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Abstract 

Early identification of individuals at risk of developing Alzheimer’s disease (AD) dementia is 

important for developing disease-modifying therapies. In this study, given multimodal AD 

markers and clinical diagnosis of an individual from one or more timepoints, we seek to 

predict the clinical diagnosis, cognition and ventricular volume of the individual for every 

month (indefinitely) into the future. We proposed a recurrent neural network (RNN) model 

and applied it to data from The Alzheimer's Disease Prediction Of Longitudinal Evolution 

(TADPOLE) challenge, comprising longitudinal data of 1677 participants (Marinescu et al. 

2018) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We compared the 

performance of the RNN model and three baseline algorithms up to 6 years into the future. 

Most previous work on predicting AD progression ignore the issue of missing data, which is 

a prevalent issue in longitudinal data. Here, we explored three different strategies to handle 

missing data. Two of the strategies treated the missing data as a “preprocessing” issue, by 

imputing the missing data using the previous timepoint (“forward filling”) or linear 

interpolation (“linear filling). The third strategy utilized the RNN model itself to fill in the 

missing data both during training and testing (“model filling”). Our analyses suggest that the 

RNN with “model filling” was better than baseline algorithms, including support vector 

machine/regression and linear state space (LSS) models. However, there was no statistical 

difference between the RNN and LSS for predicting cognition and ventricular volume. 

Importantly, although the training procedure utilized longitudinal data, we found that the 

trained RNN model exhibited similar performance, when using only 1 input timepoint or 4 

input timepoints, suggesting that our approach might work well with just cross-sectional data. 

An earlier version of our approach was ranked 5th (out of 53 entries) in the TADPOLE 

challenge in 2019. The current approach is ranked 2nd out of 56 entries as of August 12th, 

2019.  
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1 Introduction 

Alzheimer’s disease (AD) dementia is a devastating neurodegenerative disease with a 

long prodromal phase and no available cure. It is widely believed that an effective treatment 

strategy should target individuals at risk for AD early in the disease process (Scheltens et al., 

2016). Consequently, there is significant interest in predicting the longitudinal disease 

progression of individuals. A major difficulty is that although AD commonly presents as an 

amnestic syndrome, there is significant heterogeneity across individuals (Murray et al., 2011; 

Noh et al., 2014; Zhang et al., 2016; Risacher et al., 2017; Young et al., 2018; Sun et al., 

2019). Since AD dementia is marked by beta-amyloid- and tau-mediated injuries, followed 

by brain atrophy and cognitive decline (Jack et al., 2010, 2013), a multimodal approach might 

be more effective than a single modality approach to disentangle this heterogeneity and 

predict longitudinal disease progression (Marinescu et al., 2018).  

In this study, we proposed a machine learning algorithm to predict multimodal AD 

markers (e.g., ventricular volume, cognitive scores, etc) and clinical diagnosis of individual 

participants for every month up to six years into the future. Most previous work has focused 

on a “static” variant of the problem, where the goal is to predict a single timepoint (Duchesne 

et al., 2009; Stonnington et al., 2010; Zhang and Shen, 2012; Moradi et al., 2015; Albert et 

al., 2018; Ding et al., 2018) or a set of pre-specified timepoints in the future (regularized 

regression; (Wang et al., 2012; Johnson et al., 2012; McArdle et al., 2016; Wang et al., 

2016)). By contrast, our goal is the longitudinal prediction of clinical diagnosis and 

multimodal AD markers at a potentially unlimited number of timepoints into the future1, as 

defined by The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) 

challenge (Marinescu et al., 2018), which arguably a more relevant and complete goal for 

tasks, such as prognosis and cohort selection. 

One popular approach to this longitudinal prediction problem is mixed-effect 

regression modeling, where longitudinal trajectories of AD biomarkers are parameterized by 

linear or sigmoidal curves (Vemuri et al., 2009; Ito et al., 2010; Sabuncu et al., 2014; Samtani 

et al., 2012; Zhu and Sabuncu, 2018). However, such a modeling approach requires knowing 

the shapes of the biomarker trajectories a priori. Furthermore, even though the biomarker 

trajectories might be linear or sigmoidal when averaged across participants (Caroli and 

 
1 Although the goal is to (in principle) predict an unlimited number of time points into the 

future, the evaluation can only be performed using the finite number of timepoints available 

in the dataset. 
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Frisoni, 2010; Jack et al., 2010; Sabuncu et al., 2011), individual subjects might deviate 

significantly from the assumed parametric forms.  

Consequently, it might be advantageous to not assume that the biomarker trajectories 

follow a specific functional form. For example, Xie and colleagues proposed an incremental 

regression modeling approach to predict the next timepoint based on a fixed number of input 

time points (Xie et al., 2016). The prediction can then be used as input to predict the next 

timepoint and so on indefinitely. However, the training procedure requires participants to 

have two timepoints, thus “wasting” data from participants with less or more than two 

timepoints. Therefore, state-based models that do not constrain the shapes of the biomarker 

trajectories or assume a fixed number of timepoints might be more suitable for this 

longitudinal prediction problem (e.g., discrete state hidden Markov models; Sukkar et al. 

2012). Here, we considered recurrent neural networks (RNNs), which allow an individual’s 

latent state to be represented by a vector of numbers, thus providing a richer encoding of an 

individual’s “disease state” beyond a single integer (as in the case of discrete state hidden 

Markov models). In the context of medical applications, RNNs have been used to model 

electronic health records (Lipton et al., 2016a; Choi et al., 2016; Esteban et al., 2016; Pham et 

al., 2017; Rajkomar et al., 2018; Suo et al., 2018) and AD disease progression (Nguyen et al., 

2018; Ghazi et al., 2019).   

