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Abstract 
The Allen mesoscale mouse brain structural connectome is analysed using standard 
network methods combined with 3D visualizations.  The full region-to-region 
connectivity data is used, with a focus on the strongest structural links. The spatial 
embedding of links and time evolution of signalling is incorporated, with two-step 
links included. Modular decomposition using the Infomap method produces 8 
network modules that correspond approximately to major brain anatomical regions 
and system functions. These modules align with the anterior and posterior primary 
sensory systems and association areas. 3D visualization of network links is facilitated 
by using a set of simplified schematic coordinates that reduces visual complexity. 
Selection of key nodes and links, such as sensory pathways and cortical association 
areas together reveal structural features of the mouse structural connectome consistent 
with biological functions in the sensory-motor systems, and selective roles of the 
anterior and posterior cortical association areas of the mouse brain. Time progression 
of signals along sensory pathways reveals that close links are to local cortical 
association areas and cross modal, while longer links provide anterior-posterior 
coordination and inputs to non cortical regions. The fabric of weaker links generally 
are longer range with some having brain-wide reach. Cortical gradients are evident 
along sensory pathways within the structural network. 

Author’s Summary 
Network models incorporating spatial embedding and signalling delays are used to 
investigate the mouse structural connectome. Network models that include time 
respecting paths are used to trace signaling pathways and reveal separate roles of 
shorter vs. longer links. Here computational methods work like experimental probes 
to uncover biologically relevant features. I use the Infomap method, which follows 
random walks on the network, to decompose the directed, weighted network into 8 
modules that align with classical brain anatomical regions and system functions. 
Primary sensory pathways and cortical association areas are separated into individual 
modules. Strong, short range links form the sensory-motor paths while weaker links 
spread brain-wide, possibly coordinating many regions.  

Introduction	
Major projects to map brain structure in a variety of animals are producing significant 
datasets laying out structural and functional connectivity [1] patterns that present 
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challenges for analysis [2, 3]. Methods from network science [4, 5] can shed light on 
important hubs, links and modular sub-divisions. These can be characterised using  
tools derived from the mathematical apparatus of graph theory [2-6]. Ultimately 
functional circuits may be resolved, as are being painstakingly reconstructed using 
modern experimental probes (e.g. see [8]). The challenge is to find appropriate 
network models that can realistically reproduced/predict brain structural and 
functional connectivity data. 

Here the Allen Institute for Brain Science (AIBS) dataset of a mesoscale 
structural connectome for the mouse brain [9] is studied using a combination of data 
analytical, network and visualization methods. While the data is brain wide it is at the 
meoscale  (resolution of 0.1 mm voxels and 0.35 mm coronal plane imaging), in 
which links involving many neurons are probed. Connectivity data at finer scales, at 
the level of individual neurons and synapses, are available for smaller samples, such 
as with mouse retina [10, 11]. Higher resolution data also is emerging at the level of 
cortical layers [12]. These studies shed light on the correlation between structural and 
functional connections between nodes in the mouse brain. The network nodes are 
located at known 3D coordinates from the Allen Atlas [13-14]. Typically the sources 
and targets of the probed connections are classical anatomical regions that, given 
sampling protocols, vary significantly in size and functional significance. That non-
uniform sampling presents challenges for analysis [15]. Already some network 
methods have been applied to the AIBS mouse connectome to find the basic network 
features [9, 16] or to infer hubs via their transcriptional signatures [17], especially in 
the cortex. These studies show consistency with a Watts-Strogatz small world and 
rich club connectivity.  Sampling statistics, data thresholds and possible roles of weak 
links have also been studied [18]. While simple network theory has provided some 
descriptions of the mouse brain connectome it has limited ability to reveal further 
insights unless the network measures can capture the relevant underlying processes, 
such as time dependent signal flows on a spatially embedded network. It is the 
combination of data analytics, network analysis, 3D visualisation and process 
modelling that can reveal biologically relevant insights, as laid out and tested on the 
mouse retina connectivity data [11]. 

It is becoming increasingly evident that brain connectivity comprises more 
than a simple network. The links are directed and weighted, they can be signed: that is 
excitatory or inhibitory, they also can be modulated by chemicals (neuromodulators, 
hormones, etc) present in the extracellular space, the links have spatial extent and fit 
within a finite volume, and the links can be activated over time. There may be several 
types of networks present that operate separately or in parallel [19]: the emerging 
theory of multi-layer networks [20, 21] provides tools for such analysis as relevant 
data becomes available. In brain networks understanding is still emerging of: node 
and link weight definitions, information representations, signalling dynamics, and the 
roles of space and time in network functions.  

A brain network is spatially embedded and constrained to a finite volume. It is 
increasingly realised that this imposes constraints [22-24] and wiring costs [25, 26] on 
brain networks. Meanwhile the theory of spatial networks is available [27].  The 
nodes are at known geometric locations that are recorded in an Atlas [13], or 
approximated by the experimental injection site locations [9]. Thus Euclidean 
distances or fibre path lengths between network nodes need to be considered along 
with the topological or graph path lengths (number of links or steps between nodes). 

Brain networks provide pathways that transmit and actively process signals. 
Thus network methods that relate to information theory are likely to provide 
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biologically relevant insights, while the topological features that underlie graph theory 
[28] can address other questions. Other real-world networks, such as transportation 
hubs or social interactions, are more suited to study by the basic topological network 
methods. A generic starting point for studying the stochastic aspects of signal spread 
is a random walk on the structural network [29]. This captures multi-step and 
secondary pathways and, importantly, also captures stochastic elements of the 
underlying processes. Beyond that better models, capturing the combined 
deterministic and stochastic elements, are required of the specific signalling, coding 
and processing mechanisms involved - as more such emerges these models can be 
developed and refined. 

Modular decomposition methods [30] have been applied widely to brain 
connectivity data [1, 5] and show local clusters that are more densely inter-connected 
than the overall network. It has long been anticipated [31] that such modules may be 
hierarchically organised [32] in biological systems. It also should be borne in mind 
that network analysis methods commonly applied to brain data often are based on 
graph theory methods that rely on topological shortest paths between nodes. In a brain 
network that is spatially embedded, weighted and directed, and that transports and 
processes information, it is likely that multiple and secondary paths may contribute 
additional routes between nodes [33]. Random walk based methods can incorporate 
such multiple paths and may yield more biologically relevant modules. It also has 
been pointed out that plausible modular decompositions can be affected by: artefacts 
of discretization, threshold choice, algorithm choice, or simple ordering of nodes [15, 
34].  Additionally, tree or dendrogram based methods that use correlation measures 
applied at a chosen cut-off level can guarantee that a hierarchy will be found. 

Time dependence enters in at least two ways: the network structure may 
change (over longer times) and can be studies by the methods of time-dependent 
networks [35]; and  temporal processes occur on the given network [36, 37], such as 
spreading phenomena or signalling. Thus not all linked nodes may be reachable 
within a given time frame. Just as in special relativity, where light carries signals at a 
constant speed, only some regions in space are reachable within a given time: there is 
a “space-time cone” in a brain which contains physically reachable targets [38]. 
Signals, carried by action potentials, spread out across the next available links in an 
ordered sequence of “time-respecting paths” [36, 37].  Some nodes, although linked, 
may not be reachable within a specified time over the available sequence of traversed 
links. And  some network nodes may be reachable by multiple signals that happen to 
arrive within a small time window, so they are available for co-incidence detection 
and integration [39]. Other studies have used event-related networks to characterise 
the time evolution of brain functional connectivity [40]. Finally modular structure of 
the network may have some time dependence, given that links are instantiated over 
the signalling time-of-flight. Thus module features may evolve from an initial, local 
structure formed by short links to the steady state structure that includes longer, 
possibly brain wide, links. Separate again are representations of space and time in the 
brain [41], of relevance to navigation and memory: such are not considered here. 

Many experimental studies of brain circuits rely on targeted experimental 
probes to reveal specific circuit pathways: there are many structural network links 
available, but not all may be functionally activated in a given situation. The disparity 
between functional and structural probes of brain connectivity highlights the 
challenge. Here, network methods can identify, or confirm, important signalling 
pathways in the brain such as the primary sensory routes, along with multiple 
secondary links to other sensory modalities and to cortical association areas. It is 
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possible to explore the locations and timing of integration of signals from multiple 
senses and so explore sensory integration. Ultimately richer network models 
encompassing multiple network layers, signed links describing excitation and 
inhibition, spatial embedding, time dependence, and link activation mechanisms, may 
yield real theoretical insights into brain circuits and networks. 

