIP-seq data from Figure 3H. Data were normalised to input 964 

samples and split in 200 bins (50: upstream, 100: gene, 50: downstream) using the 965 

deeptools package. 966 

Figure S4 related to figure 4. A. Representative image of a single cell followed for a full 967 

cell-cycle using ibidi slides. Brightfield (top), the nuclear marker Uch2 (middle) and the 968 

RNAPII subunit Rpb1 bottom. B. Rpb1 normalised intensity/cell as a proxy for total cellular 969 

protein concentration is plotted along time relative to the mitotic phase of the cell cycle. C. 970 

Rpb9 total pixel intensity in the area of strong fluorescence signal (green mask in A) as a 971 

proxy for chromatin bound amounts is plotted along time relative to the mitotic phase of the 972 

cell cycle. 973 

Figure S5 related to figure 5. A. Ratios of nascent site intensities of bi-nucleated cdc11-974 

119 cells plotted as a function of the ratio of local cytoplasmic volumes (methods). The 975 

black line is the regression line from a linear model. B. Correlation between cell length and 976 

nuclear area in pom1Δ (red) and wt (black) cells. Pearson corretions are shown. C. As in 977 

Figure 5D for mRNA numbers. D. As in Figure 5D for mRNA numbers/nuclear volume 978 

plotted as a function of nuclear volume. E. Simulation data from the model described in 979 

Figure 5F. DNA bound RNAPII is plotted as a function of cell length. Magenta lines show a 980 

running average. F. As in Figure 5E for mRNA numbers divided by nuclear area. 981 
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Figure 2 Sun, Bowman et al
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Figure S1 Sun, Bowman et al

wee1-50
cdc25-22
diploid/het
pom1∆

5 10 15

0
10

20
30

40
D

en
si

ty

Cell length [µm]

Av
er

ag
e 

co
pi

es
/c

el
l i

n 
w

in
do

w

Each line is an mRNA

wee1-50
wt
cdc25-22

5 10 15 20 25

0
10

20
30

40
50

m
R

N
A 

co
pi

es
/c

el
l

Cell length [µm]

 0 min
20 min
45 min

A

5 10 15 20

0
50

10
0

15
0

m
R

N
A 

co
pi

es
/c

el
l

Cell length [µm]

wee1-50
wt
cdc25-22

5 10 15 20 25

0
10

30
50

70
20

40
60

m
R

N
A 

co
pi

es
/c

el
l

Cell length [µm]

rpb1

sep1

rpb2

shd1
rpb3

lub1
rtp1 w

ee
1-

50
w

t
cd

c2
5-

22

mid2 fkh2 ace2 overlay + DAPI

C
el

l l
en

gt
h 

[µ
m

]

m
R

N
A 

co
pi

es
/c

el
l

Cell length [µm]
5 10 15 20

0
20

40
60

80
10

0

5 10 15 20

0
20

40
60

80
m

R
N

A 
co

pi
es

/c
el

l

Cell length [µm]

rpb1

pan1

cdc25-22
diploid

het

B

D

C

E

urg1 ace2 rpb2 overlay

t =
 0

h
t =

 3
h

t =
 1

2h

w
t.0

w
t.1

w
t.2

w
t.3

w
t.4

w
t.5

w
t.6

w
t.7

w
t.8

w
t.1

2
w

t.1
3

w
t.1

4
w

t.9
w

t.1
0

w
t.1

1
w

t.n
as

c.
1

w
t.c

c.
na

sc
w

t.t
hi

o.
1

w
t.t

hi
o.

2
w

t.t
hi

o.
3

w
t.t

hi
o.

4
w

t.t
hi

o.
5

w
t.t

hi
o.

6
w

t.t
hi

o.
7

w
t.t

hi
o.

8
w

t.s
ib

1.
1

w
t.s

ib
1.

2
w

t.s
ib

1.
3

w
t.l

m
b.

1
w

t.l
m

b.
2

cd
c2

5.
0

cd
c2

5.
1

cd
c2

5.
2

cd
c2

5.
3

cd
c2

5.
4

cd
c2

5.
5

cd
c2

5.
6

cd
c2

5.
13

cd
c2

5.
14

cd
c2

5.
15

cd
c2

5.
16

cd
c2

5.
17

cd
c2

5.
na

sc
.1

cd
c.

cc
cd

c2
5.