 Most previous work on predicting AD progression ignore the issue of missing data 

(Stonnington et al., 2010; Sukkar et al., 2012; Lei et al., 2017; Liu et al., 2019). However, 

missing data is prevalent in real-world applications and arises due to study design, delay in 

data collection, subject attrition or mistakes in data collection. Missing data poses a major 

difficulty for modeling longitudinal data since most statistical models assume feature-

complete data (García-Laencina et al., 2010). Many studies sidestep this issue by removing 

subjects or timepoints with missing data, thus potentially losing a large quantity of data. 

There are two main approaches for handling missing data (Schafer and Graham 2002). First, 

the “preprocessing” approach handles the missing data issue in a separate preprocessing step, 

by imputing the missing data (e.g., using the missing variable’s mean or more sophisticated 

machine learning strategies; Azur et al., 2011; Rehfeld et al., 2011; Stekhoven and 

Bühlmann, 2011; White et al., 2011; Zhou et al., 2013), and then using the imputed data for 

subsequent modeling. Second, the “integrative” approach is to integrate the missing data 

issue directly into the models or training strategies, e.g., marginalizing the missing data in 

Bayesian approaches (Marquand et al., 2014; Wang et al., 2014; Aksman et al., 2019). 
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In this work, we proposed to adapt the minimalRNN model (Chen, 2017) to predict 

AD progression. The minimalRNN has fewer parameters than other RNN models, such as the 

long short-term memory (LSTM) model, so it might be less prone to overfitting. Although 

RNNs are usually trained using feature-complete data, we explored two “preprocessing” and 

one “integrative” approaches to deal with missing data. We used data from the TADPOLE 

competition, comprising longitudinal data from 1677 participants (Marinescu et al. 2018). An 

earlier version of this work was published at the International Workshop on Pattern 

Recognition in Neuroimaging and utilized the more complex LSTM model (Nguyen et al., 

2018). Here, we extended our previous work by using a simpler RNN model, expanding our 

comparisons with baseline approaches and exploring how the number of input timepoints 

affect prediction performance. We also compared the original LSTM and current 

minimalRNN models using the live leaderboard on TADPOLE. 
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2 Methods 

2.1 Problem setup 

The problem setup follows that of the TADPOLE challenge (Marinescu et al. 2018). 

Given the multimodal AD markers and diagnostic status of a participant from one or more 

timepoints, we seek to predict the cognition (as measured by ADAS-Cog13; Mohs et al., 

1997), ventricular volume (as measured by structural MRI) and clinical diagnosis of the 

participant for every month indefinitely into the future. 

 

2.2 Data 

We utilized the data provided by the TADPOLE challenge (Marinescu et al., 2018). 

The data consisted of 1677 subjects from the ADNI database (Jack et al., 2008). Each 

participant was scanned at multiple timepoints. The average number of timepoints was 7.3 ± 

4.0 (Figure 1A), while the average number of years from the first timepoint to the last 

timepoint was 3.6 ± 2.5 (Figure 1B).  

 

 
Figure 1. (A) Distribution of the number of timepoints for all subjects in the dataset. (B) 

Distribution of the number of years between the first and last timepoints for all subjects in the 

dataset. 

 

For consistency, we used the same set of 23 variables recommended by the 

TADPOLE challenge, which included diagnosis, neuropsychological test scores, anatomical 

features derived from T1 magnetic resonance imaging (MRI), positron emission tomography 
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(PET) measures and CSF markers (Table 1). The diagnostic categories corresponded to 

normal control (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD).  

 

 mean (± std) % timepoints 

with measures 

Clinical Dementia Rating Scale (SB) 2.17 ± 2.81 × 100 70.36 % 

ADAS-Cog11 1.13 ± 0.86 × 101 69.95 % 

ADAS-Cog13 1.75 ± 1.16 × 101 69.27 % 

Mini-Mental State Examination (MMSE) 2.65 ± 0.39 × 101 70.12 % 

RAVLT immediate 3.44 ± 1.36 × 101 69.33 % 

RAVLT learning 4.02 ± 2.81 × 100 69.33 % 

RAVLT forgetting 4.23 ± 2.52 × 100 69.12 % 

RAVLT forgetting percent 5.97 ± 3.83 × 101 68.57 % 

Functional Activities Questionnaire (FAQ) 5.59 ± 7.92 × 100 70.60 % 

Montreal Cognitive Assessment (MOCA) 2.30 ± 0.47 × 101 38.99 % 

Ventricles 4.21 ± 2.32 × 104 58.44 % 

Hippocampus 6.68 ± 1.24 × 103 53.39 % 

Whole brain volume 1.01 ± 0.11 × 106 60.35 % 

Entorhinal cortical volume 3.44 ± 0.81 × 103 50.78 % 

Fusiform cortical volume 1.71 ± 0.28 × 104 50.78 % 

Middle temporal cortical volume 1.92 ± 0.31 × 104 50.78 % 

Intracranial volume 1.53 ± 0.16 × 106 62.43 % 

Florbetapir (18F-AV-45) - PET 1.19 ± 0.22 × 100 16.62 % 

Fluorodeoxyglucose (FDG) - PET 1.20 ± 0.16 × 100 26.31 % 

Beta-amyloid (CSF) 1.02 ± 0.59 × 103 18.60 % 

Total tau 2.93 ± 1.30 × 102 18.55 % 

Phosphorylated tau 4.80 ± 1.44 × 101 18.62 % 

Diagnosis - 69.89 % 

Table 1. Set of variables together with their means, standard deviations and percentage of 

timepoints where the variables were actually observed. SB: Sum of boxes, ADAS: 