The present study integrates the methods described above to elicit biologically 
relevant features of the mouse brain network structure.  It focuses on signal flows on 
the network, rather than graph methods based only on shortest paths.  This paper: 
analyses the mesoscale mouse brain connectome, comprising weighted directed links; 
focuses on ipsi-lateral connections only; analyses the connectivity data by 
thresholding and sensitivity analysis; incorporates a spatially embedded and temporal 
network; employs a range network measures to identify key nodes and links; finds the 
network modules using the infomap method; and presents 3D layouts of network 
features in both the Allen Atlas coordinates and in a simplified schematic layout. It 
also probes the network by tracing primary sensory– motor – association signalling 
pathways embodied in the network, and by examining integration of signals between 
the association areas of the mouse cortex. More detailed network features are 
presented in supplementary figures, with biologically relevant results in the main text.  

Methods 
Connectivity data 
The original AIBS dataset [9] was used to generate the connectivity or adjacency 
matrix for the mesoscale mouse brain network. The experimental data was obtained 
using an anterograde viral tracer, labelled with a fluorescent probe, that was injected 
into a source region and allowed to spread along axonal projections to linked target 
regions. Injection sites (source nodes) were located in the right hemisphere. Here it is 
the ipsi-lateral connections only that are examined. Further details of the experimental 
protocol are discussed in S1 Text. Given the varying sizes of sources and targets, 
earlier analyses have calculated a “normalized connection density” as the fluorescent 
signal per unit volume of the target and per unit volume of the source [9, 16, 18]. 
However most network analysis typically deals with all weighted links between 
nodes, rather than a density of links. Although some new methods allow for node 
weights, for example arising from city areas or brain region volumes, as well as link 
weights [42-43], the significance of link density is not well developed in network 
models, so it is unclear how to apply this to brain data. Here we use the usual network 
model [6, 28] that incorporates varying node sizes and total link weights. The original 
raw data is the normalized connection strength, originally termed wXY [9], being the 
volume of fluorescent voxels detected in the target region arising from the volume of 
tracer injected in the source region, and was reported in Suppl. Table 3 of [9]. 
Whether this is the true network connection strength between the two regions is a 
question of volume sampling in the source region, as presented in S1 Text.  

It is helpful for subsequent theoretical analysis to further normalise the 
measured values to some representative strength, so the link weights are hereafter 
scaled to a unit value and are dimensionless. This is consistent with the common 
observation that many scientifically measured quantities have a typical size or scale 
[44]. Additionally well normalised quantities allow for more robust and efficient 
computation. As noted below the maximum and minimum measured values are 
possible outliers, so do not form a reliable basis for normalisation; and a layered data 
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acceptance or rejection approach may be needed for concordance between structural 
and functional measurements. Thus some reliable, intermediate value needs to be 
chosen. Following the lower limit adopted in Figure 3 of [9] it is convenient to rescale 
the raw data by a0 = 10-3.5 (mm3), which is then taken as a unit link weight. The 
elements of the adjacency matrix, A are then well conditioned for matrix 
computations. Calculated network properties are unaffected by this choice.  

S1 Figure plots all the original raw data and highlights obvious outliers. A 
guide to thresholding the data is provided by tradeoffs between True- and  False-
Positives rates in comparisons between different types of connectivity measurements. 
Details are provided in S1 Text. Those studies [45-46] suggest that the top 40%, by 
weight, of links provides an optimal comparison between structural and functional 
measurements. Thus the present study focuses on the top 40% of structural links by 
applying a link weight threshold, at weight 78 using the normalisation described 
above and in S1 Text. The sensitivity of results to threshold choice is investigated and 
the weak links are studies separately.  

Link	distances	
The present analysis also required the distance matrix which records link lengths 
between nodes. Geometric distances between nodes (anatomical regions) were taken 
from the coordinates available online with the Allen Atlas [13-14]: the Waxholm 
space delineation 2012 (V2) for the C57BL/6 mouse was used, since this was then 
contemporary with the connectome experiments and is still used in various AIBS 
online products. A later, higher resolution, edition, the Allen Mouse Brain Common 
Coordinate Framework version 3, was used to check selected results, noting the 
different coordinate origin. In the present application only distances between nodes 
were required. The centroid (median values of x, y, z) of each region was used as a 
representative node coordinate; typically this would be close to the centre of mass, 
except for regions of unusual shape. Available 3D volumes of Nissl-stain sections and 
labels at voxel level, along with NIFTI tools in Matlab [47] enabled comparison 
between the three sources. Typically differences up to 0.2 mm were encountered, with 
larger, extended anatomical regions (eg. MO) being more difficult to characterise by a 
single coordinate. Here geometric effects are limited to the influence of link length 
and strength on network features – rather than geometric constraints, such as a finite 
brain volume.  

Network analysis and modular decomposition 
The network analysis methods were described previously and tested on the mouse 
retina connectivity data [11] and follow standard practice [1, 5-7, 28]. The nodes of 
network are the 213 anatomical regions corresponding to the selected experimental 
source (injection sites, or combinations thereof) and target sites [9]. The resultant 
array of source-target link strengths forms the adjacency matrix [5, 6, 28] for 
subsequent analysis. Its entries, A(i,j) encode the weight and direction of links 
between nodes i and j, chosen from the 213 anatomical regions. The matrix is not 
symmetric since the network links are directed. The diagonal elements are set to zero 
since self-loops, present in the original data, are ignored in the present analysis. Thus 
there are (n-1)(n-2) = 44,732 possible directed links between the 213 chosen 
anatomical regions. The adjacency matrix was normalised and thresholded as 
described above and in S1 Text (cf. S1 Figure).  

Standard network measures have been used on brain data [1, 5, 48], and the 
mouse data [9, 16], to rank the importance of nodes and links. The weighted in-degree 
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and out-degree of each node (i.e. node “strength”) is the simplest such measure, being 
the column sum and row sum, respectively, of the weighted adjacency matrix. These 
quantities can be calculated directly from the published Allen data [9]. Other 
measures are the node betweenness centrality (nBC) [49] and edge BC (eBC) [6, 28]. 
They are based on graph shortest graph paths or geodesics, as distinct from the 
geometric path length that reflects the distance travelled between nodes along links in 
physical space. The random walk centrality measure (rwC), developed in other 
contexts [33], may be relevant to brains where signals can spread by both direct paths 
and also via secondary links. Analysis of complex metabolic networks has generated 
the concept of hub nodes [50], based on the participation coefficient, P which 
measures the diversity of a node’s out links to other network modules (see below). 
The concept has proved useful in analysis of brain networks [51]. All measures were 
calculated by standard methods and toolboxes using available Matlab codes [52-54]. 

Modular decomposition 
Modular decomposition of the mouse connectome was attempted by the classical 
methods: spectral partition of the Laplacian matrix and of the modularity matrix, k-
means clustering of the leading eigenvectors of the adjacency matrix or its associated 
Laplacians [55-56], agglomerative and divisive methods [57], and the Louvain 
method [58] which iteratively agglomerates nodes. Most of these methods utilise 
network topology measures (e.g. node BC, edge BC) that reflect shortest paths on the 
topological network. These clustering algorithms do not always generalise to 
weighted, directed networks, as required here. The number of modules sought has to 
be specified in advance, and may be limited to 2 for some of these methods. The 
InfoMap algorithm [59-60], by contrast, uses information theoretic concepts 
(Hoffman code length) as a proxy for random walks on the network [59].  It is well 
suited to studying spreading phenomena on networks [61], and aligns well with an 
essential feature of a brain network, to host signal flows on the network of neurons 
and synapses. It also does not require the number of expected modules to be specified 
in advance - that emerges naturally from the calculation. Modules found by this 
method are essentially groups of nodes in which a random walker spends a larger 
fraction of time. This method has been shown to perform well on a range of test cases 
[59-60], and has been applied successfully to the mouse retina connectivity data [11], 
thus Infomap is the primary used herein. An efficient C++ code and online apps are 
available [62]. The Louvain and InfoMap algorithms generally produce similar results 
and have proved useful for biological systems, including brain networks. Both 
methods can uncover hierarchical modular structure. Newman’s Modularity metric, Q 
[55-56] was used to compare different partitions against a null model (e.g. random or 
configuration model). 

Temporal Networks 
Here the analysis and visualization of temporal, or time evolving, links involved 
choosing a specified source node[s], finding the list of target nodes, via in- or out-
links, then re-ordering these by increasing link lengths, and then drawing them in 
distance, or equivalently time, sequence. For links longer than ~5-6 mm (about half 
the brain size for the mouse) it is possible for 2-step links to be simultaneously active 
in the distance (time) window and thus warrant examination. The mid node was 
already directly linked to the source node, so credibly signals could continue on 
to/from a relevant target/source node.  For those second links the synaptic delay needs 
to be included to correctly describe signal traversal across two links. Signal delays 
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over axons and synapses are discussed in S1 Text, with 1 mm/millisec (mm/ms) being 
chosen as a typical velocity. A representative synaptic delay of 2 ms adds an 
equivalent path length of 2 mm for the purposes of tracing 2-step links.  