10
cd

c2
5.

11
cd

c2
5.

12
cd

c2
5.

th
io

.1
cd

c2
5.

th
io

.2
cd

c2
5.

th
io

.3
cd

c2
5.

th
io

.4
cd

c2
5.

th
io

.5
cd

c2
5.

th
io

.6
cd

c2
5.

th
io

.7
cd

c2
5.

th
io

.8
cd

c2
5.

si
b1

.1
cd

c2
5.

si
b1

.2
cd

c2
5.

si
b1

.3
di

p.
na

sc
.1

di
p.

na
sc

.2
di

p.
na

sc
.3

di
p.

na
sc

.4
di

p.
na

sc
.5

he
t.m

yo
1.

1
he

t.m
yo

1.
2

he
t.p

an
1.

1
he

t.p
an

1.
2

he
t.r

pb
1.

1
he

t.r
pb

1.
2

rp
b1

_4
1.

2
rp

b1
_4

1.
3

rp
b1

_4
1.

4
rp

b1
_4

1.
5

rp
b2

_4
1.

2
rp

b2
_4

1.
3

rp
b2

_4
1.

4
rp

b2
_4

1.
5

rtp
1_

41
.2

rtp
1_

41
.3

rtp
1_

41
.4

rtp
1_

41
.5

po
m

1.
na

sc
po

m
1.

si
b1

w
ee

.0
w

ee
1.

1
w

ee
1.

2
w

ee
1.

3
w

ee
1.

4
w

ee
1.

5
w

ee
1.

6
w

ee
1.

10
w

ee
1.

11
w

ee
1.

12
w

ee
1.

na
sc

.1
w

ee
1.

cc
w

ee
1.

7
w

ee
1.

8
w

ee
1.

9
w

ee
1.

th
io

.1
w

ee
1.

th
io

.2
w

ee
1.

th
io

.3
w

ee
1.

th
io

.4
w

ee
1.

th
io

.5
w

ee
1.

th
io

.6
w

ee
1.

th
io

.7
w

ee
1.

th
io

.8
w

ee
1.

si
b1

.1
w

ee
1.

si
b1

.2
w

ee
1.

si
b1

.3

5
10

15
20

5 10 15 20

0
20

40
60

80
10

0
12

0 myo1

Cell length [µm]

m
R

N
A 

co
pi

es
/c

el
l

F

G

cdc25-22
diploid

het

cdc25-22
diploid

het

sib1mid2 fkh2

wt

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

P−value

D
ev

ia
tio

n 
fro

m
 li

ne
ar

ity

P = 0.001

P = 0.05 wee1-50
cdc25-22
diploid/het
pom1∆

wt

JI K

H

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/754788doi: bioRxiv preprint 

https://doi.org/10.1101/754788
http://creativecommons.org/licenses/by-nc-nd/4.0/


B

A

5 10 15 20

0
20

40
60

80
10

0

5 10 15 20

0
20

40
60

80
10

0

5 10 15 20

0
20

40
60

80
10

0

m
R

N
A 

ha
lf−

lif
e 

in
 b

in

4 6 8 10 12 14

0
20

40
60

80
10

0

Mean cell size in bin [µm]

wt

cdc25-22
wee1-50

rpb1 rep 1 rpb1 rep 2 rpb2 rep 2

rpb1
rpb2
rtp1

Thiolutin nmt41 promoter shut off

m
R

N
A 

ha
lf-

lif
e 

[m
in

]

Figure S2 Sun, Bowman et al

wt

cdc25-22
wee1-50

wt

cdc25-22
wee1-50

t = 0 t = 45

Thiolutin
rp

b1

Mean cell size in bin [µm] Mean cell size in bin [µm] Mean cell size in bin [µm]

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/754788doi: bioRxiv preprint 

https://doi.org/10.1101/754788
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3 Sun, Bowman et al
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Figure S5 Sun, Bowman et al
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