Alzheimer's Disease Assessment Scale, RAVLT: Rey Auditory Verbal Learning Test 

 

 

We randomly divided the data into training, validation and test sets. The ratio of 

subjects in the training, validation and test sets was 18:1:1. The training set was used to train 

the model. The validation set was used to select the hyperparameters. The test set was used to 

evaluate the models’ performance. For subjects in the validation and test sets, the first half of 

the timepoints of each subject were used to predict the second half of the timepoints of the 

same subject. All variables (except diagnostic category, which was categorical rather than 

continuous) were z-normalized. The z-normalization was performed on the training set. The 

mean and standard deviation from the training set was then utilized to z-normalize the 

validation and test sets. The random split of the data into training, validation and test sets was 
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repeated 20 times to ensure stability of results (Kong et al., 2019; Li et al., 2019; Varoquaux, 

2018). Care was taken so that the test sets were non-overlapping so that the test sets across 

the 20 data splits covered the entire dataset. 

 

2.3 Proposed model  

 
Figure 2. (A) MinimalRNN. (B) MinimalRNN update equations. 𝒔𝒕 and 𝒈𝒕 denote 

categorical (i.e., diagnosis) and continuous variables respectively (Table 1). The input 𝒙𝒕 to 

each RNN cell comprised the diagnosis 𝒔𝒕 and continuous variables 𝒈𝒕 (Eq. 1). Note that 𝒔𝒕 

was represented using one-hot encoding. The hidden state 𝒉𝒕 was a combination of the 

previous hidden state 𝒉𝒕−𝟏 and the transformed input 𝒛𝒕 (Eq. 4). The forget gate 𝒖𝒕 weighed 

the contributions of the previous hidden state 𝒉𝒕−𝟏 and current transformed input 𝒛𝒕 toward 

the current hidden state 𝒉𝒕 (Eq. 3). The model predicted the next month diagnosis �̂�𝒕+𝟏and 

continuous variables �̂�𝒕+𝟏 using the hidden state 𝒉𝒕 (Eqs. 5 and 6). ⊙ and 𝝈 denote element-

wise product and the sigmoid function respectively. 
 

We adapted the minimalRNN (Chen, 2017) for predicting disease progression. The 

model architecture and update equations are shown in Figure 1. Let 𝒙𝒕 denote all variables 

observed at time 𝑡, comprising the diagnosis 𝒔𝒕 and remaining continuous variables 𝒈𝒕 (Eq. 1 

in Figure 2B). Here, diagnosis was represented using one-hot encoding. In other words, 

diagnosis was represented as a vector of length three. More specifically, if the first entry was 

one, then the participant was a normal control. If the second entry was one, then the 

participant was mild cognitively impaired. If the third entry was one, then the participant had 
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AD dementia. For now, we assume that all variables were observed at all timepoints; the 

missing data issue will be addressed in Sections 2.4.  

At each timepoint, the transformed input 𝒛𝒕 (Eq. 2 in Figure 2) and the previous 

hidden state 𝒉𝒕−𝟏 were used to update the hidden state 𝒉𝒕 (Eqs. 3 and 4 in Figure 2B). The 

hidden state can be interpreted as integrating all information about the subject up until that 

timepoint. The hidden state 𝒉𝒕 was then used to predict the observations at the next timepoint 

𝒙𝒕+𝟏 (Eqs. 5 and 6 in Figure 1B).   

In the ADNI database, data were collected at a minimum interval of 6 months. 

However, in practice, data might be collected at an unscheduled time (e.g., month 8 instead of 

month 6). Consequently, the duration between timepoints 𝑡 and 𝑡 + 1 in the RNN was set to 

be 1 month.  

 

2.3.1 Training with no missing data 

 

Figure 3. The minimalRNN was trained to predict the next observation given the current 

observation (e.g., predicting �̂�𝟐 given 𝒙𝟏). The errors between the actual observations (e.g., 

𝒙𝟐) and predictions (e.g., �̂�𝟐) were used to update the model parameters. The hidden state 𝒉𝒕 

encoded information about the subject up until time 𝑡.  
 

The RNN training is illustrated in Figure 2. The RNN was trained to predict the next 

observation (𝒙𝒕) given the previous observations (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒕−𝟏). The errors between the 

predicted outputs (e.g.  �̂�𝟐) and the ground truth outputs (e.g. 𝒙𝟐) were used to update the 

model parameters. The error (or loss 𝐿) was defined as follows:  

 𝐿 = ∑ (CrossEntropy(𝒔𝒕, �̂�𝒕) + MAE(𝒈𝒕, �̂�𝒕))𝑡>1   (𝟕) 

 CrossEntropy(𝒔𝒕, �̂�𝒕)  = − ∑ 𝒔𝒕
𝒋
 log �̂�𝒕

𝒋3
𝑗=1   (𝟖) 

 MAE(𝒈𝒕, �̂�𝒕)  = |𝒈𝒕 − �̂�𝒕|  (𝟗)  

The value of 𝒉𝟎 was set to be 𝟎. During training, gradients of loss 𝐿 with respect to 

the model parameters were back-propagated to update the RNN parameters. The RNN was 
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trained using Adam (Kingma and Ba, 2015). The HORD algorithm (Regis and Shoemaker 

2013; Eriksson, Bindel, and Shoemaker 2015; Ilievski et al. 2017) was utilized to find the 

best hyperparameters by maximizing model performance on the validation set. We note that 

this optimization was performed independently for each training/validation/test split of the 

dataset. The hyperparameter search space is shown in Table 2. 