Schematic coordinates and 3D visualization 
Network plots usually have too much visual complexity (cf. S4 Figure), so a 
simplified 3D schematic layout of the mouse brain network was sought. A set of 
schematic coordinates was developed, in which the original 213 anatomical regions, 
located at the Allen Atlas coordinates, were condensed onto 55 locations that each 
aggregated related and nearby regions, as detailed in S1 Text. A benefit of this 
approach is that related links, between nearby and related nodes, are bundled into a 
few pathways, enabling easier navigation of the 3D visualizations. Surface colours 
match those presented in the Allen Brain Atlas sagittal slice images [63].  All figures 
were produced in Matlab, with all codes available [64].  

Strategy	
Here four strategies are adopted: network nodes are displayed at simplified schematic 
coordinates (cf. S1 Text, S3 Data and S10 Figure), which serves to reduce the number 
of link crossings and so reduce visual complexity; a number of landmark nodes were 
examined (e.g. high In- or Out-degree, high flow, or hub nodes); and links are 
selected from either the strongest (e.g. top 40%) or weakest present; next functionally 
relevant pathways are examined, such as the primary sensory paths, links with the 
cortical association areas; or links with the motor regions.  The latter approaches are 
informed by the many experimental probes of the sensory and association cortex 
pathways. These, historically, have produced basic insights into nervous system and 
brain function [65]. Similarly network methods allow computational probes of links 
with key sensory and cortical regions. 

Results    
Connectivity strength versus distance 
The links weights used here are the original normalized projection strength [9] (cf. S1 
Figure and S1 Text) suitably normalised to a unit value (cf. Methods).  Figure 1 
displays the link weight vs. distance data (cf. Methods) as a log-linear plot, omitting 
the 10 extremely low points in S1 Figure, and with the link density normalised by a 
nominal threshold value of 10-3.5 (mm-3) [9]. A linear fit to the plot shows the distance 
trend and the significant dispersion in the data.  Using a kernel regression model to 
infer voxel level connectivity [66] also found a linear trend for the whole brain ipsi-
lateral data, with a log(weight) - log(distance) slope of -3.16, and residuals best fit by 
a log-normal distribution.   Note that the comparable log-log fit to the data in Figure 1 
yields a slope of -2.42, with R2=0.18 and 95% confidence interval of [-2.49, -2.34].  
The trend is reminiscent of that found with diffusion MRI of human brain [67]. In that 
study the overall trend was quadratic, spanning 200 mm, however at the scale of the 
mouse brain (~12 mm) it was essentially linear, with any quadratic term making a 
negligible (<2%) contribution. De-trending the data, by subtracting out the linear fit, 
shows that the residual log-weights appear to be skew-normally distributed (Matlab 
dfittool) about the local mean values (now zero at each distance), with overall 
standard deviation 1.31. Longer links (>5mm) show slightly more dispersion 
(standard deviation of  1.4, vs. 1.13) than shorter links (<5mm). This is in contrast to 
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the larger difference noted for human brain over the much longer distances, where the 
dispersion of log-weights increased with link distance.  
 
 
 
Figure 1. Link weights vs. distance. Normalised link weights, plotted as 
log10(weight) vs. link distance; and log-linear fit trend (black solid line) fit by the 
equation log10(weight) = 2.509 -0.293*dist(mm) with R2=0.20; 95% confidence 
interval for the slope is [-0.307, -0.289].  Also shown are: the 3-sigma lines (red, 
dashed), the unit weight (i.e. log10(weight) = 0, green dashed line) and the top 40% 
(gray dashed line) cut-off values. 
 
 
 
Figure 1 also shows the local data mean (the linear trend line) and the 3-sigma trend 
lines (cf. S1 Text for the correct sigma of log transformed data). Often in data analysis 
points lying beyond the 3 standard deviations are omitted as outliers. Here 46 data 
points lie below the lower 3-sigma line so might be omitted as statistical outliers. 
Note this criterion now depends on link distance, so some care is required in 
eliminating weak connections. It is now clear that most of the data lies within the 3-
sigma curves.  Note that the strongest In-link, to CP (Caudoputamen), which appears 
to be an outlier, does lie within the local 3-sigma boundary.  This node is also by far 
the largest sampled anatomical region. That makes it problematic to normalise the 
links to the strongest weight so that the normalised weights vary between 0 and 1, as 
is often used. Figure 1 plots two credible link cut-off strengths: at weight 1 
(corresponding to Oh’s [9] normalised projection strength of 10-3.5 mm-3), and at the 
40% link weight cutoff (cf. Methods  and S1 Text). The plot makes it evident that a 
simple, uniform  threshold discards data in a skewed manner, with shorter stronger 
links preferentially included, and more of the longer weaker links discarded.  

Adjacency matrix and networks characteristics 
The raw connectivity, or adjacency, matrix normalised as described above and 
omitting the 90 self-loops contained 16,864 directed links between the 213 separate 
regions: 38% of all possible links. The initial analysis [9] utilises an effective cut-off 
strength of 10-3.5 mm3 (approximately 1/3 of a voxel). The weakest remaining link 
was assigned weight 1, so the strongest link has weight 64.5k, spanning 5 orders of 
magnitude as reported previously [9, 16]. The significance and possible roles of the 
weaker putative links is examined separately below. The adjacency matrix is listed in 
S1 Data. 

S2a Figure shows the distribution of the weighted in- and out-degree (node 
strength) of the 213 anatomical regions (network nodes). The distribution appears 
heavy tailed, but with only 15 nodes having a weighted degree (in or out) greater than 
10,000. In that case the mode (middle value) is a more robust estimator of 
representative links weights than the mean, which is unduly influenced by the larger 
values. The link weights have mode values of 264 (in) and 79 (out), both significantly 
below the strongest link weights. One node (#36, CP) has a very large weighted in-
degree (64k) and might be considered a statistical  outlier, being near 3 standard 
deviations above the local mean. It represent a quite large anatomical region, 
comprising 24k voxels with an indicated geometric extend of approximately 3 mm.  It 
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also is a significant outlier in a plot of wt- in-degree vs. number of in- links (not 
shown). The unweighted node degree (binarised adjacency matrix), that counts the 
number of links regardless of weight, is presented in S2b Figure. The mean number of 
both in- and out-links is 80, with nodes having between 3 and 180 Out-links, and 
between 50 and 120 In-links. Interestingly both link count distributions appear to be 
nearly Gaussian, with the out-distribution more skewed to the right. This suggests the 
speculation, in light of the Central Limit Theorem, that links might originate from a 
process having multiple random features, with link weights subsequently developing 
by more specific biological mechanisms. At mesoscale resolution, with 213 nodes, 
there are not enough data points to distinguish if the degree distribution follows an 
exponential or power law. 

S3a Figure  shows the distribution of graph shortest paths for the full network. 
These are the shortest path length (number of links traversed) between any two nodes. 
In a graph theoretic sense the network is compact: approximately one third (31%) of 
node pairs are separated by one link, with the balance (68%) reachable by two links; a 
very small number (232 pairs) require 3 links. Any node can be reached from any 
other in at most 3 links. S3b Figure shows the distribution of link lengths in geometric 
space: it appears to be a normal distribution, skewed to the right. The peak shows the 
most probable link length is short ranged  (~3-4 mm), while the long tail to the right 
shows a still significant number of very long links (~10 mm), almost spanning the full 
brain.  

Key nodes are listed in S1 Table, with the top 20 nodes ranked by probability 
flow, along with other network measures (nBC, eBC, rwBC, P). These nodes are most 
frequently visited by a random walk on the network. Many have high degree and 
number of linked (i.e. un-weighted degree). Some, but not all, have high nBC. S2 
Data  lists all nodes with detailed information and network measures. Potential hub 
nodes [50, 51] were identified by the participation coefficient, P which measures the 
diversity of a node’s out links to other network modules.  More than half of the mouse 
brain nodes (113 out of 213) have P > 0.5 (within a range 0 - 1), indicating some hub-
like character. Of these, five nodes also have very high weighted In-degree and 
random walk flows; while six nodes have very high weighted Out-degree. Together 
these measures may help to identify connector hubs. Likely hub nodes are listed in S2 
Table. Such hubs often are evident in the Figures.  Amongst the high participation 
coefficient nodes are 21 cortical regions, including most of the association areas, the 
visual and auditory cortices, and the secondary motor region. Three way comparisons 
of probability flow and participation coefficient to both In- and Out-Degree (figures 
not shown; cf. S2 Table and S2 Data), are informative. A few nodes (MRN, PAG, 
SCm, LHA, ACB) stand out by having high flow, with many others clustered near 
low flow and degree. Participation coefficient highlights other nodes (eg. CLA, CLI, 
PP, GPi, MGd, MOs, ENTl) and tends to spread nodes out more evenly. In each case 
CP is possibly an outlier due to it being the largest sampled anatomical region. A 
similar comparison using node BC is less informative since more nodes are clustered 
near zero. Overall it appears that these standard network measures, applied at this 
spatial resolution, provide only a partial guide to functional significance. 

Modules  
The results presented below all use the InfoMap method applied to all 14,103 links of 
weight 1 or larger (cf. Figure 1). Ranking of nodes in order of probability flow 
correlates well with random walk centrality and weighted in-degree (cf. S1, S2 
Tables). In part that reflects the algorithm design. However such ranking does not 
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correlate well with shortest paths node BC, with the latter likely dominated by 
numerous long-range weak links. The Infomap calculations were robust to the choice 
of filtering (cut-off) of link weights: cut-off weights of 1, 78 (top 40% of links),  0.1 
and 0.01 produced  either identical results (for 1, 78) or only minor differences (for 
0.1, 0.01), suggesting that the modular decomposition is robust. In all cases the major 
modules and their leading (i.e. highest flow) nodes were identical. 

Figure 2 shows a comparison of the mouse brain anatomical regions and the 
calculated network modules. The regions are represented by the 3D convex hull 
surface that encloses all member nodes, plotted in the Allen Atlas coordinates. Note 
that the convex hull encloses the node coordinates that are the centroid coordinates of 
the anatomical region, rather than covering the full extent of those regions. Thus the 
region-enclosing surfaces are not space filling: this improves the visibility of the 3D 
graphic. Surface colours match those presented in the Allen Brain Atlas sagittal slice 
images [14]. The modules are presented in 2D only to reduce confusion in the image. 
Modules are represented by the 2D slice of the convex hull (enclosing all module 
members) drawn at a height (in the Dorsal-Ventral axis) corresponding to the centre 
of mass (CM) of the module members. Note that there is significant, but incomplete, 
correspondence between modules and the major anatomical regions. Overall 74% of 
all links are between modules, with mean length 4.3 mm, while 26% are within 
modules, with mean length 2.8 mm. 
 
 
Figure 2. Network modules and brain regions.   3D plot of mouse brain major 
anatomical regions, drawn as a translucent convex hull enclosing centroids of member 
anatomical regions; and Infomap modules, enscribed in 2D (at height (ventral-dorsal 
axis) of the CM of nodes). Region colors are taken from the Allen Atlas sagittal 
images [63]; module colors follow that of the dominant members. Bregma is marked 
by the cross. A mid-level horizontal slice through the 3D Nissal stain image [14] 
gives perspective. A 1 mm scale bar is shown on that mid-slice. A floor grid of 1 mm 
squares is drawn at 6.7 mm ventral to Bregma to give further 3D perspective. 
 
 
Table 1 lists the Infomap modules and their key characteristics, (cf. S2 and S3 Data 
for full details). Module 1 is the largest and mostly contains anatomical regions from 
the hind brain (medullla, pons, cerebellum) along with some (27%) from the 
midbrain. Module 2 is dominated by cortical (motor, somatosensory) and thalamic 
regions; it also contains CP, the largest and most densely connected region. Module 3 
is mostly associated with the hypothalamus, along with the striatum and thalamus. 
Module 4 is dominated by the olfactory regions in two broad locations: anterior 
(MOB, AOB, AON, TT) and posterior to Bregma (PIR, COA, NLOT, PAA, TR); it 
includes the perirhinal region. Thus this module has a significant spatial extent in 
Figure 2. Module 5 contains the auditory and visual regions of the cortex, along with 
their thalamic pathways (LGd, MGd); it also contains the nearby, posterior cortical 
association areas (parietal, retrosplenial, temporal). Module 6 is dominated by the 
hippocampal formation, along with some elements of the palladium and striatum. 
Module 7 contained the anterior cortical regions (orbital, limbic, insular, cingulate) 
along with the claustrum and five nearby thalamic regions (AMv-d, SMT, MD, CL). 
Module 8 is dominated by the cerebellum. In each case a small number of nodes in 
other regions are well connected with the main elements of each module - so there is 
not a complete alignment between regions and network modules. Three regions (FS, 
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MH, RH) appeared as “orphans” not assigned to any module – judging by their 
dominant linkages they appeared to be related to Module 1, so were assigned there for 
convenience. Modules were color coded by their dominant regional members. In 
subsequent figures nodes and links are colored according to their module 
membership, as described above.  
 

Module Flow in Module Key regions Anatomical Regions Color 
1 0.321 MRN, PAG, 

SCm 
Midbrain, Pons, Medulla pink 

2 0.229 CP, SNr, GPe, 
Mop, SSp, SSs 

Striatum, Thalamus, 
Cortex 

mid green 

3 0.159 LHA, SI, ACB Hypothalamus, 
Palladium, Striatum 

red 

4 0.102 MOB, AON, 
PIR, ENTl 

Olfactory olive green 

5 0.068 Vis, Aud, TEa, 
LGd, MGd 

Cortex, Thalamus dark green 

6 0.058 CA1,2,3, DG Hippocampus light green 
7 0.038 ACA, ILA, AIv, 

ORB, CLA 
Cortex, Thalamus, 
Cortical Subplate 

salmon 

8 0.022 AN, SIM Cerebrum yellow 
orphans 0.003 FS,  RH, MH Pons, Thalamus n/a 

 
Table 1.  Informap modules for mouse brain ipsi-lateral links.  Key members, in 
order of probability flow, and color coding used in the figures are listed. 

 
Functional roles associated with these modules emerge from analysis of sensory and 
association pathways, presented below. This accords with other findings of modules 
that broadly align with anatomical regions [68]  (and cf. Figure 2). The modular 
decomposition found also approximately aligns with the four system model [69], that 
divides the brain into four functional systems: sensory, motor, cognitive, and 
behavioural state. Network modules 2, 4 and 5 handle sensory roles; module 2 also 
contains the motor roles, modules 2 and 5 contain the cortical association areas, and 
modules 1, 3, 6 and 8 relate to behavioural state. A key nodes (e.g. CLA, ENTl) 
appearing as linkage hubs between modules. 

Other modular decompositions are compared in S3 Table. The Newman 
modularity metrics [55-56] are: Q=0.40 (Infomap),  Q=0.395 (Louvain) and Q=0.30 
(Newman spectral). The Louvain method produces 6 modules for the whole brain. 
The Infomap modules 4 (Olf), 1 (Mid- and Hind-brain) and 8 (Cerebrum) are 
combined together into the Louvain module 1.  The Louvain results substantially 
overlap with those of the Infomap method, with notable differences, as listed in S3 
Table). The Newman spectral partition, by definition, produces only 2 modules, 
essentially dividing the brain into sensory + motor + cortex and hindbrain.  Thus, at a 
gross level, the three methods are in accordance. Other Newman methods did not 
produce satisfactory results, either yielding only one large module, or very 
unbalanced divisions. Some modules were investigated as stand alone systems, to see 
if further sub-divisions could be extracted. In particular the Infomap module 5 was 
investigated, since it combined the Auditory and Visual systems, in contrast to the 
Louvain method, where they are separated. This did not reveal further partitions. 
Infomap module 1, however, did subdivide, into groupings of Midbrain, Pons and 
Medulla. 
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A recent analysis of additional mouse connectivity, at the layer level of the 
cortex [12], used the Louvain method for modular decomposition. It found 6 modules 
with some similarities and notable differences to the present results. The 6 modules 
were described as: prefrontal (FRP, ACA, ILA, ORB, MOs); antereolateral (GU, 
VISC, AI-d, -p, -v); Somato-motor (SSp-m, -n, -bfd, -ul, -ll, -tr, MOp); Visual (Vis-p, 
-l, -al, -pl); medial (Vis-am, -pm, RSP); and temporal (AUD, TEa, PERI, ECT). 
Notable differences in the present work are that: the frontal pole, insular regions and 
GU are together in Infomap module 2, comprising somato-sensory and motor regions; 
here MOs and MOp are in this same module. The AUD, VIS and VISC regions come 
together in module 5, along with TEa, ECT, RSP. Five of the 8 Infomap modules (1, 
3, 4, 6, 8) found herein encompass hind- and mid-brain regions along with the 
olfactory regions; of these module 1 includes PERI. Three modules are associated 
with cortical regions: module 2 (ACA, ILA, ORB, all SSp, SSs), module 5 (AUD, 
VIS, VISC, RSP, TEa), and module 7 (ACA, AI-v, ILA,  ORB). In the present study 
the whole hemisphere, rather than just cortical, connectome was decomposed into 
modules. Thus nodes and modules are more inter-linked, including via extra-cortical 
regions. Whereas higher resolution, at the cortical layer level [12], may have 
facilitated decoupling of auditory and visual regions. 