 

Hyper-parameter Range 

Input dropout rate 0.0 – 0.5 

Recurrent dropout rate 0.0 – 0.5 

L2 weight regularization 10−7 – 10−5 

Learning rate 10−5 – 10−2 

Number of hidden layers 1 – 3 

Size of hidden state 128 – 512 

Table 2. Hyperparameter search space of the MinimalRNN estimated from the validation sets 

using HORD. 

 

2.3.2 Prediction with no missing data 

Figure 3 illustrates how the RNN was used to predict AD progression in an example 

subject (from the validation or test set). Given observations for months 1, 2 and 3, the goal of 

the model was to predict observations in future months. From month 4 onwards, the model 

predictions (�̂�𝟒 and �̂�𝟓) were fed in as inputs to the RNN (for months 5 and 6 respectively) to 

make further predictions (dashed lines in Figure 4).  

 

Figure 4. Predicting future timepoints (�̂�𝟒, �̂�𝟓, �̂�𝟔, etc) given three initial timepoints (𝒙𝟏, 𝒙𝟐, 

and 𝒙𝟑). Prediction started at month 4. Since there were no observed data at timepoints 4 and 

5, the predictions (�̂�𝟒 and �̂�𝟓) were used as inputs (at timepoints 5 and 6 respectively) to 

predict further into the future. 
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2.4 Missing data 

As seen in Table 1, there were a lot of missing data in ADNI. This was exacerbated 

by the fact that data were collected at a minimum interval of 6 months, while the sampling 

period in the RNN was set to be one month (to handle off-schedule data collection). During 

training, the loss function was evaluated only at timepoints with available observations. 

Similarly, when evaluating model performance (Section 2.6), only available observations 

were utilized.  

The missing data also posed a problem for the RNN update equations (Figure 1B), 

which assumed all variables were observed. Here, we explored two “preprocessing” 

strategies (Sections 2.4.1 & 2.4.2) and one “integrative” strategy (Section 2.4.3) to handle the 

missing values. As explained in the introduction, “preprocessing” strategies impute the 

missing data in a separate preprocessing. The imputed data is then used for subsequent 

modeling. On the other hand, “integrative” strategies incorporate the missing data issue 

directly into the model or training strategies.  

 

2.4.1 Forward filling 

Forward filling involved imputing the data using the last timepoint with available data 

(Che et al., 2018; Lipton et al., 2016b). Figure 5A illustrates an example of how forward-

filling in time was used to fill in missing input data. In this example, there were two input 

variables A and B. The values of feature A at time t = 2, 3 and 4 were filled using the last 

observed value of feature A (at time t = 1). Similarly, the values at t = 7, 8 of feature A were 

filled using value at t = 6 when it was last observed. If data was missing at the first timepoint, 

the mean value across all timepoints of all training subjects was used for the imputation.   

 

2.4.2 Linear filling 

The previous strategy utilized information from previous timepoints for imputation. 

One could imagine that it might be helpful to use previous and future timepoints for 

imputation. The linear filling strategy performed linear interpolation between the previous 

timepoint and the next time point with available data (Junninen et al., 2004). Figure 5B shows 

an example of linear interpolation. Values of feature A at time t = 2, 3, 4, 6 were filled in 

using linear interpolation. However, linear-filling did not work for months 8, 9 and 10 

because there was no future observed data for linear interpolation, so forward-filling was 

utilized for those timepoints. Like forward filling, if data was missing at the first timepoint, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/755058doi: bioRxiv preprint 

https://doi.org/10.1101/755058
http://creativecommons.org/licenses/by/4.0/


12 
 

the mean value across all timepoints of all training subjects was used for the imputation.

 

Figure 5. Different strategies to impute missing data. (A) Forward-filling imputed missing 

values using the last observed value. (B) Linear-filling imputed missing values using linear 

interpolation between previous observed and next observed values. Notice that linear-filling 

did not work for months 8, 9 and 10 because there was no future observed data for linear 

interpolation, so forward filling was utilized for those timepoints. (C) Model-filling imputed 

missing values using model predictions.  
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2.4.3 Model filling 

We also considered a novel model filling strategy of filling in missing data. As seen in 

Section 2.3.2 (Figure 5), the prediction of the RNN could be used as inputs for the next 

timepoint. The same approach can be used for filling in missing data.   

Figure 5B shows an example of how the RNN was used to fill in missing data. At 

time t = 2 to 6, the values of feature A were filled in using predictions from the RNN. The 

RNN could also be used to extrapolate features that “terminate early” (e.g., time t = 8 and 9).  

A theoretical benefit of modeling filling was that the full sets of features were utilized 

for the imputation. For example, both features A and B at time t = 1 were used by the RNN to 

predict both input features at time t = 2 (Figure 5B). This was in contrast to forward or linear 

filling, which would utilize only feature A (or B) to impute feature A (or B).  

Like forward filling, if data was missing at the first timepoint, the mean value across 

all timepoints of all training subjects was used for the imputation. 

 

2.5 Baselines 

We considered three baselines: constant prediction, support vector machine/regression 

(SVM/SVR), and linear state-space (LSS) model.  

 

2.5.1 Constant prediction 

The constant prediction algorithm simply predicted all future values to be the same as 

the last observed values. The algorithm did not need any training. While this might seem like 

an overly simplistic algorithm, we will see that the constant prediction algorithm is quite 

competitive for near term prediction. 