All calculations of modules based on the full adjacency matrix, independently 
of cut-off weight assumed, produced a two-level decomposition: no hierarchy was 
detected. That also was found for the mouse retina microscopic connectivity data 
[11]. However examination of a distance-sliced adjacency matrix did reveal an 
evolution of hierarchy, which was evident for closely spaced nodes whose links 
activate early in signalling pathways.  Progressive inclusion of longer range links 
washes out that hierarchy, which is swamped by denser interconnections formed at 
later times, or equivalently longer link distances, as described below (cf. S9 Figure). 

Network Visualization 
S4 Figure shows all 213 anatomical regions as network nodes plotted in 3D at the 
Centroid (mean coordinates) in the Allen Atlas coordinate space, along with all their 
Out-links. Nodes are coloured by their module membership and links by the module 
membership of their target. However a plot of all nodes and their In-links is not 
discernibly different, despite the differing Out- and In-degree patterns (cf. S2 Figure).  
Overall linkage patterns, as reflected by the link colors, appear to correspond with 
brain regions.  This is consistent with Figure 2, which shows significant overlapping 
of network modules with anatomical regions. While there are difference in the 
patterns of Out- and In-links such cannot be immediately discerned in these images. 
This immediately highlights the basic challenge that is usually encountered in 
network visualization: the fabric of links is too dense to discern more than the overall 
pattern. In particular there are too many links crossings that occlude other features in 
the 3D fabric of nodes and links. As with experimental investigations of brain 
networks, a subset of nodes and links needs to be targeted to discern details of regions 
and circuits.  
  Figure 3 shows all nodes and the strongest 40% (5,641 links in total) of ipsi-lateral 
Out- and In-links with all 213 nodes, plotted in the simplified schematic coordinates.  
Overall there is a reciprocal pattern of links between major regions. Cortical 
association areas, including the ventral olfactory region (PIR), along with motor and 
selected midbrain regions, are significant integration hubs. From the color coding of 
links it appears that many of these are hubs with their relevant module (e.g. Frontal 
Pole, Orbital, Insular), while others are integrating between several modules (eg. 
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Cingulate, Temporal, Parietal, Retrosplenial) or across several senses (Aud, Vis, Olf). 
Closer examination reveals mutual, strong (i.e. top 40%) links between somato 
sensory regions and both auditory and visual regions, with the temporal, parietal and 
cingulate regions having strong in-links from auditory and somatosensory regions. 
The retrosplenial region receives inputs from the gustatory, visceral and visual senses. 
The orbital, limbic and cingulated regions have strong In-links from the olfactory and 
auditory senses. The somatosensory, gustatory, visceral, auditory and visual primary 
senses all link directly to the motor regions. There is no direct link from the primary 
olfactory regions (AOB, AON, MOB) to either MOs or MOp. Possible weaker links 
are examined later. It is evident that a further strategy is required to unravel the 
complexity of links evident in Figure 3. 
 
 
Figure 3. 3D schematic coordinates for mouse brain.  All network nodes plotted in 
3D schematic coordinates (cf. S10 Figure and S3 Data), along with the top 40% of 
links:  a. Out links and b. In links.  Anatomical regions outlined as in Figure 2. Only 
the right hemisphere and ipsi-lateral links are shown. Other details as in Figure 2. 
 

Unfolding of links in sensory pathways 
The network analysis present thus far considers of the linkages patterns and their 
spatial separation, and ignores time. That is they present the long time, steady state 
behaviour of the network of nodes and links. Now we examine the unfolding 
activation of those links through time, or over distance. The results presented above 
relate to nearest neighbour links, over one step, between nodes. Recalling S3a Figure 
it is clear that many node pairs are separated by 2 steps over the network. Likewise 
Figure 3b suggests that, for a given signal velocity over axons, two shorter links can 
be traversed in the time window for one long link to be traversed. It is also evident 
from Figure 1 and S1 Figure that shorter links tend, on average, to be stronger than 
longer links.  

Figure 4 shows the top 40% of out- and in-links from/to key primary sensory 
regions: Visual (-p, -al, -am, -l, -pl, -pm), Auditory (-d –p –v), SSp (-bfd, -n, -m, -ul, -
tr, -ll), Olfactory (MOB, AOB, AON) and Gustatory + Visceral, 20 source nodes in 
all. Here only ipsi-lateral links are described. These links are shown in two ranges of 
link, or equivalently signal time, windows: d < 5 mm (Figure 4a)  and 5 < d < 10 mm 
(Figure 4b). The first set is equivalent to about half the brain size, being the 
approximate width of one hemisphere or half its length; the second almost spans the 
full size – in the present case no longer links of high weight were present. The 20 
source nodes together have 530 high weigh direct links (top 40%): of these 426, or 
80%, have link distance d < 5 mm while 104 are longer range, up to 10 mm. Two-step 
links begin to appear for d > 3 mm, or equivalently t > 3 msec; in the short interval (d 
< 5 mm) 204 such structural links are present. Of those possibly only a fraction are 
activated to functional roles. The second window (5-10 mm links) contains the 
remaining 15,367 two-step structural links from the combined 20 source nodes. The 
images superimpose many such links given the common structural coordinates 
assigned to nodes so many details are masked. Even so, some integrative features 
emerge: there is a clear anterior-posterior localization of processing on shorter time 
scales.  Additional details are listed in S1 Text. 
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Figure 4. Primary sensory pathways. Major sensory pathways, shown by strong 
Out-links (top 40%) from 20 primary sensory areas (listed in text) plotted in 
schematic coordinates:  a. d < 5mm  and b. 5 < d < 10mm.  Nodes are colored by their 
module membership, and links by the module membership of the target node.  
 
 
Shorter links (Figure 4a) carry sensory signals to nearby association areas, e.g. 
Olfactory (Olf) to the nearby Limbic and Orbital regions, and then later to PIR and 
TT; Somatosensory (SS) regions output directly to Motor, Limbic, Orbital and 
Cingulate regions, along with the dorsal Striatum and the Gustatory/Visceral 
(GU/Visc) regions. Auditory output is direct to Temporal and Parietal regions, and 
also to Visual regions (Aud-d to Vis-l, -am, -pm;  Aud-v to Vis-al, -am; Aud-p to Vis-
p). Visual output is direct to both Parietal (from Vis-p and Vis-am) and Retrosplenial 
(from Vis-am) regions. Both Auditory and Visual  primary regions link directly to 
selected Somatosensory regions (Aud-d, -v to SSp-bfd; Aud-d, -p, -v to SSp-tr; Aud-
d, -p to SSp-ll; and Aud-d to SSs). Cross modal linkages are evident, e.g. between 
Visual and Auditory outputs, as detailed in S1 Text. At longer times (i.e. longer links 
in Figure 4b) anterior-posterior coordination emerges; there is more between-module 
interactions and cross-talk between cortical association areas. The Parietal and 
Retrosplenial regions link to multiple regions of the Midbrain; and many regions now 
link to ventral and hind brain regions. Olfactory outputs travel via PIR to the temporal 
cortex, to GU/Visc, to one amygdilar region (COAa) and ventral regions: 
Hippocampus (CA1), Cortical Subplate, Striatum and Palladium. 

From the 3D images a number of regions emerge as apparent network hubs, 
sending or receiving multiple links between sensory modalities or between modules 
(indicated by link colors). Note that such regions were not immediately identified by 
the network “hub” measure, suggesting that a combination of techniques may be 
required to dissect key nodes and links and identify hubs. These emerge at link 
lengths, 5 < d < 6.5 mm, and most are in the Olfactory system, with each  having ~20-
45 In-links in the top 40% of links. S5 Figure show these links in two distance (or, 
equivalently, time) slices.  The 5 target hubs are: ACB (nucleus acumbens, Striatum) 
with very strong (weight > 10k) In-links from the Insular region (AIv), Thalamus (PT, 
IMD), Cortical Subplate (BLA) and Midbrain (CLI) – here source nodes are listed by 
increasing distance from the target. Further hub-like targets are discussed in S1 Text. 
PERI is noteworthy in having numerous, diverse and strong outputs to seven of the 12 
major anatomical regions, along with feedback to some senses (SSp-n, -m, -bfd, tr 
and AUDd), and a weak link (weight 100) to the frontal pole. The other “hub” nodes 
discussed have relatively fewer (~ 10-30) and weaker Out-links. EPd is notable: it 
strongly links (weight 4.7k) to ENTl – that, along with ACB, were identified as hubs 
via the participation coefficient (cf. S2 Table). 