 

2.5.2 SVM/SVR 

As explained in the introduction, most previous studies have focused on a “static” 

variant of the problem, where the goal is to predict a single timepoint or a set of pre-specified 

timepoints in the future. Here, we will consider such a baseline by using SVM to predict 

clinical diagnosis (which was categorical) and SVR to predict ADAS-Cog13 and ventricular 

volume (which were continuous). The models were implemented using scikit-learn 

(Pedregosa et al., 2011).  
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Overall, we considered four SVM/SVR baselines corresponding to using 1 to 4 input 

timepoints (spaced 6 months apart) to predict the future. The 6-month interval was chosen 

because the ADNI data was collected roughly every 6 months. As can be seen in Section 3.1, 

the best results were obtained with 2 or 3 input timepoints, so we did not explore more than 4 

input timepoints. 

For each SVM/SVR baseline, we trained separate SVM/SVR to predict 6, 12, 18, …, 

60 months into the future. 60 months were the maximum because of insufficient data to train 

SVM/SVR to predict further into the future (Figure 1B). Therefore, in total, for each of the 

four SVM/SVR baselines (using 1, 2, 3 or 4 input timepoints), we trained 10 separate SVM to 

predict clinical diagnosis, 10 SVR to predict ADAS-Cog13 and 10 SVR to predict ventricular 

volume. 

The linear filling strategy (Figure 5B) was used to handle missing data. Because 

prediction performance was evaluated at every month in the future, prediction at intermediate 

months (e.g., months 1 to 5, 7 to 11, etc) were linearly interpolated. Prediction from month 61 

onwards utilized forward filling based on the prediction at month 60.  

We used the same 20 training/validation/test data splits as the RNN. For each data 

split, the SVM/SVR was trained on the training set and the hyperparameters were selected 

using the validation set using HORD. The models were then evaluated in the test set. 

 

 SVM SVR 

Kernel Linear or RBF 

Epsilon NA 10−3 – 10−0 

Penalty 10−3 – 103 

Gamma 10−3 – 103 

Table 3. Hyperparameter search space of the SVM/SVR estimated from the validation sets 

using HORD.   

 

One tricky issue arose when a test subject had insufficient input timepoints for a 

particular SVM/SVR baseline. For example, the 4-timepoint SVM/SVR baseline required 4 

input timepoints in order to predict future timepoints. In this scenario, if a test subject only 

had 2 input timepoints, then the 2-timepoint SVM/SVR was utilized for this subject even 

though we were considering the 4-timepoint SVM/SVR baseline. We utilized this strategy 

(instead of discarding the test subject) in order to ensure the test sets were exactly the same 

across all algorithms.  
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2.5.3 Linear state space (LSS) model 

We considered a linear state space (LSS) baseline by linearizing the minimalRNN 

model (Figure 6). Other than the update equations (Figure 6), all other aspects of training and 

prediction were kept the same. For example, the LSS models utilized the same data 

imputation strategies (Section 2.4) and were trained with the same cost function using Adam. 

We used the same 20 training/validation/test data splits as the RNN. HORD was used to find 

the best hyperparameters by maximizing the performance in the validation sets. The search 

ranges of the hyperparameters were the same as before (Table 2).  

 

 

Figure 6. (A) Linear state space (LSS) model. Observe the gray cell is much simpler than the 

minimalRNN (B) LSS update equations. 𝒔𝒕 and 𝒈𝒕 denote categorical (i.e., diagnosis) and 

continuous variables respectively (Table 1). The input 𝒙𝒕 to each LSS cell comprised the 

diagnosis 𝒔𝒕 and continuous variables 𝒈𝒕 (Eq. 10). Like before, 𝒔𝒕 was represented using one-

hot encoding. The hidden state 𝒉𝒕 was a combination of the previous hidden state 𝒉𝒕−𝟏 and 

the input 𝒙𝒕 (Eq. 11). The model predicted the next month diagnosis �̂�𝒕+𝟏 and continuous 

variables �̂�𝒕+𝟏 using the hidden state 𝒉𝒕 (Eqs. 12 and 13). 

 

 

2.6 Performance evaluation 

Following the TADPOLE competition, diagnosis classification accuracy was 

evaluated using the multiclass area under the operating curve (mAUC; Hand and Till, 2001) 

and balanced class accuracy (BCA) metrics. For both mAUC and BCA metrics, higher values 

indicate better performance. ADAS-Cog13 and ventricles prediction accuracy was evaluated 

using mean absolute error (MAE). Lower MAE indicates better performance. The final 

performance for each model was computed by averaging the results across the 20 test sets. 
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The resampled t-test (Bouckaert and Frank, 2004) was used to evaluate differences in 

performance between models. 

 

2.7 Impact of the number of input timepoints on prediction accuracy 

For the RNNs to be useful in the clinical settings, they should ideally be able to 

perform well with as little input timepoints as possible. Therefore, we applied the best model 

(Section 2.6) to the test subjects using 1, 2, 3 or 4 input timepoints (Figure 9). Test subjects 

with less than 4 input timepoints were discarded, so that the same test subjects were evaluated 

across the four conditions (i.e., 1, 2, 3 or 4 input timepoints). However, this meant that the 

results from this analysis were not comparable to the previous sections (since the test subjects 

were not exactly the same). 

 

Figure 7. Prediction performance as a function of the number of input timepoints in the test 

subjects.  

 

 

2.8 TADPOLE live leaderboard 

The TADPOLE challenge involves the prediction of ADAS-Cog13, ventricular 

volume and clinical diagnosis of 219 ADNI participants for every month up to five years into 

the future. We note that these 219 participants were a subset of the 1677 subjects used in this 

study. However, the future timepoints used to evaluate performance on the live leaderboard 

(https://tadpole.grand-challenge.org/D4_Leaderboard/) were not part of the data utilized in 

this study. Here, we utilized the entire dataset (1677 participants) to tune a set of 

hyperparameters (using HORD) that maximized performance either (1) one year into the 

future or (2) all years into the future. We then submitted the predictions of the 219 

participants to the TADPOLE leaderboard. 

 

2.9 Data and code availability 

The code used in this paper can be found at 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Ng
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uyen2020_RNNAD. This study utilized data from the publicly available ADNI database 

(http://adni.loni.usc.edu/data-samples/access-data/). The particular set of participants and 

features we used is available at the TADPOLE website (https://tadpole.grand-challenge.org/). 
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3 Results 

3.1 Overall performance 

Figure 8 illustrates the test performance of minimalRNN and three baselines 

(SVM/SVR, constant prediction and LSS). For clarity, we only showed RNN with mixed 

filling (RNN–MF), LSS with mixed filling (LSS–MF) and SVM/SVR using one input 

timepoint because they yielded the best results within their model classes. Table 4 shows the 

test performance of all models (RNN, SVM/SVR, constant prediction and LSS) across all 

three missing data strategies.  

We performed statistical tests comparing the three RNN variants (RNN–FF, RNN–LF 

and RNN–MF) with all other baseline approaches (LSS, constant prediction, SVM/SVR). 

Multiple comparisons were corrected with a false discovery rate (FDR) of q < 0.05. In the 

case of clinical diagnosis prediction, RNN–MF performed the best and was statistically better 

than all baseline approaches (LSS, constant prediction, SVM/SVR). In the case of ADAS-

Cog13 and ventricular volume, RNN-MF also performed the best and was statistically better 

than all baseline approaches, except LSS with model filling (LSS–MF; p = 0.59).  

 

 

Figure 8. Performance of the best models from each model class averaged across 20 test sets. 

Error bars show standard error across test sets. For clinical diagnosis, higher mAUC and 

BCA values indicate better performance. For ADAS-Cog13 and Ventricles, lower MAE 

indicates better performance. The RNN model corresponded to RNN–MF in Table 4. The 
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SVM model corresponded to SVM/SVR (= 1tp) model in Table 4. The LSS model 

corresponded to LSS–MF in Table 4. RNN performed the best. See Figure S1 for all models. 

 

 

 mAUC 

(more=better) 

BCA 

(more=better) 

ADAS-Cog13 

(less=better) 

Ventricles 

(less=better) 

RNN–FF  0.923 ± 0.019  0.867 ± 0.023  5.03 ± 0.62 0.00247 ± 0.00036 

RNN–LF 0.910 ± 0.031 0.858 ± 0.028 5.42 ± 0.94 0.00193 ± 0.00029 

RNN–MF 0.944 ± 0.014  0.887 ± 0.024  4.30 ± 0.53 0.00156 ± 0.00022 

LSS–FF 0.928 ± 0.020 

(p = 0.018)  

0.864 ± 0.024 

(p = 0.001)   

4.95 ± 0.57 

(p = 0.003)   

0.00216 ± 0.00031 

(p = 5.6×10-7)   

LSS–LF 0.908 ± 0.032 

(p = 0.005)  

0.857 ± 0.037 

(p = 0.042)  

6.36 ± 0.82 

(p = 3.2×10-7)  

0.00175 ± 0.00023 

(p = 0.061)  

LSS–MF 0.926 ± 0.025 

(p = 0.004)  

0.861 ± 0.029 

(p = 0.001)  

4.38 ± 0.49 

(p = 0.590)  

0.00177 ± 0.00028 

(p = 0.044)  

Constant 0.867 ± 0.022 

(p = 3.2×10-9) 

0.861 ± 0.023 

(p = 2.0×10-4) 

5.07 ± 0.61 

(p = 3.3×10-4) 

0.00266 ± 0.00027 

(p = 5.9×10-12) 

SVM/SVR (= 1tp) 0.929 ± 0.013 

(p = 0.011) 

0.841 ± 0.023 

(p = 2.5×10-7) 

5.14 ± 0.62 

(p = 1.8×10-4) 

0.00199 ± 0.00031 

(p = 7.3×10-5) 

SVM/SVR (≤ 2tp) 0.926 ± 0.013 

(p = 0.002) 

0.836 ± 0.026 

(p = 2.8×10-6) 

5.23 ± 0.63 

(p = 1.1×10-4) 

0.00230 ± 0.00037 

(p = 2.7×10-7) 

SVM/SVR (≤ 3tp) 0.923 ± 0.013 

(p = 0.001) 

0.830 ± 0.025 

(p = 2.6×10-7) 

5.53 ± 0.55 

(p = 4.5×10-7) 

0.00261 ± 0.00037 

(p = 5.9×10-7) 

SVM/SVR (≤ 4tp) 0.919 ± 0.012 

(p = 2.2×10-5) 

0.832 ± 0.019 

(p = 4.1×10-7) 

5.68 ± 0.58 

(p = 9.4×10-7) 

0.00269 ± 0.00035 

(p = 1.2×10-9) 

Table 4. Prediction performance averaged across 20 test sets. For clinical diagnosis, higher 

mAUC and BCA values indicate better performance. For ADAS-Cog13 and Ventricles, 

lower MAE indicates better performance. FF indicates forward filling. LF indicates linear 

filling. MF indicates model filling. SVM/SVR (= 1tp) utilized one input timepoint. 