Fabric of Weak Links      
Figure 1 shows a strong fall off of link strength with distance: selection of the top 
40% of links, while avoiding false positives, also omits some potentially important 
weak links. Suggestions that weakest links may have other characteristics or roles, 
such as stabilising complex networks [70] suggest that weaker links should not be 
ignored even at the risk of including false positives. Now we examine the fabric of 
weak links out from the primary senses, specifically the 20 nodes examined in Figure 
4. Recalling Figure 1, there are 2751 links with weight < 1 (and > 10-6, the weakest 
included herein); of there 369 links emerge from the 20 primary sensory nodes. As 
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with S5 Figure, it is illustrative to separate links into short range (reached in shorter 
time) and longer range:  25% of such links have length < 5 mm, while 62% are < 6.5 
mm. By contrast 80% of the strong links (Fig 4) have length < 5 mm. In the following 
links are listed in order of increasing distance, with shorter first.  S6 Figure  shows 
these weak links in the two distance, or equivalently time, windows. S6a Figure  
shows the shorter (d < 6.5 mm) weak links: note that, in contrast to the strong links, 
they do not target the motor regions or most of the cortical association areas. Only 
Cingulate and Retrosplenial regions have a few weak In-links. All weak links, up to 
length < 10 mm, are displayed in S6b Figure. Now there are multiple long-ranged 
feedback links to the Cingulate and Retrosplenial regions, and a number of possible 
two-step links to Motor regions: 111 into MOp: eg. MOs – prelimbic – MOp, MOs – 
Cingulate (ACAv) – MOp, SSp-m – STN – MOp, etc; and 128 into MOs: eg.  AON – 
TRS – MOs, SSp-n – TRN – MOs, MOB – TRN – MOs, etc. It is unknown which, if 
any, of these very weak structural links are functional. There are no one-step weak 
links into MOp or MOs. Otherwise most Out-links from the primary sensory regions 
are to the behavioural state system (in Cajal’s classification [69]), the hind brain, 
thalamus, hypothalamus, and hippocampus, along with the midbrain and ventral 
olfactory regions. There also are 15 very long range (10 < d < 12 mm), weak links 
(not shown), the majority from MOB, the most anterior anatomical region.  

Cortical Association Areas and Sensory Integration  
The combination of network analysis and visualization also permits examination of 
concurrent In- and Out-links to the cortical association areas. The separation of the 
Isocortex into anterior (Somatosensory-Motor) and posterior (Auditory-Visual) 
modules (Figure 2) suggests examination of the two regions separately. The four 
anterior association areas: Insular, Limbic, Orbital and Cingulate are shown in Figure 
5. At first sight the In- and Out-links appear to be symmetric. However closer 
examination reveals detailed differences, as discussed in S1 Text.  
 
 
Figure 5. Anterior cortical association areas.  a. Strong In-links to anterior cortical 
association areas (Limbic, Orbital, Insular and Cingulate). Only direct (first nearest 
neighbour) links are shown for clarity. Stronger or multiple links are highlighter by 
thicker lines. b. Strong Out-links.  
 
 
There also are 399 strong (i.e. top 40% by weight) Out-links (Figure 5b) from these 
four regions. Again these are shorter range links, with 70-80% being less than 5mm, 
and the most probable link length is 2.5-3.5 mm. There are numerous strong local 
links between the four anterior association areas and all connect to the Motor regions. 
Further details are presented in S1 Text. Inspection of Figure 5 suggests that the In- 
and Out-links with anterior regions are reciprocal. However the details (cf. S1 Text) 
reveal some differences. In particular, there are many outputs from the four regions to 
the Midbrain, but few inputs. The Cingulate regions have outputs to the Temporal 
regions, but no strong inputs. Note that the Limbic region outputs to the Motor 
regions but has no strong inputs from there. The Frontal Pole has strong inputs from 
Limbic, Insular and Cingulate Regions, but only outputs to Orbital and Insular 
Regions.  

Links with the three posterior association areas, Temporal, Parietal and 
Retrosplenial, are shown in Figure 6. The 216 strong (i.e. top 40% by weight) In-links 
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are shown in Figure 6a. The figure shows that now there are longer range inputs, with 
temporal and retrosplenial regions having most probable links lengths of 5.5 mm, 
compared to 3.5 mm for the parietal region. The nearby auditory-visual and visceral 
regions provide immediate strong inputs to the temporal areas. The Temporal regions 
receive multiple inputs from the Hippocampus, very strong Thalmic input, and 
weaker long range inputs from the Frontal Pole. Further details are listed in S1 Text.  
 
   
Figure 6. Posterior cortical association areas. a. Strong In-links to posterior cortical 
association areas (Temporal, Parietal and Retrosplenial). Only direct (first nearest 
neighbour) links are shown for clarity. Stronger or multiple links are highlighter by 
thicker lines. b. Strong Out-links. 
 
 
There also are 204 strong (i.e. top 40%) Out-links (Figure 6b) from these three 
regions. Most are shorter range links, with 75-85% being less than 5mm, and the most 
probable links length being 3.0-3.5 mm. There is immediate feedback to the local 
sensory regions, numerous links to Midbrain regions, weak links to Thalmic regions, 
and direct links to Motor regions. Additional details are listed in S1 Text. Inspection 
of Figure 6 suggests that the In- and Out-links to posterior regions are reciprocal. 
Again the details listed above show the differences. In particular, the Frontal Pole has 
medium strength links to the Temporal region, but only relatively weak return links 
(eg. FRP to TEa, weight 37 – not shown, since not in top 40%). Similarly there are 
asymmetries in inputs and outputs with the Motor regions. Overall it is evident that 
the temporal area is a significant integration hub for sensory inputs, while the 
retrosplenial and parietal areas are distribution hubs to the motor areas.   

The Frontal Pole is examined separately since it has more long range 
connections, with the most probable links length being 6.5 mm. S7a Figure  shows the 
53 strong (top 40%)  Out-links and 17 In-links with the Frontal Pole (FRP). The 
closest strong inputs to FRP are from the Orbital and Insular regions, along with 
MOs. Strong outputs from FRP are to the Insular regions and Motor region, MOs. 
Other strong links and further details are discussed in S1 Text.  S7b Figure shows the 
weaker links (bottom 60% or weight < 78) to FRP.  Such have been ignored so far, 
for clarity and the higher chance of either False Positives or False Negative 
indications of functional links. Most weak outputs are to the Mid- and Hind-brain 
regions: Striatum, Hypothalamus, Hippocampus, Cortical Subplate, Midbrain along 
with the Thalamus.  

Motor Regions 
S8 Figure show the strong (top 40%) links into the Motor regions (MOs and MOp). 
Many of the cortical association areas have such links into the motor regions: the 
Frontal Pole (FRP) has the strongest links: of weight 27k into MOs and 22k into 
MOp. Related close, strong inputs are from the Cingulate, Orbital, Insular, 
Retrosplenial and Parietal regions; with longer range input from a Temporal region; 
and direct inputs are from multiple primary sensory regions. Details are listed in S1 
Text. There are also long range, weaker inputs from Pons and Medulla. Note that a 
number of weaker two-step structural links are shown, via the Restrosplenial, 
Cingulate and Limbic regions. Should they be functional they would be co-incident to 
MO with the other inputs. Nearby outputs from both MOp and MOs are feedback to 
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all SSp areas and to Vis-al and, and then numerous medium strength links to thalmic 
areas, as detailed in S1 Text.  

Evolution of Module structure as Links are added   
All of the results presented reflect the steady state modular structure of the mouse 
brain network, that is formed by all links present. Overall, shorter links are stronger 
and longer links are weaker (Figure 1). This is reflected in the sensory (Figure 4 and 
S5 - S7 Figures)  and association (Figures 5, 6) circuits having a different character 
when short or long links are included. Given a constant axonal signalling velocity, 
this is equivalent to a time evolution of links, eg. following a sensory input event. 
Similar effects will determine the modular decomposition of the network when 
viewed through the lens of close vs. distant links. S9 Figure shown the modular 
decomposition of the mouse brain network calculated using the Infomap method at 
three stages of link evolution. Nodes are plotted now only in 2D for clarity. The first 
stage, shown at bottom, is formed by only short range links, of length d < 2 mm (1844 
links). At this early stage there are three modules: the anterior module of  23 nodes 
joins the long term modules 2 (Somato-Motor) and 4 (Olf). The middle module of 74 
nodes corresponds to module 5 (Aud-Vis), while the posterior module of 116 nodes 
comprises the ultimate modules 1, 3, 6, 8 (medulla, pons, mid-brain,  hypothalamus, 
hippocampus, cerebrum). At this early stage hierarchy is present: the anterior module 
separates Motor + Cingulate, Somatosensory, and Olfactory regions, amongst others, 
into 7 sub-modules. Similarly the middle module separates Auditory + temporal, 
Visual + Parietal, and Retrosplenial regions; while the posterior module separates into 
7 sub-modules. 