SVM/SVR (≤ 2tp) utilized at most 2 input timepoints (see Section 2.5.2 for details) and so 

on. The best result for each performance metric was bolded. RNN–MF was numerically the 

best across all metrics. Gray font indicates that the performance was not statistically better 

than the best performance (in bold) after correcting for multiple comparisons using a false 

discovery rate (FDR) of q < 0.05.  
 

For both RNN and LSS, mixed filling performed better than forward filling and linear 

filling, especially when predicting ADAS-Cog13 and ventricular volume (Table 4). 

Interestingly, more input timepoints do not necessarily lead to better prediction in the case of 

SVM/SVR. In fact, the SVM/SVR model using one timepoint was numerically better than 

SVM/SVR models using more timepoints, although the differences were small. 

Figure 9 shows the breakdown of the prediction performance from Figure 8 in yearly 

interval up to 6 years into the future. Not surprisingly, the performance of all algorithms 

became worse for predictions further into the future. The constant baseline was very 

competitive against the other models for the first year, but performance for subsequent years 
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dropped very quickly. The RNN model was comparable or numerically better than all 

baseline approaches across all the years.  
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Figure 9. Prediction performance from Figure 8 broken down in yearly interval up to 6 years 

into the future. All algorithms became worse further into the future. RNN was comparable or 

numerically better across all years. See Figure S2 for all models.  
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3.2 RNNs using one and four input timepoints in test subjects achieve comparable 

performance  

Given that the MinimalRNN with model filling (RNN–MF) performed the best (Table 

4), we further explored how well the trained RNN–MF model would perform on test subjects 

with different number of input timepoints.  

Figure 12 shows the performance of RNN-MF averaged across 20 test sets using 

different number of input timepoints. The exact numerical values are reported in Table 5. 

RNNs using 2 to 4 input timepoints achieved similar performance across all metrics. RNN 

using 1 input timepoint had numerically worse results, especially for ventricular volume. 

However, there was no statistical difference between using 1 input timepoint and 4 input 

timepoints even in the case of ventricular volume (p = 0.20).  

 

Figure 10. Test performance of RNN model with model filling strategy (RNN-MF) using 

different numbers of input timepoints (after training with all timepoints). Results were 

averaged across 20 test sets. Even though the RNN model using 1 input timepoint yielded 

numerically worse results, the differences were not significant (see Table 5).  
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 mAUC 

(more=better) 

BCA 

(more=better) 

ADAS-Cog13 

(less=better) 

Ventricles 

(less=better)s 

4 timepoints 0.911 ± 0.076 0.844 ± 0.053  5.28 ± 1.41 0.00240 ± 0.00040 

3 timepoints 0.909 ± 0.076 

(p = 0.68)  

0.844 ± 0.052 

(p = 0.88)   

5.28 ± 1.38 

(p = 0.99)   

0.00232 ± 0.00038 

(p = 0.22)  

2 timepoints 0.908 ± 0.080 

(p = 0.57)  

0.844 ± 0.053 

(p = 0.84)  

5.24 ± 1.35 

(p = 0.89)  

0.00260 ± 0.00067 

(p = 0.50) 

1 timepoint 0.897 ± 0.091 

(p = 0.27)  

0.833 ± 0.048 

(p = 0.18)  

5.48 ± 1.37 

(p = 0.53)  

0.00309 ± 0.00098 

(p = 0.20) 

Table 5. Test performance of RNN model with model filling strategy (RNN-MF) using 

different numbers of input timepoints (after training with all timepoints). Results were 

averaged across 20 test sets. Statistical tests were performed to test for differences between 

using 4 timepoints versus less timepoints. The gray font indicates that there was no statistical 

difference that survived FDR of q < 0.05.   

 

 

3.3 TADPOLE live leaderboard 

The original LSTM model (Nguyen et al., 2018) was ranked 5th (out of 53 entries) in 

the TADPOLE grand challenge in July 2019 (entry “CBIL” in https://tadpole.grand-

challenge.org/Results/). Our current minimalRNN models were ranked 2nd and 3rd (out of 56 

entries) in the leaderboard as of Aug 12th, 2019 (entries (“CBIL-MinMFa” and  “CBIL-

MinMF1”; https://tadpole.grand-challenge.org/D4_Leaderboard/). Interestingly, the model 

obtained from hyperparameters tuned to predict all years into the future (“CBIL-MinMFa”) 

performed better than the model obtained from hyperparameters tuned to predict one year 

into the future (“CBIL-MinMF1”), even though the leaderboard currently utilized about one 

year of future data for prediction. 

.  
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4 Discussion 

In this work, we adapted a minimalRNN model for predicting longitudinal 

progression in AD dementia. Our approach compared favorably with baseline algorithms, 

such as SVM/SVR and LSS models. However, we note that there was no statistical difference 

between the minimalRNN and LSS for predicting ADAS-Cog13 and ventricular volume even 

though other studies suggested benefits of modeling non-linear interactions between features 

(Popescu et al., 2019). 

As can be seen when setting up the SVM/SVR baseline models (Section 2.5.2), there 

are a lot of edge cases to consider in order to adapt a “static” prediction algorithm (e.g., 

SVM/SVR) to the more “dynamic” longitudinal prediction problem we considered here. For 

example, data is inevitably wasted because static approaches generally assume that 

participants have the same number of input timepoints. Therefore, for the SVM/SVR models 

using 4 input timepoints, we ended up with only 1454 participants out of the original 1677 

participants. This might explain why the SVM/SVR model using 1 input timepoint compared 

favorably with the SVM/SVR model using 4 input timepoints (Table 4). Furthermore, we had 

to build multiple separate SVM/SVR models to predict at a fixed number of future 

timepoints, and performed interpolation at intermediate timepoints. By contrast, state-based 

models (e.g., minimalRNN or LSS) are more elegant in the sense that they handled 

participants with different number of timepoints and can in principle predict unlimited 

number of timepoints into the future. 

Even though the ADNI dataset comprised participants with multiple timepoints, for 

the algorithm to be clinically useful, it has to be successful at dealing with missing data and 

participants with only one input timepoint. We found that the “integrative” approach of using 

the model to fill in the missing data (i.e., model filling) compared favorably with 

“preprocessing” approaches, such as forward filling or linear filling. However, it is possible 

that more sophisticated “preprocessing” approaches, such as matrix factorization (Mazumder 

et al., 2010; Nie et al., 2017; Thung et al., 2016) or wavelet interpolation (Mondal and 

Percival, 2010), might yield better results. We note that our model filling approach can also 

be considered as a form of matrix completion since the RNN (or LSS) was trained to 

minimize the predictive loss, which is equivalent to maximizing the likelihood of the training 

data. However, matrix completion usually assumes that the training data can be represented 

as a matrix that can be factorized into low-ranked or other specially-structured matrices. On 
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the other hand, our method assumes temporal dependencies between rows in the data matrix 

(where each row is a timepoint).  

Our best model (minimalRNN with model filling) had similar performance when 

using only 1 input timepoint instead of 4 input timepoints, suggesting that our approach 

might work well with just cross-sectional data (after training using longitudinal data). 

However, we might have simply lacked the statistical power to distinguish among the 

different conditions because of the smaller number of subjects in this experiment (see Section 

2.7). Overall, there was no noticeable difference among using 2, 3 or 4 input timepoints, 

while the performance using 1 input timepoint appeared worse, but the difference was not 

statistically significant (Figure 10). 

Although our approach compared favorably with the baseline algorithms, we note that 

any effective AD dementia treatment probably has to begin early in the disease process, 

potentially at least a decade before the emergence of behavioral symptoms. However, even in 

the case of our best model (minimalRNN with model filling), prediction performance of 

clinical diagnosis dropped from a BCA of 0.935 in year 1 to a BCA of 0.810 in year 6, while 

ventricular volume MAE increased from 0.00104 in year 1 to 0.00511 in year 6. Thus, 

significant improvement is needed for clinical utility.  

One possible future direction is to investigate new features, e.g., those derived from 

diffusion MRI or arterial spin labeling. Previous studies have also suggested that different 

atrophy patterns (beyond the temporal lobe) might influence cognitive decline early in the 

disease process (Noh et al., 2014; Byun et al., 2015; Ferreira et al., 2017; Zhang et al., 2016; 

Risacher et al., 2017; Sun et al., 2019), so the atrophy features considered in this study (Table 

1) might not be optimal. Although the new features may be correlated with currently used 

features, the new features might still provide complementary information when modeling AD 

progression (Popescu et al., 2019).  

As mentioned in the introduction, an earlier version of our algorithm was ranked 5th 

out of 50 entries in the TADPOLE competition. Our current model was ranked 2nd out of 56 

entries on the TADPOLE live leaderboard as of Aug 12th, 2019. Interestingly, the top team 

considered additional handcrafted features, which might have contributed to its success. 

Furthermore, the top team utilized a non-deep-learning algorithm XGboost (Chen and 

Guestrin, 2016), which might be consistent with recent work suggesting that for certain 

neuroimaging applications, non-deep-learning approaches might be highly competitive (He et 

al., 2019) 
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5 Conclusion 

Using 1677 participants from the ADNI database, we showed that the minimalRNN 

model was better than other baseline algorithms for the longitudinal prediction of multimodal 

AD biomarkers and clinical diagnosis of participants up to 6 years into the future. We 

explored three different strategies to handle the missing data issue prevalent in longitudinal 

data. We found that the RNN model can itself be used to fill in the missing data, thus 

providing an integrative strategy to handle the missing data issue. Furthermore, we also found 

that after training with longitudinal data, the trained RNN model can perform reasonably well 

using one input timepoint, suggesting the approach might also work for cross-sectional data.  
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Supplementary 

 

Figure S1. Performance of all models averaged across 20 test sets. Error bars show standard 

error across test sets. For clinical diagnosis, higher mAUC and BCA values indicate better 

performance. For ADAS-Cog13 and Ventricles, lower MAE indicates better performance. FF 

indicates forward filling. LF indicates linear filling. MF indicates model filling. SVM/SVR (= 

1tp) utilized one input timepoint. SVM/SVR (≤ 2tp) utilized at most 2 input timepoints (see 

Section 2.5.2 for details) and so on. 
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Figure S2. Prediction performance from Figure S1 broken down in yearly interval up to 6 

years into the future. For clinical diagnosis, higher mAUC and BCA values indicate better 

performance. For ADAS-Cog13 and Ventricles, lower MAE indicates better performance. FF 

indicates forward filling. LF indicates linear filling. MF indicates model filling. SVM/SVR (= 

1tp) utilized one input timepoint. SVM/SVR (≤ 2tp) utilized at most 2 input timepoints (see 

Section 2.5.2 for details) and so on.  
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