The intermediate stage of module formation, including the 12,145 links with d 
< 6 mm (about half the size of the brain), is shown as the mid-level in S9 Figure. Now 
the early stage modules are splitting into what is almost the final modular structure. 
This is driven by the inclusion of many more links between nodes. The vertical lines 
in the figure show the splitting pathways of the initial modules. Nodes are now 
colored by their ultimate module membership. The final stage, including all 14,103 
links (ignoring weight < 1), is shown at the top. In summary, hierarchal modularity is 
only evident when only short range links are included. Many of those sub-modules 
become separate top-level modules when longer range links are included. 

Signal flow along cortical gradients 
Correlations amongst multi-modal cortical gradients [71] have been suggested as a 
brain organising principle, consistent with the concept of sensorimotor to transmodal 
spatial gradients [72]. Figure 7 shows the random walk forward transition probability, 
Pr(i:j) along successive steps of the SSp-bfd signalling pathway in the cortex, along 
with  the MRI relaxation time ratio, T1w:T2w gradient along the same pathway. In 
each case there is a clear gradient, reminiscent of the spatial reference map previously 
found [71]. 
 
Figure 7. Cortical gradients along signal pathways. The node-to-node transition 
probability, Pr(i:j) plotted along the SSp-bfd sensory pathway in the cortex vs. the 
path distance (left axis and black filled circles; first neighbors only shown);  the MRI 
relaxation time ratio, T1w:T2w in cortex vs. the path distance (right axis and blue 
squares).  The best linear fit to each set of points is shown.  
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Discussion 
The Allen structural mouse connectome provides a rich data set to augment classical 
anatomical studies and from which to launch a more detailed investigation of brain 
networks and circuits. This can complement the many experimental probes that 
continue to provide details of specific pathways and circuits. The present analysis 
shows that some biologically relevant features can emerge from brain wide network 
analysis. Use of the full region-to-region connectivity data was justified (cf. Methods 
and S1 text) for most source regions. The connectivity data show a clear weight-
distance fall off. This indicates that thresholds, to minimise false positives, may 
selectively penalise longer links, some of which may have functional significance. On 
average shorter links are stronger, while longer links are weaker (Figure 1). This 
partition shows up in the links from primary sensory regions to local cortical 
association areas, versus the longer range links between association areas and to the 
hind-brain state-keeping regions. 

Simple network measures (Degree, nBC, eBC) alone do provide a sufficient 
guide to understanding overall network structure or important circuits. Such measures 
are based usually on graph shortest paths and so may be an incomplete guide to 
biologically important nodes or links. This is likely a symptom of the simplicity of the 
topological graph as a network model. Adding physically relevant features, such as 
spatial embedding, time evolution of links carrying fixed velocity signals, and 
including secondary paths for signal spread on the network, does provide a more 
informative model of the mouse brain network. However the participation coefficient 
highlights some nodes (eg. CLA, ENTl, and possibly: CLI, PP, GPi, MGd, MOs) that 
turn out to mediate key linkages between network modules. A judicious selection of 
key nodes and links, informed by known biological functions, with a focus on sensory 
pathways and cortical association areas can reveal features of the mouse brain 
structural network consistent with evidence for biological functions. Tracing the 
primary sensory output paths over the network reveals selective roles of the various 
cortical association areas of the mouse brain shows local processing, and then 
progression on to the motor system. 

Modular decomposition based on random walk (i.e. probability) flows over 
the network produces plausible division of network structures devoted to primary 
sensing, motor activity, information integration, and state maintenance (Figure 2). 
This is consistent with three views of the brain: as divided into the classical 
anatomical regions, as four inter-linked functional systems [69], and now as 
comprising 8 network modules. Three of these are aligned with primary sensory 
pathways: Olf (module #4), SSp+MO (#2), Aud+Vis (#5); two with the cortical 
association areas, separated into anterior (#7) and posterior (#5) locations; and the 
combined mid- and hind-brain regions (#1, #3, #6, #8). No hierarchy is detected at the 
resolution of linkage data currently available. 

Sensory Pathways 
The combined primary sensory pathways (Figures 4-6 and S5, S6 Figures) illustrate 
the direct, local and strong links to immediate targets, particularly in the motor and 
cortical association areas. The methods used herein show that the mouse isocortex can 
be seen in two parts, each with localised functions. The anterior senses (olfaction and 
somatosensory) align with the more anterior association areas: Insular, Limbic, 
Orbital and Cingulate. The more posterior senses (auditory, visual) interact more 
locally with the Temporal, Retrosplenial and Parietal association areas. Both anterior  
and posterior association areas have direct links to the motor regions. Secondary, in 
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the sense of weaker and longer-range, links are between these two major regions and 
also including the Frontal Pole. Many cross modal structural links are present between 
the primary sensory regions. 

The time progression of signals along sensory pathways reveals the roles of 
shorter vs. longer links (Figure 4). Close links are to the local cortical association 
areas and cross modal, while longer links provide anterior-posterior coordination and 
inputs to other brain regions. Figure 4b shows a number of nodes that appear as 
linkage hubs, some of which may have functional significance. The succession of 
network links from the primary sensory regions is consistent with observations of 
serial information flow from barrel field sensory to motor areas in a tactile decision 
task in mice [73]. The fabric of weaker structural links (weight < 1) is longer range 
and communicate with regions across the whole brain. On average the shortest path 
between any two nodes requires more steps (4.4 vs. 2) than over the full network with 
its large number of stronger, and generally shorter, links. The direct weak links are 
more to the hind-brain and the behavioural state system components (S6 Figure). 
Cross-modal sensory links are common, as described above.  These strong, close 
cross links between auditory and visuals  pathways are consistent with observations of 
cross-modal attention and task choices in modulated audio-visual stimuli [74]. 

Cortical association areas 
There is a clear anterior-posterior network locatisation of cortical association areas, 
which are located close to relevant primary sensory regions. They tend to have direct 
strong links from nearby primary senses (Figures 5, 6) and outputs to other 
association areas and the motor regions. The frontal pole has very strong reciprocal 
links locally to Orbital, Insular and Motor regions; and is distinguished by having 
additional longer range connection (S7a Figure) to other brain regions. FRP also has 
numerous weaker and wide ranging links (S7b Figure). 

Signal flow along cortical gradients 
Correlations amongst multi-modal cortical gradients [71] have been suggested as a 
brain organising principle [72] that may provide an intrinsic coordinate system for 
human cortex [75]. The network description of signal pathways (Figures 4, S5, S6) is 
consistent with this view. Preliminary results here (Figure 7) show evident gradients 
along the mouse barrel field (SSp-bfd) pathway and justify further studies. Along that 
pathway short range near neighbor links have a higher forward transition probability 
compared to longer range links. There appears to be a signal flow gradient consistent 
with the T1w:T2w gradient has been previously suggested as a common spatial 
reference map [71].  

Conclusion 
Many layers of network features could be significant for brain function, as discussed 
in the Introduction. The question is which are necessary to reproduce, and even to 
predict, biologically relevant features. Random walks on the full structural linkage 
network produce modules consistent with anatomical and brain system functions [58, 
65, 69]. Biologically relevant hubs (eg CLA, ENTl) do appear as key linkage nodes 
identified by the participation coefficient and confirmed by the visualizations (Figures 
3-6 and S5 Figure); other suggested hubs take a combination of indicators to identify 
as such. This highlights possible limitations of the network approach [76] at this time, 
and the need to reformulate network models. Ultimately higher resolution will be also 
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be required in both the connectivity data and the level of detail included in the 
network models. 

Supporting Information 
 
S1 Data. Weighted, directed adjacency matrix for the 213-node mesoscale ipsi-lateral 
mouse brain connectome (160 KB CSV text file). 
 
S2 Data.  Details of all 213 nodes along with network measures (23 KB CSV text 
file). 
 
S3 Data.  Schematic coordinates of the 213 nodes (62 KB CSV text file). 
 
S1 Figure.  All experimentally detected link strengths plotted as log10(strength) vs. 
distance.  The strength used is the quantitative projection strength reported in the 
original Supplm. Table 3 of [9]. The plot highlights the 10 lowest outliers (red). 
 
S2 Figure.  a. Distribution of weighted Degree-In and –Out for all 213 nodes.  b. 
Distribution of un-weighted Degree-In and –Out, i.e. the number of links in and out of 
each node. 
 
S3 Figure  a. Distribution of graph path lengths (i.e. number of link between any two 
nodes) and  b. Distribution of link distances in geometric space. 
 
S4 Figure. All nodes (anatomical areas) plotted in Allen coordinates and their Out-
links. Nodes are colored by their module membership (cf. Table 1 and S2 Data), and 
links by the module membership of the target nodes. 
 
S5 Figure.  a. Strong out links (top 40%) from primary senses (listed in text; cf. 
Figure 4) for medium length links (5 < d < 6.5 mm); and b. for longer (6.5 < d < 10 
mm) links. Shorter links (d < 5 mm; cf. Figure 4a) are omitted for clarity. Visually 
evident hubs in mostly ventral regions include, from right to left: DP, ACB, CP, EPd 
and (posterior) PERI, as described in the main text. 
 
S6 Figure. Weak Out-links (weight < 1) from primary sensory areas (cf.  Figure 4) 
plotted in schematic coordinates, for link lengths:  a. d < 6.5mm;  and b.  d < 10mm.  
Nodes are colored by their module membership, and links by the module membership 
of the target node. Heavier lines are caused by overwriting multiple links along the 
same paths. 
 
S7 Figure.  a. Strong (top 40%)  In- and Out-links with Frontal Pole.  Stronger links 
(weight >1 and > 5k) are highlighted by thicker lines. b. Remaining weak In- and 
Out-links with Frontal Pole. Nodes are colored by their module membership, and 
links by the module membership of the target node. Note a number of 2-step links are 
possible. 
 
S8 Figure. Strong (top 40%) In-links to Motor areas (MOp, on the left, and MOs, on 
the right – both highlighted as larger circles), plotted  in schematic coordinates. 
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Stronger links (weight >1 and > 5k) are highlighted by thicker lines. Links are colored 
according to their source module. 
 
S9 Figure. Evolution of modular structure in the mouse connectome. Nodes are 
plotted in schematic coordinates condensed into a 2D plane. At each stage the 
Infomap method included only links up to a certain length. The initial structure of 3 
larger modules, formed by shorter range (< 2 mm) links is shown at bottom; 
intermediate structure (links < 6 mm) at middle, where nodes are now colored by the 
final module membership; and final structure with 8 modules, formed by all links, 
shown at top. Vertical lines show splitting of early modules into their ultimate 
components. 
 
S10 Figure. All 213 nodes plotted at the 45 schematic coordinates (listed in S3 data). 
The brain regions are represented by the encompassing convex hull (Fig 2), with other 
features as in S4 Figure.  a.  3D perspective view from above the right front; b. view 
from left rear. 
 
S1 Table.  Top 20 nodes in order of decreasing probability flow calculated by the 
Infomap method [59-60], with other network measures listed. (59 KB PDF text file). 
 
S2 Table.  Likely hub nodes have high participation coefficient, P and weighted in-
Degree or Out-Degree (30 KB PDF text file). 
 
S3 Table.  Comparison of Infomap modules with those found by the Louvain and the 
Newman spectral bisection methods. Infomap modules are list in approximately 
Anterior-Posterior and sensory-motor-midbrain-hindbrain order (24 KB PDF text 
file). 
 
S1 Text.  Additional details and discussion relevant to Methods and Results (154 KB 
PDF text file). 
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S1	Table.	Flow,	top	20	

ID Acrn Region Flow 
Deg In,  

wt 

Deg 
Out,  
wt 

Deg 
In,  
unwt 

Deg 
Out,  
unwt 

rwC nBC Module 

36 CP Striatum 0.0588 453075 2360 87 22 0.0431 78 2 
100 MRN Midbrain 0.0486 182960 5647 88 77 0.0495 9 1 
117 PAG Midbrain 0.0330 164629 6368 98 101 0.0339 0 1 
161 SCm Midbrain 0.0314 215384 7160 78 74 0.0294 271 1 

75 LHA 
Hypothala
mus 0.0288 149643 10634 110 114 0.0265 371 3 

139 PRNc Pons 0.0247 44790 6850 74 76 0.0278 106 1 
168 SNr Midbrain 0.0232 21911 8541 84 45 0.0217 512 2 
57 GRN Medulla 0.0207 33058 4130 58 47 0.0234 295 1 
164 SI Pallidum 0.0189 107414 3793 98 51 0.0164 0 3 
140 PRNr Pons 0.0173 65264 1685 84 24 0.0189 22 1 
4 ACB Striatum 0.0168 190736 7020 67 69 0.0127 0 3 
68 IRN Medulla 0.0166 42432 2775 59 35 0.0191 111 1 

47 ENTl 
Hippocam 
Formation 0.0160 118185 34168 84 99 0.0124 431 4 

55 GPe Pallidum 0.0155 43915 6520 77 51 0.0135 53 2 

129 PIR 
Olfactory 
Areas 0.0145 112799 22312 93 45 0.0103 143 4 

95 MOp Isocortex 0.0137 105223 27542 79 119 0.0101 715 2 

15 AON 
Olfactory 
Areas 0.0130 38855 20315 81 41 0.0081 372 4 

25 CA1 
Hippocam 
Formation 0.0128 78005 2415 65 32 0.0101 105 6 

94	 MOB	
Olfactory	
Areas	 0.0125 45012 390 86 22 0.0081 1093 4 

96	 MOs	 Isocortex	 0.0124 119506 23453 75 133 0.0090 508 2 
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S2	Table.	Hub	Nodes.	High	P	and	Deg–in	or	Deg–out.	
	
ID	 Acrn	 Region	 P	 Deg	In,		wt	 Deg	Out,		wt	
31		 CLA		 Cortical	Subplate		 0.7860		 19,666		 117,022		
47		 	ENTl		 Hippocam	Formation				 0.7877		 118,185		 34,168		
32		 CLI		 Midbrain	 0.7128		 177,177		 17,7177		
135		 PP		 Thalamus		 0.6987		 2,775	 152,884	
75		 LHA		 Hypothalamus		 0.6839		 149,643		 10,634		
143		 PT	 Thalamus	 0.6697		 104,753		 104,753		
96		 MOs		 Isoctortex		 0.6450		 119,506		 23,453		
89		 MGd		 Thalamus	 0.5871		 3,769		 112,833		
4		 ACB		 Striatum		 0.5750		 190,736		 7,020		
117		 PAG		 Midbrain		 0.5204		 164,629		 6,368		
184		 STN		 Hypothalamus	 0.4923		 6,624		 171,909		
129		 PIR		 Olfactory	Area	 0.3823		 112,799		 22,312		
95		 MOp		 Isoctortex	 0.3439		 105,223		 27,542		
161		 SCm	 Midbrain	 0.3210			 215,384					 7,160	
 
 
 
S3	Table.	Comparison	of	Infomap	modules	with	those	found	by	the	Louvain	and	
the	Newman	spectral	bisection	methods.	Infomap	modules	are	list	in	
approximately	Anterior-Posterior	and	sensory-motor-midbrain-hindbrain	order.	
	

Infomap	
Module	

Function	/	Region	 Louvain	
Module	

Newman	
spectral	

	

4	 Olfactory	 1	 1	 	
2	 Somaosensory	/	

Motor	
4	 2	 	

5	 Vis,	Aud,	TEa,	RSP,	
PTLp	

6:	Aud,	Tea			5:	
Vis,		RSP,	PTLp	

2	 	

7	 Association	
cortical	areas	

2,	4,	5			 2	 	

3	 Hypothalamus	 1	 1	 	
6	 Hippocampus	 3	 1	 	
1	 Midbrain,	Pons,	

Medulla	
1	 1	 	

8	 Cerebrum	 1	 1	 	
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Figure 1. Link weights vs. distance. 
 

 
 
Figure 2. Network modules and brain regions.    
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Figure 3.   3D schematic coordinates for mouse brain.  a. Out links and b. In links. 
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Figure 4. Primary sensory pathways. a. link distances, d < 5mm, b. 5 < d < 10mm.   
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Figure 5. Anterior cortical association areas.  a. Strong In-links, b. Out-links. 
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Figure 6.  Posterior cortical association areas. a. Strong In-links, b. Out-links. 
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Figure 7. Cortical gradients along signal pathways. 
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S1 Figure.  All experimentally detected link strengths. 
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S2 Figure.  a. Distribution of weighted Degree-In and –Out,  b. unweighted. 
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S3 Figure.  a. Distribution of graph path lengths, and b.  link distances. 
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S4 Figure. All nodes plotted in Allen coordinates and their Out-links. 
 

 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2019. ; https://doi.org/10.1101/755041doi: bioRxiv preprint 

https://doi.org/10.1101/755041
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40	

S5 Figure.  a. Strong, medium length out links from primary sense, b. longer links. 
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S6 Figure. Weak Out-links from primary senses,  a. d < 6.5mm,    b.  d < 10mm.  
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S7 Figure.  a. Strong In- and Out-links with Frontal Pole, b. weak In- and Out-links.  
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S8 Figure. Strong In-links to Motor areas (MOp, MOs). 

 
 
 
S9 Figure. Evolution of modular structure  
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S10 Figure. All nodes in schematic coordinates. a. view from right front, b. left rear. 
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